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Abstract

Motivation: Despite the widespread occurrence of polyploids across the Tree of Life, especially in the plant kingdom,
very few computational methods have been developed to handle the specific complexities introduced by polyploids in
phylogeny estimation. Furthermore, methods that are designed to account for polyploidy often disregard incomplete
lineage sorting (ILS), a major source of heterogeneous gene histories, or are computationally very demanding. Therefore,
there is a great need for e�cient and robust methods to accurately reconstruct polyploid phylogenies.
Results: We introduce Polyphest (POLYploid PHylogeny ESTimation), a new method for e�ciently and accurately
inferring species phylogenies in the presence of both polyploidy and ILS. Polyphest bypasses the need for extensive network
space searches by first generating a multi-labeled tree based on gene trees, which is then converted into a (uniquely-labeled)
species phylogeny. We compare the performance of Polyphest to that of two polyploid phylogeny estimation methods,
one of which does not account for ILS, namely PADRE, and another that accounts for ILS, namely MPAllopp. Polyphest
is more accurate than PADRE and achieves comparable accuracy to MPAllopp, while being significantly faster. We also
demonstrate the application of Polyphest to empirical data from the hexaploid bread wheat and confirm the allopolyploid
origin of bread wheat along with the closest relatives for each of its subgenomes.
Availability and implementation: Polyphest is available at https://github.com/NakhlehLab/Polyphest.
Contact: zhi.yan@rice.edu or nakhleh@rice.edu
Supplementary information: Supplementary data are available at Bioinformatics online.

Introduction

Ploidy of an organism’s cell is the number of whole sets of

chromosomes (i.e., genome) in the cell. The ploidy could

be one (haploid cells) or larger (diploid, triploid, etc.).

Polyploidization, also known as whole genome duplication, or

WGD, is an increase (e.g., doubling) in the number of copies

of the entire genome of a species. This increase could be

the result of whole-genome duplication or hybridization. In

autopolyploidy, the number of chromosome copies is doubled.

In allopolyploidy, two species hybridize and the hybrid o↵spring

receives both chromosome sets from the parents.

Polyploidy is a crucial factor in speciation and genomic and

phenotypic novelties (Oxelman et al. (2017); Blischak et al.

(2018)), particularly in plants (Heslop-Harrison et al. (2023)).

Given the evolutionary role of polyploidy in both wild and

cultivated plants, it has been used as a tool for improving plant

vigor by plant breeders (Sattler et al. (2016)). Recent research

also suggests polyploidy’s importance in animal evolution. The

identification of two ancient WGD events at the base of the

vertebrate lineage, known as 2R-WGD events (Dehal and Boore

(2005)), highlights its potential contribution to the radiation of

vertebrates. These ancestral genome duplications are believed

to be responsible for the emergence of key gene families linked

to development (e.g., Hox genes) and the immune system

(Holland (1999); Nei et al. (1997)).

Species phylogeny estimation in the presence of polyploids

is very challenging. The wide array of recently introduced

species tree inference methods (Mirarab et al. (2021)) primarily

relies on orthologous genes, but polyploids present duplicated

genes that might be paralogs (duplicates within a species) or

homoeologs (duplicates from separate parental species). This

complexity often leads to the exclusion of polyploids from

phylogenetic studies. Recent advances o↵er promising avenues

for unraveling these intricate relationships. Phylogenetic

networks (Elworth et al. (2019)), a more complex model than

trees, allow for modeling non-treelike evolution often seen

in polyploidy. However, as discussed in Yan et al. (2021),

most phylogenetic network inference methods fail to deal

adequately with polyploidy. Multi-labeled trees, or MUL-trees

(Huber et al. (2006)), are yet another mathematical model

that allows for capturing polyploids. They extend traditional

phylogenetic trees by allowing multiple leaves to be labeled

by the same taxon name in order to capture multiple copies

of the same subgenome that arise due to polyploidy. There is

a close relationship between phylogenetic networks and MUL-

trees that can be analyzed through “folding” and “unfolding”

operations (Huber et al. (2016)), which, in turn, provides
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a framework for disentangling the evolutionary history of

polyploids (Huber and Maher (2023)).

A number of phylogenetic methods leverage MUL-trees

for analyzing polyploidy. PADRE (Lott et al. (2009)), for

example, adapts the greedy consensus strategy to generate

a MUL-tree, which is subsequently converted into a network

via the algorithm of Huber et al. (2006). GRAMPA (Thomas

et al. (2017)), on the other hand, builds upon a parsimonious

reconciliation algorithm to identify polyploidization events and

their modes within a MUL-tree framework. However, these

methods do not account for incomplete lineage sorting (ILS),

a pervasive evolutionary process that can cause discordance

among gene trees (Mirarab et al. (2021)). While polyploid

phylogeny estimation methods such as AlloppNET (Jones et al.

(2013); Jones (2017)), a fully parametric Bayesian approach

that jointly estimates the gene trees and species phylogeny, and

MPAllopp (Yan et al. (2021)), a parsimony method that infers

the species network by minimizing deep coalescences, account

for ILS, they have their limitations, including a restricted set of

polyploid types, computational requirements, scalability issues,

and the prerequisite of prior knowledge regarding subgenome

assignments, which may not always be available or accurate.

To address these limitations, we introduce Polyphest

(POLYploid PHylogeny ESTimation), a method that builds

on the PADRE algorithm (Lott et al. (2009); Huber et al.

(2006)) to accommodate ILS. Polyphest employs a multi-step

approach. It first decomposes the input multi-labeled gene trees

into a collection of clusters and constructs an approximate-

compatibility graph. By solving the maximum-weight clique

problem on this graph, Polyphest e�ciently selects highly

supported clusters. These selected clusters are then used to

build a greedy consensus MUL-tree. Finally, Polyphest folds

the MUL-tree into a (uniquely-labeled) phylogenetic network

by merging near-isomorphic subtrees.

We assess in simulations the accuracy and e�ciency of

Polyphest as compared to both PADRE and MPAllopp,

and demonstrate its applicability to biological data. To the

best of our knowledge, Polyphest is the first method that

simultaneously accounts for polyploidy and ILS (a limitation

of PADRE, since it does not account for ILS) while directly

estimating phylogenetic networks from summarized gene trees

without requiring exhaustive exploration of the network space

(a limitation of MPAllopp that traverses the network space

explicitly).

Background

A phylogenetic network on set X of taxa is a rooted, directed,

acyclic graph  = (V,E) with V ( ) = {VL, VT , VR}, where,

VL is the set of leaf nodes (out-degree of 0), VT is the set of

internal tree nodes (in-degree of 1, except for the root node ⇢,

which has in-degree of 0, and out-degree � 2), and VR is the

set of internal reticulation nodes (in-degree of 2 and out-degree

of 1). Every node in the network is reachable from the root ⇢.

E( ) is the set of  ’s directed edges. If VR = ;, then  is a

rooted phylogenetic tree. A node whose out-degree is greater

than 2 is called unresolved or multifurcating. In a phylogenetic

tree or network, the nodes in VL are uniquely labeled by

elements of X . The leaves of  are labeled, � : VL ! X .

For tree  , if � is injective, then  is a (uniquely-labeled)

phylogenetic tree. If � is not injective, then  is a multi-

labeled tree, or MUL-tree. Fig. 1 shows a MUL-tree and a

phylogenetic network. Hereafter, ‘tree’ and ‘phylogenetic tree’

refer to uniquely-labeled trees; otherwise, we use ‘MUL-tree.’

(a) MUL-tree (b) Phylogenetic network

Fig. 1. Illustration of MUL-trees and phylogenetic networks. The leaves

of a MUL-tree are not uniquely labeled. The leaves of a phylogenetic

network are uniquely labeled, but it has nodes of in-degree 2.

Furthermore, when the phylogeny is a tree, we typically use T

instead of  to denote the phylogeny.

For any node v in tree T , we denote by Tv the clade or

subtree of T that is rooted at v and by CT (v) the cluster of

labels of Tv’s leaves. The set of clusters induced by a tree T

is C(T ) = [v2V (T ){CT (v)}. In trees, clusters are represented

as sets, while in MUL-trees they are represented as multisets.

Clusters induced by the root or leaves are referred to as trivial

clusters, while others are called non-trivial clusters. Two

clusters C(u) and C(v), where each cluster consists of unique

elements, are said to be compatible if one of the following

conditions holds: C(u) ✓ C(v), C(v) ✓ C(u), or C(u)\C(v) =

;. A cluster is said to be compatible with a tree T if it is

compatible with every cluster induced by T . Given a collection

C of pairwise compatible clusters on X , there exists a unique

rooted tree that induces C (Semple et al. (2003)).

Materials and methods
MUL-tree Construction

Greedy Consensus MUL-tree and PADRE
We begin by revisiting the Greedy Consensus MUL-tree

problem, as detailed in Lott et al. (2009). Let T =

{T1, ..., Tn} be a collection of rooted trees leaf-labeled by

set X and C(T ) = [n
i=1C(Ti). Given the nature of MUL-

trees, it is possible for a cluster to occur more than once;

mT (C) denotes the multiplicity of cluster C in MUL-tree

T . We represent C(T ) as a set of cluster-multiplicity pairs:

{(C1
T ,mT (C1

T )), . . . , (Ck
T ,mT (Ck

T ))}. For simplicity, we write

the cluster-multiplicity pair as C̃ = (C,m). For example,

for the MUL-tree in Fig. 1(a), cluster {x, y, z} appears twice

(CT (u) and CT (v)) in this MUL-tree, so it has a multiplicity

of 2, denoted as C̃ = ({x, y, z}, 2). Extending this concept

to the entire collection T , we view the induced clusters as a

list of cluster-multiplicity pairs
⇥
C̃

i,j = (Ci
,m

i,j)
⇤
sorted in

descending order by their frequencies sT (C̃i,j) = |{Tk|C̃i,j 2
C(Tk)}|. It is crucial to distinguish between multiplicity and

frequency. Multiplicity refers to how many times a specific

cluster appears within a single MUL-tree. Frequency, on the

other hand, considers how often a cluster appears with a

particular multiplicity across multiple trees. For example,

cluster {x, y, z} might appear twice (multiplicity of 2) in one

tree and only once (multiplicity of 1) in another. Its frequency

for a multiplicity of 2 then depends on how many other trees

share that specific repetition level (i.e., 2), for {x, y, z}.
We define function ComputeSortedClusters to compute the

clusters induced by T by computing the clusters and their

corresponding multiplicities within each individual tree. As

it iterates through the trees, it also calculates the frequency

of each cluster-multiplicity pair across the entire collection.

The output of ComputeSortedClusters is a list of cluster-

multiplicity pairs induced by T (denoted as CT ), along with

their corresponding frequencies (denoted as sT ) that is sorted

in descending order by frequency.
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The greedy consensus MUL-tree is built by iteratively

adding clusters from this sorted list to an initially empty set.

A cluster is added only if it is compatible with those already in

the set, so that the resulting set of clusters defines a tree.

PADRE (Lott et al. (2009)) adopts the greedy strategy but

with some key modifications. First, it filters out clusters whose

multiplicity is smaller than a predefined threshold. Then, it

partitions C(T ) into “core” and “ambiguous” clusters. Core

clusters contain at least one label with multiplicity 1 across all

clusters in C(T ). These labels can be thought of as single copies

of diploids. Both core and ambiguous clusters are then sorted by

their multiplicities within the input trees. PADRE prioritizes

core clusters during the iterative addition process to construct

a backbone tree, then integrates ambiguous clusters one by one

to further refine the consensus MUL-tree. Full details of the

method can be found in Lott et al. (2009).

Reducing the number of clusters in Polyphest
In contrast to PADRE, Polyphest first reduces the number

of candidate clusters. While straightforward for trees, cluster

reduction becomes challenging for MUL-trees. This di�culty

arises because the compatibility rule used for trees no longer

holds for MUL-trees. For instance, consider MUL-tree T with

root w that has two children u and v, and u has two leaf children

labeled by x and z and v has three leaf children labeled by x,

y, and z. The cluster {x, y} would be regarded as incompatible

with CT (u) under the tree compatibility definition, making it

seem incompatible with T . Determining true compatibility for

a collection of clusters on a multiset is NP-hard (Huber et al.

(2008)). To address this complexity, PADRE forgoes cluster

reduction and assigns priorities to core and ambiguous clusters.

Polyphest, on the other hand, tackles this issue by introducing

the notion of approximate compatibility.

Definition 1. (Approximate Compatibility) Two clusters with

multiplicities (C1,m1) and (C2,m2), drawn from the multiset

L of leaf labels of a MUL-tree, are considered approximately

compatible if any of these conditions hold: C1 ✓ C2, C1 ◆ C2,

or L \ [m1
i=1C1 ◆ [m2

i=1C2, where the union is that of multisets.

Polyphest makes use of maximum-weight approximately-

compatible clusters.

Problem 1. (Maximum Weight Approximate-Compatible

Clusters (MWACC)) Let T = {T1, . . . , Tn} be a collection

of trees on a taxon set X . Let L be a target multiset such

that for each element l 2 L, l 2 X . Additionally, let w

be a weight function that assigns a weight to each potential

cluster. The output is a collection C of clusters, where each

cluster is a submultiset of L and originates from the clusters

induced by the collection T . Furthermore, all clusters in C
must be pairwise approximately compatible. The objective is

to maximize the total weight of the clusters in C as given by

W (C) =
P

C̃2C w(C̃).

Unlike PADRE, which prioritizes core clusters, Polyphest

utilizes all clusters due to the observation that ILS could

weaken the importance of core clusters. Specifically, including

a misleading core cluster that is incompatible with the true

MUL-tree could even block the inclusion of other informative,

highly supported ambiguous clusters.

Approximate compatibility graph construction

We leverage the sorted list of clusters with frequencies,

generated by ComputeSortedClusters, and the concept of

approximate compatibility to construct an approximate

compatibility graph GAC . Each node in GAC represents a

cluster C̃
i,j in C(T ). Two nodes are connected by an edge

if their corresponding clusters are approximately compatible.

Node v representing cluster C̃
i,j is assigned weight w(v) =

m
i,j · s(C̃i,j) · |Ci|0.65. This weighting scheme reflects several

considerations. Given the heterogeneity introduced by ILS, the

true MUL-tree might contain multiple copies of a cluster like

C̃
i,j where j > 1. However, a cluster C̃

i,k where k < j may

be more prevalent across T , while C̃
i,j hold more valuable

information. Therefore, we use the term m
i,j · s(C̃i,j) to

emphasize the importance of C̃
i,j . Furthermore, while smaller

clusters are informative for refining unresolved nodes, their

reliability is compromised by ILS. The exponent 0.65, chosen

empirically, balances the impact of cluster size and the other

factors (multiplicity and frequency). Polyphest identifies a

clique in GAC with the maximum total weight, which represents

an optimal collection of approximately compatible clusters.

An integer linear programming solution

We now present an integer linear programming (ILP) solution

to the MWACC problem, denoted by the function SolveMWACC.

Let X = [x1, ..., xn] be a binary vector where each binary

variable xk reflects the inclusion status of cluster C̃
i,j . The

function f : {1, . . . , n} ! C(T ) maps each selection

variable xk to its corresponding cluster C̃
i,j . Additionally,

we denote a approximate compatibility matrix as ⇤, where

⇤i,j = 1 if f(i) and f(j) are approximately compatible,

and ⇤i,j = 0 otherwise. The ILP model is as follows:

max
nX

k=1

wk · xk (1)

subject to
X

k:f(k)=(Ci,mi,j) for any j

xk  1 8Ci 2 C(T ) (2)

xi + xj  1 if ⇤i,j = 0 (3)

Constraints (2) and (3) stipulate that no more than one

multiplicity of any cluster C
i is selected and to prevent the

selection of clusters that are not approximately compatible,

respectively. Polyphest then uses the output (sorted) clusters

Algorithm 1 MUL-tree reconstruction algorithm

Input: A collection G = {g1, . . . gn} of multi-labeled gene trees

on the taxon set X and multiset L of leaf labels.

Output: A consensus MUL-tree T on multiset L and cluster

frequency map sG .

1: C(G), sG  ComputeSortedClusters(G);
2: CAC  SolveMWACC(C(G),L);

3: Create a star tree T whose leaves are labeled by the

elements of L;

4: for all C 2 CAC do

5: if C is compatible with T then

6: Add C to T ;

7: for all v 2 V (T ) do

8: if v is multifurcating then

9: Refine(v, C(G));
return T, sG ;

obtained from the ILP solution (SolveMWACC) to construct a

greedy consensus MUL-tree (Algorithm 1). Notice that this tree

may not be strictly binary. To address this, we define function

Refine, which operates on each multifurcating node in the tree.

For each such node, Refine selects a binary refinement that

maximizes the total weight (as defined in the ILP model) of

the clusters induced by its children.
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Algorithm 2 Network Construction Algorithm

Input: MUL-tree T , near isomorphic threshold �, cluster

frequency map sT

Output: MUL-tree T is modified in place to represent the

network

1: Assign unique isomorphism codes to all nodes in T

2: L list of H + 1 empty queues . H is the root height

3: L[H].enqueue(root node)

4: for h = H down to 0 do

5: D  L[h] . queue containing nodes of height h

6: while not D.isEmpty() do

7: u D.popLeft()

8: T̃  FindNearIsomorphicClades(u,D, �)

9: if not T̃ .isEmpty() then

10: MergeNearIsomorphicClades(T̃ , sT )

11: Update T accordingly

12: for all child node of u do

13: Add the child to L[child.height]

14: function FindNearIsomorphicClades(u,D, �)

15: T̃  an empty list

16: for all v 2 D and v 6= u do

17: if AreNearIsomorphic(u, v, �) then

18: if T̃ .isEmpty() then Add u to T̃
19: Add v to T̃
20: Remove v from D

return T̃

21: function AreNearIsomorphic(u, v, �)

22: if u and v do not have the same cluster then return

False

23: if u.code = v.code then . Exact topology match

return True

24: d ComputeNormalizedGraphEditDistance(u, v)

return d  � . Within near-isomorphism threshold

25: function MergeNearIsomorphicClades(T̃ , sT )

26: maxSupport  0

27: hybrid  null

28: for all u 2 T̃ do

29: support  ComputeCladeScore(u, sT )

30: if support � maxSupport then

31: maxSupport support

32: hybrid  u

33: Perform subdivision, identification, and pruning on T̃ \
{hybrid}

34: function ComputeCladeScore(u, sT )

35: Compute the collection C of clusters induced by clade u

36: totalScore  0

37: for all cluster C with multiplicity m 2 C do

38: score  2⇥m⇥ sT (C, 2 · m)

39: if score = 0 then score  m⇥ sT (C,m)

40: totalScore  totalScore + score

return totalScore

Network Construction
Given the consensus MUL-tree built by Algorithm 1, this

section details how Polyphest converts it into a network that

accounts for potential gene tree discordance caused by ILS.

Polyphest builds on the algorithm originally proposed by Huber

et al. (2006) and later implemented in PADRE, which identifies

identical (isomorphic) clades within the MUL-tree, representing

polyploidization events, and iteratively merges them. This

approach minimizes the number of reticulation nodes. However,

this strict requirement of clade isomorphism impacts inference

negatively when gene tree discordance due to ILS is present.

To address this limitation, we introduce a near-isomorphism

threshold (�) to account for minor variations in clade topology.

The improved algorithm operates directly on the input MUL-

tree T and utilizes pre-computed cluster frequencies sT from

the MUL-tree construction phase (Algorithm 1). The key steps

are as follows:

1. Initialization

I Assign isomorphism codes to all nodes within the MUL-

tree for e�cient comparison, following the approach

described in Huber et al. (2006).
I Initialize a list L of H + 1 queues. Each queue will store

nodes at a specific height in the tree. The last queue

L[H], will store the root node (at height H). All other

queues, L[0] to L[H � 1] will be initially empty.

2. Descending height processing

I Starting from the maximum tree height (H), process

nodes in descending order of height

⇧ For each queue L[h] (containing nodes at height h):

• Use the AreNearIsomorphic function to identify

nearly isomorphic clades within the threshold �

• Select the clade with the highest cumulative score

as the representative clade
• Use the MergeNearIsomorphicClades function to

merge these identified clades into the representative

clade
• After processing a node, add its child nodes to

their corresponding height queues (L[child height])

for future evaluation.

I Repeat step 2 for all node heights, progressively refining

the network by identifying and merging near-isomorphic

clades until the MUL-tree is fully processed, resulting in

the final network.

Polyphest di↵ers from PADRE in two key aspects. First, it

allows merging of similar (not strictly identical) clades, which

produces more accurate results in the presence of ILS might.

For example, while clades Tu and Tv shown in Fig. 1 are

not isomorphic, by relaxing the isomorphism criterion with a

threshold of 0.1, they could be considered potentially descended

from a common ancestor through a polyploidization event.

Second, Polyphest incorporates cluster frequencies among gene

trees to select a representative clade during merging. This

ensures the chosen representative reflects the most frequent

cluster composition within the clade, leading to a network that

more accurately reflects the underlying evolutionary history,

especially when ILS is a factor.

Results
Simulation study

Simulation setup

To evaluate the performance of Polyphest in simulations, we

utilized the AlloppDT simulator (Jones (2012)) to generate a

collection of data sets. We replicated the scenarios explored

in prior studies (Jones et al. (2013); Jones (2017)), including
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varying numbers of allopolyploidization events (1, 2, or 3) and

mutation rates to change the level of ILS. We substantially

increased the number of genes to 1000, which not only reflects

modern, genome-wide sequencing data but also allows us to

evaluate the e�ciency of Polyphest in handling large data sets,

a known limitation of previous methods. We simulated gene

sequences (500bp, HKY model, transition/transversion ratio

 = 3 as in Jones (2017)) for each data set using Seq-Gen

(Rambaut and Grassly (1997)) and estimated gene trees from

these alignments with IQ-TREE v2.1.2 (Minh et al. (2020)).

This procedure resulted in 720 simulated data sets (4 scenarios

⇥ 6 number of genes ⇥ 3 ILS levels ⇥ 10 replicates). Detailed

descriptions of the model phylogenies (Supplementary Fig. S1)

and the parameters used for simulations (Supplementary

Table S1) are available in the Supplementary Material. For

comparison, we also ran PADRE and MPAllopp. PADRE was

executed with a threshold parameter set to 2, indicating that

only clusters appearing in at least two out of the input gene

trees were considered when building the final consensus MUL-

tree. Since the command-line version of PADRE only outputs

a MUL-tree, we used the network construction algorithm in

Polyphest (with an isomorphic threshold of 0 to match the

original folding algorithm implemented in the GUI version of

PADRE) to convert the output MUL-tree into a network for

comparison. As a heurstic search-based method, MPAllopp, was

run 30 times per data set to improve the chance of finding

the optimal solution. It was also supplied with the correct

subgenome assignment.

Evaluation metrics

To assess the accuracy of our MUL-tree and network

constructions in the simulation study, we employed the

normalized approximate graph edit distance implemented in

NetworkX (Hagberg et al. (2008)) to quantify the dissimilarity

between the true MUL-tree and its estimated counterpart,

with lower distance indicating higher accuracy. Similarly, we

used the distance measure of Nakhleh (2010) to quantify

the topological dissimilarity between the true and estimated

networks. Details of the normalized graph edit distance and

Nakhleh (2010) measure are provided in the Supplementary

Material (Section S2). We further evaluated computational

e�ciency by measuring the wall-clock time for each analysis

(single-threaded), conducted on a Red Hat Enterprise Linux

system with AMD EPYC 7642 48-Core Processor.

Data characteristics
We measured the data complexity (incongruence) in three

aspects: (i) the level of ILS, quantified by the normalized rooted

RF (Robinson and Foulds (1981)) distance between each pair

of true species MUL-tree and the true gene tree; (ii) gene tree

estimation error (GTEE), capturing the error introduced during

individual gene tree reconstruction; (iii) average discordance

(AD), combining the discordance caused by ILS and GTEE,

representing the overall incongruence between the true species

MUL-tree and the estimated gene trees. The results are shown

in Supplementary Table S2. We observe an increasing trend

of discordance (ILS and AD) with higher mutation rates,

attributable to decreased branch lengths (measured in units of

generations) where ILS is more prevalent. This suggests that

higher mutation rates make reconstructing the true species

phylogeny more challenging. GTEE generally decreases with

higher mutation rates, except for network J. This pattern might

be explained by saturation e↵ects in network J, where high

mutation rates on already long branches (representing more

generations of change) have a diminishing impact on gene tree

inference accuracy.

It is important to note that ILS could be problematic for

PADRA. Indeed, PADRE failed on 20 out of 480 low ILS data

sets, 294 out of 480 moderate ILS data sets, and 454 out of

480 high ILS data sets across di↵erent scenarios and data types

(true and estimated gene trees). These failures are excluded

from the results discussed next with respect to Figs. 2 and 3.

Accuracy of MUL-tree reconstruction
We evaluated the performance of the MUL-tree reconstruction

algorithms employed by PADRE and by Polyphest (Fig. 2).

MPAllopp does not reconstruct a MUL-tree. As the level of

ILS increases, we observe a significant decline in PADRE’s

performance. The failure rate of PADRE in generating MUL-

tree rose sharply from 4.17% at low ILS levels to an alarmingly

high 94.6% at a high level of ILS. Notably, under high

ILS conditions, PADRE failed to produce any results, with

successful cases limited to scenarios involving a small number

of genes (High ILS with 25 genes). In contrast, Polyphest

consistently outperformed PADRE. It exhibits perfect accuracy

under low ILS levels and remains highly accurate under

moderate ILS levels. Additionally, its performance improved

as the number of genes increased. Unsurprisingly, for very high

ILS levels, the method’s performance gets poorer, but it still

achieves an accuracy level above 70%. Furthermore, gene tree
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Fig. 2. MUL-tree reconstruction error. The normalized approximate

graph edit distance between the true MUL-tree and the MUL-tree

reconstructed from true gene trees (top) and from estimated gene trees

(bottom). Results are shown for 10 replicate data sets.

error has a negligible impact on the performance of Polyphest,

whereas its impact on PADRE is more noticeable.

Accuracy of network reconstruction
We evaluated the accuracy of the networks reconstructed by

PADRE, MPAllopp, and Polyphest (Fig. 3). While PADRE

shows promise for low ILS conditions and low numbers of

genes, its inability to handle a significant portion of the data,

especially under high ILS and with more genes, limits its overall

reliability and applicability to complex evolutionary scenarios.
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Fig. 3. Species network estimation error. The normalized network

distance between the true network and the network reconstructed from

true gene trees (top) and from estimated gene trees (bottom). Results are

shown for 10 replicate data sets.

In contrast, MPAllopp and Polyphest have very high accuracy

across all scenarios under low ILS levels, and comparable, yet

lower, accuracy on the species networks of scenarios F and J

for high levels of ILS (bottom two rows in Fig. 3). MPAllopp

has better accuracy for moderate and high levels of ILS on

the species networks of scenarios D and E. Furthermore, for

moderate levels of ILS, increasing the number of genes leads

to a drastic improvement in the performance of Polyphest,

especially on the species networks of scenarios D and E.

We further explored the impact of the isomorphic threshold

(� above) on the accuracy of network reconstruction by

Polyphest. This threshold is designed to handle ILS; therefore,

we expect the level of ILS to play a role in the method’s

performance for the same setting of the threshold value. Indeed,

as Fig. 4 shows, for the same setting of a threshold value,

Polyphest is most accurate on low ILS and least accurate on

high ILS. An encouraging result is that a threshold value of 0.3
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Fig. 4. Impact of isomorphic threshold on species network error. Results

are shown across various scenarios considering di↵erent numbers of genes

and data types (true and estimated gene trees).

or higher produces the most accurate results under all levels

of ILS, and varying its value beyond 0.3 barely has an impact.

Furthermore, for low levels of ILS, very low threshold values

would also work, as the strict requirement of isomorphism in

those cases is not detrimental. Nevertheless, given the stability

in performance for threshold values higher than 0.3, it seems a

safer choice to use such values in the analyses.

Runtime
We evaluated the runtime performance of each method by

recording their wall-clock time to complete a single analysis on

a single thread. It is important to note that MPAllopp utilizes

a heuristic search, requiring multiple runs to improve its search

outcome. Therefore, the reported runtime in Fig. 5 reflects

the average time required for 30 such runs. Polyphest is the
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Fig. 5. Average running time (minutes) measured by wall-clock time on

simulated data under scenario F (5-taxon with 3 reticulations). Error bars

represent the standard deviation. Inferences were performed on estimated

gene trees.

fastest method, consistently finishing within 0.15 seconds for

the 5-taxon data set with 1000 genes and averaging around 0.4

seconds for the 13-taxon data set with 1000 genes. PADRE

generally completed analysis within 10 seconds, including the

time required for MUL-tree folding. However, it is important to

note that PADRE failed on 37 out of 60 low ILS data sets, 54

out of 60 moderate ILS data sets, and 57 out of 60 high ILS data

sets in scenario F. These failures are excluded from the results

presented in Fig. 5. MPAllopp had the slowest runtime and

the numbers of reticulations and taxa significantly impacted

its performance. For the 5-taxon data set with 1000 genes,

the average runtime for MPAllopp (averaged over 30 runs)

increased from 0.226 seconds with one reticulation (scenario D)

to 1.35 seconds with two reticulations (scenario E) and further

to 4.36 seconds with three reticulations (scenario F). This trend

continued for the 13-taxon data set with three reticulations

(scenario J), where MPAllopp typically required approximately

24.7 minutes to finish a single search round (Supplementary

Fig. S2).

Empirical data analysis
We re-analyzed the 9-species bread wheat data from Marcussen

et al. (2014) which includes 1 hexaploid bread wheat (Triticum

aestivum), 5 diploid relatives, and 3 outgroup species. This

data set comprises 275 genome-wide collection of gene trees.

To gain insights into the subgenome relationships, we first

performed an analysis considering the A, B, and D subgenomes

of the hexaploid bread wheat (denoted as TaA, TaB, and

TaD, respectively) as distinct taxa. This approach produced

a MUL-tree showing the specific subgenome and its closest

relative (Fig. 6(left)). We then conducted an analysis without

distinguishing between the A, B, and D subgenomes, treating

the input gene trees as MUL-trees. This resulted in a network

that captures the overall evolutionary history of the bread

wheat data (Fig. 6(right)). For these analyses, we used a

filtering threshold of 21, and an isomorphic threshold of 0.2.

The MUL-tree inferred by Polyphest is consistent with

the underlying MUL-tree reported in Yan et al. (2021) using

MPAllopp. In addition, Polyphest identified the same diploid

progenitors for each subgenome as Marcussen et al. (2014):

subgenome TaA is sister to diploid Triticum urartu, subgenome

TaB is sister to diploid Aegilops speltoides, and subgenome TaD

is sister to diploid Aegilops tauschii (Fig. 6(left)). Notably, the

network reconstructed by Polyphest achieves consensus with

the two optimal solutions identified by MPAllopp, both of which

involve two hybridization events.
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Fig. 6. Bread wheat phylogenies. The taxa are “TaA” (Triticum aestivum

A subgenome), “TaB” (T. aestivum B subgenome), “TaD” (T. aestivum D

subgenome), “Tu” (T. urartu), “Tm” (T. monococcum), “Ash” (Aegilops

sharonensis), “Asp” (Ae. speltoides), “At” (Ae. tauschii), “Hv” (Hordeum

vulgare), “Bd” (Brachypodium distachyon), and “Os” (Oryza sativa).

Discussion

In this work, we introduced Polyphest, a novel method

that directly infers species phylogenies from gene trees while

accounting for polyploidy and ILS. Polyphest Polyphest

extends the PADRE algorithm by accounting for ILS.

Unsurprisingly, Polyphest exhibits greater robustness to

ILS compared to PADRE. Further, Polyphest demonstrates

comparable performance to MPAllopp under low to moderate

ILS conditions, particularly with hundreds of genes. However,

Polyphest o↵ers a significant advantage in computational

e�ciency, especially for large data sets, which makes it

more scalable than other methods. In reanalyzing a bread

wheat dataset, Polyphest inferred a plausible phylogeny,

corroborating previous research findings, and provided insights

into the origin of subgenomes within the hexaploid bread wheat,

showcasing its practical utility.

While Polyphest performs well under low and moderate

ILS conditions, its performance su↵ers under high ILS levels,

leading to an overestimation of the number of reticulations

(polyploidization events). This limitation arises because, under

high ILS, the most frequent gene relationships might not reflect

true species relationships. Additionally, with an insu�cient

number of genes, all possible relationships might appear

in the gene trees with similarly low frequencies, resulting

in substantial uncertainty. Improving the selection of near-

isomorphic clades during network reconstruction could improve

the method’s performance under high levels of ILS, and we

identify this as a direction for future research.
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