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State of Health Estimation
of Electric Vehicle Batteries
Using Transformer-Based
Neural Network
Electric vehicles (EVs) are considered an environmentally friendly option compared to con-
ventional vehicles. As the most critical module in EVs, batteries are complex electrochem-
ical components with nonlinear behavior. On-board battery system performance is also
affected by complicated operating environments. Real-time EV battery in-service status pre-
diction is tricky but vital to enable fault diagnosis and prevent dangerous occurrences.
Data-driven models with advantages in time-series analysis can be used to capture the
degradation pattern from data about certain performance indicators and predict the
battery states. The transformer model can capture long-range dependencies efficiently
using a multi-head attention block mechanism. This paper presents the implementation of
a standard transformer and an encoder-only transformer neural network to predict EV
battery state of health (SOH). Based on the analysis of the lithium-ion battery from the
NASA Prognostics Center of Excellence website’s publicly accessible dataset, 28 features
related to the charge and discharge measurement data are extracted. The features are
screened using Pearson correlation coefficients. The results show that the filtered features
can improve the model’s accuracy and computational efficiency. The proposed standard
transformer shows good performance in the SOH prediction. [DOI: 10.1115/1.4065762]
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1 Introduction
Due to the ongoing use of fossil fuels and reliance on internal

combustion engine cars for more than a century, the transportation
industry is one of the main contributors to global greenhouse gas
(GHG) emissions [1]. Electric vehicles (EVs) have been identified
as a promising solution to mitigate the GHG effect and the ever-
growing energy demand [2]. Lithium-ion batteries are the most
technologically advanced energy storage systems for EVs due to
their high energy and power densities, strong environmental adapt-
ability, and low self-discharge rate [3,4].
To make EVs more competitive with gasoline-powered vehicles,

extremely fast charging is a key indicator that batteries need to
achieve [5,6]. High rates of charging and discharging, combined
with the wide range of operating temperatures to which EVs
might be exposed (−20 to 70 °C), can accelerate battery degradation
during cycling [7]. Battery degradation has been attributed to mul-
tiple mechanisms. The dominating factors are the growth of the
solid electrolyte interphase layer, irreversible deposition of
lithium metal on the anode, and loss of active material from the

cathode [8]. The batteries age over time leading to a reduction in
their performance and safety [9]. The reliable operation of EV bat-
teries requires real-time monitoring of their in-use states, such as
state of health (SOH) [10,11]. However, battery in-use characteris-
tics cannot be measured directly, but they need to be inferred by
building degradation models [12–14]. A solid battery management
system relies on a reliable battery degradation model for status mon-
itoring and health state assessment to guarantee safe and high-
performance operation.
There are two broad approaches to developing a battery degrada-

tion model for predicting and diagnosing: the physics-based
approach and the data-driven approach. The physics-based model,
also known as the electrochemical model, is a set of coupled
partial differential equations that represent the microscopic chemi-
cal reactions occurring within the cell [15]. The pseudo-two-
dimensional (P2D) model, for example, is one of the most widely
used physics-based models [16]. This sophisticated model offers a
thorough examination of the thermal energy balance, mass bal-
ances, charge balances, and kinetics of electrochemical reactions
within the cell [17]. However, the physics-based model typically
requires solving a set of tightly coupled differential equations
[18]. The process is too complex and slow to be used for real-time
management of in-use batteries.
The data-driven approaches estimate the effect of degradation on

the battery’s operational data. These approaches do not necessarily
need to consider the underlying degradation behavior of the battery
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as well as its physical and chemical properties. However, the
aging of EV batteries is nonlinear due to multiple factors such as
charge–discharge rates, temperature variations, and usage patterns.
Models that can handle high-dimensional data with complex depen-
dencies are required to capture these patterns through measurable
extrinsic signals. The machine-learning-based approaches can be
trained on large datasets quickly, which makes them suitable for
modeling complex systems like EV batteries. In addition, machine-
learning models can be adapted to various battery chemistries and
configurations [19,20]. In particular, deep neural networks can
achieve higher prediction accuracy by training multiple layers of
neural networks to match more closely to complex nonlinear
battery systems [12,21–24].
Despite the accuracy, the deployment of deep learning models

on-site still has significant challenges. These models typically
require substantial computational resources and are challenging to
be applied in resource-constrained environments (e.g., battery man-
agement systems). Many studies have proven that recurrent neural
network (RNN) based neural networks, including gate recurrent
unit (GRU) and long short-term memory (LSTM), are acceptable
solutions for battery modeling because they can use internal states
(memory) to represent battery aging information [25–27]. The
LSTM network, for example, solves RNN’s gradient disappearance
and gradient explosion problems and has produced a relatively good
performance for battery SOH prediction [28]. However, using
LSTM to process sequential input in a recurrent manner is compu-
tationally intensive, which requires storing and updating memory
cells at each time-step. Transformer is a newer type of neural
network architecture that uses self-attention mechanisms to process
input sequences without recurrence [29]. Transformers can process
input sequences in parallel, which is much faster than the sequential
processing used in LSTMs [30].
The main contribution of this study is to develop a highly effi-

cient battery SOH prediction framework, thus making the model
more applicable to real-time prediction in the field. To achieve
this target, the transformer-based neural network that can process
a sequence of data at once by using an attention mechanism is
chosen as the prediction model. In addition to implementing a stan-
dard encoder–decoder transformer, the performance of the encoder-
only transformer with a simpler architecture is investigated and
compared. Moreover, the raw measurement data from the battery
charge and discharge are extracted and screened for features
before being input into the model. The computational efficiency
of the model is thus further improved.
The rest of the structure of this paper can be summarized as

follows. Section 2 is the related works on deep learning and
feature extraction for battery state prediction. Section 3 describes
the proposed SOH prediction framework, including the rules for
feature extraction and selection, as well as the architecture of the
transformer-based prediction models. Section 4 gives details of
the experimental implementation and the SOH prediction results
of the models. Finally, Sec. 5 concludes the work in this study
and the perspectives for future research.

2 Related Work
2.1 Deep Learning for the State of Health Estimation. SOH

and remaining useful life (RUL) are state indicators related to the
aging behavior of the battery. To achieve a more comprehensive lit-
erature review, prediction models relating to both SOH and RUL
are discussed in this section. Numerous studies applied deep
learning-based models for battery degradation estimation owing
to their advantages in modeling complex nonlinear problems.
Among them, RNNs that can utilize sequential information are
well suited for battery state prediction problems that require pro-
cessing time-series data. As a variant of RNN, the LSTM network
was designed to solve the gradient vanishing problem, which is
one of the widely used models in the field of battery state prediction
[31,32]. Kaur et al. [33] compared the performance of feed-forward
neural networks (FNN), convolutional neural networks (CNN), and

LSTM for battery capacity estimation. Their results show that
LSTM, which can recursively process time-series information,
had the best accuracy. However, it requires greater computational
cost than FNN and CNN. As a variant, the bidirectional long short-
term memory (Bi-LSTM) integrates two LSTMs with positive and
negative time series, allowing the model to detect information that
the one-way network may overlook [34]. Sun et al. implemented the
Bi-LSTM for SOH prediction, and the model can explore Li-ion
batteries’ degradation behavior from two sequence directions
[26]. The results demonstrate that Bi-LSTM can achieve more accu-
rate SOH estimation than a single LSTM. Meanwhile, the bidirec-
tional behavior makes the Bi-LSTM model significantly slower to
compute than LSTM [34]. For RUL and SOH prediction, Qu
et al. combined the LSTM network with particle swarm optimiza-
tion and an attention mechanism [35]. The paper illustrated that
the attention mechanism assigns weights to each feature according
to its impact on the output, which leads to higher accuracy of the
model. The usefulness of utilizing attention mechanisms to
advance the time-series prediction model has also been demon-
strated in other areas. For example, Li et al. [36] applied a
self-attention-based CNN and LSTM combined method for photo-
voltaic power prediction. Their model has improved adaptability to
input features by re-assigning attention weights throughout the
training phase, which reduces the prediction error.
The other deep learning model that constructs key modules with

attention mechanisms is the transformer [29]. There is no recurrence
or convolutional mechanism in the transformer. It can process a
sequence of data all at once, using an attention mechanism that
allows it to access any part of the historical data without being
limited by distance [37]. In addition, it enables faster training
than LSTM since the majority of operations can be computed in par-
allel [38]. Due to its ability to handle sequence data, the transformer
has the potential to be employed in battery degradation modeling.
Few studies apply transformers to battery status estimation. Chen
et al. combined a denoising auto-encoder with the transformer
encoder to complete the RUL estimation [30]. Their model achieved
approximate or even better precision than a single LSTM and
required significantly less training time than an LSTM. Mo et al.
developed a transformer encoder-based neural network enhanced
by a gated convolutional unit, which achieved relatively good per-
formance and was computationally efficient [37]. These two studies
prove the benefit of transformers in reducing the computational
burden of battery models. However, both of them use encoder-only
transformer-based structures, and the effect of the decoder on stan-
dard transformers for battery state estimation was not discussed.
Recent advancements have further showcased the accuracy of trans-
formers in this domain. Gu et al. proposed the hybrid CNN-
transformer model to achieve an accurate estimation of the SOH
[39]. The LSTM, single transformer, and CNN-LSTM are used as
a comparative model. Their CNN transformer achieved high accu-
racy in different scenarios. Gomez et al. improved the temporal
fusion transformer based on the Bi-LSTM encoder–decoder layer
and performed high prediction accuracy [40]. Based on these
findings, exploring different transformer architectures and incorpo-
rating feature engineering helps understand transformers’ computa-
tional efficiency and prediction accuracy.

2.2 Battery Feature Extraction. An additional way to
increase the computational efficiency and accuracy of the model
is to extract, select, and optimize features from the raw data. The
features from battery charge and discharge data can be divided
into two categories: measured features and calculated features
[41,42]. The measured features are extracted from the current,
voltage, and temperature signals during the battery cycle that are
available from the battery management system [43]. For example,
Guo et al. extracted 14 features from the charging process, which
are related to capacity, charge time, temperature, and current/
voltage drop [44]. Their results show that after selection using
gray relational analysis and dimensionality reduction by principal
component analysis (PCA), the remaining features can well reflect
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the internal aging process of the battery. Beganovic and Söffker
[45] analyzed acoustic emission (AE) measurements from batteries
and obtained AE energy as a feature that characterizes the
degradation.
The calculated features are designed to mine more sensitive infor-

mation from the measurement data. For this process, the signal that
can be directly provided by the battery measurer is first transformed.
The features extracted from the transformed signal profile are
defined as calculated features [42]. For example, Li et al. applied
the incremental capacity analysis technique to process battery
voltage data [46]. This procedure could convert a flat voltage
profile into an incremental capacity profile with a series of peaks
and valleys. As the battery ages, the shape, amplitude, and position
of the IC peaks change, which can be considered features reflecting
degradation.
However, the computed feature extraction imposes more compu-

tational burden on the model than measured features. The main
objective of this study is to develop a more efficient battery SOH
prediction system. Therefore, the measured features from the previ-
ous studies are referred to as being used for feature extraction
[41,43,44,46].

3 Methodology
3.1 Framework of the State of Health Estimation. A crucial

factor to characterize the performance the battery is capable of in its
present state is the SOH. It could also be a sign of battery deteriora-
tion. Many factors, including capacity and battery resistance, can be
used to calculate the SOH. The SOH is determined in this study as
the ratio of the nominal capacity to the releasable capacity, and it is
displayed as

SOH(%) =
Qmax

Qnorm
× 100% (1)

where Qmax is the maximal available capacity at the current cycle,
and Qnorm is the nominal capacity given by the manufacturer.
Since the nominal capacity of the battery is constant, the calculation
of SOH is directly related to the available capacity of the battery.
Figure 1 depicts the flowchart for the SOH estimation. For

feature extraction and optimization, the framework uses raw
testing and monitoring data from Li-ion batteries. First, the
initial extracted features are determined by investigating the rela-
tionship between the trends of the charge–discharge profiles and
the degradation of the battery system. After extracting the features
from the measured parameters, a correlation analysis is performed
to evaluate the features’ potential to capture battery degradation.
Based on the selection of valuable features, a standard transformer
neural network and an encoder-only transformer are employed to
estimate the SOH.

3.2 Data Description. The data are obtained from the NASA
lithium-ion battery aging dataset [47]. This public dataset tested
commercially available lithium-ion rechargeable batteries with the
model number 18650 at experiment control conditions. This study
selected data from Battery 0005 for the experiment. The charging
and discharging of Battery 0005 were repeated at room temperature.
The charging process was carried out first at a constant current (CC)
of 1.5 A. After the battery voltage reaches 4.2 V, it shifts to charg-
ing at a constant voltage (CV) mode until the current drops to
20 mA [48]. The discharging process was performed at a constant
current of 2 A until the voltage dropped to 2.7 V. The signals of
current (I ), voltage (V ), and temperature (T ) during charging and
discharging were recorded every 10 Hz. The battery aged signifi-
cantly due to repeated charge and discharge cycles. The test came
to an end when the battery’s rated capacity had faded by 30%, sig-
naling the end of its useful life. The variation in the capacity of the
target battery is shown in Fig. 2.

3.3 Feature Extraction and Selection

3.3.1 Feature Extraction. The raw data consist of a continuous
battery charging and discharging process. When reading the data,
one full charging process with one full discharging process is con-
sidered a cycle. The available capacity recorded from the discharge
process is used to calculate the SOH for the current cycle by Eq. (1).
The data for feature extraction are selected as the full range of V, I,
and T signals measured in the state of charging and discharging
[46]. The changes in the charging and discharging profiles as the
battery ages are illustrated in Fig. 3.
From Eq. (1), it is known that the extrapolation of the available

battery capacity is the key to estimating the SOH. The battery
capacity is the amount of electric charge that can be accumulated
during charging and released reversibly during discharging [49].
The battery charging process is divided into two steps: CC mode
and CV mode. According to the definition of capacity, the time
required for the CC charging process is directly proportional to
the charging capacity in the CC mode. From Figs. 3(a) and 3(b),
it can be found that as the number of cycles increases, the time
required to complete CC charging of the battery decreases. It thus
implies that the time spent charging at a constant current can indi-
cate the degree of battery aging.
The CV charging step is to keep the battery at a maximum spec-

ified potential while allowing the current to decrease through a
current taper [50]. The more time spent in CV mode, the more dif-
ficult it proves to be for the lithium ions to migrate inside the battery
[46]. Therefore, it shows the aggravation of the aging mechanism,
such as elevated impedance and the formation of solid electrolyte
interphase. In the charging temperature profile, the time point
when the battery reaches its maximum temperature and the time
point when the CC mode ends are largely coincident (Fig. 3(c)).

Fig. 1 Framework of the SOH estimation
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Based on the considerations above, it is worthwhile to extract and
analyze the I/V/T features associated with the beginning as well
as the end of the CC and CV modes during the charging phase.
As the current for CC charging, cutoff current, and the maximum
voltage are fixed, these three values are not considered in the extrac-
tion of features. However, temperature is considered valuable for
extraction and evaluation since temperature is one of the significant
factors affecting the aging rate of the battery.

Figures 3(d )–3( f ) present the profiles of battery discharge at dif-
ferent degradation levels. It can be seen that as the number of
battery cycles increases, the time for the battery to complete cons-
tant current discharge, reach the cutoff voltage, and the time to
reach the maximum temperature all become shorter and shorter.
The available battery capacity is highly sensitive to the discharge
process since it is gained by integrating the current curve over a
full discharge process [49]. Therefore, several of the discharge fea-
tures are also extracted pending subsequent evaluation. Based on
the above analysis and on references from other similar battery
feature extraction methods [41,43,46], a total of 28 charging and
discharging features are initially extracted and summarized in
Table 1. Examples of the profiles of the extracted features are dis-
played in Fig. 4.

3.3.2 Feature Selection. Pearson correlation coefficient (PCC)
is employed to identify the degree of correlation between each
feature and the battery’s health status [51]. The most relevant fea-
tures for prediction and modeling can be identified by calculating
the correlation coefficient. A Pearson correlation coefficient of 1
or −1 implies a perfect positive or negative linear relationship. A
coefficient of 0 indicates no linear relationship.
The purpose of selecting the extracted features is to remove noise

and redundant features in order to reduce computational cost while
ensuring model performance. Figure 5 illustrates the feature selec-
tion using the Pearson correlation coefficient in this study, which
consists of the following two main steps:

Fig. 2 Capacity degradation of Battery 0005

Fig. 3 Current, voltage, and temperature curves during charging and discharging of Battery
0005 after different number of cycles
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• Calculate the PCC between each feature and battery SOH. The
features with a correlation coefficient absolute value greater
than 0.9 are chosen.

• Calculate the PCC between each pair of features retained
during step 1. A pair of features with an absolute PCC value
greater than 0.999 is considered a “duplicate” feature. Only
the one that is more correlated with SOH should be kept as
model input. The remaining features that do not have “dupli-
cates” are also kept.

The first step is retaining only closely related input information
relevant to the prediction target. Specific screening criteria need
to be determined for different datasets. In this paper, the threshold
of 0.9 is chosen. After identifying strongly correlated features, the
next step is to check for multicollinearity between these features.
Multicollinearity occurs when two or more features are highly cor-
related with each other, leading to redundancy. This step confirms
that each feature selected provides unique information about the
health of the battery.

Table 1 Feature extraction [41,43]

Group Feature Description Type

Charging features F1 Area covered by current curves of the CC charging Current-related
F2 Area covered by current curves of the CV charging
F3 Minimum slope of current curves in the CV charging
F4 Area covered by voltage curves of the CC charging Voltage-related
F5 Area covered by voltage curves of the CV charging
F6 Maximum slope of voltage curves in the CC charging
F7 Maximum temperature of charging Temperature-related
F8 Minimum temperature of charging
F9 Area covered by temperature curves of the CC charging
F10 Area covered by temperature curves of the CV charging
F11 Maximum temperature minus minimum temperature of charging
F12 The ratio of the CC charging area under the temperature curve to the corresponding area under the

current curve
F13 The ratio of the CV charging area under the temperature curve to the corresponding area under the

current curve
F14 CC charging time Time-related
F15 CV charging time
F16 CC charging time/(CC+CV charging time)
F17 Time to the minimum current in charging
F18 Time to reach the maximum voltage in charging
F19 Time to the maximum temperature in charging

Discharging
features

F20 Area covered by current curves of discharging Current-related
F21 Area covered by voltage curves of discharging Voltage-related
F22 Area covered by temperature curves of discharging

Temperature-related
F23 Maximum temperature of discharging
F24 Minimum temperature of discharging
F25 Maximum temperature minus minimum temperature of discharging
F26 Time discharged under a constant current Time-related
F27 Time to the minimum voltage in discharging
F28 Time to the max temperature in discharging

Fig. 4 Profiles of extracted features F1, F2, F4, F5, F9, and F10 Fig. 5 Process of selecting features
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3.4 Model Structure. An encoder and a decoder compensate
for the sequence-to-sequence architecture of the standard trans-
former. The encoder maps the input sequence into a high-
dimensional vector, which is then provided to the decoder to gener-
ate the output sequence [30].
An input layer, a layer for positional encoding, and stack-

identical encoder layers make up the encoder module [52]. The
input layer converts the raw input time-series data to a high-
dimensional vector space (d model), through a fully connected
network. This procedure standardizes the dimensionality for all
the subsequent computations and helps the model capture
complex patterns and relationships in the data. The following posi-
tional encoding layer is used to address the lack of knowledge of the
order of data points in a sequence. The positions of the data points in
the sequence are characterized by performing sine and cosine func-
tions and giving each position a unique representation between 0
and 1. This helps the model understand the time-series order and
handle temporal dependencies in the data. The encoder layer gener-
ates encodings that contain information about which parts of the
input are relevant to each other [39]. Two sub-layers comprise
each encoder layer: multi-head self-attention and fully connected
feed-forward. Each sub-layer is followed by a normalization
layer. The encoder generates a vector of dimension d model,
which can then be used by the decoder in the standard transformer
or directly for prediction in the encoder-only transformer.
The decoder is also composed of the input layer, decoder layers,

and an output layer. The decoder in the transformer model takes two
main inputs: the encoded source sequence and the previous decoder
output. The encoded source sequence is generated by the encoder
and contains representations of the input sequence. The previous
decoder output, in the general transformer, consists of previously
generated tokens from the decoder. It serves as the reference for
the model to learn from during training and to generate predictions
during inference. However, the transformer presented in this paper
is simplified in this step due to the specific nature of this prediction
task. The objective is to predict a single value (SOH at time t);
therefore there are no previously generated tokens to provide
context. The previous decoder output is replaced with a sequence
consisting of the last data point of the encoder input. In other
words, the input features at the last battery cycle are used as the
second input to the decoder in our case. This modification uses
the most recent information available, which is the feature of the
system at the latest time-step. The decoder layer is similar to the
encoder layer in that it includes the self-attention mechanism and
feed-forward neural network. However, the self-attention mecha-
nism in the decoder also attends to the output sequence of the

Encoder. The decoder can be used to apply self-attention to both
the latest battery features and the encoder’s outputs. This dual atten-
tion mechanism enhances the model’s ability to capture complex
dependencies within the battery data. Finally, a fully connected
layer is used to map the representations learned by the last trans-
former unit, producing the SOH estimation.
In this study, the standard transformer and the encoder of the

transformer are applied to learn the long-term dependencies of the
SOH degradation from charging and discharging features (Fig. 6).
With an encoder-only transformer, the hidden features output
from the encoder enter directly into the final fully connected layer
for prediction. This simplifies the pathway from input to prediction
and improves the speed of computation.

4 Results and Discussion
4.1 Feature Selection Results. According to the features

described in Table 1, 28 features are extracted from Battery 0005
in the NASA dataset. The correlation coefficient between features
and battery SOH is summarized in Table 2 in descending order
[41,44,46]. The PCC helps identify the most relevant features by
measuring the linear relationship between each feature and the
SOH. A higher absolute value of the PCC indicates a stronger rela-
tionship with the SOH and suggests that the feature is more infor-
mative for predicting battery health. Linear regression (LR) is
also performed for each feature, and the resulting R2 values are
listed in Table 2. The R2 value ranges from 0 to 1, with higher
values indicating a stronger predictive relationship. The analysis
shows that features with high PCC values generally had high R2

values, which further indicates that these features can explain a sig-
nificant portion of the variance in the SOH.
Selecting features with a high PCC directs the model to focus on

the most relevant data. The threshold value is 0.9 to select the valu-
able features. Of the 28 features, 18 showed a PCC value higher
than 0.9, which indicates that this threshold is useful in capturing
the strongest signals while retaining sufficiency features. This
helps the model gather information from different battery dimen-
sions and reduces the risk of overfitting.
The results show that the features with a PCC greater than 0.9

with the SOH include: F1, F2, F4, F5, F9, F10, F14, F15, F16,
and F18 from the charging group, and F20, F21, F22, F23, F25,
F26, F27, and F28 from discharging group. Features such as the
area covered by current and voltage curves during CC and CV
charging (F1, F2, F4, F5) measure the battery’s ability to accept
and store charge. As the battery ages, a decrease in these areas

Fig. 6 Structure of standard transformer and encoder-only transformer
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indicates reduced capacity and increased internal resistance.
Temperature-related features (F9, F10) capture the thermal profile
during charging. The higher temperatures represent the heat gener-
ation caused by increased internal resistance and potential degrada-
tion processes such as solid electrolyte interphase layer growth.
The duration of the CC and CV phases (F14, F15) and their ratio
(F16) are key indicators of charging efficiency, where longer CV
times and shorter CC times show aging. In addition, the time to
reach maximum voltage (F18) shows the charging speed of the
battery can be charged, where longer times suggest higher internal
resistance.
On the other hand, the features from the discharge data, except

for the minimum temperature, are all highly correlated with SOH.
Similarly, with the discharge area (F20, F21), time-related (F26,
F27, F28), as well as the heat generation (F22, F23, F25) features
are of high importance. In particular, F20, F21, F26, F27, and
F28 have a high correlation of 0.9999 with the predicted target,
which can be almost linear. This is because the experimental condi-
tion of Battery 0005 is a continuous release at a constant current
during the discharge process until the cutoff voltage is reached.
According to the calculation method of battery capacity, when the
battery is discharged at a constant current, its capacity is given by
the discharge current multiplied by the discharge duration [49].
Therefore, for the dataset adopted in this study, the features
related to the discharge duration would be nearly linearly correlated
with the battery SOH. However, in practical applications, the dis-
charge pattern of EV batteries is completely dependent on driving
behavior and is a random discharge behavior. The discharge fea-
tures are still essential for predicting randomly discharged battery
states, except that they will not have this strong linear relationship.
In addition, it is not common in practice to allow an EV battery to
complete a full discharge process. The operating conditions of EV
discharging are not as stable as parking and charging at a charging
station. Therefore, after feature selection, the model’s performance

with only charging features is also tested and compared to the model
with full feature input.
While slope-related features (F3, F6) can indicate charge effi-

ciency, they capture only a momentary aspect of the dynamic
process, and provide less information than area features. The
slopes are sensitive to noise and fluctuations, which make them
less reliable for long-term SOH prediction. Then, the feature least
associated with the SOH is the minimum temperature during charg-
ing and discharging. This is because the lowest temperature during
battery operation usually occurs at the beginning or end of the
charging and discharging phases when the battery is relatively inac-
tive. This value is highly correlated with the ambient temperature
and, therefore has little correlation with the status of the battery.
To eliminate redundant features and avoid overfitting, the simi-

larity between each pair of high-correlation features is also calcu-
lated and presented in Fig. 7. According to the feature selection
rules defined in Sec. 3.3.2, a pair of features with an absolute cor-
relation value greater than 0.999 is considered a “duplicate.” The
one with a lower correlation with SOH should be removed.
Finally, the valuable features that are selected include: F1, F2, F4,
F5, F9, F10, F16, and F18 from charging group, and F20, F21,
F22, F23, and F25 from discharging group.
In this particular dataset, multiple battery features from charging

and discharging are present with high-correlation coefficients to the
prediction target. The reason is that the batteries in the dataset are
charged and discharged with a regular and stable behavior. It is pos-
sible that using the LR to fit the SOH curve would also achieve good
performance. However, LR models are difficult to adapt if there is
randomness in the battery data. Due to the consideration of the sto-
chasticity of the battery usage in real situations, the feasibility of the
transformer is still chosen to be discussed in this paper.

4.2 State of Health Estimation Results

4.2.1 Experiment Implementation Details. The two steps of
feature selection described in Sec. 3.3.2 include selecting features
with a higher correlation with the predicted target and deleting
duplicate features. According to the results, a total of 13 valuable
features from the raw charging and discharging data are obtained.
However, due to the specificity of the dataset used in this study, a
portion of the features from the discharge process have a very
high linear correlation with SOH. Using these discharge features
to examine the effectiveness of the developed time-series prediction
model is not reasonable. Therefore, during the evaluation of the
model, the model inputs are divided into four cases: all 28 available
features, 19 available features from the charging data only, 13
selected features from the charging and discharging process, and
8 selected features from the charging data only (Table 3). In addi-
tion, stable charging data are more accessible than stable discharge
data in real-world applications. The experimental discharge data
used in this paper are different from practice in which the discharge
pattern of EV batteries varies significantly with driving conditions,
which makes it difficult to obtain consistent and reliable signals. On
the other hand, charging typically occurs in more controlled envi-
ronments, such as at charging stations, where conditions are
stable and predictable. It would be helpful for practical applications
to demonstrate the ability of the model to rely only on charging data.
In addition, groups 1 and 2 provide a more complete dataset but

potentially increase computational cost and risk of overfitting.
Groups 3 and 4 include the most predictive charging features, sim-
plify the model, and reduce computational load. The effect of
feature selection and discharge features are discussed in the follow-
ing sections by comparing models’ performance with different input
groups.
The two transformer architectures employed for SOH estimation

are implemented in PYTHON utilizing the PyTorch framework. The
models are run on a single CPU and utilize the mean squared
error loss function during the training process. The dataset is split
into 70% training and 30% test sets. The developed transformer-
based models have seven key parameters: the number of time-steps

Table 2 Pearson correlation coefficient (absolute value) and R2

between features and SOH in descending order

Group Feature
PCC with the SOH
(absolute value) R2 with SOH

Charging features F4 0.996 0.992
F14 0.996 0.992
F1 0.996 0.992
F16 0.994 0.987
F9 0.990 0.980
F2 0.988 0.976
F15 0.976 0.952
F5 0.976 0.952
F10 0.969 0.939
F18 0.958 0.917
F17 0.774 0.560
F6 0.637 0.405
F11 0.634 0.402
F3 0.610 0.372
F13 0.600 0.360
F12 0.401 0.161
F7 0.383 0.147
F8 0.016 0.000
F19 0.006 0.000

Discharging features F26 0.999 0.999
F20 0.999 0.999
F27 0.999 0.999
F28 0.999 0.999
F21 0.999 0.999
F22 0.993 0.986
F25 0.979 0.958
F23 0.937 0.878
F24 0.052 0.003

Note: The bold are the features whose PCC is higher than 0.9.
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to be input (sampler size), the number of expected features in
the transformer encoder–decoder inputs (d model), the number
of encoder layers, the number of decoder layers, the number of
heads in the multi-head attention mechanism, the dimension of
the feed-forward network, and the fraction of neurons affected by
dropout. The parameters are determined by grid search on the val-
idation error. Table 4 summarizes the range of grid search and opti-
mized hyperparameter settings for the transformer-based models.
The parameter optimization process is based on input group 1 on
a standard encoder–decoder transformer. The encoder-only trans-
former used in this study adopts the same parameter settings in
Table 4, except that the decoder module is masked.

Root mean square error (RMSE) and mean absolute error (MAE)
are utilized as evaluation criteria to assess the efficacy of the
designed model for the SOH estimation. The model’s stability is
indicated by the RMSE, which measures the difference between
the true and predicted values. MAE, a linear score of the prediction
error, can be used to show how accurate a model is. In addition, to
verify the results, the model performance metrics reported in this
paper are based on the average and standard deviation of five sepa-
rate runs.

4.2.2 Model Performance. The performance of the two
transformer-based neural networks using four different sets of
inputs is summarized in Table 5. Based on the comparison of
RMSE and MAE, the standard transformers with input groups 3
and 4 perform best.
The performance of the standard transformers and encoder-only

transformers for the SOH prediction task can be compared and dis-
cussed. The transformer encoder uses self-attention to capture the
dependencies between the different time-steps in the sequence.
The resulting hidden representations are then used as input to down-
stream prediction tasks. Therefore, the hidden representations
obtained by the encoder module can be directly fed into a fully con-
nected layer for the SOH prediction. The SOH prediction curves
from both transformer-based models are shown in Figs. 8 and 9.
The comparison shows that the encoder-only transformer does not
perform as well as the standard transformer, especially when the
number of features in the input is small. For example, the model
with a decoder and without a decoder has the largest performance
gap when the input is group 4. However, the advantage of encoder-
only transformers is their computational speed. It runs over 30%
faster than the standard transformer without a decoder module. In
future studies, if the performance of the transformer encoder can
be enhanced by further parameter optimization or feature enhance-
ment, it will be a more suitable model for real applications. In real-
time monitoring and decision-making, updating SOH predictions
on time facilitates prompt management. Specifically, it can help
to achieve timely dynamic optimization of the corresponding charg-
ing protocols to improve battery life and performance. In addition,
the reduction in computational complexity helps integrate deep
learning models into resource-constrained in-vehicle systems.

Fig. 7 Similarity between features with correlation coefficients greater than 0.9 with the SOH

Table 3 Four input groups

Input
group Description Feature

1 All 28 available features F1–F28
2 19 available features from the

charging data only
F1–F19

3 13 selected features from the
charging and discharging data

F1, F2, F4, F5, F9, F10, F16,
F18, F20, F21, F22, F23, F25

4 8 selected features from the
charging data only

F1, F2, F4, F5, F9, F10, F16,
F18

Table 4 Grid search and optimized hyperparameters for
transformer-based models

Hyperparameters Grid search Setting

Sampler size 5, 10, 15, 20 15
D model 64, 128, 256 64
Number of encoder layers 1, 3, 5 1
Number of decoder layers 1, 3, 5 1
Attention head 4, 8 8
Dimension of the feed-forward network 256, 512 512
Dropout 0, 0.1 0
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On the other hand, the effect of the features from the discharge
data on the model is worth discussing. As explained in Sec. 4.1,
since the experimental conditions of Battery 0005 are constant
current continuous discharge, the duration of discharge and SOH
show a nearly linear relationship. The impact of features with
such a high correlation with the predicted target on model perfor-
mance is apparent. As shown in Figs. 8 and 9, models that employed
discharge features, with or without a decoder module, can predict
more accurately than models that use only charging features.
However, constant current continuous discharge of batteries is

not common in real-world applications. Although the extraction
and selection of discharge features can substantially improve the
model’s performance in the current dataset, the usage of this type
of feature in actual EV battery SOH prediction needs to be verified.
Without the discharge feature, the standard transformer with the

selected charging feature (input group 4) can still achieve good
model performance, with RMSE and MAE of 0.030 and 0.0258,
respectively. Regarding the computational cost of feature extrac-
tion, it takes about 20 s to compute features for 168 charge–dis-
charge data cycles.
The validity of feature selection can be verified on standard trans-

formers which perform more stable. It is also necessary to exclude
the interference of discharging features on the model performance
due to the high correlation between discharge features and SOH.
Feature selection is evaluated only by comparing the influence of
all available and selected features from charging data on the
model. The RMSE and MAE of standard transformers using input
group 2 are 0.0679 and 0.0600, respectively. After feature selection,
the RMSE and MAE of standard transformers with input group 4
are reduced to 0.0300 and 0.0258. This demonstrates the impact

Table 5 Performance of two transformer-based models with different inputs

Input group

Standard transformer Encoder-only transformer

RMSE MAE
Time
cost (s) RMSE MAE

Time
cost (s)

1 0.0443± 0.0152 0.0389± 0.0158 55 0.0687± 0.0170 0.0569± 0.0162 37
2 0.0679± 0.0327 0.0600± 0.0311 49 0.0841± 0.0211 0.0692± 0.0188 27
3 0.0335± 0.0148 0.0287± 0.0151 42 0.0384± 0.0176 0.0312± 0.0150 30
4 0.0300± 0.0077 0.0258± 0.0081 44 0.0674± 0.0282 0.0592± 0.0277 29

Fig. 8 Predicted results for standard transformer

Fig. 9 Predicted results for encoder-only transformer
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of the feature selection rule proposed in the paper. In addition to
improving the model’s accuracy, the computation time of the
model has been improved by around 10%. Speed and accuracy
are the characteristics required for EV battery management
systems. Our results demonstrate that feature extraction and selec-
tion, and, feature optimization, such as noise reduction and
enhancement, are also interesting problems to explore in the future.
This study also analyzes the response of the model to different

types of highly related features. The 13 screened features from
input group 2 can be categorized into four types: current-related
(F1, F2, F20), voltage-related (F4, F5, F21), temperature-related
(F9, F10, F22, F23, F25), and time-related (F16, F18). The perfor-
mance of the model respectively, using these four types of features
as inputs is summarized in Table 6. Due to the reduced number of
input features, the error and the deviation of predictions are
increased. The five features correlated with temperature provide rel-
atively accurate and consistent model performance. The other three
types with small numbers are more at risk of overfitting the model.
This demonstrates the importance of providing multidimensional
information to improve the robustness of the model. However,
due to the randomness of the deep learning model and the unbal-
anced set, this experiment does not provide a fair assessment of
the model’s sensitivity to different types of features.
The proposed model is also performed on other batteries from the

NASA dataset. The results show that fine-tuning the hyperpara-
meters is necessary when applying the model to other batteries
since the charging and discharging conditions are not identical.

4.2.3 Comparison of Estimation Results and Computational
Cost With Other Models. The computational cost of transformers
is compared with LSTM and GRU in Table 7, which are widely
used in the field of battery SOH estimation. All the models use
group 4 features as input with a sliding window size of 15. The
parameter settings for the two transformers are shown in Table 4
for optimum parameters. The LSTM and GRU are designed with
two LSTM/GRU layers with 256 hidden units per layer.
As can be seen from the results, the standard transformer works

with high accuracy while using the competitive time cost. The self-
attention mechanism helps the transformer models give different
weights to different components and focus on the information that
is most relevant to predicting SOH. This capability is particularly
helpful for battery data that may show complex degradation pat-
terns. In addition, transformers can process all elements in a
sequence at the same time. On the other hand, RNN variants such as
LSTM and GRU process data sequentially in a recurrent manner.

That results in a proper computational speed for the transformers,
especially the encoder-only one. However, the accuracy of the
current encoder-only transformer should still be improved. In this
case, the LSTM and GRU are only roughly tuned for hyperpara-
meters, so these do not represent the best results that can be
achieved by RNN models. Deepening the model architecture may
improve the prediction results of LSTM or GRU, but it may also
cause a further increase in computational cost.
The performance of models from standard transformers using the

selected charging features is compared with models from other lit-
erature. The prediction results from the other models were also
implemented on Battery 0005 from the NASA public dataset. More-
over, they have a similar training and test set split (70%: 30%) as the
one in this study. Although the raw data are the same, the data pre-
processing or feature extraction employed by different models is
varied. Therefore, the performance comparison here is rough and
not entirely fair. The results of the comparison are presented in
Table 8. The results show that our standard transformers have
advantages in terms of accuracy compared to single models, such
as LSTM and autoregressive integrated moving average model
(ARIMA). However, advanced variants of the simple model, such
as LSTM with enhanced optimization mechanisms, self-attention
mechanisms, and bidirectional LSTM, perform better than the trans-
formers in this paper. The standard transformer has the advantage of
simplicity and the ability to make fast predictions for the battery
timing prediction problem, but there is still potential for accuracy
improvement.

5 Conclusion
This paper presents an efficient framework for estimating battery

SOH that comprises feature extraction/selection and a predictive
model based on transformers. Based on battery current, voltage,
and temperature data measured during battery charging and dis-
charging, 28 features for battery SOH estimation are extracted.
The correlation between features and SOH and the similarity
between features are subsequently evaluated using the Pearson cor-
relation coefficient. This way features with a high correlation with
the prediction target are retained, and duplicate features are
removed to avoid adding noise and computational burden to the
model.
The performances of the standard transformer and the encoder-

only transformer model are tested on four different input sets. The
results show that the standard transformer performs better than the

Table 6 Performance of two transformer-based models with different types of features

Feature type

Standard transformer Encoder-only transformer

RMSE MAE RMSE MAE

Current-related 0.0727± 0.0405 0.0681± 0.0424 0.0509± 0.0415 0.0426± 0.0415
Voltage-related 0.0608± 0.0378 0.0562± 0.0396 0.0932± 0.0490 0.0813± 0.0461
Temperature-related 0.0493± 0.0187 0.0453± 0.0189 0.0344± 0.0131 0.0282± 0.0141
Time-related 0.0328± 0.0190 0.0276± 0.0198 0.0907± 0.0410 0.0784± 0.0379

Table 7 Comparison of model computational costs

Model RMSE MAE

Time
cost
(s)

Standard transformer 0.0300± 0.0077 0.0258± 0.0081 44
Encoder-only
transformer

0.0674± 0.0282 0.0592± 0.0277 29

LSTM 0.0681± 0.0053 0.0636± 0.0049 60
GRU 0.0281± 0.0044 0.0181± 0.0055 54

Table 8 Comparison of model prediction results with other
literature

Model RMSE MAE Reference

Standard transformer 0.0300 0.0258 This study
LSTM 0.0387 0.0439 [39]
ARIMA 0.0375 — [53]
LSTM with swarm optimization and
attention mechanism

0.006 — [35]

Bi-LSTM 0.005 — [26]
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encoder-only model. The standard transformer with the selected
charging-only features can achieve good model performance, with
RMSE and MAE of 0.030 and 0.0258, respectively. In addition,
the discharge characteristics of the cells with constant current con-
tinuous discharge behavior improve the accuracy of the models.
However, the constant and stable discharge behavior results from
controlled experimental conditions. The benefit of using the dis-
charge characteristics in predicting the state of batteries with
random discharge behavior remains to be verified.
Real-world EV usage is characterized by stochasticity compared

to stable data from the laboratory. Batteries in practical use are sub-
jected to various usage patterns and environmental conditions,
which can significantly impact the degradation trajectory. To adjust
the model to these uncertainties, it is necessary to use a comprehen-
sive dataset that incorporates more aging conditions, such as
varying temperatures, humidity, non-constant charging and dis-
charging parameters, and diverse driving cycles. In addition, tech-
niques to advance the robustness of the model should be tested,
such as transfer learning and advanced data augmentation. Incorpo-
rating additional sensor data also has the potential to improve the
model’s reliability.
Although transformers have been compared with LSTM and

GRU models, future research could include a more comprehensive
analysis to identify areas for improvement. For example, quantify-
ing the uncertainty in predictions caused by the model’s random-
ness and identifying the sources of error is needed. Future
directions can also focus on feature extraction for partial charge–
discharge profiles. Most current prediction models for SOH use
the full range of charge and discharge data. However, EV batteries
do not always complete a whole charging or discharging cycle in
real-driving situations. Therefore, using partial battery data for
state prediction would be more practical. Furthermore, adaptive
feature extraction techniques that dynamically select the most rele-
vant features based on current battery conditions could improve the
model’s capability.
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