The Digital Social Contract: A Lawfare Paper Series

NIST'S SOFTWARE UN-STANDARDS

Bryan H. Choi*

March 2024

NIST’s standardization efforts in computing technologies retreat from traditional engineering
standards in favor of permissive, open-ended frameworks, undercutting the hope that NIST
standards can establish a legal standard of reasonable care for software safety.

Over the last decade, the White House has recast the National Institute of Standards and Technology
(NIST) in a new leading role of setting national cyber standards. Beginning in 2013, the Obama, Trump,
and Biden administrations issued a series of executive orders directing NIST to develop a “cybersecurity
framework”™ and to define specific cybersecurity “performance goals” for critical infrastructure.! The
Trump and Biden administrations have extended NIST’s purview to artificial intelligence (Al), giving

" Associate Professor of Law and Computer Science & Engineering, The Ohio State University. I thank
Derek Bambauer, Bridget Dooling, Brett Frischmann, Gus Hurwitz, Asaf Lubin, Nick Nugent, Blake Reid,
Alan Rozenshtein, Melanie Teplinsky, David Thaw, Rebecca Wexler, and members of the Law and
Technology Workshop Series for helpful input at early stages of this project. I also thank Rebecca Fordon,
Michael Adamo, Kevin Gibbons, and Aditya Medicherla for excellent research assistance. This work was
supported in part by NSF CCF-2131531.

! See “Improving Critical Infrastructure Cybersecurity,” Executive Order 13636, 78 Fed. Reg. 11739, Feb.
19, 2013 (directing NIST “to lead the development of a framework to reduce cyber risks to critical
infrastructure,” which includes “a set of standards, methodologies, procedures, and processes ... to address
cyber risks”); “Promoting Private Sector Cybersecurity Information Sharing,” Executive Order 13691, 80
Fed. Reg. 9347, Feb. 20, 2015; “Commission on Enhancing National Cybersecurity,” Executive Order
13718, 81 Fed. Reg. 7441, Feb. 12, 2016; “Strengthening the Cybersecurity of Federal Networks and Critical
Infrastructure,” Executive Order 13800, 82 Fed. Reg. 22391, May 16, 2017; “Improving the Nation’s
Cybersecurity,” Executive Order 14028, 86 Fed. Reg. 26633, May 17, 2021; see also “National Security
Memorandum on Improving Cybersecurity for Critical Infrastructure Control Systems,” July 28, 2021,
https://perma.cc/828S-HZVL (ordering NIST and other agencies to “develop and issue cybersecurity
performance goals for critical infrastructure to further a common understanding of ... baseline security
practices”).

Bryan H. Choi | NIST’s Software Un-Standards | PAGE 1

NIST the task of developing guidelines, standards, and best practices to make Al systems more “safe,
secure, and trustworthy.”? Congress has bolstered those executive orders with legislative actions.?

That delegation to NIST has renewed hopes for a quick-fix solution to the problem of software liability.
Commentators have begun to assert that NIST standards could provide a simple compliance mechanism
that would satisfy a “reasonable” duty of care.* For example, in 2018, when the Ohio legislature
addressed the issue of data breach lawsuits, it leaned primarily on NIST standards to establish a safe
harbor.®> The resulting Data Protection Act shields Ohio businesses from liability for data breaches as
long as those businesses implement appropriate cybersecurity controls such as NIST’s Cybersecurity

? See “Maintaining American Leadership in Artificial Intelligence,” Executive Order 13859, 84 Fed. Reg.
3967, Feb. 11, 2019 (directing NIST to develop “technical standards and related tools in support of reliable,
robust, and trustworthy systems that use Al technologies™); “Safe, Secure, and Trustworthy Development
and Use of Artificial Intelligence,” Executive Order 14110 § 4, 88 Fed. Reg. 75191, 75196, Oct. 30, 2023
(directing NIST to “[e]stablish guidelines and best practices, with the aim of promoting consensus industry
standards, for developing and deploying safe, secure, and trustworthy Al systems”).

3 See Pub. L. No. 116-283, 134 Stat. 4523 (2021) (directing NIST to develop “technical standards and
guidelines that promote trustworthy artificial intelligence systems”); Internet of Things Cybersecurity
Improvement Act of 2020, Pub. L. No. 116-207, 134 Stat. 1001 (2020); NIST Small Business Cybersecurity
Act, Pub. L. No. 115-236, 132 Stat. 2444 (2018).

* See William McGeveran, “The Duty of Data Security,” Minnesota Law Review 103 (2019): 1135, 1164
(stating that the “peaceful coexistence” of the NIST Cybersecurity Framework and other independent
industry standards “underscores the broad consensus among security experts about the core elements of the
duty of data security”); Scott J. Shackleford et al., “Defining ‘Reasonable’ Cybersecurity: Lessons From the
States,” Yale Journal of Law & Technology 25 (2023): 86, 120 (finding that, in defining “reasonable”
cybersecurity, state laws seem to be converging on some combination of the NIST Cybersecurity Framework
and the Center for Internet Security (CIS) Top 20 Security Controls); see also id. at 139 (finding that the
NIST Cybersecurity Framework is “the dominant cybersecurity framework used by most small and medium-
sized businesses”). But see Charlotte A. Tschider, “Locking Down ‘Reasonable’ Cybersecurity Duty,” Yale
Law & Policy Review 41 (2023): 75, 111 (observing that the flexible nature of cybersecurity standards such
as the NIST Cybersecurity Framework creates “great difficulty” for courts to determine “whether an
organization actually employed reasonable security practices”).

5 See Data Protection Act, Ohio S.B. 220 (2018), codified at Ohio Rev. Code ch. 1354,
https://codes.ohio.gov/ohio-revised-code/chapter-1354. The statute offers a safe harbor to businesses that
create, maintain, and comply with a written cybersecurity program that “reasonably conforms to an industry
recognized cybersecurity framework™ such as NIST’s Cybersecurity Framework.

Bryan H. Choi | NIST’s Software Un-Standards | PAGE 2

Framework.® The Ohio law has become a centerpiece in the argument that NIST standards could
establish a legal baseline for acceptable software practices.

Such invocations of NIST’s cyber frameworks as a standard of care raise the question whether they are
adequate. The prevailing view is that NIST is a trustworthy, nonpartisan body that promulgates reliable,
scientific standards. That trust in NIST reflects the sound reputation NIST has earned in establishing
uniform standards across a broad range of disciplines. For those who believe federal agencies should
assume a more prominent role in cyber governance, NIST appears to be a natural vessel for that agenda.

Yet, the turn to NIST calls into question whether such faith is justified. Typically, commentators invoke
NIST as a black-box solution and mention NIST’s competence only in passing.’ Little is said about the
content of NIST’s software standards, or whether compliance with those standards will meaningfully
improve the safety and quality of software systems. Nor is there much discussion of NIST’s role as an
institutional body. To be sure, NIST enjoys a sterling reputation in traditional areas of metrics and
standardization such as the physical sciences. But as I have argued elsewhere, software is different in
ways that often defy measurement.®

6 See id. at ch. 1354.03(A)(1) (listing NIST standards as the first three of six “industry recognized”
cybersecurity frameworks). Certain regulated entities can also qualify via compliance with their governing
statutes. See id. at ch. 1354.03(B)(1). See generally David J. Oberly, “Ohio’s Data Protection Act,” Ohio
Lawyer, July 1, 2019 (noting that Ohio’s Data Protection Act is “the first law in the country to provide
incentives to businesses to implement certain cybersecurity controls through the utilization of an affirmative
defense to liability in the wake of a data breach”); Dennis Hirsch et al., “Promoting Better Cybersecurity: An
Analysis of the Ohio Data Protection Act,” March 25, 2019, at 8.

7 See, e.g., David Thaw, “The Efficacy of Cybersecurity Regulation,” Georgia State University Law Review
30 (2013): 287, 369 (“[R]eferencing current standards on encryption, such as those promulgated by NIST,
provides an excellent, flexible, and adaptive solution. Developing standards is among NIST’s core
competencies, and it publishes Federal Information Processing Standards on a wide variety of topics,
including encryption.”); Justin (Gus) Hurwitz, “Cyberensuring Security,” Connecticut Law Review 49
(2017): 1495, 15045 (describing the NIST Cybersecurity Framework as the “gold-standard”); Charlotte A.
Tschider, “Medical Device Artificial Intelligence: The New Tort Frontier,” BYU Law Review 46 (2021):
1551, 1594 n.204 (claiming that NIST is “the agency best positioned to regulate Al technologies or promote
standardization”).

8 See Bryan H. Choi, “Software as a Profession,” Harvard Journal of Law & Technology 33 (2020): 557
(explaining the expert consensus that software’s “essential complexity” exceeds the capacity of conventional
engineering methods and defies standardization efforts); Bryan H. Choi, “Institutional Choice in Software
Safety Standards,” Hastings Law Journal 73 (2022): 1461 (arguing that the centralized agency model lacks a
comparative advantage when the central obstacle is scientific indeterminability due to software complexity);
accord Thaw, supra note 7, at 302 (“Professionals and regulators evaluate information security outcomes as a

function of whether certain practices are followed, not whether those practices are effective. This approach

Bryan H. Choi | NIST’s Software Un-Standards | PAGE 3

The first part of this paper describes NIST’s origin and involvement in the development of early
computing and data processing standards. It then unpacks NIST’s new frameworks for cybersecurity,
secure software development, and artificial intelligence. Although the agency played a critical role until
the late 1970s, its influence waned rapidly beginning in the late 1980s, and it was virtually invisible by
the 1990s. Several high-profile cybersecurity incidents have now thrust NIST back into action. After the
hiatus, NIST has touted voluntary “risk management frameworks” in lieu of formal technical standards.

The second part argues that NIST’s software standards are not “standards” in the conventional sense of
bringing uniformity to a practice. Instead, NIST has gravitated toward self-governance frameworks that
tolerate a broad range of software practices. Accordingly, NIST’s experience offers two lessons.

First, there may not exist a single, consistent “reasonable” standard of care for software liability.
Accordingly, lawmakers looking to craft a software standard of care would be wise to embrace hybrid
elements of self-governance and nonstandard software practices. Paradoxically, efforts to incorporate
NIST’s software “standards” directly into the software developer’s duty of care tacitly ratify this
approach, despite seeming to do the opposite.

Second, the central agency model is unlikely to offer easy shortcuts for determining when software
liability does or does not attach. Because NIST is the standard-bearer for federal standard-setting,
NIST’s retreat from software standardization is the strongest possible indictment against centralized,
uniform mandates. If NIST’s expertise is trustworthy, then policymakers should heed the signal that
alternate mechanisms are needed.

A BRIEF HISTORY OF NIST

NIST is a nonregulatory federal agency situated within the U.S. Department of Commerce. NIST’s
official mission is to provide measurements, calibrations, and quality assurance techniques to promote
“commerce, technological progress, improved product reliability and manufacturing processes, and
public safety.” Historically, that mission has focused primarily on economic concerns such as
international trade, scientific innovation, federal procurement, and budgetary waste, although there has
been substantial overlap with noneconomic concerns such as national security during times of war.

is, in part, due to an inability to measure the efficacy of such practices because demonstrating success is
often an exercise in ‘proving a negative.’”).

? Technology Competitiveness Act, Pub. L. No. 100-418 § 5101, 102 Stat. 1426 (1988), codified at 15
U.S.C. § 271(b)(1) (amending Pub. L. No. 56-177, 31 Stat. 1449 (1901)).

Bryan H. Choi | NIST’s Software Un-Standards | PAGE 4

The entity now known as NIST was established in 1901 as the National Bureau of Standards (NBS).!°
Although the U.S. Constitution authorizes Congress to “fix the Standard of Weights and Measures,”!!
prior efforts had been “puny” and ineffective, resulting in “a whole galaxy of entirely arbitrary standards
affecting almost every measurable quantity.”!? In establishing NIST, Congress sought to keep pace with
scientific progress and to be more competitive on the international stage.'* Accordingly, Congress
delegated broad authority to the new agency to manage “custody of the standards,” including the power
to construct new standards.'*

NIST’s involvement in computing began in 1946, when it fielded requests from other agencies to assist
in the procurement, development, and maintenance of computers for federal government use.!®> Early
efforts focused primarily on provision of basic computer services and ad hoc advisory support to other
federal agencies.!® Building on this expertise, NIST engaged in a broad range of research efforts to

10 Pyb. L. No. 56-177, 31 Stat. 1449 (1901); see also Rexmond C. Cochrane, U.S. Department of Commerce,
Measures for Progress: A History of the National Bureau of Standards, 2nd ed. (1974), 47 (describing the
contentious history leading up to the creation of NBS); James F. Schooley, Responding to National Needs
(2000), 7-11. Congress renamed the agency from NBS to NIST in 1988. See 15 U.S.C. § 271(b)(1). For
consistency, the remainder of this paper will use “NIST” to refer to the agency both before and after the
name change.

'1'U.S. Constitution, Article I, § 8, cl. 5.
12 Cochrane, supra note 10, at 54.

13 See id. at 38-39 (explaining the country’s new stature as a world power following the Spanish-American
War); see also 56 H. Rep. 1452 (1900) (House committee report recommending the creation of a national
standardizing bureau); 56 S. Doc. 70 (1900) (letter from Secretary of the Treasury Lyman Gage observing
that necessary scientific instruments of precision are “too frequently procured from abroad, owing to our own
lack of facilities for standardizing” and that it is “absolutely essential that American manufacturers of such
apparatus have access to a standardizing bureau equivalent to that provided for the manufacturers of other
countries, notably Germany and England”).

4 Pub. L. No. 56-177 § 2.

15 See U.S. Department of Commerce, “1969 Technical Highlights of the National Bureau of Standards”
(1970), at 7 (describing early requests from the Bureau of the Census, Office of Naval Research, and Office
of the Chief of Ordnance, Department of the Army); see also Elio Passaglia, A Unique Institution (1999), 41;
John L. McClellan, Chairman, Committee on Government Operations, U.S. Senate, “Report to the President
on the Management of Automatic Data Processing” (“Gordon Report”) (1965), 55.

16 NIST built several of its own computers. See U.S. Department of Commerce, supra note 15, at 7-10. For
example, projects during the 1950s included sorting and file merging for the Public Housing Administration,
optical character recognition for the Social Security Administration, and automatic mail sorting for the Post

Bryan H. Choi | NIST’s Software Un-Standards | PAGE 5

improve computer hardware components and computational techniques.!” NIST personnel also
participated in external initiatives to develop higher-level programming languages such as ALGOL and
COBOL.!8

The Brooks Act of 1965 marked a sea change, reorganizing those computer-related activities under a
new subdivision called the Center for Computer Sciences and Technology (CCST).!” Much of the thrust
was on streamlining federal use of computing resources. But the most salient change was that the
Brooks Act instructed NIST to develop uniform federal standards for “automatic data processing”
(ADP) equipment.?°

To fulfill those duties, NIST established a new framework of Federal Information Processing Standards
(FIPS). In theory, the FIPS framework was broad enough to have supported an expansive role in setting
standards across the software and computing industry. In practice, however, the FIPS project proved to

be less influential than hoped. Today, nearly all FIPS have been withdrawn.

Early Computing Standards

NIST devoted substantial effort to the FIPS framework, but progress was slow and constrained by
resource limitations. For example, in its five-year report, NIST stated that available resources “forced it

Office Department. NIST also shared its own computers with other agencies that “either did not have
computers or were not fully equipped in this area.” Id. at 13—14.

71d. at 11.
¥ 1d. at 13.

1 Brooks Act, Pub. L. No. 89-306, 79 Stat. 1127 (1965). The CCST was renamed in 1972 the Institute for
Computer Sciences and Technology (ICST); in 1988 the National Computer Systems Laboratory (NCSL); in
1991 the Computer Systems Laboratory (CSL); and in 1996 the Information Technology Laboratory (ITL).
See NIST, “ITL History Timeline 1950—Present,” https://perma.cc/66Q5-EQZS. Today, NIST operates six
laboratory programs, including communications technology, engineering, information technology, material
measurement, neutron research, and physical measurement. See NIST, “NIST Organization Structure,”
https://perma.cc/P7QZ-RQBX.

20 The Brooks Act instructed NIST to (1) provide scientific and technological advisory services to other
agencies with regard to ADP equipment; (2) recommend uniform federal ADP standards; and (3) undertake
research in computer science and technology as needed to fulfill those responsibilities. See Pub. L. No. 89-
306, 79 Stat. at 1128; see also Passaglia, supra note 15, at 500—4. The development of such standards also
related to cost-efficiency concerns, by allowing the federal government to reduce reliance on “single vendor
procurement practices. See NBS, “Brooks Bill Issue Study of the National Bureau of Standards,” (1971),
VI1.6-VI1.7 [hereinafter “NBS Five-Year Report™].

99

Bryan H. Choi | NIST’s Software Un-Standards | PAGE 6

to focus on exceedingly modest, short-term goals.”?! And in its ten-year report, NIST noted that the
General Accounting Office had issued a dozen reports stating that NIST was unable to fulfill its
responsibilities “due to lack of financial and manpower resources.”??

By the end of the first decade, NIST had published only twenty-seven FIPS, despite devoting nearly
four-fifths of its budget to the task.?> Moreover, most of these early publications addressed only simple,
low-level issues such as data storage media (e.g., magnetic tape, punch cards) or regional geographic
codes (e.g., states, counties, congressional districts).”* NIST estimated that development of new
standards took an average of three years if done internally, or five years if working with an external
industry standards group such as the American National Standards Institute (ANSI).?>

During the second decade, from 1976 through 1986, NIST accelerated its efforts and issued ninety-seven
new FIPS, in areas ranging from encryption and computer security, to programming languages, data
elements, interfaces, and storage media.?® Those topics hewed closely to the “priorities” identified in
1969—more than fifteen years earlier—evincing the ponderous pace of NIST’s standardization work.?’
To offset the slow pace of the FIPS process, NIST also launched a Special Publication (SP-500) series

21 See “NBS Five-Year Report,” supra note 20, at VI.3.

22 See Grace Burns & Shirley Radack, U.S. Department of Commerce, “A Ten Year History of National
Bureau of Standards Activities Under the Brooks Act” (1977), at 5 [hereinafter “NBS Ten-Year Report™].

2 See id. at 1 (“The preponderance of NBS effort over the last ten years (i.e., nearly four-fifths of its directly
appropriated funds) has been directed to the development of ADP standards and guidelines.”).

24 See Shirley M. Radack, “The National Computer Systems Laboratory: An Overview of Technical
Activities,” Computer Standards & Interfaces 10 (1990): 191, 192 (“Some of the early FIPS included:
[ASCII]; perforated tape, punch cards, and recorded magnetic tape standards; standard data elements and
codes for representing geopolitical entities, map coordinates, time and measurement units; COBOL
programming language standard; standards for the sequencing of data for transmission over telephone
lines.”). This narrow focus was reflected by the initial task groups that NIST established in 1969: (1)
objectives and requirements for standards; (2) data terminals and data interchange systems requirements; (3)
character subsets, sign conventions, and packing techniques; (4) subsections on standards for use in requests
for proposals; (5) vocabulary; (6) computer magnetic tape; (7) magnetic tape labels; (8) format description
for information interchange; (9) COBOL; and (10) computer systems performance evaluation. See “NBS
Five-Year Report,” supra note 20, at VI.19—VI.21.

3 See id. at 33-34.
26 See NBS, “FY 1986 Annual Report” (1986), at 63—68.

27 See “NBS Five-Year Report,” supra note 20, at VI.11-VI.18.

Bryan H. Choi | NIST’s Software Un-Standards | PAGE 7

on computer systems technology, which allowed NIST to provide informal guidance on topics of
interest. Between 1977 and 1986, NIST issued 144 publications in the SP-500 series.?®

This burst of activity proved to be the high-water mark. Beginning in the late 1980s, Congress shifted
NIST’s role and then dramatically pared back the agency’s role in software standardization activities.?’
Although NIST retains authorization to publish new FIPS, it has issued only seven since 1995 and none
since 2015.%° Likewise, NIST released another ninety-three publications in the SP-500 technical series
up through 1996, after which activity ceased almost entirely. As a result, NIST was essentially invisible
through the most defining years of the internet era.

Three categories of FIPS are illustrative of the structural challenges of software standardization. First,
the programming language standards demonstrate NIST’s inability to keep pace with the speed of
private-sector innovation. Second, NIST’s fledgling attempts to govern the overall software
development lifecycle process reveal that the value of FIPS standardization was inversely proportional
to the complexity of the task. Third, NIST’s relative success with data encryption standards—which are
the main FIPS still actively maintained by the agency?!—is the exception that proves the rule, by
showing that federal software standards work best when the task is narrowly scoped.

28 See NIST, NIST Technical Series Publication List: SP500, https://perma.cc/S2FL-PHZS.

2 Three key congressional actions during this period were the Computer Security Act of 1987, Pub. L. No.
100-235, 101 Stat. 1724 (1988) (directing NIST to develop standards and guidelines on security and privacy
of digital information); the Omnibus Trade and Competitiveness Act, Pub. L. No. 100-418 § 5101, 102 Stat.
1107, 1426 (1988) (renaming NIST and directing it to assist industry in facilitating more rapid
commercialization of new scientific discoveries); and the National Technology Transfer and Advancement
Act of 1995, Pub. L. No. 104-113, 110 Stat. 775 (1996) (directing NIST to eliminate unnecessary duplication
of private-sector technical standards activities, and directing all federal agencies to use technical standards
developed by voluntary consensus standards bodies). See generally Schooley, supra note 10, at 613
(explaining that the name change from NBS to NIST in 1988 “was rooted in the growing awareness in
Congress that the American enterprise was faltering in international competition” and that Congress added
“substantial new responsibilities to the NBS mission”); id. at 640 (citing a 1988 congressional committee
report that “called attention to the potential damage to NIST programs from consistent underfunding of the
agency” and warning that “NIST’s ability to preserve its scientific competence might suffer from an
overemphasis on technology transfer”).

30 See NIST, NIST Technical Series Publication List: FIPS, https://perma.cc/UVK7-58UY (listing FIPS 196
(1997) through FIPS 202 (2015)). NIST recently published three draft FIPS on post-quantum cryptography.
See NIST, “Comments Requested on Three Draft FIPS for Post-Quantum Cryptography,” Aug. 24, 2023,
https://perma.cc/YNJ9-4938.

31 Of the nine FIPS still currently maintained, six relate to cryptographic standards, one involves identity
verification, and the remaining two deal with information security. See NIST, Current Approved and Draft

Bryan H. Choi | NIST’s Software Un-Standards | PAGE 8

Programming Languages

Standardization of high-level programming languages was an early priority area for NIST. The central
motivation was to facilitate portability of programs across different types of computer systems, thus
saving on costs in ongoing software development and maintenance activities.’?> A secondary goal was to
facilitate the production of error-free code.?

In 1972, NIST adopted COBOL as the first federal standard programming language.** NIST had been
intimately involved in the development of COBOL since 1959, so it was logical that NIST would
continue to support and promote its use.>> A particularly acute problem at the time was that COBOL
compilers were inconsistent across different vendors.>® Compilers are low-level tools that translate
human-written software code to machine-readable instructions. NIST launched a new service that
validated whether COBOL compilers were properly implemented on federal computers in accordance

FIPS, https://csrc.nist.gov/publications/fips (listing FIPS 140, 180, 186, 197, 198, 199, 200, 201, and 202);
NIST, Withdrawn FIPS Listed by Number, https://perma.cc/VV8V-BDBK.

32 See NBS, FIPS PUB 23, “Objectives and Requirements of the Federal Information Processing Standards
Program” (1973), at 4; John V. Cugini, NBS, Special Publication 500-117, “Vol. 1: Selection and Use of
General-Purpose Programming Languages—Overview,” (1984), at iii (stating that “good language standards
make it easier and less costly to transport software from one language processor to another”); John V. Cugini
et al., NBS, Special Publication 500-70/1, “NBS Minimal BASIC Test Programs—Version 2, User’s
Manual” (1980), at 9 (“At bottom, however, there is one result essential to the success of a [programming
language] standard: program portability. The same program should not evoke perniciously different behavior
in different implementations.”).

33 See Karl N. Levitt et al., NBS, Special Publication 500-67, “The SRI Hierarchical Development
Methodology (HDM) and Its Application to the Development of Secure Software” (1980), at 4
(acknowledging “new features [that] have been incorporated [in programming languages] to aid the
programmer in producing more error-free programs,” but “reject[ing] the view that programming languages
should continue to become more complex in order to provide those features”).

4 See NBS, FIPS PUB 21, “COBOL” (1972). The American National Standards Institute (ANSI) issued an
official standard in 1968. It took four more years for NIST to issue a FIPS incorporating wholesale the ANSI
standard.

3% See “NBS Ten-Year Report,” supra note 22, at 61 (noting that although “[n]either the Federal Government
nor NBS control COBOL development ... it was largely NBS that provided technical guidance, financial
support for publications, and—most important, perhaps—a continuing resolve to see to completion the first
attempt at a common, business-oriented language standard”).

3 1d. at 62; James H. Burrows, “Information Technology Standards in a Changing World: The Role of the
Users,” Computer Standards & Interfaces 15 (1993): 49, 53.

Bryan H. Choi | NIST’s Software Un-Standards | PAGE 9

with the FIPS.3” NIST also provided guidance and seminars on how to program in COBOL.3® This
validation service was an early success. As a result of NIST’s work, COBOL became the leading
programming language used within the federal government during the 1970s.3

But NIST was slow to keep up as the pace of software innovation accelerated, perhaps because it
believed COBOL would outcompete other nonstandard languages.*® After NIST completed its review of
COBOL in 1972, the next FIPS for FORTRAN and BASIC lagged until 1980.#! Additional
programming language FIPS were released in 1985 (Pascal, Ada), 1986 (MUMPS), 1987 (SQL), and
1991 (C),*? after which NIST abandoned the enterprise. Most of the standardization work was performed
by ANSI, a nongovernmental organization, of which NIST was a participating member. Each FIPS
simply incorporated ANSI’s specification by reference, and mandated that all government software must
conform with the ANSI standard. Typically, the ANSI process took years to complete, with final

37 See Burrows, supra note 36, at 53 (“As a result, the U.S. Government launched a project to develop
validation systems and to require validation of COBOL compilers acquired by agencies.”); NBS, FIPS PUB
80, “Guide for the Implementation of Federal Information Processing Standards (FIPS) in the Acquisition
and Design of Computer Products and Services,” (1980), at 59-61.

3% See “NBS Ten-Year Report,” supra note 22, at 61 (listing NIST activities relating to COBOL).

39 See id. at 61 (stating that more than 61 percent of domestic federal installations use COBOL); see also
Martha Mulford Gray, NBS, Special Publication 500-79, “An Assessment and Forecast of ADP in the
Federal Government” (1981), at ix (estimating that more than 50 percent of federal installations were using
COBOL as their principal programming language).

40 See, e.g., Gray, supra note 39, at 2-3, 2-8 (wrongly predicting federal use of COBOL to increase, and use
of newer languages such as BASIC to decrease, because “[e]ven if more sophisticated and user-friendly
software is developed during the next 5 years, vendors will face a difficult marketing task in educating users,
programmers, and systems managers to new technologies™).

*!'See NBS, FIPS PUB 68, “Minimal BASIC” (1980) (adopting ANSI standard); NBS, FIPS PUB 69,
“FORTRAN” (1980) (same). FORTRAN was developed in the late 1950s, while the first version of BASIC
was created in 1963. NBS also approved updated versions of the COBOL standard in 1975, 1990, and 1995.
See NIST, FIPS PUB 21-4, “COBOL” (1995) (superseding FIPS 21-3 and FIPS 21-2).

42 See NBS, FIPS PUB 109, “PASCAL” (1985) (adopting ANSI standard); NBS, FIPS PUB 119, “Ada”
(1985) (same); NBS, FIPS PUB 125, “MUMPS (Massachusetts General Hospital Utility Multi-Programming
System)” (1986) (same); NBS, FIPS PUB 127, “Database Language SQL” (1987) (same); NBS, FIPS PUB
160, “C” (1991) (same).

Bryan H. Choi | NIST’s Software Un-Standards | PAGE 10

approval of the FIPS taking another couple of years. NIST continued to introduce new compiler
validation services for each approved language,*? but the development of tests was costly and slow.**

This stagnation undermined NIST’s efforts at standardization. For example, NIST took a dim view of
nonstandard language elements.*’ But software developers overwhelmingly resisted the crippling
restrictions, eventually forcing NIST to admit that such nonstandard elements “can be very useful.
Likewise, NIST initially mandated that government software use should be limited to approved
programming languages only, believing that the government’s purchasing power would encourage
greater standardization across the industry.*” But NIST removed that language by the mid-1980s, as
major commercial entities such as Microsoft and Apple opted instead to use more capable, unapproved

9946

43 See “Computer Systems Laboratory—An Overview,” Computer Standards & Interfaces 14 (1992): 445,
450-51 (stating that “[t]esting programming language compilers for conformance to FIPS programming
language standards ... continued to be an important service,” and that NIST “continued to publish quarterly
the Validated Products List which is a collection of registers listing implementations that have been validated
for conformance to FIPS™). But see W.S. Brainerd, “The Programming Language Standards Scene, Ten
Years On: Fortran,” Computer Standards & Interfaces 16 (1994): 459, 463 (noting that as of 1993, NIST
“indicated no interest” in developing new validation suites).

4 See Burrows, supra note 36, at 54 (“Tests are sometimes developed as part of the standards process, but
more often are developed later, and are costly to produce.”).

45 See NBS, FIPS PUB 21-1, “COBOL” (1975), at 4 (“Programs should, to the extent practicable, be limited
to the elements of one of the specified levels of Federal Standard COBOL. It should be recognized that the
use of any non-standard language elements may compromise interchangeability of programs between various
systems or may complicate future conversion to a replacement system. Extensions should, therefore, be
employed only when their use will result in efficiencies that clearly outweigh the difficulties they may
cause”).

46 FIPS PUB 109, supra note 42, at 2 (“Although non-standard language features can be very useful, it should
be recognized that their use may make the interchange of programs and future conversion to an extended
Pascal standard or replacement processor more difficult and costly.”); FIPS 127, supra note 42, at 2 (same);
FIPS 160, supra note 42, at 2 (same). But see FIPS 119, supra note 42, at 2 (“The standard for Ada adopted
herein ... does not allow conforming implementations to extend the language.”).

47 At that time, the only approved languages were COBOL, BASIC, and FORTRAN. See FIPS 68, supra
note 41, at 2 (“Federal standards for high level programming languages shall be used for computer
applications and programs that are developed or acquired for government use. ... The use of specific
programming languages is limited to the approved Federal Information Processing Standards languages.”);
FIPS 69, supra note 41, at 2 (same).

Bryan H. Choi | NIST’s Software Un-Standards | PAGE 11

languages.*® Because the FIPS became more obstructive than useful, they were often ignored. Although
NIST tried to institute a strict process for obtaining waivers from FIPS requirements,* it ultimately
conceded that informal, unwritten waivers had become a necessary practice.*°

The ponderous pace of FIPS approvals meant that government software developers were expected to use
older, clumsier programming languages, even as the commercial sector forged ahead with newer,
nimbler languages.’! NIST had predicted that federal standard programming languages would win out
because they would reduce development and maintenance costs over the long term.>? Instead,
counterintuitively, the rigidity of the FIPS program pushed the government to shift from in-house
development to commercial procurement, as off-the-shelf software provided substantially more features
at substantially lower cost.> It also subverted the authority of NIST and the FIPS program, as
noncompliance became the norm across the software community.

8 See, e.g., Derek Jones, “The Programming Language Standards Scene, Ten Years On: C,” Computer
Standards & Interfaces 16 (1994): 495, 496 (attributing the popularity of the nonstandard language C to its
“traditional spirit” of empowering software developers: “Trust the programmer. Don’t prevent the
programmer from doing what needs to be done. ... Make it fast, even if it is not guaranteed to be portable.”);
Richard M. De Morgan, “The Programming Language Standards Scene, Ten Years On: C++,” Computer
Standards & Interfaces 16 (1994): 531, 534 (attributing the mass appeal of C++ to its support of more
sophisticated features and to its availability at affordable prices).

49 See FIPS 21-1, supra note 45, at 4-5 (allowing waivers only by “[h]eads of agencies” and requiring
waivers to be “obtained before ... implementation or acquisition”); FIPS 68, supra note 41, at 4 (requiring
written requests for waiver and that “[n]o agency shall take any action to deviate from the standard prior to
the receipt of a waiver approval from the Secretary of Commerce”); FIPS 69, supra note 41, at 4 (same); see
also Computer Security Act of 1987, Pub. L. No 100-235 § 4, 101 Stat. 1724, 1728 (1988).

39 See FIPS 127, supra note 42, at 4 (allowing “agency heads” to approve requests for waiver, not just the
secretary of commerce); FIPS 160, supra note 42, at 4 (expanding the authority of agency heads to “also act
without a written waiver request when they determine that conditions for meeting the standard cannot be
met”).

31 See Cugini, NBS SP 500-117, supra note 32, at 2, 35-39 (1984) (noting extensive government use of
software programs written in unapproved languages such as C or noncompliant versions of BASIC).

52 See Helen M. Wood, “Emerging Software Standards: Opportunity and Challenge,” Computer Standards &
Interfaces 6 (1987): 239, 242 (predicting that the “prospect of achieving significant productivity increases
and reduced costs” would “lur[e] the Government and other users” to embrace federal programming
language standards).

53 Compare Wilma M. Osborne, NBS, Special Publication 500-130, “Executive Guide to Software
Maintenance,” at 7 (1985) (“The Federal Government continues to custom develop more than 90% of its
software.”), with Defense Science Board, U.S. Department of Defense, “Report of the Defense Science

Bryan H. Choi | NIST’s Software Un-Standards | PAGE 12

Software Development Lifecycle

More ambitiously, NIST hoped to standardize the entire software development process. As early as
1971, NIST turned its attention to “developing a technical basis for the documentation, validation,
correctness, quality control during development, and sharing of software.”* In 1973, NIST sponsored a
planning workshop for a “Software Engineering Handbook.”>> By 1983, NIST reported that poor
software development practices were generating enormous wasteful costs for the government.>® Those
initial explorations led to an outpouring of FIPS and informal guidance on topics including

Board Task Force on Acquiring Defense Software Commercially” (1994), at C-1 [hereinafter “Report on
Acquiring Defense Software Commercially”’] (concluding that commercial software development processes
are “more flexible and open” and thus are able “to [field] a system sooner and evolve it to include more
capability at significant cost savings”). Cf. Robert W. Hahn & Anne Layne-Farrar, “The Law and Economics
of Software Security,” Harvard Journal of Law & Public Policy 30 (2006): 283, 347 (noting that because
“security costs money and reduces features,” most government agencies “pay little or no attention to

[software] security issues” with over half of the agencies receiving a D or F in an annual review completed in
2003).

3% See “NBS Ten-Year Report,” supra note 22, at 32 (“The Institute has been working toward issuance of a
‘Software Engineering Handbook’ which will provide to Federal systems planners the most complete
compilation of meaningful software design and performance measurement practices developed through this
technical activity.”).

33 See Selden L. Stewart, NBS, Technical Note 832: “Report on Planning Session on Software Engineering
Handbook” (1974).

3¢ See Roger J. Martin & Wilma M. Osborne, NBS, Special Publication 500-106, “Guidance on Software
Maintenance” (1983), at 2 (estimating that “60% to 70% of the total application software resources are spent
on software maintenance.”).

Bryan H. Choi | NIST’s Software Un-Standards | PAGE 13

documentation;>’ software planning and design;>® software development tools;* validation, verification,
and testing;®® and maintenance.®!

37 See NBS, FIPS PUB 38, “Guidelines for Documentation of Computer Programs and Automated Data
Systems” (1976); NBS, FIPS PUB 105, “Guideline for Software Documentation Management” (1984); see
also Mitchell A. Krasny, NBS, Special Publication 500-15, “Documentation of Computer Programs and
Automated Data Systems” (1977); Albrecht J. Neumann, NBS, Special Publication 500-87, “Management
Guide for Software Documentation” (1982); A.J. Neumann, NBS, Special Publication 500-94, “NBS FIPS
Software Documentation” (1982) (workshop proceedings).

3% See NBS, FIPS PUB 64, “Guidelines for Documentation of Computer Programs and Automated Data
Systems for the Initiation Phase” (1979); see also Dennis W. Fife, NBS, Special Publication 500-11,
“Computer Software Management: A Primer for Project Management and Quality Control” (1977); Karl N.
Levitt et al., NBS, Special Publication 500-67, “The SRI Hierarchical Development Methodology (HDM)
and Its Application to the Development of Secure Software” (1980); Dolores R. Wallace et al., NIST, Special
Publication 500-204, “High Integrity Software Standards and Guidelines” (1992); Dolores R. Wallace &
Laura M. Ippolito, NBS, Special Publication 500-223, “A Framework for the Development and Assurance of
High Integrity Software” (1994).

% See NBS, FIPS PUB 99, “A Framework for the Evaluation and Comparison of Software Development
Tools” (1983); I. Trotter Hardy et al., NBS, Special Publication 500-14, “Software Tools: A Building Block
Approach” (1977); Raymond C. Houghton, Jr., NBS, Special Publication 500-74, “Features of Software
Development Tools” (1981); Herbert Hecht, NBS, Special Publication 500-82, “Final Report: A Survey of
Software Tools Usage” (1981); Raymond C. Houghton, Jr., NBS, Special Publication 500-88, “Software
Development Tools” (1982); Herbert Hecht, NBS, Special Publication 500-91, “The Introduction of
Software Tools” (1982).

60 See NBS, FIPS PUB 101, “Guideline for Lifecycle Validation, Verification, and Testing of Computer
Software” (1983); NBS, FIPS PUB 132, “Guideline for Software Verification and Validation Plans” (1987);
see also Martha A. Branstad et al., NBS, Special Publication 500-56, “Validation, Verification, and Testing
for the Individual Programmer” (1980); W. Richards Adrion et al., NBS, Special Publication 500-75,
“Validation, Verification, and Testing of Computer Software” (1981); Patricia B. Powell, NBS, Special
Publication 500-98, “Planning for Software Validation, Verification, and Testing” (1982); Thomas J.
McCabe, NBS, Special Publication 500-99, “Structured Testing” (1982); Dolores R. Wallace, NBS, Special
Publication 500-136, “An Overview of Computer Software Acceptance Testing” (1986); Dolores R. Wallace
et al., NIST, Special Publication 500-165, “Software Verification and Validation” (1989); Dolores R.
Wallace & John C. Cherniavsky, NIST, Special Publication 500-180, “Guide to Software Acceptance”
(1990); Wendy W. Peng & Dolores R. Wallace, NIST, Special Publication 500-209, “Software Error
Analysis” (1993); Dolores R. Wallace et al., NIST, Special Publication 500-234, “Reference Information for
the Software Verification and Validation Process” (1996); Dolores R. Wallace et al., NIST, Special
Publication 500-235, “Structured Testing” (1996).

Bryan H. Choi | NIST’s Software Un-Standards | PAGE 14

Two themes emerge from this literature. First, whereas older FIPS had been based on existing
technologies or de facto practices, NIST increasingly sought to impose idealized notions of how
software development ought to be practiced.®? Second, much of that prescriptive guidance went
disregarded by the larger software community.

A central pillar of NIST’s efforts was the promotion of rigorous software documentation practices. NIST
issued FIPS 38 in 1976, offering detailed and specific instructions on how to improve documentation at
each stage of the software development life cycle.®® NIST viewed documentation as being of primary
importance and coding as a secondary task—but this stance was at odds with actual practices. Six years
later, NIST convened a workshop on FIPS 38 and admitted that “[m]any software users are not familiar
with these guidelines and standards.” One commentator claimed that “[t]he fault ... is not in the
guidelines but in the failure of code developers to consider documentation as an important function.
But the more common sentiment among attendees was that software documentation is not conducive to
standardization, and that compliance with FIPS 38 did not produce useful results.®

9964

NIST’s efforts on software validation and verification followed a similar pattern of wishful
standardization. NIST issued FIPS 101 in 1983, which recommended that software developers create a
detailed validation, verification, and testing (VV&T) plan at the outset of the software life cycle.®® NIST
envisioned a top-down “waterfall” workflow where the VV&T plan would be completed during the
initial project planning phase, well in advance of the code implementation phase.’

61 See NBS, FIPS PUB 106, “Guideline on Software Maintenance” (1984); Martin & Osborne, NBS SP 500-
106, supra note 56; James A. McCall et al., NBS, Special Publication 500-129, “Software Maintenance
Management” (1985); Osborne, NBS SP 500-130, supra note 53.

62 See Radack, supra note 24, at 194 (noting that the “character of the standards process for information
technology has changed”).

83 FIPS 38, supra note 57, at 5, 13.
64 See Neumann, NBS SP 500-94, supra note 57, at 5, 10, 40 (1982).

65 1d. at 76-78 (collecting commentary); see also id. at 28 (noting that FIPS 38 is a set of flexible guidelines,
not a standard, and that “[o]ffering the software documentor the license to completely depart from the
guidelines vitiates the program that produced the guidelines”).

% See FIPS 101, supra note 60, at 4 (“Validation determines the correctness of the final program or software
with respect to the software requirements. Verification employs integrity and evolution checking to
determine internal consistency and completeness.”).

7 See Powell, NBS SP 500-98, supra note 60, at 29 (noting that the preparation of the VV&T plan should be
“completed early in the development phase”); see also FIPS 132, supra note 60, at 14 fig.1 (diagramming the
waterfall lifecycle).

Bryan H. Choi | NIST’s Software Un-Standards | PAGE 15

While meticulous planning is essential to conventional engineering projects, it proved paralyzing for
software projects. Attempts to adhere to a plan-first-then-build approach (the waterfall method) typically
resulted in cost overruns, delays, and overspecification of features that failed to fulfill user needs.®® By
contrast, commercial vendors were able to outcompete on both cost and quality by ignoring the
government’s software standards.®® Conceding to on-the-ground realities, NIST later agreed that its

validation and verification standards need not apply to “noncritical software.””°

Even worse, FIPS 101 failed to require actual standardization. Instead, it suggested multiple soft factors
to consider in constructing an appropriate VV&T plan, including “project needs and constraints,” “the
project’s development approach,” “overall schedule and budgets,” and “size, complexity, and critical
nature of the project.””! Ultimately, NIST acknowledged, “[n]o single VV&T technique can guarantee
correct, error-free software.”’?

This type of noncommittal language pervades NIST’s software lifecycle standards.”® On these higher-
level aspects of software development, NIST offered its best notions of quality control, but there were

%8 See Defense Science Board, “Report on Acquiring Defense Software Commercially,” supra note 53, at 33—
34 (recommending removal of “any remaining dependence upon the assumptions of the ‘waterfall’ model” in
military software standards).

59 See Wallace et al., NBS SP 500-165, supra note 60, at 1 (noting that the approach advocated by NIST was
“often ignored in today’s highly competitive marketplace™).

70 See FIPS 132, supra note 60, at 9 (“For noncritical software, this standard does not specify minimum
required V&V tasks[.]”). Even for critical software, vendors pushed successfully for relaxation of software
standards during this same time period. See Choi, “Software as a Profession,” supra note 8, at 578
(discussing softening of the DO-178 standard for avionics software).

"IFIPS 101, supra note 60, at 19; see also Powell, NBS SP 500-98, supra note 60, at 27 (acknowledging that
NIST’s guidance “does not address the problem of how to select and configure specific techniques and tools
for a specific project”).

"2 FIPS 101, supra note 60, at 4.

3 See, e.g., Fife, NBS SP 500-11, supra note 58, at 4 (“No technology or standard practice now exists that
will surely prevent faulty design, logical errors, cost overrun, or late delivery for any software project.”);
Branstad et al., NBS SP 500-56, supra note 60, at 17 (“How do you know when you have tested enough?
That’s a fundamental question that unfortunately has no clear cut answer. ... [T]he amount of testing will
depend upon the cost of an error.””); Houghton, Jr., NBS SP 500-74, supra note 59, at 19 (“Software tools ...
are not being effectively used in many Federal programming environments.”); McCall et al., NBS SP 500-
129, supra note 61, at 16 (comparing software maintenance to “trying to find ‘a needle in the haystack.” ...
There are no tried and true techniques that can immediately isolate the routine at fault.”); Wallace et al., NBS
SP 500-204, supra note 58, at xiv (“No standard can guarantee the safety of a particular software system. In
other words, no one can ever say ‘If a developer follows this standard, the system will be safe.’”’); id. at 16

Bryan H. Choi | NIST’s Software Un-Standards | PAGE 16

neither consensus practices nor objective metrics on which to ground such standards. Because of those
basic gaps, the federal standards failed to provide clear guidance and failed to win general acceptance.

Data Encryption

NIST’s most prominent set of FIPS have come in the area of cryptography. Viewed in isolation, the
widespread adoption of NIST’s encryption standards could be held up as a marker of success.

Several counterpoints, however, suggest that encryption is the exception that proves the agency’s
limitations. First, encryption algorithms are mathematical models that perform only a single function.
The narrow mathematical basis makes it more straightforward to compare quantitative attributes such as
encryption strength and efficiency. In that sense, an encryption algorithm is more akin to a conventional
“weight or measure” than to a nebulous software quality metric. Second, that narrowness of scope
greatly facilitates the adoption and enforcement of uniform standards. It allows NIST to run open
competitions and select a consensus winner. Afterward, it also ensures that NIST can properly validate
third-party implementations of the selected algorithm.” Third, other extrinsic factors have contributed to
the outlier success of the encryption FIPS. Because of national security concerns, the National Security
Agency (NSA) has regularly intervened in the FIPS process, simultaneously creating a channeling effect
within the federal government while also attracting critical public attention to these FIPS in particular.

Soon after the Brooks Act of 1965, NIST recognized the need for a standard encryption algorithm for
unclassified, sensitive information that would facilitate equipment interoperability, as well as avert
Soviet spying.”> NIST issued a public request for proposals in 1973 and 1974, which yielded a single
candidate created by an IBM researcher.”® In 1977, after collaborative review with the NSA, NIST
published FIPS 46, also known as the Data Encryption Standard (DES).”” There were vociferous
critiques—Ilater substantiated—that the NSA had altered the algorithm to reduce its strength.”

(observing that “[t]here is little agreement” on recommendations regarding standard practices for high
integrity software).

4 See NIST, Cryptographic Algorithm Validation Program, https://perma.cc/NY3D-REKX

7> See Michael A. Froomkin, “The Metaphor Is the Key: Cryptography, the Clipper Chip, and the
Constitution,” University of Pennsylvania Law Review 143 (1995): 709, 735.

76 See David P. Leech & Michael W. Chinworth, NIST, “The Economic Impacts of NIST’s Data Encryption
Standard (DES) Program,” (2001) at ES-1.

7 See Dorothy E. Denning, “The Data Encryption Standard: Fifteen Years of Public Scrutiny” (1990),
https://perma.cc/GGC7-W4RN.

8 See Nadiya Kostyuk & Susan Landau, “Dueling Over Dual EC_DRBG: The Consequences of Corrupting
a Cryptographic Standardization Process,” Harvard National Security Journal 13 (2022): 224, 239 (citing
Thomas Johnson, Center for Cryptological History, National Security Agency, American Cryptology During

Bryan H. Choi | NIST’s Software Un-Standards | PAGE 17

Nevertheless, DES survived public scrutiny and enjoyed considerable popularity until 1998,” when it
was finally deemed obsolete due to advances in computational capacity.3°

The longevity of DES speaks not just to its strength but also to the halting pace at which new FIPS were
approved. For two decades, the NSA repeatedly blocked NIST from issuing new FIPS that would have
provided more secure cryptographic methods.®! Eventually, the NSA developed its own proprietary
algorithm,®? and compelled NIST to publish the Escrowed Encryption Standard (EES) as FIPS 185,
known colloquially as the Clipper Chip.®* This time, the NSA’s intent and interference were overt: The
algorithm would operate in escrow, meaning the government would hold master keys that could decrypt
messages on demand. Predictably, EES attracted heavy protest from the computer security community
and beyond, mainly on the grounds that any back-door access makes an encryption algorithm inherently

the Cold War: 1945—-1989; Book IlI: Retrenchment and Reform. 1972—1980 (1998), at 232
https://perma.cc/B2AT-QBCK). This suspicion of government-controlled cryptography resulted in the
development of public key cryptography, which eliminated dependence on a trusted key exchange. See
Johnson, supra, at 234 (explaining that Hellman, the co-creator of the Diffie-Hellman algorithm, “had been
one of the leading opponents of DES, for the very reason that he distrusted NSA’s hand in the algorithm™).
More secure cryptographic techniques such as Diffie-Hellman and its successor, RSA, were never adopted as
FIPS; instead, the NSA worked “diligently” to suppress publication of such methods. See id. at 235; Susan
Landau, “Under the Radar: NSA’s Efforts to Secure Private-Sector Telecommunications Infrastructure,”
Journal of National Security Law and Policy 7 (2014): 411, 421.

7 See Landau, supra note 78, at 418 (“Many believed that DES’s design and short key size made the
algorithm potentially breakable by the NSA, but in fact, the algorithm has stood the test of time.”); Johnson,
supra note 78, at 239 (“By the early 1990s [DES] had become the most widely used encryption algorithm in
the world.”).

80 See Kostyuk & Landau, supra note 78, at 241; Miles E. Smid, “Development of the Advanced Encryption
Standard,” Journal of Research of the National Institute of Standards and Technology 126 (2021), art.
126024, at 2.

81 See Landau, supra note 78, at 421.

82 See Froomkin, supra note 75, at 753 (describing the NSA’s ten-year effort to develop SKIPJACK, the
classified algorithm at the heart of the Clipper Chip).

83 See id. at 778-89 (detailing extensive cooperation between NIST and the NSA regarding the Clipper
Chip); Kostyuk & Landau, supra note 78, at 240 (noting that NIST was “quite deferential to NSA™).

Bryan H. Choi | NIST’s Software Un-Standards | PAGE 18

insecure.?* Although the Clipper Chip was endorsed heavily by the U.S. government, it withered on the
vine.%

In the aftermath of the Clipper Chip episode, NIST still needed a successor candidate to replace the
aging DES algorithm. NIST launched a public competition for a new Advanced Encryption Standard
(AES) and devoted substantial resources to resuscitating goodwill among the cryptographic
community.%® Recognizing that a standard developed by the U.S. intelligence community would not be
acceptable,?” NIST persuaded the NSA to take a back seat.®® The competition was a success: The AES
development process was praised for being fully open and transparent.?” NIST published the new
standard in 2001 as FIPS 197; unlike the Clipper Chip, AES was widely adopted.”®

Even though the NSA now seemed to accept the need for strong encryption standards, security
researchers continued to suspect that the NSA was tampering with NIST’s standards. In 2006, NIST
approved the use of DUAL _EC DRBG, a new random number generator, for generating encryption
keys. Several commentators raised suspicions that the new algorithm was flawed and that the NSA had

84 See Landau, supra note 78, at 423 (“It is hard to imagine a more negative reaction to Clipper than the one
that ensued.”); Kostyuk & Landau, supra note 78, at 245-46 (2 comments in favor and 318 opposed); Smid,
supra note 80, at 4 (noting that there were “immediate” concerns regarding the secrecy of the algorithm, and
that “just having the escrow feature weakened the security of the encryption system”); Froomkin, supra note
75, at 772 (noting that NIST received hundreds of critical comments but rejected them “on the disingenuous
grounds that because the standard was entirely voluntary, it could cause no harm”); see also Kostyuk &
Landau, supra note 78, at 246 (“From the outside, it looked as if NIST was not listening to public input and
was heading towards cryptographic standards that provided security but not necessarily privacy. Few knew
that NIST had actually pressed for the industry-favored technique but had been overruled [by the NSA].”).

85 See Landau, supra note 78, at 423.
8 See id. at 427.

87 See Smid, supra note 80, at 5 (“The key escrow program demonstrated that an algorithm designed,
evaluated, and proposed as a standard by the U.S. government would likely have a difficult time achieving
consensus.”).

88 See id. at 9 (noting serious concerns that a NSA submission might create a perception that “NIST led a
sham competition,” and that “[i]n the end, NSA chose not to submit a candidate algorithm™).

% See Kostyuk & Landau, supra note 78, at 236 (describing the general perception of NIST as an “honest
broker’ that favors neither a particular company nor a country™); id. at 248 (“The cooperative relationship
that NIST had forged with the cryptographic research community during the AES competition led to the
agency assuming a leadership role in the development of internationally adopted cryptographic standards.”).

% See id. at 24748 (calling NIST’s process “a model of openness and transparency” and estimating the
economic benefit of AES at $250 billion).

Bryan H. Choi | NIST’s Software Un-Standards | PAGE 19

used NIST to slip the flawed algorithm into all FIPS-certified cryptographic systems.’! Those suspicions
were substantiated in 2013 when Edward Snowden leaked classified documents to the public.”? NIST
responded by immediately recommending against use of the DUAL EC DRBG algorithm and
subsequently rescinding its approval.”®> Some observers argue that NIST’s strong response helped it
successfully weather the storm and maintain good relations with the crypto community. °* But more
skeptical voices claim that NIST failed to heed much earlier warnings and knowingly approved a flawed
standard.”

Despite these stumbles, NIST continues to play a critical convening and standard-setting role within the
cryptographic community. Defenders of the agency have argued that NIST’s influence stems from its
power to issue FIPS, which generates a rallying effect, as well as from its unique reputation as a neutral,
trusted arbiter.”® But if NIST’s organizational power and reputation were enough to ensure the success
of FIPS, then one would expect NIST to maintain FIPS in more areas beyond cryptography. Instead,

%! See Bruce Shneier, “Did NSA Put a Secret Backdoor in New Encryption Standard?” Wired, Nov. 15,
2007.

%2 See Kostyuk & Landau, supra note 78, at 235-37, 247; see also Nicole Perlroth et al., “N.S.A. Able to Foil
Basic Safeguards of Privacy on Web,” New York Times, Sept. 5, 2013 (noting that classified memos “appear
to confirm” that the NSA deliberately weakened the international encryption standard adopted in 2006 by
NIST); Bruce Shneier, “The US Government Has Betrayed the Internet. We Need to Take It Back,”
Guardian, Sept. 5, 2013 (“[T]he NSA has undermined a fundamental social contract. ... [TThe US has proved
to be an unethical steward of the internet.”).

9 See Kostyuk & Landau, supra note 78, at 250.

% See id. at 259-60 (opining that the Dual EC_DRBG situation was “something ‘that happened’ to NIST,
rather than something NIST caused”); id. at 267 (observing that “[n]o other nation has a federal agency
involved in such activities” and that the fact that FIPS cryptographic standards are mandatory for
government procurement purposes “provides a natural market for the standards”). Although the authors
acknowledge that private companies such as Google have been able to establish cryptographic standards for
the industry, they argue that such private entities lack the organizational capacity and the trust to be a
“primary developer” of such standards. Id. at 276-79.

%5 See, e.g., Daniel J. Bernstein, “NIST’s Cryptographic Standardization Process,” Cr.yp.to Blog, April 11,
2014, https://perma.cc/MROY-HTLV (complaining that NIST is publishing standards at a “reckless pace”).

% See Kostyuk & Landau, supra note 78, at 265, 269, 277 (noting that “only NIST can create a FIPS,” which
are “mandated for equipment sold for U.S. government use, which creates a large follow-on effect of
widespread global adoption”); id. at 27677 (“NIST ensures that everyone’s voice is heard, and the process
includes a transparent and rigorous peer review. Members of the cryptographic community, especially
academics, are happy with this arrangement.”). The authors argue further that private entities cannot mandate
compliance via law, and that foreign governments are less capable of establishing internationally trusted
cryptographic standards.

Bryan H. Choi | NIST’s Software Un-Standards | PAGE 20

cryptography has emerged as the exceptional case. A more plausible explanation is that there is
something unique about the cryptographic field that makes it more amenable to standardization than
other aspects of software.

Modern Computing Standards

The many shortfalls of NIST’s software standardization efforts, despite outsized investment over
multiple decades, weakened NIST’s claim to authority in the area. Commercial systems developed by
private industry consistently outperformed software developed for government. It became increasingly
difficult to justify expenditures for NIST to develop and maintain federal software standards that were
separate from those used by private vendors.

Beginning in the mid-1990s, NIST took a hiatus from its prior efforts to lead the standardization of
computing protocols. The formal impetus for this shift was the enactment of the National Technology
Transfer and Advancement Act of 1995, which declared that “all Federal agencies and departments shall
use technical standards that are developed or adopted by voluntary consensus standards bodies.”” But
this pivot was the culmination of a longer-term retreat by the U.S. government from competing directly
with private developers of off-the-shelf software.

With the notable exception of encryption and information security standards,’® NIST withdrew its FIPS
and did not issue new ones.”® Although NIST remained an active member of private standard-setting
bodies, its official duties in computing and software policy diminished to encryption and information
security, and to one-off studies authorized by Congress on topics such as voting machines, identity
management systems, and smart electrical grids.'

97 National Technology Transfer and Advancement Act of 1995, Pub. L. No. 104-113 § 12(d), 110 Stat. 775,
783 (1996).

%8 See Federal Information Security Management Act (FISMA) of 2002, Pub. L. No. 107-347 § 303, 116
Stat. 2899, 2957 (directing NIST to develop standards and guidelines “for providing adequate information
security for all agency operations and assets,” other than for national security systems), amended and
superseded by Federal Information Security Modernization Act of 2014, Pub. L. No. 113-283, 128 Stat. 3073
(2014); Computer Security Act of 1987, Pub. L. No. 100-235, 101 Stat. 1724 (1987). See generally Eric P.
Roberson, “‘Adequate’ Cybersecurity: Flexibility and Balance for a Proposed Standard of Care and Liability
for Government Contractors,” Federal Circuit Bar Journal 25 (2016): 641, 673-77.

% See NIST, NIST Technical Series Publication List: FIPS, https://perma.cc/UVK7-58UY.

100 See, e.g., USA PATRIOT Act of 2001, Pub. L. No. 107-56 § 403(c), 115 Stat. 272, 344 (2001) (codified
at 8 U.S.C. § 1379); Enhanced Border Security and Visa Entry Reform Act of 2002, Pub. L. No. 107-173

§ 202, 116 Stat. 548 (2002) (codified at 8 U.S.C. § 1722); Help America Vote Act of 2002, Pub. L. No. 107-
252, 8§ 231, 116 Stat. 1684 (2002) (codified at 52 U.S.C. § 20971); Cyber Security Research and

Bryan H. Choi | NIST’s Software Un-Standards | PAGE 21

That interregnum ended in 2013, when President Obama signed Executive Order 13636, tasking NIST
with developing a cybersecurity framework to reduce cyber risks to critical infrastructure.!! The order
did not direct NIST to develop or certify new FIPS; instead, it specified that NIST’s work should

“incorporate voluntary consensus standards and industry best practices to the fullest extent possible.
Nevertheless, the clear intent was to establish “performance goals” that would function much like a

102

federal standard in terms of establishing a minimum set of criteria for compliance.'%?

Since then, each administration in the White House has used executive orders to bypass congressional
deadlock and to launch major new initiatives on cybersecurity, secure software development, and
artificial intelligence. What ties together these initiatives is not only their ambitious, sweeping scope, but
also the recommitment to NIST leadership to develop federal software standards.

Yet, little has changed in the interim to suggest that NIST is newly capable of producing effective
consensus standards to regulate software quality. Instead, NIST has subtly adapted the executive order
directives by embracing an open-tent “framework” approach that repudiates the conventional
standardization model. These new frameworks invite universal participation and avoid policing the
bounds of compliance or noncompliance. The big takeaway is that NIST’s new frameworks are not
uniform standards or measures of anything. Therefore, it is quite nonsensical to treat them as any type of
threshold for determining legal liability.

Development Act, Pub. L. No. 107-305 § 8, 116 Stat. 2375 (2002) (codified at 15 U.S.C. § 7406); Energy
Independence and Security Act of 2007, Pub. L. No. 110-140 § 1305, 121 Stat. 1787 (2007) (codified at 42
U.S.C. § 17385).

101 See Executive Order 13636, supra note 1. This executive order was subsequently supported by legislation.
See Cybersecurity Enhancement Act of 2014, Pub. L. No. 113-274 § 502, 128 Stat. 2971, 2986 (directing
NIST to “ensure coordination of Federal agencies engaged in the development of international technical
standards related to information system security”). See generally Melanie Teplinsky, “Fiddling on the Roof:
Recent Developments in Cybersecurity,” American University Business Law Review 2 (2013): 225, 300
(providing background on the executive order, which arose in reaction to Congress’s failure to pass the
Lieberman-Collins Cybersecurity Act of 2012). Previously, the White House had already begun to involve
NIST in developing standards and guidelines for related aspects such as cloud computing. See NIST, “NIST
Helps Accelerate the Federal Government’s Move to the Cloud” (press release), June 9, 2010,
https://perma.cc/2Y XN-LDEQ.

102 Executive Order 13636, supra note 1, at § 7(a).

103 14, § 7(d).

Bryan H. Choi | NIST’s Software Un-Standards | PAGE 22

Cybersecurity Framework

Within one year of President Obama’s 2013 executive order, NIST released its Cybersecurity
Framework in 2014, with a minor update in 2018.!%4 Perhaps because of the short turnaround demanded,
the document closely resembles the general “risk management framework™ NIST had already developed
pursuant to the Federal Information Security Management Act of 2002 (FISMA).!% While FISMA
applies only to the federal government’s own software procurement practices, the Cybersecurity
Framework is intended for a broader audience beyond the federal government.

FISMA had already attracted criticism for being ineffective at managing cybersecurity risk.!%
According to some commentators, the risk assessment approach encouraged a “checklist” or “paperwork
drill” mentality among federal agencies.!?” Enforcement was lax,'® and commentators worried that the
FISMA approach ignored the root problem of software quality.!*® Nor did the FISMA framework

104 See NIST, “NIST Releases Cybersecurity Framework Version 1.0” (press release), Feb. 12,2014,
https://perma.cc/L73K-KWG6. NIST released an updated version 1.1 in 2018. NIST, “NIST Releases
Version 1.1 of Its Popular Cybersecurity Framework™ (press release), April 16, 2018,
https://perma.cc/8D2N-WG6A. NIST released version 2.0 as a discussion draft in 2023. NIST, “NIST Drafts
Major Update to Its Widely Used Cybersecurity Framework™ (press release), Aug. 8, 2023,
https://perma.cc/NJ26-Y8R7.

105 See Gary Stoneburner et al., NIST, Special Publication 800-30, “Risk Management Guide for Information
Technology Systems” (2002), superseded by NIST, Special Publication 800-30 Rev. 1, “Guide for
Conducting Risk Assessments™ (2012); Ron Ross et al., NIST, Special Publication 800-53, “Recommended
Security Controls for Federal Information Systems” (2005); see also NIST, “Federal Information Security
Modernization Act (FISMA) Background,” https://perma.cc/Y3HX-3V96.

106 See Daniel M. White, Note, “The Federal Information Security Management Act of 2002: A Potemkin
Village,” Fordham Law Review 79 (2010): 369, 377 (collecting criticisms that FISMA is (1) difficult to
implement, (2) a mere “paperwork exercise,” and (3) not addressing software quality issues); see also
Chelsea C. Smith, Comment, “Hacking Federal Cybersecurity Legislation: Reforming Legislation to
Promote the Effective Security of Federal Information Systems,” National Security Law Journal 4 (2016):
345, 370 (noting that “FISMA is a ‘well-intentioned but fundamentally flawed tool” because it provides a
mechanism for information security planning as opposed to serving as an effective method for actually
measuring and improving information security”).

107 See White, supra note 106, at 380—82; Smith, supra note 106, at 371.
108 See Smith, supra note 106, at 374.

109 See White, supra note 106, at 383—-87.

Bryan H. Choi | NIST’s Software Un-Standards | PAGE 23

improve actual cybersecurity performance: Observers noted that the number of security incidents
increased dramatically over the implementation period.'!?

In practice, the Cybersecurity Framework operates as an auditing manual that teaches organizations how
to perform a self-assessment report. That self-assessment establishes the organization’s current baseline
of protective measures (“Current Profile”), along with an aspirational “Target Profile” that the
organization hopes to attain in the future.

The Framework enumerates a set of “Functions” that could help reduce one’s risk exposure.!!! At a high
level, those Functions are (1) identifying cybersecurity risk, (2) protecting against potential attacks, (3)
detecting cybersecurity events, (4) responding to such incidents, and (5) recovering from harms caused
thereby.!!'? Each Function is broken down into many smaller components and subcomponents. Each
entity is free to select which subcomponents to include in or exclude from its Target Profile.

As an illustrative example, the “Respond” function includes subcomponent “RS.MI-3” advising that
“Newly identified vulnerabilities [should be] mitigated or documented as accepted risks.”!!3 Each
subcomponent then refers out to a number of acceptable external standards such as NIST Special
Publication 800-53. Here, the RS.MI-3 function refers to three controls in the SP 800-53 document: (1)
continuous monitoring of “organization-defined metrics” on “organization-defined frequencies’; (2)
reviewing and updating risk assessments on an “organization-defined frequency”; and (3) remediating
legitimate vulnerabilities on “organization-defined response times” in accordance with an
“organizational assessment of risk.”!'* The italicized terms are key values that the Framework prompts
each organization to set for itself. The open-ended nature of these controls characterizes the vast
majority of the Framework, with the exception of certain cryptographic items.

110 See Smith, supra note 106, at 370—71 (citing “a more than 1,120 percent increase from FY 2006 through
FY 2014” in security incidents); White, supra note 106, at 382 (citing a 250 percent increase between 2007
and 2009).

" For a similar overview of the Cybersecurity Framework, see McGeveran, supra note 4, at 1161.

12 Version 2.0 proposes adding “govern” as a sixth function, which addresses how an organization can
prioritize and direct the execution of the other five functions in its overall cybersecurity strategy. See NIST,
“NIST Drafts Major Update,” supra note 104.

3 NIST, Cybersecurity Framework v.1.1, at 43 (2018) (pointing to controls CA-7, RA-3, and RA-5 in NIST
SP 800-53 Rev .4).

114 See NIST, Special Publication 800-53 Rev. 4, “Security and Privacy Controls for Federal Information
Systems and Organizations,” (2021), at App. F-60, F-152, F-153 (italics in original) (describing controls CA-
7, RA-3, and RA-5).

Bryan H. Choi | NIST’s Software Un-Standards | PAGE 24

There are no minimum requirements for compliance with the Framework. For each sub-function, the
Framework defines four “Tiers” of cybersecurity readiness: (1) partial, (2) risk informed, (3) repeatable,
and (4) adaptive. At each progressive tier, an organization is expected to maintain increasingly formal
policies and procedures. Organizations are encouraged to move toward higher tiers—but only if the
cost-benefit balance is reasonable.!'!?

NIST emphasizes the flexible nature of the document: “The Framework is not a one-size-fits-all
approach Organizations can determine activities that are important to critical service delivery and can
prioritize investments to maximize the impact of each dollar spent. ... The decision about how to apply
[the Framework] is left to the implementing organization.”!!¢ NIST resists the idea that one can be
“compliant” with the Cybersecurity Framework, since it is merely a planning document that varies
according to each organization’s respective strategies and goals.

The Cybersecurity Framework has become a popular document, ''7 largely due to its flexibility.''®
Nevertheless, persistent questions linger as to its substance. Many organizations appreciate that the
Framework does not require them to change their practices at all, either because they are already
working within another risk management framework, or because their cost-benefit analysis suggests
changes would be unreasonable. Adopting a big-tent stance means that all organizations can nominally
claim to be “implementing” or “in compliance with” the Framework. What is missing from the
Framework is any quantifiable or standardized performance metrics that would allow meaningful
comparison across organizations of standard versus substandard care.!!”

1S NIST, Cybersecurity Framework v.1.1, supra note 113, at 89 (“While organizations identified as Tier 1
(Partial) are encouraged to consider moving toward Tier 2 or greater, Tiers do not represent maturity levels.
... Successful implementation of the Framework is based upon achieving the outcomes described in the
organization’s Target Profile(s) and not upon Tier determination.”).

16 1d. at vi.

17 See U.S. Chamber of Commerce, “Comment on NIST Cybersecurity Request for Information,” April 25,
2022, https://perma.cc/A2RN-GCFU (observing that “[b]road swaths of the business community support the
popular Cybersecurity Framework™).

18 See Lawrence A. Gordon et al., “Integrating Cost-Benefit Analysis Into the NIST Cybersecurity
Framework via the Gordon-Loeb Model,” Journal of Cybersecurity 6 (2020), at *2 (noting that the
Cybersecurity Framework is “intentionally broad and flexible,” and “lacks specificity and thus is ambiguous
in terms of guidance”).

119 See Jim Dempsey, “Cybersecurity Regulation: It’s Not ‘Performance-Based’ If Outcomes Can’t Be
Measured,” Lawfare, Oct. 6, 2022 (describing NIST’s framework as a “management-based approach” and
calling for greater focus on performance-based standards that impose objectives with “measurable
outcomes”). But see Cary Coglianese, “The Limits of Performance-Based Regulation,” University of

Bryan H. Choi | NIST’s Software Un-Standards | PAGE 25

Software Development Framework

In 2021, President Biden expanded NIST’s responsibilities and revived its role in issuing software
development standards.!?’ Executive Order 14028 directed NIST to perform a litany of new tasks,
including (1) define “critical software,” (2) issue guidance on security measures for critical software, (3)
issue guidance on enhancing software supply chain security, (4) issue guidance on software testing, and
(5) define “secure software development practices.”!?!

NIST has begun to release responsive publications, the most notable of which has been the Secure
Software Development Framework (SSDF).!?2 Heavily shaped by Microsoft interests, the SSDF echoes
Microsoft’s Security Development Lifecycle!?* without requiring fealty to any one model. The SSDF
aims to be a flexible document that does not prescribe tools, techniques, or mechanisms.!?* NIST
explains that the SSDF can be used “by organizations in any sector or community, regardless of size or
cybersecurity sophistication” and can be used “for any type of software development, regardless of
technology, platform, programming language, or operating environment.”'?> To be sure, the SSDF effort
was led by Microsoft in order to head off more rigid alternatives. Many commentators view the SSDF as
a promising direction that builds on Microsoft’s decades of experience improving its own software
development practices. At the same time, Microsoft’s own software security practices have continued to
come under fire after numerous high-profile incidents in recent years.!2¢

Michigan Journal of Law Reform 50 (2017): 525, 553—62 (enumerating multiple problems with performance
standards and, in particular, the risks of mismatch with root policy goals, tunnel vision, and gaming of the
system).

120 See Executive Order 14028, supra note 1.
211d. §§ 4(2), 4(1), 4(e), 4(1), 4().

122 See Murugiah Souppaya et al., NIST, Secure Software Development Framework (SSDF) Version 1.1
(2022), https://doi.org/10.6028/NIST.SP.800-218; see also NIST, “Definition of Critical Software Under
Executive Order (EO) 14028 (2021), https://perma.cc/N2JC-UNF8; NIST, “Security Measures for “EO-
Critical Software” Use Under Executive Order (EO) 14028 (2021), https://perma.cc/6MZS-J83K.

123 See generally Michael Howard & Steve Lipner, The Security Development Lifecycle 27-37 (2006)
(offering a short history of the origins of Microsoft’s Security Development Lifecycle).

124 See NIST, SSDF, supra note 122, at 2.
125 14. at vi.

126 See Ellen Nakashima et al., “Chinese Hackers Breach Government Email Accounts Through Microsoft
Cloud,” Washington Post, July 12, 2023 (detailing several recent incidents and suggesting Microsoft’s
security failures are “a habit, not an anomaly”).

Bryan H. Choi | NIST’s Software Un-Standards | PAGE 26

The SSDF comprises four sets of recommended practices. The first two sets are reasonably
straightforward to implement: Organizations should (1) “prepare” their workforce and work
environments in accordance with the security requirements and (2) “protect the software” against any
tampering. The latter two sets represent the core challenge: Organizations should (3) “produce well-
secured code” and (4) “respond to vulnerabilities.”

Focusing on the third set, the production of secure code involves nine “tasks” that effectively perform
four major functions. The first function involves the design stage, to ensure that the software
specifications incorporate appropriate security requirements. The second is the implementation stage.
The SSDF exhorts users to “follow all secure coding practices that are appropriate to the development
languages and environment to meet the organization’s requirements,” for example, by validating all
inputs and outputs, avoiding unsafe function calls, using automated tools, and performing code
reviews.!?” When in doubt, the SSDF suggests reusing existing code, which is preferred to generating
new code. Third, secure software developers should perform software testing for vulnerabilities and for
verification of security requirements. Fourth, the software should be configured properly with secure
defaults.

Design, implementation, and testing are the critical core of any secure software development framework.
One might assume that an effective standard would define effective guardrails for these aspects. The
SSDF collects a set of best practices, but it does not dictate how to perform those tasks or whether any
are required. The SSDF purports to focus on “outcomes,” rather than mandating specific technical
approaches.!?® Yet, like the Cybersecurity Framework, the SSDF similarly elides any definition of what
outcomes should be measured, and how. To be sure, the SSDF is hardly an outlier: It cites numerous
standards issued by private organizations, all of which adopt the same stance of endorsing free exercise
of discretionary judgment by software developers.!?’

For the fourth set, the SSDF asks organizations to respond to vulnerabilities in a reasonable, cost-
effective way. Again, the SSDF does not attempt to set firm requirements regarding timing of fixes,

27 NIST, SSDF, supra note 122, at 13.
128 14. at vi.

129 Some examples include International Electrotechnical Commission (IEC), IEC 62443-4-1, Secure Product
Development Lifecycle Requirements (2018), https://perma.cc/2J4N-PNNZ; Microsoft, Security
Development Lifecycle (2021), https://www.microsoft.com/en-us/securityengineering/sdl/; Business
Software Alliance, The BSA Framework for Secure Software: A New Approach to Securing the Software
Lifecycle, Version 1.1 (2020), https://perma.cc/ACTN-F668; Software Assurance Forum for Excellence in
Code, Fundamental Practices for Secure Software Development: Essential Elements of a Secure
Development Lifecycle Program, 3rd ed. (2018), https://perma.cc/NAA3-2EG7.

Bryan H. Choi | NIST’s Software Un-Standards | PAGE 27

warning to those affected, or product recall.!3® Nor does it grapple with the complexities of how to
design and deploy safe software patches, which can introduce new problems even as they fix old ones.

Al Framework

The White House also expanded NIST’s role into other adjacent areas. In 2019, President Trump issued
Executive Order 13859, directing NIST to develop “technical standards and related tools in support of
reliable, robust, and trustworthy systems that use Al technologies.”!3! President Biden followed up in
2023 with Executive Order 14110, commanding NIST to produce additional guidelines, standards, and
best practices on developing, deploying, and red-team testing “safe, secure, and trustworthy Al

systems.”!32

NIST’s response remains in early stages.!*? In January 2023, NIST released the first version of its Al
Risk Management Framework.!3* NIST defines the central goal of the AT Framework as
“trustworthiness,”!3> which is its way of asserting that the relevant risks have been appropriately

130 Cf. Andrea M. Matwyshyn, “Hidden Engines of Destruction: The Reasonable Expectation of Code Safety
and the Duty to Warn in Digital Products,” Florida Law Review 62 (2010): 109; Matthew T. Wansley, “The
Auto Safety Revolution,” Emory Law Journal 73 (forthcoming 2024), https://ssrn.com/abstract=4190688
(describing use of “recalls” to force software developers to either fix their code or to restrict where it can
operate).

131 See Executive Order 13859, supra note 2.
132 See Executive Order 14110, supra note 2.

133 See NIST, “A Report to Congress: Steps to Implement Recommendations Regarding ‘U.S. Leadership in
Artificial Intelligence (Al): A Plan for Federal Engagement in Developing Technical Standards and Related
Tools’” (2022), https://perma.cc/BJ4C-4EZG.

34 NIST, Al Risk Management Framework 1.0, https://nvlpubs.nist.gov/nistpubs/ai/nist.ai.100-1.pdf; see
also NIST, “NIST Risk Management Framework Aims to Improve Trustworthiness of Artificial
Intelligence” (press release), Jan. 26, 2023, https://perma.cc/YQG8-CDPC (noting that NIST worked on the
framework for 18 months).

135 See Al Framework, supra note 134, at 1011 (“Approaches which enhance Al trustworthiness can also
contribute to a reduction of Al risks. This Framework articulates the following characteristics of trustworthy
Al, and offers guidance for addressing them. Trustworthy Al is: valid and reliable, safe, fair and bias is
managed, secure and resilient, accountable and transparent, explainable and interpretable, and privacy-
enhanced.”); Brian Stanton & Theodore Jensen, NIST, “Trust and Artificial Intelligence” (2020), at 7
(defining Al trustworthiness as the “ability to perform as and when required”); see also Jeannette M. Wing,
“Trustworthy Al,” Communications of the ACM (October 2021), at 64, 65 (describing the progression at the
National Science Foundation (NSF) from Trusted Computing (2001) to Cyber Trust (2004), Trustworthy
Computing (2007), and Secure and Trustworthy Cyberspace (2011), and explaining that “support for

Bryan H. Choi | NIST’s Software Un-Standards | PAGE 28

managed.'3® Left indeterminate is whose trust should be prioritized.!3” The document acknowledges that
the management of Al risks usually involves trade-offs and “difficult decisions,” but ultimately declines
to make any firm choices, calling trustworthiness a “social concept” that “depends on an Al actor’s
particular role within the AT lifecycle.”!3®

The Al Framework adheres to NIST’s general risk management methodology of classifying risks,
implementing protective steps, and documenting remedial plans. Thus, the Al Framework outlines four
functions: govern, map, measure, and manage. First, the “govern” function puts in place a
documentation regime that “cultivates a culture of risk management.”!3° Second, the “map” function
serves as an impact assessment to identify the potential risks of an Al system. Third, NIST asks
organizations to “measure” each of the identified Al risks using quantitative, qualitative, or other
techniques. Notably, however, the Al Framework observes that “[hJuman judgment must be employed
when deciding on the specific metrics related to Al trustworthy characteristics and the precise threshold
values for their related metrics.”!#? Fourth, organizations should “manage” any Al risks to minimize the
likelihood of system failures and negative impacts.

As with NIST’s other standardization efforts, the effectiveness of the Al Framework will depend on how
specific and enforceable the guidance will be. For example, NIST claims it is seeking to develop a range
of evaluation tools such as (1) data sets in standardized formats for training, validation, and testing; (2)
standardized knowledge representation tools that could promote interoperability of Al systems; (3) case

research in trustworthy computing now spans multiple directorates at NSF and engages many other funding
organizations”).

136 Cf. Margot E. Kaminski, “The Developing Law of Al: A Turn to Risk Regulation,” Digital Social
Contract Paper Series, Lawfare (April 2023), at 3 (criticizing the risk regulation approach for “presum[ing]
that the technology need only be tweaked at the edges”).

137 This renewed interest in “trustworthiness” recalls an older line of Orwellian critique of trusted computing,
wherein “trust” becomes doublespeak for surveillance and control of computer users when they are perceived
to be the source of risk. See Chad Woodford, Note, “Trusted Computing or Big Brother? Putting the Rights
Back in Digital Rights Management,” University of Colorado Law Review 75 (2004): 253, 279; Steven J.
Vaughan-Nichols, “How Trustworthy Is Trusted Computing?” Computer (March 2003), at 18, 20 (noting
criticisms that “trusted computing” gives vendors too much power and “would take away freedom by making
decisions about data and applications that typically have been left to users”).

38 NIST, AI Framework, supra note 134, at 12—13.

1391d. at 21-22 (“Documentation can enhance transparency, improve human review processes, and bolster
accountability in Al system teams.”).

M071d. at 11.

Bryan H. Choi | NIST’s Software Un-Standards | PAGE 29

studies; (4) benchmarks; (5) testing methodologies; (6) quantitative metrics; (7) Al testbeds; and (8)
auditing tools.!'*! Such tools, if completed, offer real promise of meaningful standardization.

But much about the AI Framework remains underdetermined. The Al Framework is voluntary.'#? It is
neither “a checklist” nor “an ordered set of steps.”!** Evaluations of its effectiveness are unknown and
“will be part of future NIST activities.”'** Moreover, its scope is extraordinarily broad, even relative to
other NIST frameworks. The Al Framework enumerates seven expansive categories of Al risk: the
trustworthy Al system must be (1) valid and reliable, (2) safe, (3) fair and unbiased, (4) secure and
resilient, (5) explainable and interpretable, (6) privacy-enhanced, and (7) accountable and transparent.
Thus far, NIST has held workshops and published draft reports on two aspects: bias and
explainability.'*® Far from narrowing the search for Al standards, these early documents ruminate that
trustworthy Al is a “socio-technical” concept, and that identifying measurement techniques remains an

“emerging area.” 46

NIST’S SOFTWARE UN-STANDARDS

For those seeking a clearer software liability standard, there is obvious appeal to the centralized agency
model. A single authority could marshal expertise from the field, declare a consensus set of technical

141 See NIST, “U.S. Leadership in Al: A Plan for Federal Engagement in Developing Technical Standards
and Related Tools” (2019), at 13—15; see also NIST, “A Report to Congress,” supra note 133, at 7-10
(describing preliminary efforts by NSF to fund partnerships to develop such tools). But see id. at 4
(explaining the obstacle that “several agencies indicated their Al standards needs, and activities will be
driven by operational needs and requirements as their agencies have very diverse Al standards-related
needs”).

12 NIST, Al Framework, supra note 134, at 2; see also Kaminski, supra note 136, at 12 (comparing NIST’s
approach as being soft law like Singapore’s Model Al Governance framework, rather than hard law like the
EU’s Al Act).

13 NIST, Al Framework, supra note 134, at 20.
144 1d. at 19.

145 See Reva Schwartz et al., NIST, Special Publication 1270, “Towards a Standard for Identifying and
Managing Bias in Artificial Intelligence” (2022); P. Jonathon Phillips et al., NIST, “Four Principles of
Explainable Artificial Intelligence” (2021).

146 NIST, “Towards a Standard for Identifying and Managing Bias,” supra note 145, at 11 (“Socio-technical
approaches in Al are an emerging area Developing scientifically supportable guidelines to meet socio-
technical requirements will be a core focus.”); see also NIST, “Four Principles of Explainable Artificial
Intelligence,” supra note 145, at 22 (commenting that “understanding general principles that drive human
reasoning and decision making may prove to be highly informative for the field of explainable AI” and that
“[c]onsidering these human factors within the context of explainable Al has only just begun”).

Bryan H. Choi | NIST’s Software Un-Standards | PAGE 30

standards, and enforce uniform compliance with those standards.!*” Those centrally promulgated
technical standards could then form the basis of a judicially enforceable liability rule.!*® Although many
commentators have called for the creation of a new federal agency to undertake this role, the White
House has already been promoting NIST as the incumbent candidate. And in many ways, NIST is a
uniquely apt agency to be the standard-bearer, not least because of its well-established reputation as a
nonpoliticized, scientific body.

Nevertheless, a close examination of NIST’s work shows that there are at least three reasons to doubt
any centralized agency’s ability to cut the Gordian knot. First, the historical record: NIST has already
produced thorough and voluminous guidance on software standards, much of it with disappointing
impact. Even if another agency were to duplicate those extensive efforts, at substantial cost, it is unlikely
to discover some dramatic new insight that NIST has not already considered.

Second, NIST’s modern pivot to self~-governance frameworks shows that NIST has shied away from the
active steering role the White House had hoped it would take. Instead, NIST has emphasized flexibility
over uniformity, documentation over metrics, and inclusion over enforcement. That deliberate
abdication signals NIST’s conclusion that a more forceful agency approach would be ineffective or
detrimental.

Third, institutional competence: The success of the agency model depends on the comparative advantage
that agencies have at marshaling scientific or technical expertise to produce policy consensus. Yet,
NIST’s inability to produce strong software standards is a symptom of a fundamental gap in the science
of the field. As long as that gap persists, it is unrealistic to expect the agency model to locate an expert
consensus that does not exist.

Ultimately, NIST’s experience reveals an important lesson for the software liability literature. As NIST
has moved from low-level hardware standards to higher-level abstractions of software quality, NIST’s
guidance has turned steadily away from discrete specifications in favor of a syncretic approach that
allows many heterodoxies to coexist. If NIST is correct that no expert consensus exists, then the
implication is that other agencies will similarly struggle to establish clear software standards.
Concomitantly, courts and legislatures will need to look elsewhere to construct effective liability rules.

147 See Choi, “Institutional Choice,” supra note 8.

148 See, e.g., Derek E. Bambauer, “Cybersecurity for Idiots,” Minnesota Law Review Headnotes 106 (2021):
172, 175 (proposing a negligence per se approach in which generalist regulators establish “regulatory floors
by specifying conduct that automatically generates liability’’); Shackleford, supra note 4, at 103, 105 (noting
that “U.S. states have become active laboratories for cybersecurity policymaking in the absence of federal
leadership” and that “there is a general trend across many states to require firms to implement ‘reasonable’
cybersecurity best practices without clearly defining what those entail”).

Bryan H. Choi | NIST’s Software Un-Standards | PAGE 31

Historical Record

In many ways, the turn to NIST is déja vu all over again. Close review of NIST’s historical FIPS and
special publications reveal an agency that engaged carefully and thoughtfully with the expertise in the
field. Nevertheless, those centrally coordinated efforts were unable to consolidate and standardize
software development practices. That past experience ought to give policymakers pause when wagering
whether an agency like NIST can achieve better results the second time around.

There are at least three considerations that bear on why NIST failed to achieve greater success with
software standards at the peak of its powers during the 1980s. The first factor is that the standardization
process was too slow and costly relative to the pace of software innovation. Initially, NIST believed that
the force of federal mandate would be sufficient to compel widespread adoption of its standards.
Accordingly, NIST was very deliberate in its development and review of new proposed standards,
typically taking several years or more to move from initial study to final issuance. For example, NIST
invested heavily in promulgating detailed forms and standards for the COBOL programming language,
with the expectation that COBOL would dominate for many years to come. Instead, NIST was caught
off guard when software vendors and purchasers overwhelmingly preferred newer, nonstandard
languages such as C. Even for federally approved languages, NIST was mostly unable to prevent
programmers from using nonstandard features, rendering NIST’s standards obsolete.

Second, NIST sought to standardize software activities at too high an abstraction. To be sure, NIST
excelled at narrowly scoped standards such as data recording formats, ASCII and geographical codes,
and encryption standards. But as the scope broadened to higher-level generalities, NIST was unable to
demonstrate a clear payoff that adherence to federal standards resulted in software that was safer or
more cost-effective. In particular, with NIST’s efforts to govern the software development lifecycle, the
scope grew so broad that it became infeasible to measure compliance. For example, NIST sought to
standardize the entire process of software documentation, across all possible software projects. Because
software projects can vary immensely, the so-called standard boiled down to highly subjective decisions
on a project-by-project basis. Even those who tried to comply with the standard were unsure whether it
led to better documentation, let alone better performance. Similarly, NIST took on the task of
standardizing the entirety of software validation and verification, an even more daunting exercise.
Although NIST could enumerate different categories of tests, it was unable to recommend anything
more concrete than that each vendor should create and maintain its own testing plan.

Third, NIST was unable to locate expert consensus on best practices for those higher-level activities.
Consequently, NIST relaxed the criteria for compliance, which further diminished the utility of
conforming to those standards. The value of standardization lies in achieving a desired uniform attribute
and in streamlining the decision-making process to get there. Instead, NIST encouraged software
practitioners to use their own judgment on core aspects of the software development process. FIPS
compliance became an exercise in creating extra paperwork to justify one-off design decisions, rather
than facilitating and channeling those design decisions into a consistent mold. In other words, NIST’s
software standards added substantial costs for dubious benefits.

Bryan H. Choi | NIST’s Software Un-Standards | PAGE 32

To be clear, NIST’s work was a best efforts campaign, and its shortcomings likely reflect the deeply
challenging nature of the mission, rather than errors in execution. It is thus dismaying to see NIST being
tasked again with even broader missions.

Self-Governance Frameworks

In its latest return to software standards, NIST has doubled down on the malleable, broad-church
approach. The risk management frameworks across cybersecurity, secure software development, and Al
all share striking similarities in asking vendors to engage in self-study of risks and to self-select
appropriate precautions and remediations. Because wrong answers are vanishingly rare, any entity can
call itself an adopter without making real changes to its software practices.!*® What NIST’s latest
frameworks offer at most is a common lexicon that amalgamates many different practices and schools of
thought. Not surprisingly, this model of voluntary compliance has drawn fire for failing to generate
effective results.!>°

NIST’s risk management frameworks cannot be used to determine an objective standard of care, because
they do not dictate any particular set of conduct. For example, there is no measurable equivalence
among entities that call themselves “Tier 1” or any other tier. Moreover, the tier numbers have no
correlation with actual likelihood of failure or exploitation. In many or most cases, adopting such a
framework merely means the entity has generated documentation to justify the practices it already
performs. Credulity is strained, therefore, when lawmakers purport to use compliance with a NIST
framework as per se proof of reasonable care.!! Perhaps one could argue instead that failure to follow a
NIST framework falls below the minimum threshold of reasonable precaution. But even this argument is
tenuous, since there is no clear evidence that compliance leads to improved outcomes.

A fair question to ask is why NIST, whose core competency is in standard-setting, would promote
voluntary, self-governance frameworks over conventional technical standards. An optimistic argument is
that NIST’s big-tent strategy offers a gentle on-ramp that builds toward a culture of compliance. In other
words, even if a risk management framework does not offer uniform standardization today, it
encourages collective buy-in that can then be used to exert upward pressure tomorrow. Once there is a
critical mass of participation, it becomes difficult for entities to exit the framework. While the

149 Although the risk regulation approach can be criticized for addressing only “measurable, quantifiable
harms” (see Kaminski, supra note 136, at 14), the lack of quantifiable metrics is equally if not more
concerning.

150 See, e.g., Melanie Teplinsky, “A Review of NIST’s Draft Cybersecurity Framework 2.0,” Lawfare, Sept.
13, 2023 (stating that “voluntary compliance with the framework has largely failed to generate effective
cybersecurity” and that the updated framework (CSF 2.0) “is unlikely to fundamentally improve the nation’
s cyber posture”).

151 See supra note 5 and accompanying text.

Bryan H. Choi | NIST’s Software Un-Standards | PAGE 33

participation theory is compelling in many aspects, participation alone is an empty prize unless there are
meaningful criteria for exclusion. At least in the software context, it seems unlikely that there are new,
objective metrics on the horizon that NIST is waiting to spring on participants.

A more pessimistic response is that NIST has been assigned a mission it knows it cannot fulfill. Whereas
the Brooks Act of 1965 offered the agency greater leeway to define its own mission, the recent executive
orders have tasked NIST with pointed charges to improve cybersecurity performance and Al
performance as a whole. Those orders create unrealistic pressure to provide rapid solutions to problems
that NIST has studied for many decades without great success. The fact that NIST has shied away from
technical mandates is a telling signal that the root problem of software quality is something more
nuanced than mere lack of coordination by a central authority.!>> NIST’s extensive experience with the
FIPS process also shows that ponderous, multi-year standard-setting processes have been ineffective at
shaping software practices. By contrast, a nonsubstantive framework can be released quickly and allows
NIST to show it is taking action. Just as important, a self-governance framework allows NIST to pass
through the intractable aspects to third parties. If this explanation is plausible, the best-case outcome for
NIST’s frameworks is if they can motivate—or even compel—more consistent, rigorous information-
gathering across a fuller range of software practices.!?

Institutional Competence

Ultimately, NIST’s experience should teach us that the centralized agency model is not a silver bullet.
Typically, the comparative advantage of federal agencies over other institutions is that agencies are
more competent at assembling expert knowledge, establishing uniform rules based on that expertise, and
efficiently policing those rules on a national basis.!>* Especially for matters involving informational
asymmetries or collective action problems, a central regulator may be better able to facilitate a policy
outcome than courts, legislatures, or private market forces. Accordingly, many commentators have
championed the central agency model as a quick fix for establishing a new software standard of care.

Yet, when experts in the field lack knowledge or consensus about a policy issue, the comparative
advantage of agencies is correspondingly diminished. Unable to draw upon that collective expertise, the
agency will likely struggle to provide uniformity and efficiency as well. Tellingly, software experts have
long agreed that there is no easy way to measure or certify software quality. Some believe Microsoft’s

152 For example, Cary Coglianese has argued that performance standards do not work well when the
regulated entities are highly heterogeneous and the regulators lack capacity to measure outputs or outcomes.
See Coglianese, supra note 119, at 54647 & fig. 1.

153 See Dempsey, supra note 119 (calling for the establishment of a Bureau of Cyber Statistics that would
gather information about cyber incidents in order to facilitate the ability to quantify risk and to measure
outcomes).

154 See Choi, “Institutional Choice,” supra note 8.

Bryan H. Choi | NIST’s Software Un-Standards | PAGE 34

model of secure software development represents a high-water mark. Others feel strongly that
conservative methods that hew closer to waterfall engineering processes are the only way to assure
quality in safety-critical contexts. Still others argue to the contrary that Agile methods are both
necessary and safer because they are more nimble.!*> In the end, most companies adopt their own
bespoke approach. Disagreement persists because none of these methods can be evaluated with any
confidence, and all continue to produce faulty software with unknowable rates of error.

Given the deep-seated uncertainty among the software expert community, NIST is unlikely to forge a
new, independent path forward, especially because it is a nonpartisan technocratic agency with a strong
institutional culture committed to scientific knowledge. That commitment means NIST is less likely to
adopt policy positions that are not grounded in expert consensus. Doing so would threaten NIST’s
internal culture and institutional reputation as a neutral arbiter of technological standards.

NIST is also unusual in that it is a nonregulatory agency, meaning that it cannot directly enforce its own
rules. Although federal procurement policies from the Office of Management and Budget often require
compliance with NIST standards, moving the larger commercial market depends on buy-in from area
experts and the public at large. Even within the federal government, a major mismatch with the
commercial market makes internal compliance challenging to achieve—studies have repeatedly shown
for decades that federal agencies remain badly noncompliant with NIST’s software-related standards.

A new or different agency could take a more aggressive stance,'* but it is questionable how different
the outcome would be. One model is the Department of Defense, which sought for many years to exert
rigid control over its software standards. In the end, the cost-benefit ratio proved too high to be
sustainable for all but the most critical software applications. A second model is the Food and Drug
Administration (FDA), which deals with software only in the limited context of medical devices. It is
possible that a narrower mission could make it easier to define clearer metrics in specific domains. Even
so, the FDA has struggled mightily to define such rules.!>” A third model is the Federal Trade
Commission, which has sought to bring case-by-case enforcement actions against entities for failure to
maintain reasonable software practices. Greater scrutiny and contestation of software practices is much
needed. That said, when the agency is unable to provide ex ante rules or guidance, then case-by-case

155 For a brief discussion, see Choi, “Software as a Profession,” supra note 8, at 578—79.

156 See Matthew T. Wansley, “Regulation of Emerging Risks,” Vanderbilt Law Review 69 (2016): 401, 431
(arguing that a central agency should be empowered “to implement a moratorium if it could demonstrate that
an emerging technology plausibly created a significant risk to health, safety, or the environment,” because it
would “allow agencies to act notwithstanding scientific uncertainty).

157 See Nathan Cortez, “Regulating Disruptive Innovation,” Berkeley Technology Law Journal 29 (2014):
175.

Bryan H. Choi | NIST’s Software Un-Standards | PAGE 35

adjudication does not offer much comparative advantage over the judiciary,'>® and such actions raise

vagueness and due process concerns. >

Finally, it is conceivable that the Al field is meaningfully different, and that the centralized agency
model will be more effective at standardizing Al practices than it has been at standardizing software
practices.'® Although NIST has studied Al for many years, it has only just begun its efforts to
standardize Al so there is less historical evidence to predict how that task will compare.'®! For example,
like cryptography, the core AI methods are highly mathematical and thus more conducive to quantitative
metrics. NIST’s ability to certify standardized data sets offers tremendous upside. For the moment, the
number of qualified Al practitioners remains relatively small, and the range of techniques with real-
world impact remains relatively narrow, which could facilitate convergence toward a consensus code of
conduct. To be most effective, NIST must find a way to compile, catalog, and publish information about
actual Al modeling practices at the handful of major entities that are leading the field. It should avoid
generalities and idealizations that do not match commercial realities. And it must find ways to show a
clear payoff for practitioners to adopt NIST’s standards and guidelines.

CONCLUSION

As software-related harms continue to burgeon into public crises, the federal government has placed its
trust in NIST to conjure up new performance standards and accountability measures. In response, NIST
has issued a series of voluntary, self-governance frameworks, rather than traditional, uniform standards.
Those weak frameworks trace back to older work by NIST, which vigorously tried to standardize a

158 Cf. Kisor v. Wilkie, 139 S. Ct. 2400, 2417 (2019) (“When the agency has no comparative expertise in
resolving a regulatory ambiguity, Congress presumably would not grant it that authority.”).

159 See LabMD, Inc. v. FTC, 894 F.3d 1221, 1236 (11th Cir. 2018) (vacating the FTC’s cease-and-desist
order as unenforceable, because it “is devoid of any meaningful standard informing the court of what
constitutes a ‘reasonably designed’ data-security program”); Justin (Gus) Hurwitz, “Data Security and the
FTC’s UnCommon Law,” lowa Law Review 101 (2016): 955; cf. West Virginia v. EPA, 142 S. Ct. 2587,
2612 (2022) (disallowing an agency’s authority to effect a “fundamental revision of the statute” where there
is “little reason to think Congress assigned such decisions to the Agency”); Tschider, supra note 4, at 118
n.151 (observing that administrative adjudicative approaches have “reached substantial roadblocks™).

160 See Bryan H. Choi, “Al Malpractice,” DePaul Law Review 73 (2024): 301.

161 See NIST, “Artificial Intelligence Measurement and Evaluation at the National Institute of Standards and
Technology” (2021), at 1-2, https://perma.cc/9QF8-K2SA (explaining and cataloging NIST’s long history of
measuring and evaluating Al technologies in areas including information retrieval, speech and language
processing, computer vision, biometrics, and robotics, but noting the need to look at properties “beyond
performance accuracy measurement that were historically viewed as outside the purview of AI”); see also
NIST, “Artificial Intelligence Measurement and Evaluation Workshop Summary” (2021),
https://perma.cc/ZKL5-DRIJL.

Bryan H. Choi | NIST’s Software Un-Standards | PAGE 36

broad range of software practices. NIST failed for a number of reasons, including the slow pace of the
standard-setting process, the breadth and complexity of the standard-setting scope it set, and—most
importantly—the lack of expert consensus on best practices.

It is tempting to be lulled by NIST’s risk management frameworks into false illusions of compliance and
safety, even if the frameworks are not intended to be used in that manner.!®? A close examination of
those frameworks reveals that there is little new substance on offer. They do not impose any measurable
outcomes, performance metrics, or other meaningful guardrails. NIST’s frameworks cannot be used as a
quick shortcut for the vexing problem of defining a software liability rule.

In the end, the moral of NIST’s story may be that there cannot be a single “reasonable” standard of care
for software liability. After decades of study, NIST has embraced a heterodoxic model of professional
self-governance that eschews any single methodology or school of thought.!%* Other standard-setting
bodies that have studied the issue have reached strikingly similar conclusions. Perennial calls to appoint
a centralized authority to promulgate new software standards should look first to the vast body of work
that NIST has already produced, before expecting different outcomes.

The Digital Social Contract paper series is supported by funding from the John S. and James L. Knight
Foundation and Meta, which played no role in the selection of the specific topics or authors and which
played no editorial role in the individual papers.

162 See, e.g., NIST, Cybersecurity Framework, supra note 113, at 2 (explaining that “phrases like
‘compliance with the Framework’ can be confusing and can mean something very different to various
stakeholders”).

163 Cf. Choi, “Software as a Profession,” supra note 8.

Bryan H. Choi | NIST’s Software Un-Standards | PAGE 37

