
Characterizing the Modification Space
of Signature IDS Rules

Ryan Guide∗, Eric Pauley†, Yohan Beugin†, Ryan Sheatsley†, Patrick McDaniel†
∗The Pennsylvania State University, †University of Wisconsin-Madison
∗rvg106@psu.edu, †{epauley, ybeugin, sheatsley, mcdaniel}@cs.wisc.edu

Abstract—Signature-based Intrusion Detection Systems (SIDSs)
are traditionally used to detect malicious activity in networks. A
notable example of such a system is Snort, which compares network
traffic against a series of rules that match known exploits. Current
SIDS rules are designed to minimize the amount of legitimate traffic
flagged incorrectly, reducing the burden on network administrators.
However, different use cases than the traditional one–such as
researchers studying trends or analyzing modified versions of
known exploits–may require SIDSs to be less constrained in their
operation. In this paper, we demonstrate that applying modifications
to real-world SIDS rules allow for relaxing some constraints and
characterizing the performance space of modified rules. We develop
an iterative approach for exploring the space of modifications to
SIDS rules. By taking the modifications that expand the ROC curve
of performance and altering them further, we show how to modify
rules in a directed manner. Using traffic collected and identified
as benign or malicious from a cloud telescope, we find that the
removal of a single component from SIDS rules has the largest
impact on the performance space. Effectively modifying SIDS rules
to reduce constraints can enable a broader range of detection for
various objectives, from increased security to research purposes.

I. INTRODUCTION

Network intrusion detection systems (NIDS) are a component
of security that exist to protect networks against adversaries.
Signature-based intrusion detection systems (SIDS) are a distinct
category of NIDS that utilize known signatures to defend against
exploits. While other NIDSs react to anomalous activity, SIDSs
have precisely defined rules to identify specific attacks [1]. An
example of one such system is Snort: a free, open source, and
lightweight SIDS introduced by Roesch [2]. Snort rules can be
written by anyone and the official Snort website [3] publishes
the latest detection rules on a regular basis. As the space of
threats continues to evolve, Snort rules are written in response
to protect against adversaries.

Current systems are fine-tuned to minimize false positives,
which occur when benign traffic is flagged as malicious. Falsely
flagging benign traffic is harmful to critical networks, as it
disrupts availability and can potentially cause customers to lose
trust in the service [4], [5]. As a result, rules have been tailored
to fit the semantics of specific attacks, constraining at the same
time SIDSs to their traditional security use case. However, if
one wanted to achieve different detection objectives, they would
not readily be able to do so. The applications of expanding the
performance space of SDISs extend to researchers who study
specific regions of traffic: whether that be through eliminating all
false positives to look at only malicious traffic, or by disregarding
false positives and seeking to capture all malicious traffic.

In this paper, we aim to loosen the constraints on SIDS rules
through evaluating modifications to the rules. SIDS rules are
composed of conditions that must be all met in order for traffic
to be matched. Since additions of conditions only serve to further
constrain rules, we focus our attention solely on removals.

Since the full space of removals is intractable, we develop
an iterative technique to maneuver within the space for the
corresponding desired outcome. We gradually remove parts of
the initial rules and compare the receiver operator characteristic
(ROC) curves of the modified rules to a heuristic ground truth.
We then identify the Pareto frontier [6] of rule performance and
repeats our process further until either no further modifications
can be made, or the Pareto frontier stops expanding.

We evaluate the modifications made to the rules on the
detection performance by using traffic collected and identified
as benign or malicious from the DSCOPE cloud telescope [7].
We find the Pareto frontier reachable through removals and
identify which and why modifications are the most efficient. We
find that single option removal from each rule has the greatest
impact, expanding the area under the ROC curve by 11.3%.
Of the removals, we identify the cause of change in detection.

Through removals, we demonstrate how to loosen constraints
on SIDS rules. This enables a broader range of detection for
various objectives, from increased security to research purposes.

II. BACKGROUND

An intrusion detection system (IDS) is a system that operates
on a network with the intent of blocking malicious traffic while
allowing benign traffic to pass through unhindered. IDSs can be
divided into three groups: signature based intrusion detection sys-
tems, anomaly based systems, and stateful protocol analysis [1].
We focus on signature based intrusion detection systems (SIDS).

a) Snort: Snort is an open source SIDS that consists of
a collection of rules that are checked against network traffic for
matching packets. When a match is found, an alert is triggered [2].
The discovery of new exploits require new detection rules to
be written. Our study focuses on Snort 3 [3]. Snort efficiently
performs signature and packet comparison in four steps: (1)
packet decoding and pre-processing, (2) fast pattern matching,
(3) finer rule matching and packet inspection for traffic flagged
by previous step, and (4) final logging and triggering of
actions (blocking, alerts, etc.). In our study, none of the core
functionalities of Snort is modified, only the rules themselves.

b) Snort Rules: A Snort rule consists of a header and
a body. The header indicates the protocol, source, direction,

ar
X

iv
:2

40
2.

09
64

4v
1

 [c
s.C

R
]

15
 F

eb
 2

02
4

and destination of the packets to compare against the rule as
well as the action to take in case of a match. The body is
composed of the different rule options for matching. As soon
as a packet fails to meet an option, Snort stops reading the rule
[8]. The content option is one of the primary tools used to
match packets; the packet is scanned for the pattern specified
in the content option. There is no limit as to how many content
options can be included in a rule. Other modifiers can also be
applied to specify how sensitive the matching should be, and
the target section of the packet like http_header. These
modifiers exist to speed up matching and reduce false positives.

III. METHODOLOGY

The current rules are tailored to specific network attacks to
reduce false positives as they can harm availability of critical
networks [4], [5]. We seek to make these rules less rigid for
other use cases that for instance extend to researchers who study
specific regions of traffic: whether that be through eliminating all
false positives to look at only malicious traffic, or by disregarding
false positives and seeking to capture all malicious traffic.

We are interested in measuring the impact of modifying the
rules on the performance of the detection of malicious traffic.
We observe that the addition of options to existing rules only
further constraint them and decrease detection, as a result, we
propose to evaluate the removal of such options. We expect that
this will increase the amount of traffic that is detected. Among
the different rule options, the general options–as defined by the
Snort documentation [8]– have no impact on the performance
other than semantics, making removal pointless. In our study,
we use a finite set of rules containing 60 distinct options that
can be removed without error. We also assume we have access
to a data set, discussed in section IV of benign and malicious
traffic to assess the performance of rules.

a) The Removal Function: We formally define the body
of a rule R as a conjunction of n removable options ai.

R=a1∧a2∧...∧an=
n⋂

i=1

ai

To gain an understanding of how we are removing options
from rules, we define a function f to gather the single removals
for each rule: f(R)={Ri | Ri=R\{ai}, 0<i<n} The set of
removals can be defined as all Ri, where i is index of the option
being removed. Since removing all options renders the rule
trivial, we omit this possibility. As such, if R=a1, f(R)=∅.
Generalizing this for more than one removal, we get the function
f(R)={Rik |Rik =R−{ai1 ,...,aik},0<i1<...<ik<n} With
n is the number of total removable options, i is the option being
removed, and 0<k<n is the number of options being removed.

b) Calculating the Space of Modifications: The total
number of possible removals can be calculated by counting
combinations. Let i be the number of options removed, and let n
be the total number of options in a rule. Let k represent all rules,
and let ki be the total number of rules with i removable options,
for 0<i<n. We then have k represented as k=k1∪k2∪...∪kn.
We calculate all possible combinations of removals from each
subset. For each subset ki, we want to calculate removing

Option Instances

content 101785
flow 42205

service 37984
file_data 20833

Option Instances

pcre 10823
flowbits 10330
http_uri 10248
byte_test 4368

TABLE I
NUMBER OF INSTANCES FOR THE MOST COMMON OPTIONS.

0<j < i options from the rules. Thus, we get the following:
ki =

∑i−1
j=1

(
i
j

)
We omit j = 0 (the original rules) and j = i

(removing all parts). We calculate each ki with as 2i−2. For
all 0<i<n, we get the following summation

∑n−1
i=1 2

i−2∗ki
We find that we had over 137 billion possible combinations

of removals, which is intractable. To handle this, we applied
some limits to our study, as addressed in the next paragraph.
This also enabled us to study the results of removals more
closely. We can observe monotonic changes between additional
removals. Removing n options at once without knowing the
behavior of removing each option individually leads to wild
speculation instead of concrete analysis.

c) Iterative Exploration: We develop a heuristic to explore
iteratively the space of possible removals; to start, we run
the original rules on our traffic data and plot them on a ROC
curve. We then consider each individual option removal on
all the rules, run the traffic detection again on these, and
add the corresponding performance points to the ROC curve
obtained so far. We then compute the convex hull of all points
using the Graham Scan algorithm [9] to obtain the Pareto
frontier reachable at that stage. If the Pareto frontier does not
expand past the performance of the previous stage, we stop
modifications. Otherwise, for each point on the Pareto frontier,
we create additionally perform removals on the corresponding
rules, and repeat the process described previously. Adopting this
heuristic effectively reduces the exploration of modifications to a
tractable space, indeed after analyzing the set of i removals from
the rules, we no longer have to consider another

(
n

i+1

)
removal

combinations. Instead, by focusing on the k points along the
frontier, we perform only =k

(
n−i
1

)
additional removals.

IV. EVALUATION

The Snort rules we use in our experimentation are taken from
March 4, 2022 from the Snort website [3]. To evaluate the
performance of rules, we need two key components: traffic to run
the rules on and a means to determine which traffic is malicious.

a) The Rule Set: Overall we have 42893 rules in our
study. There are 60 distinct removable options present in our
rules. We show the most commonly occurring options found in
our rules in Table I. The maximum number of options present
in any rule is 36, and the minimum is 1. The average number
of removable options per rule is 5.93, and the median number
of removable options per rule is 6. In over half the rules, the
content option is used more than once. We refer to this
subset of rules as the multi-content rules.

b) Defining a Ground Truth: We need a set of traffic to
establish a ground truth, which was done with two data-sets: a

collection of traffic from the cloud, and a blocklist of IPs. Our
traffic data comes from the DSCOPE network telescope, which
uses public cloud IP addresses to deploy an interactive Internet
telescope [7]. Network telescopes are ranges of IP addresses
used to collect traffic [10], [11]. In our case, the telescope was
set on servers in the AWS US-east-1 region. The second data-set
determined which traffic was malicious. This set was the fireHOL
level 4 blocklist of IPs [12]. These IPs were flagged due to
scanning activity. Our data from the cloud gives us every single
IP that communicated with the network over a twenty-four hour
period. Using the IPs from the cloud, we determine which IPs
appeared in the blocklist. Since IPs on the blocklist are considered
malicious due to scanning activity rather than using an actual
exploit, we consider these IPs benign. This may seem counter-
intuitive, but scanning traffic is not inherently malicious. While
scans can look for devices to infect, if there is no exploit, then it is
not malicious. Hence Snort would not flag it as malicious. The IPs
monitored were not allocated, so it follows that the traffic was not
for legitimate services and can be classified as malicious [7]. We
gather the source IP addresses from collected traffic. This yields
43.3 k IP addresses communicating with our telescope. Using the
blocklist, we find 37.6 k malicious IPs and 5.6 k benign ones.

c) Creating a Pipeline: In order to efficiently analyze
large sets of data, we create a pipeline to manage the flow of
data and speed up the entire process. The pipeline consists of
four phases: parsing, pre-processing, rule selection, and output.
The pipeline runs in the following phases:

• Parsing: Using original rules, our parser generates every
possible removal of n options, then filters down to the
desired subsets for examination. The rules are then run
on the cloud data.

• Pre-processing: The output from Snort is parsed to create an
efficient mapping of the traffic matched by the new rules.

• Rule Selection: Given an option, the selector uses mappings
to identify rules that have that option removed along with the
original rules. This enables the analysis of specific option re-
movals. Not giving an option results in all rules being used.

• Output: The pipe identifies which source IPs were found
by the rules selected in the previous phase alongside the
original rules. The blocklist is used to determine the rates
of true and false positives.
d) The Original Rules: Using the ground truth from the

FireHOL blocklist, we identify where the original set of rules are
on the ROC curve. For the original set of rules, we find that the
true positive rate is 44.54%, and the false positive rate is 7.79%.

e) The Pareto Frontier: We run four iterations of removals.
For each option that is removed, we run the modified rules
with that option removed alongside the rules unaffected by that
removal. For example, to test the removal of http_header,
we run all the original rules that did not have http_header
alongside the modified rules that have http_header removed.
Through that configuration we observe the impact of each
removal. We study the overall performance of each modification
rather than each individual rule. This enables a better
understanding of the rules in general, whereas working with
rules at the individual level would only allow us to study specific

Removals Area of Pareto Frontier(%)

Original (0) 68.37
Single (1) 76.10
Double (2) 76.97
Triple (3) 76.99

Quadruple (4) 76.99

TABLE II
THE AREA COVERED BY EACH ROC CURVE AS A PERCENTAGE

cases. Specific cases are uninteresting in this study as they are
too narrow in scope. Running the entire subset together achieves
the same result as summing the results of each individual rule.

After plotting each removal, we calculate the Pareto frontier
for all the results together to determine if the frontier expanded.
At each iteration we calculate the area under the Pareto frontier,
as shown in Table II. We see that the greatest expansion comes
from the removal of a single option, and once it reaches the
fourth iteration, the expansion stops. The first iteration expands
the frontier by 11.3% of the original size. The second iteration
increases the Pareto frontier by only 1.14%. Due to the small
change in difference, we primarily focus our analysis on the
first iteration. The original frontier, single removals, and the
final curve are all plotted in Figure 1

Fig. 1. ROC curves for the original rules, single removals, and the union of
all Pareto frontiers.

The points along the Pareto frontier from the fourth iteration
were all less than or equal to the frontier points from the third
iteration. With the exception of removing http_header,
http_uri, and flowbits, the points with lower true and
false positives than the original rules were all due to inverting
bad classifiers. We discuss the cause for the change in detection
in detail later on. Summary:

• The greatest change in the frontiers comes from the
removal of a single option.

• The Pareto frontier stops expanding after three removals.
f) The Options that Caused Movement: Breaking down

our Pareto frontiers further, we look at the specific removals
that caused the frontiers to change. To understand the meaning
behind the performances, it is necessary to look at the costs of
both false positives and false negatives. A false positive disrupts

legitimate traffic, while a false negative allows malicious traffic
into the network. To measure the trade off between the two, we
define a utility function. Let θ∈ [0,1] be the trade off between
false positives (fp) and false negatives (fn). We define a cost
function, C , as C=θfp+(1−θ)fn When θ∈ [0,0.5), reducing
false negatives is prioritized. Conversely, when θ ∈ (0.5, 1]
reducing false positives is prioritized. Naturally θ = 0.5 is
equivalent to assigning equal weight to both.

Looking at Figure 2, we see that the minimum cost for
balancing false positives and negatives was lower for our set
of single removals than the original rules. Up until θ=0.3, the
costs are equivalent. At that point the minimum cost begins to
decrease for single removals, but continues to increase for the
original rules. At θ=0.87, the two lines converge again. The
area under the curve for the original rules is 0.2064, and the area
under the curve for single removals is 0.1792, giving us a total
decrease in area by 0.0272. This illustrates how our modifications
reduce the overall cost of false positives and negatives.

At both θ=0 and θ=1 we see a cost of 0. When θ=0, the
recommended course of action is to block all traffic. Conversely,
at θ = 1, the optimal move is to allow all traffic. These are
extreme cases and are not likely to be used by enterprises.

For θ ∈ (0,0.74), the modification required to achieve the
minimum cost for single removals is to remove a content
option from multi-content rules. For θ∈ [.74,.85), the optimal
modification is to remove http_header. For all other values
of θ, the ideal modification lays on the line between the origin
and the removal of http_header.

For the original rules, we find that the minimum cost is
achieved at the original rules exactly for θ ∈ [0.38,0.84]. We
note that this correlates with the values of θ where we were
able to reduce the minimum cost.

For any given detection objective, our rules perform at least as
well as the original rules, with the greatest difference occurring
from θ ∈ [0.30,0.70]. This means that our rules had a lower
minimum cost than the original rules when relatively equal
weights were applied to the costs of false positives and negatives.

To analyze the impact of each modification, we examine
the precision, recall, and the f1-score of single removals [13].
Recall is the percentage of malicious IPs that were detected
by a rule set out of the entire malicious IP space. Precision
refers to the percentage of malicious IPs found in the set of
IPs identified by our rules. The f1-score is a metric that takes
the harmonic mean of precision and recall [14]. The f1-score
is used as a combination of both precision and recall. Given our
class imbalance, we consider the precision, recall, and f1-score
for both malicious and benign traffic classification. The top
f1-scores are shown in Table III.

To understand why we look at both metrics, we consider the
removal of the flags option. Upon removal, we find that every
single IP address in the space is matched. We call this behavior
universal matching. Calculating precision and recall for malicious
traffic detected gives us a precision of 86.96% and a recall of
100%. However, when we examine benign traffic precision and
recall, we get 0% for both. The f1-scores for malicious and
benign traffic are 0.9302 and 0, respectively. This demonstrates

Fig. 2. Minimum cost to achieve ideal detection for various costs on false
positives and false negatives for the original rules and single removals. The
shaded area represents the area reduced by the modifications.

that while removing flags looks like an excellent choice for
detecting malicious traffic, we find that it is useless in terms of
correctly classifying traffic as benign. By looking at both scores
we can determine which removals are actually worthwhile. We
also use these scores to find the macro f1-score [15].

First, we look at the original rules. We examine the malicious
traffic metric first. The recall is only 44.54%, but the precision
is 97.44%, indicating that while it misses roughly half the
malicious traffic, it is quite precise. This provides weight to
our assertion that the rules are geared towards preventing false
positives. We get an f1-score of 0.6113. The cause for this score
comes from the lower true positive rate. Looking at the metric
for benign traffic, we find a precision of 19.96% and a recall
of 92.20% resulting in an f1-score of 0.3282. This is lowered
significantly by the low precision. We find a macro f1-score of
0.4697. We find that many of the modifications have very similar
scores. We direct our focus in this section to removals from
our Pareto frontier and removals with a high macro f1-score.

We now examine notable points from single removals. Here
we consider the highest macro f1-scores as well as the points
on the frontier for single removals. For each option, we examine
the score and factors that influence it. A high f1-score can be
misleading, given that most removals saw a high precision for
malicious traffic.

Looking at the removal of http_header, we see that the
recall drops by 1.3%, and the precision increases by .3%. As
a result, the f1-score drops to 0.5988. The minor improvement
in the ratio of true and false positives comes at a greater cost
to recall, and thus worsens the f1-score. We also see a decrease
in the f1-score for benign traffic, resulting in an overall drop
in the macro f1-score.

Removing a single content option from multi-content rules
had 63.03% true positive rate and a false positive rate of 11.67%.
The precision of this set decreased by .15% from the original
rules. The f1-score was 0.7650 for this set, which reflects the

higher recall than the original rules. The removal of content
from rules regardless of remaining content options did in-
crease the recall by over 50% to 99.78%, but at a cost to precision
of over 10%, bringing it down to 86.93%. This resulted in a f1-
score of 0.9292. The increase in f1-score comes entirely from the
surge in recall. It is important to note that removing content
resulted in matching 100% of false positives, and since the false
positives are greater than the true positives, we would invert this
point to achieve a good classifier. This inverted classifier would
have a precision of 100%, but a small recall of 0.22%.

The removal of detection_filter had the
second highest macro f1-score of 0.5567. Removing
detection_filter gave us a true positive rate of 63.83%
and a false positive rate of 26.91%. The increase in true and
false positives was 19% for both, indicating a linear increase
rather than a bias towards one or the other, hence this point
alone did not change the Pareto frontier alone. When combined
with the removals of flow and dce_iface, it created a bad
classifier with a higher false positive rate than true positive rate.
Upon inverting this classifier, we obtained a new frontier point.

Removing ip_proto had the third highest macro f1-score,
and was the last single removal to achieve a macro f1-score
over 0.5. The score was 0.5169. The true and false positive
scores for the removal of ip_proto were 52.81% and 11.89%
respectively. This was an increase in true positives by 8%,
and an increase in false positives by 4%. This improvement
is eclipsed by the removal of content, and therefore is
not included in the frontier for single removals. Similarly to
detection_filter, it does appear on the union of all
frontiers.

The combination of removing both dce_iface and flow
resulted in a bad classifier, but the inverse expanded the Pareto
frontier. The inverted removal of both resulted true and false
positive rates of 11.85% and 0.66% respectively. The individual
removals of flow and dce_iface were not part of the
frontier for single removals. We do note that the removal of
dce_iface was the cause for the bad classification, as flow
found more malicious traffic than benign. The f1-scores for both
malicious and benign traffic were both quite low, at 0.2117 and
0.2525 respectively. The macro f1-score was 0.2321, which is half
the score of the original rules. When detection_filter
was included the inverted classifier fell to true and false positive
rates of 4.19% and 0.16%. The macro f1-score was 0.1593,
lowered entirely by the drop in true positives. Summary:

• We showed using our utility function that the minimum cost
for our modifications is at least as good as the original rules,
with the greatest decrease in cost coming from assigning
roughly equal costs to false positives and negatives.

• Removing a single content from multi-content rules was
the most effective modification in terms of macro f1-score.

• While detection_filter and ip_proto increased
detection, we show that there are better alternatives.
g) The Cause of Movement: In this section we explain

why certain modifications alter detection in the manner that
they do and the value in removing each option. The flags
option checks TCP flags on the packet. Without this filter traffic

Removal F1malicious F1benign F1macro

content (when >1) 0.7650 0.4063 0.5857
detection_filter 0.7605 0.3549 0.5567

ip_proto 0.6832 0.3506 0.5169
flags 0.9302 0.0 0.4651

original rules 0.6113 0.3282 0.4697

TABLE III
F1-SCORES FOR SIGNIFICANT REMOVALS.

more traffic is matched. This increase is arbitrary, and is not
particularly insightful. There are only 24 rules in which flags
was present: less than 1% of all our rules.

The decrease in detection from http_header can be
explained by the Snort 3 documentation. Since the header is
not decoded the detection cursor might not find the matching
string. There are 3434 rules with http_header present in
our rules, meaning the removals affect only 8% of the rules.
We see a slight decrease in detection from the removal of
http_header where the decrease in true positives is slightly
larger than the decrease in false positives.

Next we consider the content option. As demonstrated, a
subset of content proved to be one of the optimal removals.
The change in content can be split into two categories; remov-
ing content in general and the subset of multi-content rules.
Since content is the primary tool used for detection, removing
it enables more matches. Removing content from a multi-
content rules greatly increased the range of detection. Since we
saw nearly complete matching of all IPs, we classify this increase
as random. Even though the inverse of this results in obtaining
a small percentage of true positives with no false positives, it is
likely this is random noise, and therefore is not taken into consid-
eration. Examining the subset of content removals from multi-
content rules yields a significantly lower rate of false positives.
We instead see that the false positive rate is 11%, while the true
positives increased to 63%. As there are still content options
left in the rule, traffic that matches less of the characteristics is
collected. However, this enables capturing of similar malicious
traffic. A slight adjustment to the malicious traffic, either
repositioning where the exploit is in the payload of the packet or
an alteration to the exploit itself can be missed by the original
rule. When the content option to match that part of the exploit
is no longer present, the rule becomes more flexible in detecting
variations on the attack. The other key benefit to having more than
one content option is the repetition it enables. Consider a rule
with three content options: A, B, and C . Removing a single
content option gives us three new rules: one with A and B,
one with B and C , and one with A and C . Compared to the origi-
nal rule, we now have three rules which are able to sense variants
on the original attack. Similar behavior was observed in another
study [16], where they replaced characters in the content
option string with general characters. From this they found
variations on attacks that were missed prior. Out of the 42893
rules present in our experiment, 24769 of them are multi-content
rules. This means about 57% of the rules are modifiable in this
manner. There are only 344 rules without any content options,

meaning 99% of all our rules has at least one content option.
The detection_filter option adds a counter to the

rule, indicating that it must receive a certain number of
communications from an IP before it will allow the rule to fire.
Thus removing this logically eliminates the filter and allows
the rules to fire more often. As a result, we found that half
of the additional traffic flagged was malicious, giving us an
almost equal increase. There are 279 rules (less than 1% of
the rules) that have a detection_filter option.

The ip_proto option checks the protocol number on the IP
address. This number is used to determine the protocol on the next
level of the network. The increase in detection is twice as large for
malicious traffic as it was for benign traffic. While removing the
protocol number picked up some random traffic, it is possible the
removal identified variants of the malicious traffic that used new
protocol numbers. Only 33 rules have the ip_proto option.

The option dce_iface checks DCERPC (distributed
computing environment remote procedure calls) interface. The
dce_iface option is designed to normalize the universally
unique identifier that clients use to communicate with servers
under this protocol. The Snort 3 documentation describes this
option as a means to eliminate false positives from multiple
services being connected to the server [8]. It then follows
that removing this option increases false positives at a greater
rate than true positives, giving us a bad classifier for single
removals. Only 235 rules have the dce_iface option.

The combinations that form the last Pareto frontier are
heavily influenced by the single options within each group.
The jump in false positives seen in dce_iface and flow
comes from the removal of dce_iface. The removal of
content, ip_proto, and isdataat is likely a random
increase, rather than a useful modification. Summary:

• The changes caused by removing detection_filter,
flags, and http_header are random.

• Removing dce_iface results in a much higher rate of
false positives.

• The most effective modification is removing content
from multi-content rules, due to the increased sensitivity
to variants to exploits.

• The options flow and ip_proto only appear on the
Pareto frontier when paired with other removals.
h) Effective Modifications: Based on the macro f1-scores,

removing content from multi-content rules is the most
effective modification. With the size of this subset, we find
that 57% of the rules are candidates for effective modifications.
For achieving stronger defense at lowest cost to false positives,
removing a single content from multi-content rules is the most
effective modification. We see this demonstrated not only in the
macro f1-scores, but also from the utility function. For reducing
false positives at the cost of detection, the ideal modifications
are inverted results of removing flow and dce_iface.

V. CONCLUSION

Characterizing the performance space of SIDS enables novel
approaches to studying network traffic. Through modifications,
SIDS rules can be used to collect various sets of traffic based

on the desired outcome. We demonstrated that through the most
effective removal of a single content option from rules with
at least two content options, the performance space expands
by 11.3%. We distinguished the difference between effective
modifications and modifications that result in random changes
detection. Through these modifications, SIDS rules can be used
for other purposes than just network intrusion detection systems.

ACKNOWLEDGMENTS

This material is based upon work supported by, or in part by,
the National Science Foundation under Grant No. CNS-1805310,
and the U.S. Army Research Laboratory and the U.S. Army
Research Office under Grant No. W911NF-13-2-0045. Any
opinions, findings, and conclusions or recommendations
expressed in this publication are those of the author(s) and
do not necessarily reflect the views of the National Science
Foundation, or the U.S. Government. The U.S. Government is
authorized to reproduce and distribute reprints for government
purposes notwithstanding any copyright notation hereon.

REFERENCES

[1] H.-J. Liao, C.-H. Richard Lin, Y.-C. Lin, and K.-Y. Tung, “Intrusion detec-
tion system: A comprehensive review,” Journal of Network and Computer
Applications, vol. 36, no. 1, pp. 16–24, Jan. 2013. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1084804512001944

[2] M. Roesch, “Snort – Lightweight Intrusion Detection for Networks,” 1999.
[3] “Snort - Network Intrusion Detection & Prevention System.” [Online].

Available: https://snort.org/
[4] C.-Y. Ho, Y.-C. Lai, I.-W. Chen, F.-Y. Wang, and W.-H. Tai, “Statistical

analysis of false positives and false negatives from real traffic with
intrusion detection/prevention systems,” IEEE Communications Magazine,
vol. 50, no. 3, pp. 146–154, Mar. 2012.

[5] G. Tjhai, M. Papadaki, S. Furnell, and N. Clarke, “Investigating the
problem of IDS false alarms: An experimental study using Snort,” in
Proceedings of The Ifip Tc 11 23rd International Information Security
Conference, S. Jajodia, P. Samarati, and S. Cimato, Eds. Boston,
MA: Springer US, 2008, vol. 278, pp. 253–267. [Online]. Available:
http://link.springer.com/10.1007/978-0-387-09699-5 17

[6] E. Goodarzi, M. Ziaei, and E. Z. Hosseinipour, Introduction to Optimization
Analysis in Hydrosystem Engineering. Springer Science & Business
Media, Feb. 2014.

[7] E. Pauley, P. Barford, and P. McDaniel, “DScope: A Cloud-Native Internet
Telescope,” in Proceedings of the 32nd USENIX Security Symposium
(USENIX Security 2023). Anaheim, CA: USENIX Association, Aug. 2023.

[8] M. Roesch, Snort 3 User Manual. [Online]. Available:
https://usermanual.wiki/Document/snortmanual.1752822391.pdf

[9] R. L. Graham, “An efficient algorith for determining the convex
hull of a finite planar set,” Information Processing Letters,
vol. 1, no. 4, pp. 132–133, Jun. 1972. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/0020019072900452

[10] P. Richter and A. Berger, “Scanning the Scanners: Sensing the Internet
from a Massively Distributed Network Telescope,” in Proceedings of
the Internet Measurement Conference, ser. IMC ’19. New York, NY,
USA: Association for Computing Machinery, Oct. 2019, pp. 144–157.
[Online]. Available: https://doi.org/10.1145/3355369.3355595

[11] D. Moore, C. Shannon, G. M. Voelker, and S. Savage, “Network
Telescopes: Technical Report,” p. 14.

[12] C. Tsaousis, “firehol level4 by FireHOL, attacks IPs list, at FireHOL
IP Lists.” [Online]. Available: http://iplists.firehol.org/?ipset=firehol level4

[13] D. Powers, “Evaluation: From Precision, Recall and F-Factor to ROC,
Informedness, Markedness & Correlation,” p. 24.

[14] Y. Sasaki, “The truth of the F-measure,” p. 5.
[15] J. Opitz and S. Burst, “Macro F1 and Macro F1,” Feb. 2021. [Online].

Available: http://arxiv.org/abs/1911.03347
[16] U. Aickelin, J. Twycross, and T. Hesketh-Roberts, “Rule Generalisation

in Intrusion Detection Systems using Snort,” International Journal of
Electronic Security and Digital Forensics, vol. 1, no. 1, p. 101, 2007.
[Online]. Available: http://arxiv.org/abs/0803.2973

https://www.sciencedirect.com/science/article/pii/S1084804512001944
https://snort.org/
http://link.springer.com/10.1007/978-0-387-09699-5_17
https://usermanual.wiki/Document/snortmanual.1752822391.pdf
https://www.sciencedirect.com/science/article/pii/0020019072900452
https://doi.org/10.1145/3355369.3355595
http://iplists.firehol.org/?ipset=firehol_level4
http://arxiv.org/abs/1911.03347
http://arxiv.org/abs/0803.2973

	Introduction
	Background
	Methodology
	Evaluation
	Conclusion
	References

