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Abstract—Local interpretation of explainable AI, SHAP
(SHapley Additive exPlanations), in disease classification
problems offers significant feature scores for each sample,
potentially identifying precision medicine targets. Tailoring
treatments based on individual genetic and molecular targets
can enhance therapeutic outcomes while minimizing side effects.
However, the suitability of SHAP's local interpretation at the
patient level remains uncertain. It generates different sets of
patient-specific genes in various runs, even with consistent
overall accuracies. This uncertainty challenges the reliability of
SHAP’s local interpretations for precision medicine
applications. Not only that, different filtering criteria and
normalization techniques may influence the contribution scores
of patient-specific features. To validate our hypothesis, SHAP
was applied to machine learning algorithms from different
genres to identify patient-specific feature contributions from the
breast cancer subtype classification problem. The program
underwent multiple runs to assess the robustness of SHAP.

Our study demonstrates that shallow machine learning
algorithms, like Logistic Regression, consistently provided
stable and reliable results across multiple runs. In contrast,
complex machine learning models like XGBoost and MLP
exhibited inconsistencies across different runs. Moreover, we
found that data normalization techniques, particularly z-score
and min-max normalization, had a minimal effect on the
performance of XGBoost models. Our study also shows that the
accuracy scores of complex machine learning models remained
relatively constant across different runs but produced different
sets of patient-specific features. In conclusion, our findings
underscore the importance of selecting appropriate filtering and
normalization techniques, given the variability in SHAP results
across different runs. Our study indicates that combining SHAP
with shallow machine learning algorithms yields more stable
and dependable results compared to complex machine learning
approaches.

Keywords— explainable machine learning, robust Al, patient-
specific biomarkers, precision medicine, SHAP

1. INTRODUCTION

Data preprocessing is crucial for achieving effective
classification performance when applying machine learning
algorithms. It involves various tasks, including data
discretization, outlier removal, and data normalization. Data
normalization is especially important to ensure that features
with larger numeric values do not dominate those with
smaller values, reducing potential bias and promoting equal
feature importance in the learning process [1]. Data
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normalization's significance in enhancing predictive models
has been demonstrated across multiple machine learning
algorithms [2]-[4] and in several applications [5]—[8].
Normalization techniques for large-scale expression data,
including RNAseq, serve the purpose of mitigating
systematic experimental bias and technical variability while
preserving the underlying biological distinctions [9].
Additionally, various data filtering methods have been
applied to RNA-seq data. These methods involve filtering
genes based on criteria such as having a total read count
below a specified threshold [10] and excluding genes that
contain at least one zero count in each experimental condition
[11]. Typically, noise in the large-scale expression data with
exceptionally low counts is eliminated by establishing a
minimum threshold. However, the selection of this threshold
is a subject of controversy [12]. For simplicity, it is important
to establish a difference between filtering and normalization.
Normalization entails the rescaling of values, for example,
FPKM values. Filtering involves the removal of values that
meet specific criteria. Implementing independent filtering of
RNA-seq data, sometimes referred to as filtering or cleaning,
and rescaling or normalizing the values may enhance the
machine learning model’s performance. The study
empirically examines the influence of normalization methods
and filtering in precision medicine. As a case study, we
conducted our analysis on breast cancer expression data,
highlighting the effects of normalization and filtering.

Breast cancer is a diverse disease with various factors
contributing to its development, and the most of cases are
sporadic [13]. Hereditary cases make up only around 10-15%,
often involving BRCA1 or BRCA2 gene mutations [14].
Patients are categorized based on subtype, which impacts
treatment decisions. The most common classification
identifies five main breast cancer subtypes: Basal, Luminal
A, Luminal B, HER2, and Normal-like breast cancer [13].
These subtypes are distinguished by hormone receptor (ER or
PR) and HER2 status [15], helping guide therapeutic
approaches for each patient [16]. So, identifying significant
biomarkers for each patient is crucial to tailor effective
therapeutic strategies for breast cancer treatment.

Several studies have delved into breast cancer subtype
classification by employing a range of machine learning and
deep learning methods on gene expression data [17]-[20].
Additionally, researchers have turned their attention to
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integrating multi-omics and multi-modal data to enhance
breast cancer subtype classification [21]-[23]. Graph neural
network architectures have also been applied to tackle similar
tasks [24], [25]. In addition to cancer classification, both
supervised and unsupervised feature selection algorithms
have been utilized to identify significant gene biomarkers
from a variety of omics data. These selected features or
biomarkers are population-based. However, it is well-known
that there exists intra-tumor heterogeneity (ITH) resulting
from genetic variability among patients [26] with various
computational tools available for quantifying ITH scores
[27], [28]. As a result, recent research has focused on
identifying patient-specific biomarkers using advanced
machine learning and deep learning approaches, such as
attention mechanisms and graph convolutional neural
networks [29], [30]. Additionally, explainable machine
learning algorithms have been used to find important patient-
specific biomarkers based on feature attribution methods
[31]. Surprisingly, none of these studies have addressed the
robustness of their outcomes or the robustness of identifying
patient-specific biomarkers.

This study takes a significant step by addressing the
critical question of outcome stability. By systematically
examining the stability of patient-specific biomarkers across
multiple runs, we provide insights into the consistency and
reliability of these crucial findings, shedding light on the path
to more dependable and personalized cancer treatment
strategies. In this study, we addressed the issue of robustness
in precision medicine while applying an explainable machine
learning algorithm, SHAP [32]. We implemented a range of
machine learning and deep learning algorithms for breast
cancer subtype classification using gene expression data and
employed SHAP to compute feature contribution scores for
each patient and each gene. Additionally, we explored
preprocessing and normalization techniques, providing
valuable insights into achieving robust outcomes.

We hypothesize that the identification of biomarker genes
using different normalization and filtering techniques
utilizing different machine learning and deep learning
algorithms may vary while calculating the contribution score
using SHAP. We also hypothesize that shallow machine
learning algorithms may produce robust results due to their
simple architecture, though they may have lower
predictability scores. In contrast, complex machine learning
algorithms may act differently by producing unreproducible
results. This study showed a comparative analysis of
identifying patient-specific significant genes.

The remaining part of this paper follows this structure:
The “Materials and Methods” section encompasses dataset
preparation, and research methods. The “Experimental
Results” section provides research outcomes and result
analysis. A concise discussion of our findings is presented in
the “Discussion” section. Lastly, the “Conclusion” section
delves into conclusions drawn from the study and outlines
potential future avenues.
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II. MATERIALS AND METHODS

A. Data Collection

To define genes linked to breast cancer subtypes, we
gathered copy number variation (CNV), DNA methylation
(MET), mRNA expression (EXP) and mutation (MUT)
profiles, and clinical information from the GDC portal [33].
The downloaded dataset consists of 1096 cases of CNV, 1097
cases of MET, 1076 cases of EXP, and 969 cases of MUT, as
summarized in Table I. To investigate the effect of four omics
on each sample, we considered samples with all omics, which
resulted in 949 common tumor samples.

The omics datasets contain 105 normal adjacent to tumor
(NAT) samples, which were considered healthy samples for
this analysis. Thus, a total of 1054 samples were used for
further analysis for this study.

Reason for using common genes in multi-omics data: This
study is a preliminary step of a big project of multi-omics
analysis. This is why we considered common genes among the
multi-omics in this study. The goal of the present study is to
demonstrate how the filtering and normalization of
transcriptome data affect the discovery of patient-specific
biomarkers leading to precision medicine.

TABLE L SAMPLE DISTRIBUTION OF FOUR DATA TYPES OF BREAST
CANCER SUBTYPES. DUE TO SMALL NUMBER OF SAMPLES, NORMAL-LIKE
COHORT WAS NOT USED FOR ANALYSIS. DH: DUPLICATE HANDLING, NL:
NORMAL-LIKE.

Number of Samples
Data Type Common after
Tumor | Common | DH and removal
of NL samples
Gene expression 1076
Copy Number Variation 1096
Mutation 969 949 900
DNA Methylation 1097
Normal Adjacent to 105
Tumor (NAT) / Healthy
1005
Total (Common after (Basal: 165, Her2: 75,
DH+ Healthy) LumA: 471, LumB: 189,
Healthy: 105)

B. Data Preparation

Removal of Normal-like Samples: The number of normal-like
samples, 34 in total, was considerably low compared to other
subtypes. Thus, we excluded normal-like samples from our
analysis.

Duplicate Sample Handling: Within the mRNA gene
expression data, we encountered instances of duplicate
samples, distinguishable through the TCGA barcode (i.e.,
TCGA-02-0001-01B). In some cases, the first 15 characters of
the barcode were identical, differing only in the vial
designation (16" character). In such instances, we retained
only the samples with the first vial, thus addressing the issue
of duplicate samples. The removal of duplicates resulted in a
total of 900 common tumor samples.

The dataset for final analysis consists of 1005 samples
with 900 tumor and 105 healthy samples, as shown in Table 1.
Transcriptome or mRNA expression profiles of 1005 samples
was used for further analysis without and with filtering and
normalization.

Dataset with All Genes (Without Filtering): Initially, our
dataset encompassed a total of 19,962 features or mRNA



expressions with ensemble IDs. The ensemble IDs were then
mapped to gene symbols. We refer it as the “Dataset with All
Genes.”

Dataset with Reduced Genes (With Filtering): Our strategy
involved filtering the original feature set based on mRNA
expression values in FPKM (fragments per kilobase of
transcript per million fragments mapped). Specifically, we
retained only those features where FPKM values were equal
to or greater than 1 in at least 15% of the samples. This
filtering process was executed independently on tumor and
healthy expression datasets, which resulted in 13,101 and
13,033 genes for the tumor and healthy cohorts. Next, we
combined the genes from both groups, resulting in a total of
13,703 genes, which constituted the “Dataset with Reduced
Genes.”

Normalization Techniques: In our study, we explored two
normalization methods: z-score normalization and min-max
normalization. These normalization techniques were applied
to “Dataset with All Genes” and “Dataset with Reduced
Genes.”

We also used the datasets without normalization.
Altogether, we have six distinct datasets for the experiment.
To facilitate clarity, we assigned the following names to these
datasets: ‘all genes not normalized’, ‘all genes z-score’, ‘all
genes min-max’, ‘reduced genes not normalized’, ‘reduced
genes z-score’, and ‘reduced genes min-max’.

C. Workflow of the study

The overall workflow of methodology is shown in Fig. 1. The
objective of this study is to identify the patient-specific
significant genes via explainable AI, SHAP (Shapley Additive
exPlanations), while investigating the effect of filtering and
normalization techniques applied to the predictor variables
(mRNA expressions). Based on the filtering process and
normalization techniques, we generated six sets of mRNA
expression data of 900 breast cancer and 105 healthy samples

as the input to the pipeline.
Sample-specific

Fig. 1. Overall Workflow. Identifying breast cancer patient-specific
genes using gene expression data.

mRNA Expression
(Basal, Her2, LumA,
LumB, Healthy)

Classifiers SHAP
(LR, MLP, XGBoost ) Explainers

D. Classification Algorithms

We employed three distinct classification algorithms
across the six datasets to classify five breast cancer subtypes
(Basal, Her2, LumA, LumB, and Healthy). These algorithms
encompass a range of methodologies, including logistic
regression (LR) [34], multi-layer perceptron (MLP) [35], and
extreme gradient boosting (XGBoost) [36]. These algorithms
can be categorized into three types: tree-based (XGBoost),
probabilistic (LR), and neural network-based (MLP).

Tree-based machine learning models utilize a hierarchical
tree structure to make predictions based on input data. They
are known for their global interpretability and are widely used
in applications like decision-making and data analysis.
Common tree-based models include Decision Trees, Random
Forests, and Gradient Boosting Trees. XGBoost is a decision
tree-based machine learning algorithm that uses a process
called boosting to help improve performance. It is an
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optimized gradient-boosting algorithm through parallel
processing, tree pruning, handling missing values, and
regularization to avoid bias or overfitting. It belongs to the
family of ensemble learning methods, which means it
combines the predictions of multiple models to create a strong
predictive model.

Logistic Regression is a statistical method used for binary
classification, but it can be extended for multiclass
classification scenarios. This algorithm is well-suited for
scenarios where the relationship between the independent and
dependent variables is assumed to be linear. Its simplicity,
interpretability, and efficiency make Logistic Regression an
attractive choice for multiclass classification tasks, especially
when dealing with linearly separable data.

Neural networks, including the Multilayer Perceptron
(MLP), are fundamental to deep learning. An MLP is an
artificial neural network consisting of multiple layers of
interconnected neurons, with an input layer, one or more
hidden layers, and an output layer. These networks can
approximate complex, non-linear functions and are widely
used for various machine learning tasks.

To evaluate the classification performance, a 5-fold cross-
validation approach was employed. For stratified sampling,
we utilized the StratifiedKFold function from the scikit-learn
library. Additionally, we conducted hyperparameter tuning to
fine-tune the classifiers for optimal results.

Machine Learning in Precision Medicine: In the field of
precision medicine, where treatments are developed and
tailored to individual patients, it is essential to have confidence
in the consistency and reliability of the machine learning
algorithms used to make critical decisions. The robustness of
these algorithms, which ensures that they produce consistent
and dependable results across multiple runs or iterations, is of
utmost importance. A rigorous testing process is employed to
evaluate and validate the robustness of these algorithms. It
involved executing the same machine learning algorithms ten
times, using the same dataset but changes in random seeds. By
running the algorithms ten times, we observed how consistent
and reliable their results are. This process helped to identify
any potential issues with variability or instability in the
algorithm's predictions.

Following that, we assessed the contribution of each
feature in individual samples. We aimed to discern the
factors/features influencing the success or accuracy of the
machine learning models. Analyzing feature contributions on
a local and global scale is crucial for understanding the
models' performance and suitability in precision medicine
applications. We utilized an explainable machine learning
tool, SHAP, capable of identifying the feature contributions
responsible for the model’s success.

E. Local Feature Interpretation using SHAP

SHapley Additive exPlanations (SHAP) is a powerful
technique rooted in game theory that enables the interpretation
of machine learning models’ outputs. It’s a versatile approach
that can be applied to any machine learning or deep learning
model. What sets SHAP apart is its ability to calculate a score
for each feature for each sample, providing insights into how
each feature influences the models’ predictions.

The process of calculating SHAP scores involves several
steps. First, it considers the machine learning or deep learning
algorithms in use and assesses how a specific feature affects



the model’s predictions. It does this by comparing the model’s
predictions with and without the feature for wvarious
combinations of features, known as coalition sets. The
differences in predictions are computed for each coalition set.

The crucial insight provided by SHAP comes from taking
the average of these differences across all possible coalition
sets. This average serves as the SHAP score for a specific
feature, alternatively referred to as local feature interpretation.
Additionally, by averaging the local feature scores, one can
derive the global score, known as global feature interpretation.

Local Feature Interpretation: Local feature interpretation
involves determining how much each feature or predictor
contributed to the model’s prediction for a particular sample
or patient. It provides a detailed understanding of why a
specific prediction was made for that individual patient. Local
interpretation is particularly valuable for understanding model
predictions on an individual basis, making it useful in
personalized medicine. SHAP achieves this by assigning
Shapley values to each feature for each sample, quantifying
their contributions to the model’s output for that particular
patient. These values help to elucidate the rationale behind a
model’s prediction at the local level.

III. EXPERIMENTAL RESULT

A. Classification Accuracy with Three Classifiers

We employed three diverse classifiers on the dataset,
representing three genres of machine learning algorithms, as
shown in Fig. 2. To assess their performance, we conducted
5-fold cross-validation to evaluate the models. The testing
accuracy of each algorithm was measured across the 5 folds,
and subsequently, the average accuracy was calculated as the
final performance metric. Fig. 2 summarizes the results
obtained from the 5-fold cross-validation of the three
classifiers across six distinct datasets. Notably, XGBoost
consistently demonstrated the highest accuracy levels,
surpassing 91% across all six datasets.

Effect of Filtering (Not normalized case): Here, we
compare the results derived from “All genes not normalized”
and. “Reduced genes not normalized” datasets. The
performance of classifiers LR and XGBoost remain almost the
same in the case of all genes and reduced genes datasets. For
example, LR produces the same accuracy of 82% in both
cases. This means that there is no effect of filtering for
classifiers LR and XGBoost. On the other hand, MLP
performs worse with filtered data (76%) than without filtered
data (83%).

Effect of Filtering (z-score normalization case):
Comparing accuracies derived from “All genes z-score” and
“Reduced genes z-score” datasets, we observed that LR
(88%), MLP (86%), and XGBoost (91%) perform about the
same with and without filtering, meaning no effect on
filtering.

Effect of Filtering (min-max normalization case):
Comparing accuracies derived from “All genes min-max” and
“Reduced genes min-max” datasets, we observed that LR,
MLP, and XGBoost perform about the same with and without
filtering, meaning no effect on filtering.

Effect of Normalization (All genes case): Tree-based
algorithm, XGBoost (~92%) performs about the same in “all
genes case” without and with normalization (z-score and min-
max), meaning that normalization does not affect the
performance of XGBoost classifiers using data without
filtering. But LR and MLP perform better with normalized
data. For example, accuracies of MLP are 84%, 86%, and 88%
using “not normalized”, z-score, and min-max normalized
datasets, respectively.

Effect of Normalization (Reduced genes case): The
similar trends are observed as in the “All genes case.” The
tree-based algorithm, XGBoost (~91%), performs about the
same in the “Reduced genes case” without and with
normalization (z-score and min-max), meaning that
normalization does not affect the performance of tree-based
classifiers. On the other hand, LR and MLP perform better
with normalized data.

95

Accuracy
~ ~ [+ [+ O
o (4] o [0 o

o
(V]
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LR MLP
Classifiers

Layer Perceptron, XGBoost: Extreme Gradient Boosting.

H All genes unnormalized
m All genes z-score
m All genes min-max
Reduced genes unnormalized
o Reduced genes z-score

M Reduced genes min-max

XGBoost

Fig. 2. Effect of filtering and normalization on classification performance. Filtering using the threshold on FPKM values > 1 in at least 15% of the
samples was used to generate the reduced gene set. Two types of normalization: z-score and min-max. Three classifiers from different genres (tree-based:
XGBoost, probabilistic: LR, and neural network-based: MLP) were used to classify five subtypes of breast cancers. LR: Logistic Regression, MLP: Multi-
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The performance of tree-based classifiers is not affected
by normalization because these algorithms are independent of
distance or similarity between two subjects. On the other hand,
the classifiers LR and MLP depend on the distance or
similarity between two subjects in different aspects. The
normalization process brings all the features or predictor

50 89.15 89.05 92.13
60 89.15 89.25 92.13
70 89.15 89.05 91.74
80 89.15 87.76 92.43
90 89.15 88.95 92.83

Effect of Random Seeds on Model Performance: Table II
shows the effect of random seeds on the machine learning
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Fig. 3. Shared genes across 10 different runs for a particular patient (TCGA barcode: TCGA-3C-AAAU-01A). A reduced gene set with min-max
normalization was used for the experiment. Patient-specific top 100 genes from each run were selected using the SHAP score. a) Logistic Regression
outcome: the same set of 100 significant genes were identified at each run. b) Multi-Layer Perceptron outcome: almost no common genes across 10
different runs. ¢) XGBoost outcome: around 20% of the significant genes were common in 10 runs.
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variables under the same scale, which overcomes the bias or
dominance of predictor variables with a large range of values.
Thus, LR and MLP perform better with normalized data.

Effect of Normalization Techniques (z-score vs. min-
max): It is clear from Fig. 2 that min-max normalized data
performs as per with z-score data with LR and XGBoost and
significantly better with MLP. Thus, we used a dataset with
min-max normalization for the subsequent analysis.

B. Hyperparameter Tuning

At this point, hyperparameters of classifiers from different
genres are tuned up. From Fig. 2, it is evident that the min-
max normalization with and without filtering performs at the
highest level of accuracy for all three classifiers. Since
filtering provides fewer features, we utilized the 'reduced
genes min-max' dataset for hyperparameter tuning.

Hyperparameters to Tune: The hyperparameters of
logistic regression (LR) from the scikit-learn package were
optimized, focusing on random seed and multi-class settings.
For the MLP model from TensorFlow's Keras,
hyperparameter tuning encompassed random seed, hidden
layer configurations, activation functions, loss functions,
batch size, and the number of training epochs. Meanwhile, for
the XGBoost algorithm, hyperparameters such as learning
rate, the number of estimators, maximum tree depth,
minimum child weight, gamma, regularization lambda,
subsampling rate, column subsampling by tree, scaling of
positive weights, objective function, and the number of classes
were optimized.

TABLE II. EFFECT OF RANDOM SEEDS ON MODEL PERFORMANCE
(ACCURACY). THE EXPERIMENT WAS PERFORMED ON THE 'REDUCED GENES
MIN-MAX' DATASET. LR: LOGISTIC REGRESSION, MLP: MULTI-LAYER
PERCEPTRON, XGBOOST: EXTREME GRADIENT BOOSTING.

Random |y o | Mpp | XGBoost
Seed
0 89.15 | 88.95 92.33
10 89.15 | 88.45 92.13
20 89.15 | 84.37 92.23
30 89.15 | 89.25 92.03
40 89.15 | 87.96 91.64
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model's performance. We used the model hyperparameter
"random state" and changed its values for LR and XGBoost to
assess the impact of randomness on the model's performance.
In the case of MLP, we initialized the random seed value and
systematically changed the value in different runs to evaluate
the models' performance.

Upon reviewing Table II, it becomes evident that there are
no differences in accuracies across the different runs in LR. In
contrast, there is a slight difference in the accuracies of MLP
and XGBoost. The results shown in the table indicate that LR
does not have any impact on seed values, hence generating the
same accuracies across all runs. In contrast, seed values
affected the model's accuracies for MLP and XGBoost.

C. Local Interpretation using SHAP

We employed SHAP to identify the most significant genes
across ten different runs of the LR, MLP, and XGBoost
models, considering each gene and sample individually. This
level of local interpretability allowed us to pinpoint patient-
specific biomarkers, potentially valuable for personalized
medicine or therapy. We adopted a procedure involving
multiple iterations to obtain scores for each gene-sample
combination. Specifically, we trained the XGBoost model
using 80% of the data and evaluated its performance on the
remaining 20% of the data. We repeated this process five
times, ensuring that a distinct 20% subset was used for testing
each time. Consequently, we utilized 100% of the data for
testing in five runs (times). However, a small number of false
predictions were detected. Subsequently, we removed these
falsely predicted samples, retaining only those with accurate
predictions for every run. Each of these retained samples was
then assigned scores for all genes, calculated using SHAP
values. We arranged all the genes in descending order to
analyze the data further based on their respective scores.

We employed various model-specific SHAP algorithms to
obtain SHAP scores. Specifically, we utilized a linear
explainer for logistic regression (LR), a deep explainer for
multi-layer perceptron (MLP), and a tree explainer for
XGBoost.



Consistency of Genes in Multiple Runs: The consistency of
genes appearing in multiple runs is a crucial aspect of our
analysis. It signifies the stability and reliability of specific
genetic markers associated with an individual across different
iterations or experiments. This consistency provides valuable
insights into the robustness of these genes as potential
biomarkers or indicators for personalized medicine and
treatment strategies. By identifying genes that consistently
emerge across multiple runs, we can enhance our
understanding of the patient-specific genetic factors that play
a pivotal role in disease prognosis, diagnosis, and therapeutic
interventions.

Our methodology was initiated by selecting the patient-
specific top 100 genes across ten independent runs based on
their SHAP scores, and this process was applied to LR, MLP,
and XGBoost. Fig. 3 summarizes the results of this
experiment. It is clear that the patient-specific top 100 genes
for LR remained consistent across all runs. In contrast, for
MLP and XGBoost, the top 100 genes exhibited variability,
which presents a notable challenge in precision medicine.
MLP produces sets of top 100 genes with minimal overlap
(ranging from O to 10), indicating that SHAP identified almost
distinct sets of significant genes in different runs. XGBoost
exhibited a similar trend, with more overlapped genes

In Stage (i), we identified patient-specific shared genes
between normalized and unnormalized data for both the ‘all
genes’ and ‘reduced genes’ datasets shown in Fig. 4(a) and
Fig. 4(b), respectively. It becomes evident that only a few
genes overlapped across different runs in this analysis. For
instance, when examining the patient TCGA-3C-AAAU-01A
in run 1, we found that 17 genes were shared between the two
datasets (unnormalized and z-score normalized when all genes
are considered) shown in Fig. 4(a). A similar result was
noticed when ‘reduced genes’ were considered, as shown in
Fig. 4(b). In Stage (ii), we observed that all the top 100 genes
were overlapped between the two datasets (z-score
normalized and min-max normalized), as depicted in Fig. 4(c)
and 4(d). This finding suggests that the choice of different
normalization techniques did not impact the identification of
the top genes.

The result of Stage (iii) is shown in Fig. 5. It shows similar
scenarios to Stage (i) that there are few overlapped genes
among the ‘all genes dataset’ and ‘reduced genes dataset’ with
normalization. Interestingly, the number of common genes for
all the patients at every run is the same for the two scenarios
shown in Fig. 5(a) and Fig. 5(b). The scenarios in Fig. 5 are
generated using two different normalization techniques, but
we see the same number of common genes for every patient.
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Fig. 4. Effect of normalization on identifying patient-specific biomarkers using XGBoost. Shared genes across 10 separate runs (seeds) within five
distinct samples. Each cell represents the number of common genes in two runs with the same seed but different normalization. In each run, patient-
specific top 100 genes based on SHAP scores were isolated. Two sets of patient-specific genes derived from two runs are compared to find the shared
genes. Shared genes between (a) z-score normalized data and unnormalized data with all genes, (b) z-score normalized data and unnormalized data with
reduced genes, (c) z-score normalization and min-max normalization with all genes, and (d) z-score normalization and min-max normalization with

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Z-score vs Min-max (all genes) Z-score vs Min-max (reduced genes)

(ranging from 12 to 30) in different runs. This observation
suggests that LR might be a more reliable choice when
seeking consistent results for identifying important genes.

Next, we aimed to assess the variability in outcomes
across the different datasets employed in our study. Fig.2
shows that overall accuracy varies, except for XGBoost when
different datasets are utilized. Furthermore, the study reveals
that the normalization status (normalized or unnormalized) of
the dataset does not impact the accuracies, as consistent
accuracies were observed for both the normalized and
unnormalized datasets, a trend observed in both “all genes”
and “reduced gene” datasets.

Due to the consistent performance (accuracy) of XGBoost,
we structured our next experiment into three distinct stages
using only XGBoost outcomes: (i) Identifying common genes
between the normalized and unnormalized versions, (ii)
Identifying common genes comparing z-score normalization
and min-max normalization, and (iii) Identifying common
genes between the ‘all genes dataset’ and the ‘reduced genes
dataset.” The results of the three scenarios are shown in Fig. 4
and Fig. 5.
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This observation again shows that there is no impact of z-score
and min-max normalization on identifying significant genes.

Based on the three scenarios mentioned above, the choice
of normalization methods does not impact the selection of

a) TCGA-3C-AAAU-01A b)
[8]fufnful[s]is[ul[n]o]
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All genes vs Reduced genes (z-score) All genes vs Reduced genes (min-max)

Fig. 5. Effect of filtering on identifying patient-specific biomarkers.
Shared genes across 10 separate runs (seeds) within five distinct
samples. Each cell represents the number of common genes in two runs
(all genes vs. reduced genes) with the same seed. In each run, patient-
specific top 100 genes based on SHAP scores were isolated. Two sets
of patient-specific genes derived from two runs are compared to find the
shared genes. Shared patient-specific genes using (a) z-score
normalization and (b) min-max normalization.




significant genes for XGBoost. However, differences in
selecting  significant genes arise when comparing
unnormalized and normalized data, even though the
accuracies are the same. Also, we found discrepancies in
identifying significant genes when the two different datasets
(all genes vs. reduced genes) were used.

IV. DISCUSSION

Most of the prior machine learning and deep learning
models were predominantly used as "black box" tools without
transparent explanations. However, recent advancements have
introduced explainable machine learning algorithms such as
SHAP, LIME, ANCHOR, and DeepLIFT to explain the model
prediction. These approaches offer the capability to provide
local and global-level explanations for model predictions.
This interpretability is particularly valuable for applications in
precision medicine. One critical aspect of using these
explainable machine learning models is the robustness of their
outputs. To address this question, our study delves into the
consistency and reliability of results generated by machine
learning and deep learning models.

Our findings indicate that shallow machine learning
algorithms like Logistic Regression (LR) consistently produce
the same accuracies across multiple runs, resulting in
consistent feature importance scores for all features in each
run. In contrast, when it comes to more complex models like
Multi-Layer Perceptron (MLP) and XGBoost, while the
overall accuracies remain similar across runs, there is
significant variation in the selection of top genes. This
variability poses a challenge for precision medicine, as
different runs can yield distinct sets of significant genes,
leading to varying outputs.

Variations observed in MLP outcomes can be attributed to
several factors. MLPs are initialized with random weights,
meaning that the initial conditions for the training process
differ in each run. This variance in initialization can lead to
diverse convergence paths, ultimately resulting in varying
outcomes. In this study, MLP implementation utilized the
Stochastic Gradient Descent (SGD) optimization technique,
chosen after hyperparameter tuning. This method introduces
randomness by employing a subset of the training data in each
iteration, adding an additional layer of variability to the
process. Furthermore, the optimization process in deep neural
networks can converge to distinct local minima, even with
consistent random initialization and data. This behavior is due
to the highly non-convex nature of the optimization landscape
in deep networks, where different runs may find dissimilar
local minima.

Similarly, the variations in XGBoost can be attributed to
the inherent randomness in the subsampling of both data and
features. This variability can result in differences in the
model's learned parameters and predictions. Factors such as
the model's initializations, including the starting point of the
decision trees and feature selection, can diverge between runs,
thereby impacting the model's convergence and the structure
of the learned trees. A specific random seed was set in our
study to mitigate this randomness. While this approach did
produce consistent and robust outcomes, it's important to note
that the results obtained with a fixed random seed may not
necessarily represent the best set of genes for a particular
patient. The choice of random seed can influence the results,
and as such, variations may arise when different random seeds
are employed.
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On the other hand, logistic regression (LR) produces the
same result in every run because it is a simple and
deterministic machine learning algorithm. Logistic regression
does not involve randomness in its learning process. The
model is built through a deterministic optimization procedure,
typically using techniques like gradient descent. For a
particular set of hyperparameters and a given dataset, the
model's coefficients (weights) will converge to the same
values each time.

V. CONCLUSION

Many previous studies have predominantly concentrated
on identifying important genes at the cohort or population
level, often overlooking the personalized nature of disease
treatment based on individual patient's unique genetic
characteristics. This study focused on identifying patient-
specific key genes for precision medicine, employing the
explainable machine learning algorithm SHAP, and utilizing
it for local interpretation. Furthermore, our study underscores
the significance of ensuring the robustness and consistency of
SHAP explainability in precision medicine applications. It
also provides insights into the reasons behind variations in
significant gene selection by MLP and XGBoost models
across different runs. Additionally, our study highlights the
suitability of shallow machine learning algorithms, such as
logistic regression, for precision medicine due to their
consistent and robust output across different runs. It suggests
that logistic regression (LR) may be a superior choice for
identifying key genes in terms of robustness.

The results presented in this study are computational
outcomes derived from machine learning and deep learning
methods. To establish their reliability, validating these
findings through wet lab experiments is essential. Successful
validation in the wet lab would underscore the potential of our
pipeline in identifying crucial genes applicable to various
disease types.

In the future, we intend to explore different explainable
machine learning methods that can provide local feature
interpretation and conduct a comparative analysis of the
results. While our current study concentrated on
transcriptomic profile data, our upcoming research will
encompass various omics data types, including copy number
variation (CNV), DNA methylation, and single nucleotide
polymorphism (SNP) data to comprehensively assess their
roles in disease progression for individual patients. This
expansion can potentially unveil valuable biological insights
within precision medicine.
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