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Abstract

Motivation: Despite the widespread occurrence of polyploids across the Tree of Life, especially in the plant kingdom,
very few computational methods have been developed to handle the specific complexities introduced by polyploids in
phylogeny estimation. Furthermore, methods that are designed to account for polyploidy often disregard incomplete
lineage sorting (ILS), a major source of heterogeneous gene histories, or are computationally very demanding. Therefore,
there is a great need for efficient and robust methods to accurately reconstruct polyploid phylogenies.

Results: We introduce Polyphest (POLYploid PHylogeny ESTimation), a new method for efficiently and accurately
inferring species phylogenies in the presence of both polyploidy and ILS. Polyphest bypasses the need for extensive network
space searches by first generating a multi-labeled tree based on gene trees, which is then converted into a (uniquely-labeled)
species phylogeny. We compare the performance of Polyphest to that of two polyploid phylogeny estimation methods,
one of which does not account for ILS, namely PADRE, and another that accounts for ILS, namely MPAllopp. Polyphest
is more accurate than PADRE and achieves comparable accuracy to MPAllopp, while being significantly faster. We also
demonstrate the application of Polyphest to empirical data from the hexaploid bread wheat and confirm the allopolyploid
origin of bread wheat along with the closest relatives for each of its subgenomes.

Availability and implementation: Polyphest is available at https://github.com/NakhlehLab/Polyphest.

Contact: zhi.yan@rice.edu or nakhleh@rice.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

Introduction to development (e.g., Hox genes) and the immune system
(Holland (1999); Nei et al. (1997)).

Ploidy of an organism’s cell is the number of whole sets of K R K ; i
Species phylogeny estimation in the presence of polyploids

chromosomes (i.e., genome) in the cell. The ploidy could

is very challenging. The wide array of recently introduced
be one (haploid cells) or larger (diploid, triploid, etc.). .y . ging X Y Y X X

. L species tree inference methods (Mirarab et al. (2021)) primarily
Polyploidization, also known as whole genome duplication, or " thol but lvploid ¢ duplicated
relies on orthologous genes, but po oids present duplicate
WGD, is an increase (e.g., doubling) in the number of copies X & & ’ p .yp p . p.
. . L genes that might be paralogs (duplicates within a species) or
of the entire genome of a species. This increase could be X . K
. e . homoeologs (duplicates from separate parental species). This
the result of whole-genome duplication or hybridization. In

autopolyploidy, the number of chromosome copies is doubled.
In allopolyploidy, two species hybridize and the hybrid offspring

complexity often leads to the exclusion of polyploids from
phylogenetic studies. Recent advances offer promising avenues

. for unraveling these intricate relationships. Phylogenetic
receives both chromosome sets from the parents.

. . . L . networks (Elworth et al. (2019)), a more complex model than
Polyploidy is a crucial factor in speciation and genomic and X K K
R . . trees, allow for modeling non-treelike evolution often seen
phenotypic novelties (Oxelman et al. (2017); Blischak et al.

(2018)), particularly in plants (Heslop-Harrison et al. (2023)).
Given the evolutionary role of polyploidy in both wild and

in polyploidy. However, as discussed in Yan et al. (2021),
most phylogenetic network inference methods fail to deal

. . . . adequately with polyploidy. Multi-labeled trees, or MUL-trees
cultivated plants, it has been used as a tool for improving plant R
. (Huber et al. (2006)), are yet another mathematical model
vigor by plant breeders (Sattler et al. (2016)). Recent research K . .
. R . . that allows for capturing polyploids. They extend traditional
also suggests polyploidy’s importance in animal evolution. The hvl tic t b Nowi ltiple 1 to be labeled
identification of two ancient WGD events at the base of the E yt;)lgene e trees voa o?ivlngdmutlp ¢ faves Olt'el & e.e
vertebrate lineage, known as 2R-WGD events (Dehal and Boore Y Bhe same taxon hame i order to capture muiipie coples

(2005)), highlights its potential contribution to the radiation of
vertebrates. These ancestral genome duplications are believed

of the same subgenome that arise due to polyploidy. There is
a close relationship between phylogenetic networks and MUL-
trees that can be analyzed through “folding” and “unfolding”

to be responsible for the emergence of key gene families linked
P & Ve operations (Huber et al. (2016)), which, in turn, provides
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a framework for disentangling the evolutionary history of
polyploids (Huber and Maher (2023)).

A number of phylogenetic methods leverage MUL-trees
for analyzing polyploidy. PADRE (Lott et al. (2009)), for
example, adapts the greedy consensus strategy to generate
a MUL-tree, which is subsequently converted into a network
via the algorithm of Huber et al. (2006). GRAMPA (Thomas
et al. (2017)), on the other hand, builds upon a parsimonious
reconciliation algorithm to identify polyploidization events and
their modes within a MUL-tree framework. However, these
methods do not account for incomplete lineage sorting (ILS),
a pervasive evolutionary process that can cause discordance
among gene trees (Mirarab et al. (2021)). While polyploid
phylogeny estimation methods such as AlloppNET (Jones et al.
(2013); Jones (2017)), a fully parametric Bayesian approach
that jointly estimates the gene trees and species phylogeny, and
MPAllopp (Yan et al. (2021)), a parsimony method that infers
the species network by minimizing deep coalescences, account
for ILS, they have their limitations, including a restricted set of
polyploid types, computational requirements, scalability issues,
and the prerequisite of prior knowledge regarding subgenome
assignments, which may not always be available or accurate.

To address these limitations, we introduce Polyphest
(POLYploid PHylogeny ESTimation), a method that builds
on the PADRE algorithm (Lott et al. (2009); Huber et al.
(2006)) to accommodate ILS. Polyphest employs a multi-step
approach. It first decomposes the input multi-labeled gene trees
into a collection of clusters and constructs an approximate-
compatibility graph. By solving the maximum-weight clique
problem on this graph, Polyphest efficiently selects highly
supported clusters. These selected clusters are then used to
build a greedy consensus MUL-tree. Finally, Polyphest folds
the MUL-tree into a (uniquely-labeled) phylogenetic network
by merging near-isomorphic subtrees.

We assess in simulations the accuracy and efficiency of
Polyphest as compared to both PADRE and MPAllopp,
and demonstrate its applicability to biological data. To the
best of our knowledge, Polyphest is the first method that
simultaneously accounts for polyploidy and ILS (a limitation
of PADRE, since it does not account for ILS) while directly
estimating phylogenetic networks from summarized gene trees
without requiring exhaustive exploration of the network space
(a limitation of MPAllopp that traverses the network space
explicitly).

Background

A phylogenetic network on set X of taxa is a rooted, directed,
acyclic graph ¥ = (V, E) with V(¥) = {V.,Vr, Vr}, where,
V1 is the set of leaf nodes (out-degree of 0), Vi is the set of
internal tree nodes (in-degree of 1, except for the root node p,
which has in-degree of 0, and out-degree > 2), and Vg is the
set of internal reticulation nodes (in-degree of 2 and out-degree
of 1). Every node in the network is reachable from the root p.
E(V) is the set of ¥’s directed edges. If Vg = 0, then ¥ is a
rooted phylogenetic tree. A node whose out-degree is greater
than 2 is called unresolved or multifurcating. In a phylogenetic
tree or network, the nodes in Vi are uniquely labeled by
elements of X'. The leaves of ¥ are labeled, ¢ : V, — X.
For tree W, if ¢ is injective, then W is a (uniquely-labeled)
phylogenetic tree. If ¢ is not injective, then ¥ is a multi-
labeled tree, or MUL-tree. Fig. 1 shows a MUL-tree and a
phylogenetic network. Hereafter, ‘tree’ and ‘phylogenetic tree’
refer to uniquely-labeled trees; otherwise, we use ‘MUL-tree.’

AX Y Z XY zZB A XY z B

(a) MUL-tree (b) Phylogenetic network

Fig. 1. Illustration of MUL-trees and phylogenetic networks. The leaves
of a MUL-tree are not uniquely labeled. The leaves of a phylogenetic
network are uniquely labeled, but it has nodes of in-degree 2.

Furthermore, when the phylogeny is a tree, we typically use T'
instead of ¥ to denote the phylogeny.

For any node v in tree T, we denote by T, the clade or
subtree of T that is rooted at v and by Cr(v) the cluster of
labels of T,’s leaves. The set of clusters induced by a tree T'
is C(T) = Uyev(r){Cr(v)}. In trees, clusters are represented
as sets, while in MUL-trees they are represented as multisets.
Clusters induced by the root or leaves are referred to as trivial
clusters, while others are called non-trivial clusters. Two
clusters C'(u) and C(v), where each cluster consists of unique
elements, are said to be compatible if one of the following
conditions holds: C(u) C C(v), C(v) C C(u), or C(u)NC(v) =
@. A cluster is said to be compatible with a tree T if it is
compatible with every cluster induced by 7. Given a collection
C of pairwise compatible clusters on X, there exists a unique
rooted tree that induces C (Semple et al. (2003)).

Materials and methods
MUL-tree Construction

Greedy Consensus MUL-tree and PADRE

We begin by revisiting the Greedy Consensus MUL-tree
problem, as detailed in Lott et al. (2009). Let T =
{Ty,....,Tn} be a collection of rooted trees leaf-labeled by
set X and C(7) = U]_,C(T;). Given the nature of MUL-
trees, it is possible for a cluster to occur more than once;
myp(C) denotes the multiplicity of cluster C in MUL-tree
T. We represent C(T") as a set of cluster-multiplicity pairs:
{(C,}, mT(C’ll"))f s

the cluster-multiplicity pair as C = (C,m). For example,

, (Ck, mr(CE))}. For simplicity, we write

for the MUL-tree in Fig. 1(a), cluster {z,y, 2} appears twice
(Cr(u) and Cr(v)) in this MUL-tree, so it has a multiplicity
of 2, denoted as C = ({=,v,2},2). Extending this concept
to the entire collection 7, we view the induced clusters as a
list of cluster-multiplicity pairs [C’i’j = (Ci,mi’j)] sorted in
descending order by their frequencies s1(C*7) = |{T}|C*7 €
C(Tx)}|. It is crucial to distinguish between multiplicity and
frequency. Multiplicity refers to how many times a specific
cluster appears within a single MUL-tree. Frequency, on the
other hand, considers how often a cluster appears with a
particular multiplicity across multiple trees. For example,
cluster {z,y, z} might appear twice (multiplicity of 2) in one
tree and only once (multiplicity of 1) in another. Its frequency
for a multiplicity of 2 then depends on how many other trees
share that specific repetition level (i.e., 2), for {z,y, z}.

We define function ComputeSortedClusters to compute the
clusters induced by 7 by computing the clusters and their
corresponding multiplicities within each individual tree. As
it iterates through the trees, it also calculates the frequency
of each cluster-multiplicity pair across the entire collection.
The output of ComputeSortedClusters is a list of cluster-
multiplicity pairs induced by 7 (denoted as Cy), along with
their corresponding frequencies (denoted as s7) that is sorted
in descending order by frequency.



The greedy consensus MUL-tree is built by iteratively
adding clusters from this sorted list to an initially empty set.
A cluster is added only if it is compatible with those already in
the set, so that the resulting set of clusters defines a tree.

PADRE (Lott et al. (2009)) adopts the greedy strategy but
with some key modifications. First, it filters out clusters whose
multiplicity is smaller than a predefined threshold. Then, it
partitions C(7) into “core” and “ambiguous” clusters. Core
clusters contain at least one label with multiplicity 1 across all
clusters in C(7). These labels can be thought of as single copies
of diploids. Both core and ambiguous clusters are then sorted by
their multiplicities within the input trees. PADRE prioritizes
core clusters during the iterative addition process to construct
a backbone tree, then integrates ambiguous clusters one by one
to further refine the consensus MUL-tree. Full details of the
method can be found in Lott et al. (2009).

Reducing the number of clusters in Polyphest

In contrast to PADRE, Polyphest first reduces the number
of candidate clusters. While straightforward for trees, cluster
reduction becomes challenging for MUL-trees. This difficulty
arises because the compatibility rule used for trees no longer
holds for MUL-trees. For instance, consider MUL-tree T with
root w that has two children u and v, and w has two leaf children
labeled by = and z and v has three leaf children labeled by «,
y, and z. The cluster {z, y} would be regarded as incompatible
with Cr(u) under the tree compatibility definition, making it
seem incompatible with 7. Determining true compatibility for
a collection of clusters on a multiset is NP-hard (Huber et al.
(2008)). To address this complexity, PADRE forgoes cluster
reduction and assigns priorities to core and ambiguous clusters.
Polyphest, on the other hand, tackles this issue by introducing
the notion of approximate compatibility.

Definition 1. (Approximate Compatibility) Two clusters with
multiplicities (C1,m1) and (Cg, m2), drawn from the multiset
L of leaf labels of a MUL-tree, are considered approximately
compatible if any of these conditions hold: C; C Cs, C; 2O Ca,
or £\ UM, Cy D U™ Cs, where the union is that of multisets.

Polyphest makes use of maximum-weight approximately-
compatible clusters.

Problem 1. (Maximum Weight Approximate-Compatible
Clusters (MWACC)) Let T = {Ti,..
of trees on a taxon set X. Let £ be a target multiset such
that for each element [ € L, | € X. Additionally, let w
be a weight function that assigns a weight to each potential

.,Tn} be a collection

cluster. The output is a collection C of clusters, where each
cluster is a submultiset of £ and originates from the clusters
induced by the collection 7. Furthermore, all clusters in C
must be pairwise approximately compatible. The objective is
to maximize the total weight of the clusters in C as given by
W(C) =2 gec w(C).

Unlike PADRE, which prioritizes core clusters, Polyphest
utilizes all clusters due to the observation that ILS could
weaken the importance of core clusters. Specifically, including
a misleading core cluster that is incompatible with the true
MUL-tree could even block the inclusion of other informative,
highly supported ambiguous clusters.

Approximate compatibility graph construction

We leverage the sorted list of clusters with frequencies,
generated by ComputeSortedClusters, and the concept of
approximate compatibility to construct an approximate

compatibility graph Gac. Each node in Gac represents a
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cluster C*9 in C(T). Two nodes are connected by an edge
if their corresponding clusters are approximately compatible.
Node v representing cluster C*7 is assigned weight w(v) =
m®d . s(C»I) . |C?|°-%%, This weighting scheme reflects several
considerations. Given the heterogeneity introduced by ILS, the
true MUL-tree might contain multiple copies of a cluster like
C*J where j > 1. However, a cluster C** where k < j may
be more prevalent across 7, while C*J hold more valuable
s(CH9) to

emphasize the importance of C*7. Furthermore, while smaller

information. Therefore, we use the term m"7 .

clusters are informative for refining unresolved nodes, their
reliability is compromised by ILS. The exponent 0.65, chosen
empirically, balances the impact of cluster size and the other
factors (multiplicity and frequency). Polyphest identifies a
clique in G 4¢ with the maximum total weight, which represents
an optimal collection of approximately compatible clusters.

An integer linear programming solution

We now present an integer linear programming (ILP) solution
to the MWACC problem, denoted by the function SolveMWACC.
Let X = [z1,...,zn] be a binary vector where each binary
variable xp reflects the inclusion status of cluster C%J. The
function f : {1,...,n} — C(7) maps each selection
variable xp to its corresponding cluster C'*J. Additionally,
we denote a approximate compatibility matrix as A, where

A;; = 1 if f(i) and f(j) are approximately compatible,
and A;; = 0 otherwise. The ILP model is as follows:
n
max Z Wk - Tk (1)
k=1

subject to

zp <1 vCiec(T) (2)

k:f(k)=(C?%,m%J) for any j

z; +x; <1 ifAiyj =0 (3)
Constraints (2) and (3) stipulate that no more than one

multiplicity of any cluster C! is selected and to prevent the

selection of clusters that are not approximately compatible,

respectively. Polyphest then uses the output (sorted) clusters

Algorithm 1 MUL-tree reconstruction algorithm

Input: A collection G = {g1, ... gn} of multi-labeled gene trees
on the taxon set X and multiset £ of leaf labels.

Output: A consensus MUL-tree 7 on multiset £ and cluster
frequency map sg.

1: C(G), sg + COMPUTESORTEDCLUSTERS(G);

: Cac + SOLVEMWACC(C(G), L);

3: Create a star tree T whose leaves are labeled by the

[\

elements of L;
: for all C € Cac do
if C is compatible with 7" then
Add C to T;
: for all v € V(T') do
if v is multifurcating then

REFINE(v, C(G));
return T, sg;

© P>

obtained from the ILP solution (SolveMWACC) to construct a
greedy consensus MUL-tree (Algorithm 1). Notice that this tree
may not be strictly binary. To address this, we define function
Refine, which operates on each multifurcating node in the tree.
For each such node, Refine selects a binary refinement that
maximizes the total weight (as defined in the ILP model) of
the clusters induced by its children.
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Algorithm 2 Network Construction Algorithm

Input: MUL-tree T, near isomorphic threshold ¢, cluster
frequency map st
Output: MUL-tree T is modified in place to represent the

network

1: Assign unique isomorphism codes to all nodes in T'

2: L < list of H 4+ 1 empty queues > H is the root height
3: L[H].enqueue(root node)

4: for h = H down to 0 do

5: D « L[h] > queue containing nodes of height h
6: while not D.isEmpty() do

7 u < D.popLeft()

8: T <+ FINDNEARISOMORPHICCLADES(u, D, 8)

9: if not 7.isEmpty() then

10: MERGENEARISOMORPHICCLADES (7, s7°)
11: Update T accordingly
12: for all child node of u do
13: Add the child to L[child.height]

14: function FINDNEARISOMORPHICCLADES(u, D, §)

15: T <« an empty list

16: for all v € D and v # u do

17: if ARENEARISOMORPHIC(u, v, d) then
18: if T.isEmpty() then Add u to T
19: Add v to T

20: Remove v from D

return T

21: function ARENEARISOMORPHIC(u, v, §)

22: if v and v do not have the same cluster then return
False
23: if u.code = v.code then > Exact topology match
return True
24: d < COMPUTENORMALIZEDGRAPHEDITDISTANCE (u, v)

return d < § > Within near-isomorphism threshold
25: function MERGENEARISOMORPHICCLADES (T, s)

26: maxSupport < 0

27: hybrid < null

28: forallue 7 do

29: support <~ COMPUTECLADESCORE(u, S7°)

30: if support > maxSupport then

31: maxSupport<— support

32: hybrid < u

33: Perform subdivision, identification, and pruning on '7~'\
{hybrid}

34: function COMPUTECLADESCORE(u, s7)

35: Compute the collection C of clusters induced by clade u
36: totalScore < 0

37: for all cluster C' with multiplicity m € C do

38: score < 2 x m X s7(C,2-m)

39: if score = 0 then score < m X s7(C,m)

40: totalScore < totalScore + score

return totalScore

Network Construction

Given the consensus MUL-tree built by Algorithm 1, this
section details how Polyphest converts it into a network that
accounts for potential gene tree discordance caused by ILS.
Polyphest builds on the algorithm originally proposed by Huber

et al. (2006) and later implemented in PADRE, which identifies
identical (isomorphic) clades within the MUL-tree, representing
polyploidization events, and iteratively merges them. This
approach minimizes the number of reticulation nodes. However,
this strict requirement of clade isomorphism impacts inference
negatively when gene tree discordance due to ILS is present.

To address this limitation, we introduce a near-isomorphism
threshold (§) to account for minor variations in clade topology.
The improved algorithm operates directly on the input MUL-
tree T and utilizes pre-computed cluster frequencies s+ from
the MUL-tree construction phase (Algorithm 1). The key steps
are as follows:

1. Initialization

» Assign isomorphism codes to all nodes within the MUL-
tree for efficient comparison, following the approach
described in Huber et al. (2006).

» Initialize a list L of H 4+ 1 queues. Each queue will store
nodes at a specific height in the tree. The last queue
L[H], will store the root node (at height H). All other
queues, L[0] to L[H — 1] will be initially empty.

2. Descending height processing

» Starting from the maximum tree height (H), process
nodes in descending order of height

o For each queue L[h] (containing nodes at height h):

e Use the AreNearIsomorphic function to identify
nearly isomorphic clades within the threshold §

e Select the clade with the highest cumulative score
as the representative clade

e Use the MergeNearIsomorphicClades function to
merge these identified clades into the representative
clade

e After processing a node, add its child nodes to
their corresponding height queues (L[child height])
for future evaluation.

» Repeat step 2 for all node heights, progressively refining
the network by identifying and merging near-isomorphic
clades until the MUL-tree is fully processed, resulting in
the final network.

Polyphest differs from PADRE in two key aspects. First, it
allows merging of similar (not strictly identical) clades, which
produces more accurate results in the presence of ILS might.
For example, while clades T, and T, shown in Fig. 1 are
not isomorphic, by relaxing the isomorphism criterion with a
threshold of 0.1, they could be considered potentially descended
from a common ancestor through a polyploidization event.
Second, Polyphest incorporates cluster frequencies among gene
trees to select a representative clade during merging. This
ensures the chosen representative reflects the most frequent
cluster composition within the clade, leading to a network that
more accurately reflects the underlying evolutionary history,
especially when ILS is a factor.

Results
Simulation study

Simulation setup

To evaluate the performance of Polyphest in simulations, we
utilized the AlloppDT simulator (Jones (2012)) to generate a
collection of data sets. We replicated the scenarios explored
in prior studies (Jones et al. (2013); Jones (2017)), including



varying numbers of allopolyploidization events (1, 2, or 3) and
mutation rates to change the level of ILS. We substantially
increased the number of genes to 1000, which not only reflects
modern, genome-wide sequencing data but also allows us to
evaluate the efficiency of Polyphest in handling large data sets,
a known limitation of previous methods. We simulated gene
sequences (500bp, HKY model, transition/transversion ratio
k = 3 as in Jones (2017)) for each data set using Seq-Gen
(Rambaut and Grassly (1997)) and estimated gene trees from
these alignments with IQ-TREE v2.1.2 (Minh et al. (2020)).
This procedure resulted in 720 simulated data sets (4 scenarios
X 6 number of genes X 3 ILS levels X 10 replicates). Detailed
descriptions of the model phylogenies (Supplementary Fig. S1)
and the parameters used for simulations (Supplementary
Table S1) are available in the Supplementary Material. For
comparison, we also ran PADRE and MPAllopp. PADRE was
executed with a threshold parameter set to 2, indicating that
only clusters appearing in at least two out of the input gene
trees were considered when building the final consensus MUL-
tree. Since the command-line version of PADRE only outputs
a MUL-tree, we used the network construction algorithm in
Polyphest (with an isomorphic threshold of 0 to match the
original folding algorithm implemented in the GUI version of
PADRE) to convert the output MUL-tree into a network for
comparison. As a heurstic search-based method, MPAllopp, was
run 30 times per data set to improve the chance of finding
the optimal solution. It was also supplied with the correct
subgenome assignment.

Evaluation metrics

To assess the accuracy of our MUL-tree and network
constructions in the simulation study, we employed the
normalized approximate graph edit distance implemented in
NetworkX (Hagberg et al. (2008)) to quantify the dissimilarity
between the true MUL-tree and its estimated counterpart,
with lower distance indicating higher accuracy. Similarly, we
used the distance measure of Nakhleh (2010) to quantify
the topological dissimilarity between the true and estimated
networks. Details of the normalized graph edit distance and
Nakhleh (2010) measure are provided in the Supplementary
Material (Section S2). We further evaluated computational
efficiency by measuring the wall-clock time for each analysis
(single-threaded), conducted on a Red Hat Enterprise Linux
system with AMD EPYC 7642 48-Core Processor.

Data characteristics

We measured the data complexity (incongruence) in three
aspects: (i) the level of ILS, quantified by the normalized rooted
RF (Robinson and Foulds (1981)) distance between each pair
of true species MUL-tree and the true gene tree; (ii) gene tree
estimation error (GTEE), capturing the error introduced during
individual gene tree reconstruction; (iii) average discordance
(AD), combining the discordance caused by ILS and GTEE,
representing the overall incongruence between the true species
MUL-tree and the estimated gene trees. The results are shown
in Supplementary Table S2. We observe an increasing trend
of discordance (ILS and AD) with higher mutation rates,
attributable to decreased branch lengths (measured in units of
generations) where ILS is more prevalent. This suggests that
higher mutation rates make reconstructing the true species
phylogeny more challenging. GTEE generally decreases with
higher mutation rates, except for network J. This pattern might
be explained by saturation effects in network J, where high
mutation rates on already long branches (representing more
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generations of change) have a diminishing impact on gene tree
inference accuracy.

It is important to note that ILS could be problematic for
PADRA. Indeed, PADRE failed on 20 out of 480 low ILS data
sets, 294 out of 480 moderate ILS data sets, and 454 out of
480 high ILS data sets across different scenarios and data types
(true and estimated gene trees). These failures are excluded
from the results discussed next with respect to Figs. 2 and 3.

Accuracy of MUL-tree reconstruction

We evaluated the performance of the MUL-tree reconstruction
algorithms employed by PADRE and by Polyphest (Fig. 2).
MPAllopp does not reconstruct a MUL-tree. As the level of
ILS increases, we observe a significant decline in PADRE’s
performance. The failure rate of PADRE in generating MUL-
tree rose sharply from 4.17% at low ILS levels to an alarmingly
high 94.6% at a high level of ILS. Notably, under high
ILS conditions, PADRE failed to produce any results, with
successful cases limited to scenarios involving a small number
of genes (High ILS with 25 genes). In contrast, Polyphest
consistently outperformed PADRE. It exhibits perfect accuracy
under low ILS levels and remains highly accurate under
moderate ILS levels. Additionally, its performance improved
as the number of genes increased. Unsurprisingly, for very high
ILS levels, the method’s performance gets poorer, but it still
achieves an accuracy level above 70%. Furthermore, gene tree
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Fig. 2. MUL-tree reconstruction error. The normalized approximate
graph edit distance between the true MUL-tree and the MUL-tree
reconstructed from true gene trees (top) and from estimated gene trees

(bottom). Results are shown for 10 replicate data sets.

error has a negligible impact on the performance of Polyphest,
whereas its impact on PADRE is more noticeable.

Accuracy of network reconstruction

We evaluated the accuracy of the networks reconstructed by
PADRE, MPAllopp, and Polyphest (Fig. 3). While PADRE
shows promise for low ILS conditions and low numbers of
genes, its inability to handle a significant portion of the data,
especially under high ILS and with more genes, limits its overall
reliability and applicability to complex evolutionary scenarios.
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Fig. 3. Species network estimation error. The normalized network
distance between the true network and the network reconstructed from
true gene trees (top) and from estimated gene trees (bottom). Results are
shown for 10 replicate data sets.

In contrast, MPAllopp and Polyphest have very high accuracy
across all scenarios under low ILS levels, and comparable, yet
lower, accuracy on the species networks of scenarios F and J
for high levels of ILS (bottom two rows in Fig. 3). MPAllopp
has better accuracy for moderate and high levels of ILS on
the species networks of scenarios D and E. Furthermore, for
moderate levels of ILS, increasing the number of genes leads
to a drastic improvement in the performance of Polyphest,
especially on the species networks of scenarios D and E.

We further explored the impact of the isomorphic threshold
(6 above) on the accuracy of network reconstruction by
Polyphest. This threshold is designed to handle ILS; therefore,
we expect the level of ILS to play a role in the method’s
performance for the same setting of the threshold value. Indeed,
as Fig. 4 shows, for the same setting of a threshold value,
Polyphest is most accurate on low ILS and least accurate on
high ILS. An encouraging result is that a threshold value of 0.3
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Fig. 4. Impact of isomorphic threshold on species network error. Results

are shown across various scenarios considering different numbers of genes

and data types (true and estimated gene trees).

or higher produces the most accurate results under all levels
of ILS, and varying its value beyond 0.3 barely has an impact.
Furthermore, for low levels of ILS, very low threshold values
would also work, as the strict requirement of isomorphism in
those cases is not detrimental. Nevertheless, given the stability
in performance for threshold values higher than 0.3, it seems a
safer choice to use such values in the analyses.

Runtime

We evaluated the runtime performance of each method by
recording their wall-clock time to complete a single analysis on
a single thread. It is important to note that MPAllopp utilizes
a heuristic search, requiring multiple runs to improve its search
outcome. Therefore, the reported runtime in Fig. 5 reflects
the average time required for 30 such runs. Polyphest is the
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Fig. 5. Average running time (minutes) measured by wall-clock time on
simulated data under scenario F (5-taxon with 3 reticulations). Error bars
represent the standard deviation. Inferences were performed on estimated

gene trees.

fastest method, consistently finishing within 0.15 seconds for
the 5-taxon data set with 1000 genes and averaging around 0.4
seconds for the 13-taxon data set with 1000 genes. PADRE
generally completed analysis within 10 seconds, including the
time required for MUL-tree folding. However, it is important to
note that PADRE failed on 37 out of 60 low ILS data sets, 54
out of 60 moderate ILS data sets, and 57 out of 60 high ILS data
sets in scenario F. These failures are excluded from the results
presented in Fig. 5. MPAllopp had the slowest runtime and
the numbers of reticulations and taxa significantly impacted
its performance. For the 5-taxon data set with 1000 genes,
the average runtime for MPAllopp (averaged over 30 runs)
increased from 0.226 seconds with one reticulation (scenario D)
to 1.35 seconds with two reticulations (scenario E) and further
to 4.36 seconds with three reticulations (scenario F). This trend
continued for the 13-taxon data set with three reticulations
(scenario J), where MPAllopp typically required approximately
24.7 minutes to finish a single search round (Supplementary
Fig. S2).

Empirical data analysis

We re-analyzed the 9-species bread wheat data from Marcussen
et al. (2014) which includes 1 hexaploid bread wheat ( Triticum
aestivum), 5 diploid relatives, and 3 outgroup species. This
data set comprises 275 genome-wide collection of gene trees.
To gain insights into the subgenome relationships, we first
performed an analysis considering the A, B, and D subgenomes
of the hexaploid bread wheat (denoted as TaA, TaB, and
TaD, respectively) as distinct taxa. This approach produced
a MUL-tree showing the specific subgenome and its closest
relative (Fig. 6(left)). We then conducted an analysis without
distinguishing between the A, B, and D subgenomes, treating
the input gene trees as MUL-trees. This resulted in a network
that captures the overall evolutionary history of the bread
wheat data (Fig. 6(right)). For these analyses, we used a
filtering threshold of 21, and an isomorphic threshold of 0.2.

The MUL-tree inferred by Polyphest is consistent with
the underlying MUL-tree reported in Yan et al. (2021) using
MPAllopp. In addition, Polyphest identified the same diploid
progenitors for each subgenome as Marcussen et al. (2014):
subgenome TaA is sister to diploid Triticum urartu, subgenome
TaB is sister to diploid Aegilops speltoides, and subgenome TaD
is sister to diploid Aegilops tauschii (Fig. 6(left)). Notably, the
network reconstructed by Polyphest achieves consensus with
the two optimal solutions identified by MPAllopp, both of which
involve two hybridization events.
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Fig. 6. Bread wheat phylogenies. The taxa are “TaA” (Triticum aestivum
A subgenome), “TaB” (T. aestivum B subgenome), “TaD” (T. aestivum D
subgenome), “Tu” (T. wrartu), “Tm” (T. monococcum), “Ash” (Aegilops
sharonensis), “Asp” (Ae. speltoides), “At” (Ae. tauschii), “Hv” (Hordeum
vulgare), “Bd” (Brachypodium distachyon), and “Os” (Oryza sativa).

Discussion

In this work, we introduced Polyphest, a novel method
that directly infers species phylogenies from gene trees while
accounting for polyploidy and ILS. Polyphest Polyphest
extends the PADRE algorithm by accounting for ILS.
Unsurprisingly, Polyphest exhibits greater robustness to
ILS compared to PADRE. Further, Polyphest demonstrates
comparable performance to MPAllopp under low to moderate
ILS conditions, particularly with hundreds of genes. However,
Polyphest offers a significant advantage in computational
efficiency, especially for large data sets, which makes it
more scalable than other methods. In reanalyzing a bread
wheat dataset,
corroborating previous research findings, and provided insights

Polyphest inferred a plausible phylogeny,

into the origin of subgenomes within the hexaploid bread wheat,
showcasing its practical utility.

While Polyphest performs well under low and moderate
ILS conditions, its performance suffers under high ILS levels,
leading to an overestimation of the number of reticulations
(polyploidization events). This limitation arises because, under
high ILS, the most frequent gene relationships might not reflect
true species relationships. Additionally, with an insufficient
number of genes, all possible relationships might appear
in the gene trees with similarly low frequencies, resulting
in substantial uncertainty. Improving the selection of near-
isomorphic clades during network reconstruction could improve
the method’s performance under high levels of ILS, and we
identify this as a direction for future research.
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