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Electric vehicles (EVs) have emerged as an environmentally friendly alternative to conven-
tional fuel vehicles. Lithium-ion batteries are the major energy source for EVs, but they
degrade under dynamic operating conditions. Accurate estimation of battery state of
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sibilities, and helps alleviate capacity degradation, which finally impacts battery lifespan
and energy efficiency. In this paper, a self-attention graph neural network combined with
long short-term memory (LSTM) is introduced by focusing on using temporal and spatial
dependencies in battery data. The LSTM layer utilizes a sliding window to extract temporal
dependencies in the battery health factors. Two different approaches to the graph construc-
tion layer are subsequently developed: health factor-based and window-based graphs. Each
approach emphasizes the interconnections between individual health factors and exploits
temporal features in a deeper way, respectively. The self-attention mechanism is used to
compute the adjacent weight matrix, which measures the strength of interactions between
nodes in the graph. The impact of the two graph structures on the model performance is
discussed. The model accuracy and computational cost of the proposed model are com-
pared with the individual LSTM and gated recurrent unit (GRU) models.
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1 Introduction gradually decreases which leads to reduced performance, shorter
lifespan, and increased energy consumption [4]. Each component
of a lithium-ion battery contributes differently to the complicated
degradation mechanism. The involved processes include solid elec-
trolyte interphase formation, lithium plating, and elevated imped-
ance [5]. In addition, operations such as overcharging, deep
discharge, and exposure to extreme temperatures accelerate the
aging process.

The related research on improving the performance, safety, and
sustainability of lithium-ion batteries can be categorized into three
groups based on the lifecycle stages: design, in-use, and end-of-life.
In the design phase, optimized materials and structure could be
developed to improve the energy density, durability, and fast charg-
ing capability of batteries [6,7]. On the other hand, modifications to
battery chemistry can minimize dependence on rare and expensive
materials, such as cobalt, thus lowering manufacturing costs and
mitigating the overexploitation of critical resources [8].

- During the in-use phase, a battery management system with
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The development of electric vehicles (EVs) provides an environ-
mentally friendly alternative to conventional fuel vehicles. While
the shift to electrification in the automotive industry contributes
to sustainable transportation, it presents a new set of challenges.
Specifically, the market demand for more efficient, durable, and
faster-charging batteries is increasing. Challenges related to
battery lifespan, energy density, and safe operation under various
conditions are currently hot topics in this area [1].

Lithium-ion batteries have become the energy source for many
EVs due to their high energy density, long cycle life, and relatively
low self-discharge [2]. However, these batteries are susceptible to
degradation due to factors such as driving patterns, temperature
fluctuations, and rates of charging and discharging [3]. As the
battery goes through repeated charge—discharge cycles, its capacity
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optimizing energy efficiency [11]. Battery usage life can be
extended by optimizing battery operation and avoiding detrimental
practices such as overcharging and over-aging [12]. Furthermore,
these measures facilitate the preservation of a substantial portion
of the active material, making it prequalify for secondary use sce-
narios after the EV battery is retired.

Lithium-ion batteries have two environmentally friendly
end-of-use phases: secondary use and recycling. Moving batteries
to a second-life option can extend their lifecycle, thus reducing
the environmental impact of manufacturing new batteries and
even reducing the cost of batteries. If batteries are recycled, most
of the valuable components, such as rare metals, will be recovered
and reused to make new batteries, thus alleviating the impact of
increasing demand for batteries on resource shortages [13].
However, the majority of retired EV batteries still have up to
80% of their original capacity and have the potential to be repur-
posed as energy storage modules for less demanding applications
[14]. In fact, these batteries are expected to continue functioning
for more than ten years when begin their second life at 70-80%
of their initial capacity [15].

State of health (SOH) is a key parameter for quantifying the con-
dition of a battery in use and evaluating the reuse value of the
second-life stages [16]. Accurate estimation of SOH can help
ensure that the battery is repaired or upgraded in case of failure,
thus prolonging its first-use life and contributing to a circular
economy [17]. However, SOH can only be inferred from indirect
parameters such as current and voltage [5]. In addition, the
dynamic operating conditions and interacting side reactions intro-
duce uncertainty into the degradation trajectory [18]. The existing
methods for SOH estimation are categorized into model-based
and data-driven methods. Model-based methods can be further
divided into equivalent circuit models [19,20], electrochemical
models [21,22], and empirical models [23]. The principle of model-
based methods is to describe battery behavior using simplified
physic-chemical reactions, often requiring calibration and valida-
tion against experimental data. Therefore, it is difficult to have
models that can comprehensively characterize aging under different
operating conditions. The computational complexity of the model
and the estimation accuracy are typically positively correlated and
need to be balanced [24].

To overcome the limitations of model-based methods, there has
been significant development in data-driven battery models. These
techniques utilize large datasets that capture a variety of operating
parameters and battery responses to train predictive models [25].
They do not require knowledge of the physical and chemical behavior
inside the battery. For instance, Beganovic and Soffker [26] used
features from acoustic emission measurements to directly estimate
battery aging metrics, without taking into account underlying
physical mechanisms. In particular, machine learning-based
methods can be trained quickly on large dataset, which
allows them to be adapted to various battery chemistries and config-
urations [27].

This paper proposes the temporal enhanced self-attention-based
graph neural networks. The model cooperatively utilizes the tempo-
ral insight of long short-term memory (LSTM), the capture of
spatial relationships by graph neural network (GNN), and the
focus on important features by the attention mechanism to
provide an accurate and robust method for battery SOH estimation.
The LSTM layer is set before the graph construction layer and is
performed as a complex feature engineering step. It captures the
temporal dependency of each health factor (HF) from the battery
charging data. Two unique principles of graph construction are
introduced: individual health factor-based and window-based
graphs. Health factor-based graph focuses on the interactions
between individual health factors to capture spatial dependencies.
In contrast, window-based graph investigates temporal dependen-
cies more deeply. The self-attention mechanism is used to
compute the adjacency weight matrix of the graph structure. This
matrix quantifies the strength of interactions between nodes,
which leads to more efficient weighted information aggregation.
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The proposed model starts from the LSTM layer for temporal
information extraction to the graph neural network layer for
further exploitation of temporal and spatial dependencies, and
finally completes the estimation of SOH. The impacts of different
graph construction strategies on the model performance are
discussed.

The remainder of this paper is organized as follows. Section 2 is
the related works on traditional data-driven models, self-attention
mechanisms, and graph neural networks for battery state prediction.
Section 3 includes the dataset description and feature extraction
process. Section 4 describes the proposed SOH prediction frame-
work, including the architecture of the model. Section 5 gives
details of the experimental implementation and the SOH prediction
results of the models. Finally, Sec. 6 concludes the work in this
study and the perspectives for future research.

2 Related Work

2.1 Data-Driven Models for Battery Aging Estimation. Tra-
ditional machine learning models such as support vector machine
and Gaussian process regression are examples of data-driven
machine learning models. To name several studies, Patil et al.
[28] employed a multi-stage approach that integrates the classifica-
tion and regression properties of support vector machines to
achieve efficient remaining useful life prediction of EV batteries.
Yang et al. [29] introduced a Gaussian process regression model
that utilizes specific features of the charging curve as inputs and
incorporates it with gray relational analysis to achieve high SOH
estimation accuracy.

Besides machine learning models, deep learning models have
been used to more closely approximate complicated nonlinear
battery systems by training multilayer neural networks. Given the
temporal nature of battery aging data, recurrent neural networks,
which specialize in handling sequential data, are proposed solutions
for battery modeling. Among them, the LSTM and gated recurrent
unit (GRU) networks, were designed to address the vanishing gra-
dient problem in traditional recurrent neural networks by introduc-
ing gating mechanisms that regulate the flow of information [30].
To name several examples, Kaur et al. [31] implemented feed-
forward neural network, convolutional neural network, and
LSTM for battery capacity estimation and proved that the LSTM
has the highest accuracy among them. Venugopal and Vigneswaran
[32] proposed an independent recurrent neural network and com-
pared it with the performance of LSTM and GRU in state-of-health
estimation. Their results further demonstrated that the recurrent
neural networks that eliminate the gradient problem can learn the
long-term dependence between battery capacity degradation well.

2.2 Self-Attention Mechanism: Emphasize the Highly
Important Parts of the Data. A considerable number of studies
have focused on introducing new trainable parameters and opera-
tions into a single model to improve accuracy and generalizability
[30,33]. The self-attention mechanism, which is widely recognized
for its ability to process sequential data, is an effective improvement
for recurrent neural networks [34]. It can help the network allocate
resources and extract more vital information during training by
assigning different weights to the input features [35]. Qu et al.
[36] introduced particle swarm optimization in LSTM to optimize
the key parameters and solved the distraction problem by using
the attention mechanism to obtain higher accuracy than baseline
models. Jiang et al. [37] utilized a convolutional autoencoder to
autonomously extract features from battery data and combined it
with a self-attention mechanism to achieve accurate SOH estima-
tion. Ge et al. [38] decomposed the battery data with variational
mode decomposition to reduce the effect of instability. Then parti-
cle filter and the LSTM with self-attention were applied to the
decomposed components respectively to improve the accuracy
and robustness of the final prediction.

Transactions of the ASME

(/08212€ 2/201290/9/9% 1 /4pd-BjoiE/se0inosa1hBiaus/B.10 awse  uoioa)|0oje)BIpawse)/:diy woly papeojumoq

9 9pL Hal

20z Joquieldag €z Uo Josn salieiqr SIeyjeLS Bpuo|d Jo Ausieaun Aq 1pd-z01290



2.3 Graph Neural Network: Extract Spatial Dependencies
Between Features. Besides utilizing self-attention to emphasize
the relevant part of the data, another direction to improve model per-
formance is the enrichment and augmentation of features by uncov-
ering hidden patterns. Ren et al. [39] used multiple layers of
convolutional neural networks before the LSTM to deeply mine
the hidden information in the battery data. In addition, an autoenco-
der was used to expand the dimensionality of the data to match the
demand of the convolutional layer implementation. Tian et al. [40]
employed an equivalent circuit model to decompose the raw current
and voltage data into open-circuit voltage, ohmic response, and
polarization voltage. This approach provided the neural network
with information about the battery’s internal state to improve the
performance prediction.

GNN is a technique that effectively extracts and utilizes potential
spatial dependencies between features [41]. This method represents
the data as a graph structure and allows nodes to pass information to
their neighbors through edges to achieve feature fusion. This helps
each feature contain more information without increasing the
dimensionality of the data. Moreover, if a feature is missing or
abnormal, performing information fusion can make the model less
perturbed by noise. Yao et al. [42] proposed a GNN using manually
extracted battery features as nodes and linear correlation coeffi-
cients between features and SOH as edges. In addition, the model
combined convolutional neural network and LSTM layers to deep-
mine the information and achieve accurate SOH prediction. Wei
and Wu [43] aggregated the information on battery features using
graph convolutional layer, after which the prediction of the target
is accomplished using LSTM. Their model outperforms gradient
boosting decision tree, single LSTM, and Gaussian process.
Wang et al. [44] performed graph construction based on raw
battery data, overlaying three GNN layers selected by neural archi-
tecture search for feature fusion prior to prediction. Although these
works demonstrate the potential of GNNs in battery modeling, the
field is still in the beginning stage. The robustness of GNNs to
anomalous data is well suited for avoiding interference from
noise and uncertainty in the field data, and facilitates real-time esti-
mation of the battery state. However, the limited perspectives of
current research tend to neglect the discussion of different
methods for constructing graphical data and strategies for aggregat-
ing features. In addition, the smoothing problem inherent to GNN
and its computational complexity for its application in the battery
management are also lacking exploration. Based on the time depen-
dence of battery aging and the need for robustness and computa-
tional efficiency, it is necessary to explore GNN architectures that
are more applicable to battery modeling.

3 Dataset and Feature Extraction

3.1 Data Description. The data used in this study are sourced
from the NASA lithium-ion battery aging dataset [45], with com-
mercial lithium-ion batteries as experimental targets. Specifically,
Battery 0005 is analyzed in this study, with its charge—discharge
cycles executed under ambient conditions. An initial constant
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Fig. 1 Capacity degradation of Battery 0005 [47]

current (CC) of 1.5 A was set for battery charging, which was tran-
sitioned to a constant voltage (CV) mode once 4.2 V was achieved.
This was sustained until a decline to 20 mA in the current was
observed [46]. On the other hand, a constant current of 2 A was main-
tained during discharging until a voltage of 2.7 V was reached.
Throughout these procedures, various signals, including current
(1), voltage (V), and temperature (T) were continuously monitored.
When the capacity of the battery has deteriorated to 70% of its
initial state due to repeated charging and discharging, the service
life of the battery as well as the experiment is considered to be fin-
ished. Figure 1 illustrates the aging trajectory of Battery 0005,
which also was used in a previous study by the authors [47].

3.2 Health Factors Extraction. Feature extraction is per-
formed on I, V, and T signals acquired during the charging phase
[48]. Figure 2 visualizes the variations in charging profiles as the
battery undergoes aging. The SOH is defined by the ratio
between the nominal and releasable capacities in this study. There-
fore, the key to predicting SOH is to extrapolate the available capac-
ity of the battery. This capacity represents the reversible electric
charge accumulation during the charging cycle and subsequent
release during discharge [49]. The time required for the constant
current phase is related to the charging amount, which is a good
response to the aging of the battery.

The constant voltage phase, on the other hand, is a process in
which the charging voltage of the battery is constant at its
maximum value while the current gradually decreases to a stop
[50]. However, the migration of lithium ions is hindered by aging
phenomena such as increased impedance and solid electrolyte inter-
phase development within the battery [48]. This leads to a growth in
the time required for the constant voltage phase. Therefore, analyz-
ing I, V, and T-related features in the constant current and constant
voltage phases, respectively, can capture the patterns associated
with battery degradation.
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Fig.2 (a) Current, (b) voltage, and (c) temperature curves during charging of Battery 0005 after different number of cycles [47]
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Table 1 Health factors extraction [42,51]

Health

factor Description Type

HF1 Area covered by current curves of the  Current-related
CC charging

HF2 Area covered by current curves of CV
charging

HF3 Area covered by voltage curves of CC  Voltage-related
charging

HF4 Area covered by voltage curves of CV
charging

HF5 Area covered by temperature curves of Temperature-related
the CC charging

HF6 Area covered by temperature curves of

the CV charging

Based on the above analysis and references from other similar
battery feature extraction and selection methods [42,48,51], a
total of six charging health factors are extracted and summarized
in Table 1. Examples of the profiles of the extracted features are
displayed in Fig. 3. Although the variation of the discharge curve
can also indicate the current capacity of the battery, data from the
discharge process were not used in this study. The reason for this is
that the experimental condition of Battery 0005 is a continuous
release at a constant current during the discharge process until the
cutoff voltage is reached. According to the calculation method of
battery capacity, when the battery is discharged at a constant
current, its capacity is given by the discharge current multiplied by
the discharge duration [49]. Therefore, for the dataset adopted in
this study, the features related to the discharge duration would be
nearly linearly correlated with the battery SOH. It is not reasonable
to use these discharge features to examine the effectiveness of the
developed time-series prediction model. In addition, it is not
common in practice to allow an EV battery to complete a full discharge
process.

After the feature extraction, the system starts with six time-series
health factors. The x-axis of the time-series data represents the
battery cycle, while the SOH provides as ground truth for each
cycle. The health factors and target SOH are split into training
and test sets in a time-series aware manner, with the first 70% of
the sequences used for training, and the remaining 30% for testing.

— HF1 - oy
/fﬂ
\’*»E\J.,M‘/‘."‘/\V/Jﬂ

— HF4

— HF5
HF2
-HF3

R — HF6

cycle cycle

Fig. 3 Profiles of health factors [47]

062102-4 / Vol. 146, JUNE 2024

4 Methodology

In this study, a temporal enhanced self-attention GNN is pro-
posed for predicting the SOH of lithium-ion batteries (Fig. 4).
The methodology leverages the power of conventional GNN and
LSTM network to handle complex time-series health factors
extracted from the battery charging data. The self-attention mecha-
nism is specifically employed to learn latent correlations between
multiple features that serve as nodes in our graph.

4.1 LSTM Layer for Temporal Dependencies Extraction.
The first component of the proposed model is an LSTM layer.
The LSTM layer is set before the graph construction layer as a
complex feature engineering step. This layer processes the input
time-series health factors data using a sliding window, as shown
in Fig. 5, which lets the LSTM capture the temporal dependencies
within each HF. The extraction process is executed as follows:

The feature vector X at time-step 7 can be denoted as Eq. (1)

X, = {HF,(n), HF,(r), HF3(»), HE4(r), HFs(n), HEs()} (1)

The time-step ¢ corresponds to the battery cycle in the time-series
data. The sliding window of LSTM layer is defined as SW with a
window size of 10. Each input sequence for the LSTM is then a
window SW; at each time-step ¢ containing the battery features
over the previous nine cycles and the current cycle, where

SW; = {Xt—9’ Xi—8, Xi—7, ... Xt} (2)

The LSTM layer takes the window SW, as input and processes it
to produce temporal features. The LSTM has hidden states &, and
cell states ¢, that change over time as the network processes each
input time-step. The LSTM recurrence equations at each time-step
t are given in Egs. (3)—(8) [52,53]

ir=0 (Wi [hi-1, SW,] + b)) 3)
Ji=o Wy -[hioy, SWil + by) “)
or=06 Wy - [h_1, SWi] + b,) ®)
g =tanh (W, - [h,_1, SW,] + by) (6)
G=firc+ i & (7

hy = o, - tan h(c,) ®)

where i;, f;, o0,, g, are input gate, forget gate, output gate, and can-
didate cell state, respectively; o is the sigmoid activation function;
tanh is the hyperbolic tangent activation function; W;, Wy, W,,, W,
are the weight matrices; and b;, by, b,, b, are the bias vectors asso-
ciated with the respective gates.

The LSTM’s hidden state 4, acts as a form of memory, and cap-
tures information from the earlier data points in the window to aid in
the prediction of the target. The LSTM updates its hidden state &,
for each time-step ¢ in the input sequence sequentially. After pro-
cessing the entire sequence, the final hidden state is then used as
the extracted temporal feature vector for the following analysis.

4.2 Graph Neural Network Layer for Temporal and Spatial
Dependencies Extraction

4.2.1 Graph Construction. In order to implement GNN, the
inputs of this layer need to be converted into a representation of
the graph structure. Graph-structured data are a mathematical repre-
sentation consisting of nodes and edges, where nodes represent enti-
ties and edges describe connections or relationships between those
entities [42]. A fully connected graph is assumed for this dataset,
which means each node is connected to every other feature node
except itself. The set of nodes V and edges E is defined as follows:

V={v,va,..., v} )
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Fig. 4 Framework of the proposed SOH estimation model

E={G pIijeV, i#]} 10)

where 7 is the number of nodes in the graph, and each pair (i, j)
represents an edge connecting node i and node j.

Two different approaches are taken to construct graph structures
based on the output of the LSTM layer: health factor-based graph
and window-based graph (Table 2). In the first approach, the six
health factors are processed separately using LSTM layer to
contain a deeper level of temporal and spatial information. This pro-
duces six final hidden states, each represents information derived
from a specific health factor, which is defined as temporally
enhanced factors in this paper. These six temporally enhanced
factors are then used as individual nodes in the constructed graph.
In the second approach, the six health factors are input together
into the LSTM for processing, producing an output with a shape
of: (window size, number of health factors). To construct the
window-based graph, each row of the LSTM output is treated as
a node’s representation. The graph is built with the number of
nodes equal to the window size of the LSTM layer. The nodes
contain information about the time-step ¢ and its surrounding
battery cycles, respectively.

These two graphs provide different perspectives for discovering
relationships within the data. Individual feature-based graphs
emphasize the connections between health factors. Thereby, the
interactions between factors and their contribution to the overall
system behavior can be explored. With this approach, the model
has the ability to capture dependencies between series rather than
just within individual time series. In contrast, window-based
graphs focus on further exploiting the temporal features present in
the data. By utilizing the LSTM output in window format, each
node has information from a specific temporal context. This
approach allows the model to go further than LSTM to capture

sliding window at cycle t

HF1
HF2

HF6

cycle t-9 cycle t

Fig. 5 Sliding window of LSTM layer
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temporal dependencies and the trends that evolve with successive
time-steps. The performance of models based on these two graph
structures is compared in Sec. 3. In the statements that follow, the
systems that utilize these two graph construction methods will be
referred to as health factor-based GNN and window-based GNN,
respectively.

4.2.2 Self-Attention Mechanism and Adjacency Matrix
Calculation. The self-attention mechanism operates on the two
constructed graphs. It computes an adjacency weight matrix for
the graph, where each element represents the weight of the edge
connecting nodes. This weight denotes the strength of interaction
or correlation between the two nodes as learned from the data.

The process begins by transforming the LSTM output for each
node into query, key, and value vectors [38]. They are different rep-
resentations of the input to self-attention, designed to perform dif-
ferent roles in the process. The query vector usually represents
the node that is currently being concerned. It is used to probe
other nodes for their relevance to the current one. The keys repre-
sent other nodes, which are paired with the query to determine
the attention score of each component with respect to the query
node. Once an attention score is obtained from query and key pair-
ings, these scores are used to perform weighted message passing on

Table 2 Graph construction comparison

Health factor-based graph Window-based graph

Approach Process each health factor  Process all health factors
separately with LSTM together with LSTM

Node Temporal information Temporal information about

definition about each health factor  each cycle in a sliding window

Number of Six (number of health Ten (size of sliding window)

nodes factors)

Focus Interactions between Trends in successive
health factor time-steps

Perspective Emphasizes spatial Exploits deeper temporal
features between health features within health factors
factors

Edge Fully connected Fully connected

JUNE 2024, Vol. 146 / 062102-5
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Table 3 Details of the performance comparison

GNN GNN
(health factor-based) (window-based) LSTM GRU
RMSE 0.00809 +0.00164 0.01457 +0.00895 0.01343 +0.00176 0.01531+0.00128
MAE 0.00628 +£0.00116 0.01128 +0.00792 0.01076 +0.00137 0.01177 +0.00094
Time cost (s) 21.2 13.6 6.5 9.5

Note: Standard deviation is calculated based on five runs of the model.

value vectors. For node i, the transformations are as follows:

qi = Linear, (h;) (11)
k; = Lineary (h;) (12)
v; = Linear, (h;) (13)

where h; is the LSTM output for node i, and Linear,, Lineary, and
Linear, represent the linear transformations for generating the
query, key, and value vectors, respectively.

The self-attention mechanism then computes the attention score
a;j between two nodes i and j using their query and key vectors [54]

kT
a;; = softmax <q / ) (14)

Nz

where d; is the dimension of key vector.

The softmax function in Eq. (14) is used to convert the raw atten-
tion scores into probabilities so that the attention scores sum to one.
This basically reflects the amount of attention each element in the
sequence should receive relative to the other elements. It enables
nodes to assign different importance to information from neighbor-
ing nodes based on the learned attention weights [55]. The attention
scores a;; form the adjacency weight matrix A of the graph. This
matrix represents the correlation structure between the nodes and
is used in the subsequent aggregation step to weigh the contribu-
tions of the different characteristics.

The adjacency weight matrix is used to propagate messages in a
graph structure, preventing uniform smoothing and preserving node
individuality. The multiply aggregation strategy is employed for
health factor-based graph, where the aggregated information from
neighbors is obtained by multiplying the messages weighted by
attention scores. Multiply aggregation allows for complex interac-
tions between different factors. This will further increase the sensi-
tivity of the model to specific nodes. The influence of nodes that are
assigned higher weights in the self-attention mechanism may be
amplified exponentially.

However, in window-based graph, additive aggregation is
adopted by weighted summation of information from different
time windows, which will better maintain temporal continuity.
The updated feature vector for each node after the message
passing is
H= l_[ a;j - vj (health factor based graph) (15)

i
J € Neigh(i)

H,= Z a;j - v; (window based graph) (16)
J € Neighi)

where Neigh(i) denotes the set of neighbors of node i, a; is the
attention score, and v; is the value vector.

4.3 Linear Layer for Prediction. Finally, the updated feature
vectors are predicted through two linear layers separated by a ReLU
activation function. The output of the last layer is the predicted
SOH for each battery cycle. In summary, the proposed system
constructs a fully connected graph from the LSTM output, learns
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the weights of the edges in the graph using a self-attention mecha-
nism, and forms a neighbor matrix. This graph structure is then used
to realize the passing of messages between the nodes and update the
features for prediction. This process effectively captures intra-
sequence dependencies and inter-sequence correlations in time-
series data and provides a more accurate prediction of SOH.

5 Results and Discussion

5.1 Experiments Implementation Details. The graph-based
network employed for SOH estimation is implemented in PYTHON
utilizing the PyTorch framework. The models are run on a single
CPU and utilize the mean squared error loss function during the
training process. The developed GNN models have three key
parameters that can be fine-tuned: the window size of LSTM
layer, hidden unit of LSTM layer, and the initial learning rate.
The early stopping mechanism and learning rate scheduler are
adopted during model training to prevent overfitting as well as to
speed up model convergence.

The validity of the designed SOH estimation model was assessed
using two key metrics: the root mean square error (RMSE) and the
mean absolute error (MAE). The RMSE serves as an indicator of the
stability of the model and quantifies the difference between the
actual and predicted values. Meanwhile, the MAE is a linear indica-
tor of the prediction error and provides the accuracy of the model.

5.2 Model Performance Evaluation. The prediction perfor-
mance of the two temporal enhanced self-attention GNNs and
two baseline models is summarized in Table 3 and Fig. 6. The
health factor-based GNN gives the lowest prediction error, followed
by the LSTM, GRU, and finally the window-based GNN. The high
accuracy of health factor-based GNN can be attributed to its ability
to capture the complex relationships between temporally enhanced
factors. The use of a network structure that facilitates interactions
between nodes, can discover subtle patterns and dependencies
that are important for more accurate SOH prediction. The model
has the lowest error variance and is the most stable of all the
models. The lower variance indicates that the method performs con-
sistently across runs, which may be due to the information passing
and aggregation brought about by the graph structure, which makes

0.025
Time cost | 20
0.02 m RMSE
= MAE 15
= 2
o
F 0015 / I I 10 g
I wv
0.01 I [ ‘ I ] - 2
0.005 I s 0
GNN GNN LSTM GRU
(HF-based) (window-
based)

Fig. 6 Performance comparison of the models
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Fig. 7 Visualization of attention score

it robust enough to capture the feature interactions and temporal
dependencies.

However, despite its high predictive power, health factor-based
GNN requires the longest computational time. The reason is that
the model requires separate LSTM layers for each health factor to
preserve their distinct temporal patterns. However, the model

1.00 4 e
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— Predicted (Test)
0.90 +
I 0.85
2
0.80 +
0.75
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using a single layer of LSTM has a faster running speed, such as
window-based GNN and LSTM, and a potential loss of
information.

On the other hand, window-based GNN has the highest predic-
tion error as well as the most unstable output (based on five
runs). In window-based GNN, the graph structure is built based

1.00 A =
—— True (Training)

—— True (Test)
— Predicted (Test)

0.95 ~

0.90

0.85 4

SOH

0.80

0.75 A

0.70 4 Window-based GNN

T T T

0 25 50 75 100 125 150

Cycle
1.00 A P
—— True (Training)
0.95 A —— True (Test)
— Predicted (Test)
0.90
- 0.85
0.80
0.75 A
0.70
GRU
0.65 T T T T T T T
0 25 50 75 100 125 150

Cycle

Fig. 8 Visualization of model predictions
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on the battery information generated by LSTM at different time-
steps. Each of these nodes represents a specific time window.
After performing the self-attention based information aggregation,
one observed trend is that the attention weights converge, which
suggests an over-smoothing problem. It essentially masks the dis-
criminative features of node representations in the aggregation.
The potential reason is that the output from the LSTM may not
have enough distinctiveness between different time-steps, which
makes the nodes become too similar after information fusion. As
illustrated in Fig. 7, in the health factor-based graph, the disparity
in attention weights amongst nodes before information aggregation
reaches the order of 1072, Following aggregation, this difference
shrinks to 107>, In comparison, the window-based graph presents
a more pronounced reduction: initially showcasing a variation at
10~*, which further narrows down to an order of 108 after the
aggregation process.

5.3 Smoothness of Graph Neural Network Predictions.
Figure 8 shows that GNNs generate smoother predictions than
LSTM and GRU, which is both a strength and a limitation. The
information aggregation mechanism in GNN tends to average the
extremes, which results in a smoother curve. This mitigates noise
interference and potential overfitting to the training data.
However, it also results in the model failing to capture rapid fluctu-
ations in the test data. The challenge here is to find a tradeoff
between the model generalization ability and remaining sensitive
to minor changes in the data.

5.4 Implications and Future Directions. The health factor-
based GNN model has the best accuracy and robustness, but has
the highest computational complexity. In contrast, the window-
based GNN has the largest prediction error although it runs faster.
Also, it shows instability in operation, which could be attributed
to the over-smoothing problem. The performance of the LSTM
and GRU single models falls between the two GNNs, while the
GNNs produce relatively smooth predictions that do not capture
random fluctuations well.

It has been shown that the running time of health factor-based
GNN models is high, especially when multiple LSTM layers are
employed to process the six series separately. A key consideration
for future research is the effectiveness of deploying a single LSTM
layer rather than multiple. This approach, while computationally
more compact, requires a well-developed strategy to preserve the
unique dynamics of each factor. Future research may explore
ways to circumvent the potential loss of information. Potential
approaches are to use feature engineering to emphasize the charac-
teristics of individual health factors before the data are fed into the
LSTM, or to optimize the attentional mechanism.

Another important observation is that window-based GNNs have
a tendency to experience over-smoothing. Moreover, there is a need
to fine-tune health factor-based GNNss to detect more subtle changes
in the data without compromising prediction accuracy. Both of
these limitations are related to the smoothing properties brought
about by information aggregation. Investigating ways to highlight
the differences in the output of the LSTM at different health
factors or time-steps, as well as adjusting the correlation between
the nodes, are both viable ways to address this issue.

6 Conclusion

This study explores the application of graph-based neural net-
works incorporating LSTM and self-attention mechanism for esti-
mating battery SOH. The framework first employs LSTM to
efficiently extract temporal-based information from the battery
health factors. Two approaches to graph construction, health factor-
based and window-based, are applied to hidden states from the
LSTM layer. While the first focuses on understanding the spatial
interactions between health factor data, the second delves deeper
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into the temporal dependencies of each cycle. Self-attention mech-
anism is used to quantify the interactions between graph nodes and
to weigh the aggregation of information from neighbors to enrich
features. The performance of two prosed GNNs is compared with
vanilla LSTM and GRU, which are widely used in the field of
battery SOH estimation.

Among the various models examined, the health factor-based
GNN outperforms other models including LSTM, GRU, and
window-based GNN. Its effectiveness is attributed to the ability
to capture the complex interactions between temporally enhanced
health factors. While window-based GNN is an innovative
approach, it suffers from the problem of over-smoothing. This
may be caused by the minor difference in the output of the
LSTM at different time-steps. It leads to high similarity of each
node after the integration of information. Furthermore, the informa-
tion integration behavior of graph-structured data enhances the
robustness of the model, but at the cost of difficulty in capturing sto-
chastic fluctuations in the data. Practical application of the model
requires a tradeoff between these two aspects.

For future research, the computational speed of GNN models can
be improved, especially when multiple LSTM layers are used. In
addition, advanced strategies can be employed to prevent over-
smoothing in GNN. Potential solutions include strengthening the
distinctness of each feature or restructuring the correlation
between nodes. Finally, the model can be applied to more diverse
and robust datasets.
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