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Abstract

In the recently discovered proton-coupled energy transfer (PCEnT) mechanism, the transfer of elec-

tronic excitation energy between donor and acceptor chromophores is coupled to a proton transfer

reaction. Herein, we develop a general theory for PCEnT and derive an analytical expression for

the nonadiabatic PCEnT rate constant. This theory treats the transferring hydrogen nucleus quan-

tum mechanically and describes the PCEnT process in terms of nonadiabatic transitions between

reactant and product electron-proton vibronic states. The rate constant is expressed as a summa-

tion over these vibronic states, and the contribution of each pair of vibronic states depends on the

square of the vibronic coupling as well as the spectral convolution integral, which can be viewed

as a generalization of the Förster-type spectral overlap integral for vibronic rather than electronic

states. The convolution integral also accounts for the common vibrational modes shared by the

donor and acceptor chromophores for intramolecular PCEnT. We apply this theory to model sys-

tems to investigate the key features of PCEnT processes. The excited vibronic states contribute

significantly to the total PCEnT rate constant, and the common modes can either slow down or

speed up the process. Because the pairs of vibronic states that contribute the most to the PCEnT

rate constant may correspond to spectroscopically dark states, PCEnT could occur even when there

is no apparent overlap between the donor emission and acceptor absorption spectra. This theory

will assist in the interpretation of experimental data and will guide the design of additional PCEnT

systems.
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I Introduction

Excitation energy transfer (EnT) is a fundamental mechanism in photochemistry, where the elec-

tronic excitation energy is transferred between donor and acceptor chromophore molecules.1–4 This

process is ubiquitously found in natural photosynthetic systems,5–10 as well as in molecular aggre-

gates and polymers.11–16 EnT has also been utilized as a spectroscopic ruler17,18 to probe protein

folding dynamics19,20 and has been engineered to enhance the light harvesting in dye-sensitized solar

cells.21 A theoretical formulation of singlet-singlet EnT processes was given by Förster in 1948.22 In

Förster theory, the rate constant for EnT is proportional to the overlap integral between the donor

emission and the acceptor absorption spectra. Förster theory provides a simple physical interpreta-

tion of the EnT process. The excited donor emits a virtual photon and returns to its ground state,

and this virtual photon is absorbed by the acceptor, which is excited from its ground state to its

excited state (Figure 1a). According to this theory, EnT can only occur if the donor emission is in

resonance with the acceptor absorption. In other words, the donor emission and acceptor absorption

spectra must overlap.

Although successfully applied to a wide range of systems, Förster theory has some limitations

due to the assumptions made in the derivation.23,24 For example, in Förster theory the exchange in-

teraction between the donor and acceptor is neglected, and a multipole approximation is used for the

Coulomb interaction, which leads to a dipole-dipole coupling term that decreases as the inverse sixth-

power of the molecular separation.24,25 Such approximations are only valid when the separation be-

tween the donor and acceptor is larger than the molecular size,26 and the de-excitation/excitation for

the donor/acceptor is symmetry- or spin-allowed (i.e., singlet to singlet).27 Dexter addressed these

issues by deriving an expression for dipole-quadrupole coupling and including the exchange inter-

action for symmetry- or spin-forbidden transitions.27 Dexter theory for triplet-triplet EnT features

the same spectral overlap integral term as in Förster theory, but the exchange coupling decreases

exponentially with the molecular separation.

Förster theory also assumes that the solute and solvent degrees of freedom can be decomposed

into two independent sets, which are each coupled to only the donor or only the acceptor.24,25,28

Such an assumption is often not valid for intramolecular EnT, where the donor and acceptor can

have common vibrational modes. The influence of the common vibrational modes on intramolecular

EnT has been investigated to some extent.28,29 Other assumptions of the original Förster-Dexter

theories include thermally equilibrated initial states, a localized excitation on a single chromophore,
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and incoherent transfer. Several studies have extended Förster-Dexter theory to model nonequi-

librium,30,31 multichromophoric,32–36 and coherent33,37–41 EnT, as well as EnT in mediums with

complex and dispersive dielectric functions.42

Figure 1: (a) Schematic illustration of a singlet-singlet EnT process, where the electronic excitation

energy is transferred from the donor to the acceptor with no charge transfer. (b) PCEnT process

discovered in the anthrancene-phenol-pyridine (An–PhOH–py) triad system. The electronic excita-

tion energy is transferred from An to the PhOH–py unit, coupled with proton transfer from PhOH

to py.

Recently, a new energy transfer mechanism, called proton-coupled energy transfer (PCEnT),

was discovered.43 In PCEnT, the transfer of electronic excitation energy between chromophores

is coupled to a proton transfer reaction. In the anthrancene-phenol-pyridine (An–PhOH–py) triad

system (Figure 1b), a local excited state (LES) on the An unit forms upon photoexcitation with 400

nm light. In contrast, direct excitation of the PhOH–py unit requires a much shorter wave length

of 330 nm. At 77 K in a butyronitrile glass, the fluorescence spectrum of the triad system excited
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at 400 nm contains both the An∗ fluorescence, which spans 420 to 580 nm with several structured

peaks, and a single broad band with a maximum at around 550 nm, which is assigned to the emission

of a local electron-proton transfer (LEPT) state, An–[PhO–pyH]∗. The direct transition from the

LES to the LEPT state following photoexcitation was predicted earlier for two of the triads based

on excited state dynamics calculations.44,45 Based on the experimental data, the LEPT state was

inferred to form through a PCEnT process, where the electronic excitation energy is transferred

from An to the PhOH–py unit, coupled with proton transfer from PhOH to py.

The PCEnT mechanism has several unique properties. Unlike the proton-coupled electron trans-

fer (PCET) process in the triad, where an electron is transferred from PhOH to anthracene, the net

charge transfer between the An and the PhOH–py unit is essentially zero throughout the process.

Moreover, conventional EnT from An to PhOH–py is prohibitively uphill in energy. The coupled

proton transfer lowers the energy of the excited state of PhOH–py and makes energy transfer fea-

sible. It appears that PCEnT can occur when there is no detectable Förster-type spectral overlap

between the donor emission and acceptor absorption spectra (i.e., the An emission and PhOH–py

absorption spectra).43 A nonadiabatic surface crossing mechanism was proposed to describe the

PCEnT process, where thermal fluctuations of the environment lead to a crossing between the LES

and LEPT diabatic electronic states, enabling the electronic energy transfer and proton tunneling to

occur simultaneously.43 However, a rigorous theoretical formulation and an analytical rate constant

expression do not yet exist for PCEnT. Note that the term PCEnT was used previously to indicate

a different type of mechanisms, where EnT is modulated by the presence of a hydrogen bond46 or

the protonation state of the reactant.47 In these cases, proton transfer did not occur, in contrast to

the mechanism discovered in the triad system, where proton transfer is essential to the electronic

energy transfer.

Inspired by the novel PCEnT phenomenon discovered in the triad system, herein we develop an

analytical theory for the PCEnT process. In this theory, the energy transfer is described as a nona-

diabatic transition between two local excited states, and the transferring proton is treated quantum

mechanically. Our group has previously developed a vibronically nonadiabatic PCET theory,48–51

where the reaction is described in terms of nonadiabatic transitions between reactant and prod-

uct electron-proton vibronic states. Despite the fundamental physical distinction between PCEnT

and PCET processes, the mathematical formulation of the problem (i.e., nonadiabatic transitions

between electron-proton vibronic states) is isomorphic. Therefore, an analogous framework can be

adopted.
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An outline of this paper is as follows. First we introduce the diabatic states involved in the

PCEnT process and a model Hamiltonian. Then we use the Fermi golden rule formalism to derive an

expression for the PCEnT rate constant in the vibronically nonadiabatic limit. The final expression

involves what we call the spectral convolution integral. This can be viewed as a generalization of

the Förster-type spectral overlap integral, but the transitions are between electron-proton vibronic

states instead of electronic states. Next we apply this theory to a model system to investigate the

key features of the PCEnT process. The application to a realistic system (e.g., the triad system)

will be the topic of future work. Finally, we discuss how PCEnT could occur when there is no

apparent overlap between experimentally measured donor emission and acceptor absorption spectra

and discuss the similarities and distinctions between PCEnT and PCET theories.

II Theory

A Model Hamiltonian

We start our derivation with the model Hamiltonian for PCEnT. In a PCEnT process, the excitation

energy transfer is coupled with proton transfer (PT). Such a process can be formally expressed as

D∗
en–Dp–H+ · · · Ap–Aen → Den–Dp · · ·+H–Ap–A∗

en (1)

where Den and Aen represent a general excitation energy donor and acceptor, Dp and Ap represent a

general proton donor and acceptor, and H represents the transferring proton. Similar to our theory

for PCET48,49, we can define four electronic diabatic states involved in this process:

(1a) D∗
en–Dp–H+ · · ·Ap–Aen

(1b) D∗
en–Dp · · ·+H–Ap–Aen

(2a) Den–Dp–H+ · · ·Ap–A∗
en

(2b) Den–Dp · · ·+H–Ap–A∗
en

(2)

Here a and b denote whether the proton is bonded to its donor or acceptor, respectively, and 1 and

2 denote whether the excitation is localized on the donor or acceptor, respectively. 1a is the initial

state of PCEnT, and 2b is the final state of PCEnT.

The relative energies of the four diabatic states typically satisfy the following conditions for

PCEnT reactions.50 The energy of the 1b (2a) state is higher than the energy of the 1a (2b) state so

that the proton is more stable on the donor (acceptor) before (after) energy transfer. In addition,
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the energy of the 2a (1b) state is higher than the energy of the 1a (2b) state so that the initial and

final states correspond to the 1a and 2b states. However, the difference between the energies of

the 1a and 2b states could be positive or negative corresponding to an exothermic or endothermic

reaction, respectively.

Representing the Hamiltonian using these diabatic states gives a 4× 4 matrix. It is also useful

to define two auxiliary diabatic states, where neither Den nor Aen is excited:

(Ga) Den–Dp–H+ · · ·Ap–Aen

(Gb) Den–Dp · · ·+H–Ap–Aen

(3)

where G indicates the ground state. Note that PCEnT is a radiationless process, and therefore Ga

and Gb are not actually involved in PCEnT.

Similar to the PCET case,48,49 the electronic coupling between states 1a/1b, 2a/2b, or Ga/Gb is

typically large because of the hydrogen-bonding interaction.49 Thus, we will focus on the regime of

electronically adiabatic PT within states 1, 2, or the ground state in this paper. We can construct

three new electronic states as the following linear combinations of the six diabatic states defined in

Eqs. (2) and (3):

|I⟩ = C1a|1a⟩+ C1b|1b⟩

|II⟩ = C2a|2a⟩+ C2b|2b⟩

|G⟩ = CGa|Ga⟩+ CGb|Gb⟩

(4)

where the expansion coefficients are determined by block diagonalization of each 2 × 2 Hamiltonian.

By construction, |G⟩ is the electronic adiabatic ground state of the system, and |I⟩ and |II⟩ are the

electronic diabatic states corresponding to the reactant and product for PCEnT. The electronic

wave functions for these states are denoted as ψj , where j = G, I, II.

Considering a PCEnT system embedded in solution, the coordinates of the electrons, the trans-

ferring proton, and all other nuclei are denoted as re, rp, and q, respectively. Here q encompasses all

normal mode coordinates of the intramolecular vibrations and the solvent coordinates and hereon

will be referred to as the bath coordinate. The total Hamiltonian of the system is

Ĥ(re, rp, q) = T̂e + T̂p + T̂q + V (re, rp, q) (5)

where T̂e, T̂p, and T̂q are the kinetic energy operators for the electrons, transferring proton, and

bath coordinates, respectively, in the PCEnT system, and V is the potential energy, which includes

the solvent-solvent interaction.
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To obtain the energies and wave functions of the system, we first separate the electronic degrees

of freedom from those of the transferring proton and the bath. The electronic Hamiltonian is

Ĥel(re; rp, q) = T̂e + V (re; rp, q) (6)

The electronic energy for diabatic state |j⟩ is

Ej(rp, q) =
〈
ψj(re; rp, q)

∣∣∣Ĥel

∣∣∣ψj(re; rp, q)
〉

(7)

Separating the transferring proton degrees of freedom from those of the bath, the proton vibrational

states associated with diabatic state |j⟩ are given by[
T̂p + Ej(rp; q)

]
χ(j)
µ (rp; q) = Ejµ(q)χ

(j)
µ (rp; q) (8)

where µ denotes the proton vibrational state, and Ejµ is the electron-proton vibronic energy that

defines the potential energy surface (PES) for the bath. Defining q
(jµ)
eq as the equilibrium position

on the PES corresponding to the vibronic state |jµ⟩, the bath Hamiltonian associated with vibronic

state |jµ⟩ can be expressed as

Ĥ
(jµ)
B (q) = T̂q + Ejµ(q)− Ejµ(q

(jµ)
eq ) (9)

with eigenstates and energies given by

Ĥ
(jµ)
B (q)Θ(jµ)

m (q) = ε(jµ)m Θ(jµ)
m (q) (10)

Note that we have not imposed restrictions on the functional form of Ejµ(q). Therefore, the bath

Hamiltonian in Eq. (9) is able to describe anharmonic solute vibrations, nonlinear solvation effects,

and changes of solute polarizability. Such effects have been shown to be important in electron

transfer reactions.52–54

The total wave function of the system for electronic diabatic state j, proton vibrational state µ,

and bath state m is

Ψjµm(re, rp, q) = ψj(re; rp, q)χ
(j)
µ (rp; q)Θ

(jµ)
m (q) (11)

with corresponding total energy

Ejµm = Ejµ(q
(jµ)
eq ) + ε(jµ)m (12)

For notational simplicity, from hereon we will simply write Ejµ to denote Ejµ(q
(jµ)
eq ), which is

independent of the bath coordinate q.
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The coupling between these states is given by the matrix element Vjµm,kνn = ⟨Ψjµm|Ĥ|Ψkνn⟩.

Applying the Condon approximation, where the vibronic coupling is independent of the bath motion,

Vjµm,kνn = Vjµ,kν⟨Θ(jµ)
m |Θ(kν)

n ⟩ (13)

Here Vjµ,kν =
〈
ψj(re; rp, q

∗)χ
(j)
µ (rp; q

∗)
∣∣∣Ĥel + T̂p

∣∣∣ψk(re; rp, q
∗)χ

(k)
ν (rp; q

∗)
〉

is the vibronic cou-

pling, and q∗ represents a set of fixed bath coordinates. Typically q∗ is chosen to be the crossing

point between the two diabatic vibronic states.

PCEnT corresponds to the transition between diabatic states |I⟩ and |II⟩. Using the matrix

elements calculated above, we obtain the two-level model Hamiltonian for PCEnT:

H =

 EIµ + ε
(Iµ)
m VIµ,IIν⟨Θ(Iµ)

m |Θ(IIν)
n ⟩

VIIν,Iµ⟨Θ(IIν)
n |Θ(Iµ)

m ⟩ EIIν + ε
(IIν)
n

 (14)

In the vibronically nonadiabatic limit, the rate constant can be calculated as a sum over nonradiative

transitions between two sets of quantum states using Fermi’s golden rule:

kPCEnT =
2π

h̄

∑
µ,ν

PIµ|Vµν |2
∑
m,n

f(ε(Iµ)m )
∣∣∣⟨Θ(Iµ)

m |Θ(IIν)
n ⟩

∣∣∣2 δ(EIIν + ε(IIν)n − EIµ − ε(Iµ)m ) (15)

where Vµν is the abbreviation for VIµ,IIν , PIµ is the Boltzmann population for the discrete reactant

electron-proton vibronic state |Iµ⟩, and f(ε(Iµ)m ) is the Boltzmann distribution function for the bath

states associated with vibronic state |Iµ⟩, which is assumed to be a quasi-continuum. We also

assume that PIµ and f(ε
(Iµ)
m ) are separable within the overall Boltzmann distribution of states for

state |Iµm⟩, i.e., f(EIµm) = PIµf(ε
(Iµ)
m ). In other words, the Boltzmann distribution for the bath

states is the same for all proton vibrational states µ.

Up to this step, we have made the following main approximations: (1) the vibronic coupling be-

tween states |Iµ⟩ and |IIν⟩ is small relative to the thermal energy; (2) the bath has quasi-continuum

states; (3) the initial state reaches thermal equilibrium with the bath before the transition occurs; (4)

the Condon approximation, where the vibronic coupling is independent of the bath motion.24,25,55

Assumptions (1) and (2) ensure the validity of Fermi’s golden rule formula, and assumption (3)

allows the use of the equilibrium distribution function when calculating the rate constant. In prin-

ciple, as shown in the development of EnT theories, assumptions (3) and (4) can be lifted, leading

to more complicated expressions.28,30,56 Although the golden rule formalism used in this paper ne-

glects electronic coherence, the theories developed for coherent EnT could be extended to describe

coherent PCEnT.33,37–41
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B General Rate Constant Expression

For any PCEnT process described by Eq. (1), we can partition the total system into two moieties,

denoted as D and A. The energy donor is included in moiety D, and the energy acceptor is included

in moiety A. Depending on the system of interest, there are multiple possibilities to partition the

proton donor and acceptor, such as

D∗
en︸︷︷︸
D

– [Dp–H+ · · ·Ap–Aen]︸ ︷︷ ︸
A

→ Den︸︷︷︸
D

– [Dp · · ·+H–Ap–Aen]
∗︸ ︷︷ ︸

A

(16a)

[Den–Dp–H+ · · · Ap]
∗︸ ︷︷ ︸

D

–Aen︸︷︷︸
A

→ [Den–Dp · · ·+H–Ap]︸ ︷︷ ︸
D

– A∗
en︸︷︷︸
A

(16b)

[Den–Dp]
∗︸ ︷︷ ︸

D

–H+ · · · [Ap–Aen]︸ ︷︷ ︸
A

→ [Den–Dp]︸ ︷︷ ︸
D

· · ·+H– [Ap–Aen]
∗︸ ︷︷ ︸

A

(16c)

Note that the transferring proton is quantized and therefore is not considered to be associated with

either the donor or the acceptor, analogous to the electrons. The following derivations will be the

same regardless of how the proton donor and acceptor are partitioned.

To include both intermolecular and intramolecular PCEnT in a general formula, we assume that

most bath modes are coupled only to either the donor D or the acceptor A, and only a few additional

modes (e.g., the stretch of the bridge or the twist around the bridge for the triads) are coupled to

both moieties. The bath Hamiltonians can thus be decomposed as

Ĥ
(Iµ)
B (q) = Ĥ

(eDµ)
B,D (qD) + Ĥ

(gAµ)
B,A (qA) + Ĥ

(Iµ)
B,com(q

′) (17a)

Ĥ
(IIν)
B (q) = Ĥ

(gDν)
B,D (qD) + Ĥ

(eAν)
B,A (qA) + Ĥ

(IIν)
B,com(q

′) (17b)

Ĥ
(Gσ)
B (q) = Ĥ

(gDσ)
B,D (qD) + Ĥ

(gAσ)
B,A (qA) + Ĥ

(Gσ)
B,com(q

′) (17c)

Here q′ denotes the generalized coordinates of the common modes, which are also indicated by

the “com” subscript on the Hamiltonians. ĤB,D, ĤB,A, and ĤB,com mutually commute because

Hamiltonians for different coordinates commute. With this decomposition, the bath Hamiltonian

associated with moiety D becomes independent of the electronic state of moiety A and vice versa.

The electronic states for ĤB,D and ĤB,A are thus labeled according to whether the donor is in its

ground or excited state (gD or eD) and whether the acceptor is in its ground or excited state (gA or

eA) instead of I and II. The index σ denotes the proton vibrational state associated with electronic

state |G⟩.

The wave functions and energies associated with the bath can also be decomposed:

Θ(Iµ)
m (q) = Θ(eDµ)

m1
(qD)Θ

(gAµ)
m2

(qA)Θ
(Iµ)
m3

(q′) (18a)
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Θ(IIν)
n (q) = Θ(gDν)

n1
(qD)Θ

(eAν)
n2

(qA)Θ
(IIν)
n3

(q′) (18b)

Θ
(Gσ)
l (q) = Θ

(gDσ)
l1

(qD)Θ
(gAσ)
l2

(qA)Θ
(Gσ)
l3

(q′) (18c)

ε(Iµ)m = ε(eDµ)
m1

+ ε(gAµ)
m2

+ ε(Iµ)m3
(19a)

ε(IIν)n = ε(gDν)
n1

+ ε(eAν)
n2

+ ε(IIν)n3
(19b)

ε
(Gσ)
l = ε

(gDσ)
l1

+ ε
(gAσ)
l2

+ ε
(Gσ)
l3

(19c)

The delta function in Eq. (15) becomes

δ(...) = δ(EIIν + ε(gDν)
n1

+ ε(eAν)
n2

+ ε(IIν)n3
− EIµ − ε(eDµ)

m1
− ε(gAµ)

m2
− ε(Iµ)m3

+EGσ − EGσ)

= h̄2
∫∫

dω1 dω2 δ(EGσ + ε(gDν)
n1

− EIµ − ε(eDµ)
m1

+ h̄ω1)

× δ(EIIν + ε(eAν)
n2

− EGσ − ε(gAµ)
m2

− h̄ω2)

× δ(ε(IIν)n3
− ε(Iµ)m3

− h̄(ω1 − ω2)) (20)

In the first line we added and subtracted the same quantity, EGσ, which is the energy of the vibronic

state corresponding to the electronic ground state and proton vibrational state σ. Here |Gσ⟩ is just

an auxiliary state used to simplify the mathematical expression and is not involved in the actual

PCEnT process. Furthermore, the manipulation of the delta function in Eq. (20) is independent of

the choice of σ. For simplicity, we will set σ = 0.

Eq. (20) expresses the original delta function in Eq. (15) as a double integral of three delta

functions. The first term contains an energy difference EG0−EIµ (setting σ = 0), which corresponds

to the de-excitation from vibronic state |Iµ⟩ to |G0⟩ (donor emission). The second term contains an

energy difference EIIν −EG0, which corresponds to the excitation from vibronic state |G0⟩ to |IIν⟩

(acceptor absorption). We define the following transition frequencies:

ωeq,D
µ0 =

EIµ − EG0

h̄
(21a)

ωeq,A
0ν =

EIIν − EG0

h̄
(21b)

Note that we are defining the transition frequencies in a way that they are always greater than

zero, regardless of whether the process is emission or absorption. ωeq,D
µ0 and ωeq,A

0ν will be referred

to as equilibrium transition frequencies because the energies EIµ, EIIν , and EG0 are evaluated when

the bath coordinates are at their equilibrium positions on the corresponding vibronic states (i.e.,
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at each individual vibronic state). These should not be confused with the vertical (Frank-Condon)

transition frequencies, ω⊥,D
µ0 and ω⊥,A

0ν , where the nuclear positions are fixed at the equilibrium

positions of the initial state:

ω⊥,D
µ0 =

EIµ(q
(Iµ)
eq )− EG0(q

(Iµ)
eq )

h̄
= ωeq,D

µ0 − EG0(q
(Iµ)
eq )− EG0(q

(G0)
eq )

h̄
≡ ωeq,D

µ0 −
λDµ0
h̄

(22a)

ω⊥,A
0ν =

EIIν(q
(G0)
eq )− EG0(q

(G0)
eq )

h̄
= ωeq,A

0ν +
EIIν(q

(G0)
eq )− EIIν(q

(IIν)
eq )

h̄
≡ ωeq,A

0ν +
λA0ν
h̄

(22b)

where λDµ0 = EG0(q
(Iµ)
eq ) − EG0(q

(G0)
eq ) is the reorganization energy for donor emission, and λA0ν =

EIIν(q
(G0)
eq )−EIIν(q

(IIν)
eq ) is the reorganization energy for acceptor absorption. These definitions are

schematically illustrated in Figure 2.

En
er

gy

Bath Coordinate

|G0

|I

|II

A
0

D
0

, D
0

eq, D
0

, A
0

eq, A
0

Figure 2: Schematic illustration of the electron-proton vibronic potential energy surfaces as functions

of the bath coordinate q. The transition frequencies ωeq,D
µ0 , ωeq,A

0ν , ω⊥,D
µ0 , and ω⊥,A

0ν are indicated by

single-headed arrows, and λDµ0 and λA0ν are indicated by double-headed arrows. Note that the x-axis

could be viewed as a collective bath coordinate, and the curves could be computed as the potential

of mean force along this collective bath coordinate, in which case the y-axis would be free energy.

Using these definitions and the delta function in Eq. 20, the summation over m and n in Eq. (15)
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becomes

∑
m,n

... = h̄2
∫∫

dω1 dω2

( ∑
m1,n1

f(ε(eDµ)
m1

)
∣∣∣⟨Θ(eDµ)

m1
|Θ(gDν)

n1
⟩
∣∣∣2 δ(ε(gDν)

n1
− ε(eDµ)

m1
+ h̄(ω1 − ωeq,D

µ0 ))

)

×

( ∑
m2,n2

f(ε(gAµ)
m2

)
∣∣∣⟨Θ(gAµ)

m2
|Θ(eAν)

n2
⟩
∣∣∣2 δ(ε(eAν)

n2
− ε(gAµ)

m2
− h̄(ω2 − ωeq,A

0ν ))

)

×

( ∑
m3,n3

f(ε(Iµ)m3
)
∣∣∣⟨Θ(Iµ)

m3
|Θ(IIν)

n3
⟩
∣∣∣2 δ(ε(IIν)n3

− ε(Iµ)m3
− h̄(ω1 − ω2))

)
(23)

The formula in each parenthesis closely resembles the definition of line shape functions in the theory

for optical absorption and emission.25 The difference is that here the transitions are between vibronic

states instead of electronic states. We can define the line shape functions LD,em
µν (ω1 − ωeq,D

µ0 ) and

LA,abs
µν (ω2−ωeq,A

0ν ) for donor emission and acceptor absorption, respectively, as well as a convolution

kernel, Kµν(ω1 − ω2), which describes the line shape of common vibrational modes shared by the

two moieties:

LD,em
µν (ω1 − ωeq,D

µ0 ) = 2πh̄
∑
m1,n1

f(ε(eDµ)
m1

)
∣∣∣⟨Θ(eDµ)

m1
|Θ(gDν)

n1
⟩
∣∣∣2 δ(ε(gDν)

n1
− ε(eDµ)

m1
+ h̄(ω1 − ωeq,D

µ0 )) (24a)

LA,abs
µν (ω2 −ωeq,A

0ν ) = 2πh̄
∑
m2,n2

f(ε(gAµ)
m2

)
∣∣∣⟨Θ(gAµ)

m2
|Θ(eAν)

n2
⟩
∣∣∣2 δ(ε(eAν)

n2
− ε(gAµ)

m2
− h̄(ω2 −ωeq,A

0ν )) (24b)

Kµν(ω1 − ω2) = 2πh̄
∑
m3,n3

f(ε(Iµ)m3
)
∣∣∣⟨Θ(Iµ)

m3
|Θ(IIν)

n3
⟩
∣∣∣2 δ(ε(IIν)n3

− ε(Iµ)m3
− h̄(ω1 − ω2)) (24c)

Substituting these line shape functions and the convolution kernel back into Eq. (15), we have the

following expression for the PCEnT rate constant:

kPCEnT =
1

4π2h̄2

∑
µ,ν

PIµ|Vµν |2
∫∫

dω1 dω2 L
D,em
µν (ω1 − ωeq,D

µ0 )Kµν(ω1 − ω2)L
A,abs
µν (ω2 − ωeq,A

0ν ) (25)

The total PCEnT rate constant is given by a summation of nonadiabatic transitions between all

possible combinations of reactant and product vibronic states. The contribution of each pair of

reactant and product vibronic states is proportional to the spectral convolution integral, which is

a double integral of the donor emission and acceptor absorption spectra convoluted by the kernel

Kµν(ω1 − ω2). The convolution kernel arises from the common vibrational modes shared by the

donor and acceptor moieties.

For intermolecular PCEnT, there are no common vibrational modes. In this case,

Kµν(ω1 − ω2) = 2πδ(ω1 − ω2); for intermolecular PCEnT (26)
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As a result, the spectral convolution integral reverts to a Förster-type spectral overlap integral, and

Eq. (25) becomes

kinterPCEnT =
1

2πh̄2

∑
µ,ν

PIµ|Vµν |2
∫

dω LD,em
µν (ω − ωeq,D

µ0 )LA,abs
µν (ω − ωeq,A

0ν ) (27)

The line shape functions, LD,em
µν (ω − ωeq,D

µ0 ) and LA,abs
µν (ω − ωeq,A

0ν ), depend on the reactant and

product vibronic states µ and ν in two different ways. First, the arguments of the functions,

ω − ωeq,D
µ0 and ω − ωeq,A

0ν , strongly depend on µ and ν. Different µ and ν values will shift these

line shape functions along the ω axis. Second, the functional forms themselves depend on µ and

ν. This dependence arises because the wave functions and energies of the bath, Θ(jµ)
m (q) and ε(jµ)m ,

are determined by the vibronic potential energy surface, which depends on the proton vibrational

states (see Eqs. (9)–(10)). We assume that the shape of the vibronic potential energy surface is

solely determined by the electronic state, and therefore the proton vibrational states just shift the

energy. In this case, the functional forms of LD,em
µν and LA,abs

µν , as well as Kµν , are the same for

every µ and ν pair:

LD,em
µν (ω − ωeq,D

µ0 ) = LD,em(ω − ωeq,D
µ0 ) (28a)

LA,abs
µν (ω − ωeq,A

0ν ) = LA,abs(ω − ωeq,A
0ν ) (28b)

Kµν(ω1 − ω2) = K(ω1 − ω2) (28c)

A similar assumption was also made in our derivation of analytical PCET rate constant expressions,

where we assumed that the reactant and product vibronic free energy surfaces along the collective

solvent coordinates have the same shape for all proton vibrational states (i.e., two sets of stacked

paraboloids), and therefore the reorganization energy is the same for each pair of vibronic states.49,51

This assumption is not strictly valid, but the resulting PCET theory has been able to describe a

wide range of experimental systems.51 With this assumption, Eq. (25) becomes

kPCEnT =
1

4π2h̄2

∑
µ,ν

PIµ|Vµν |2
∫∫

dω1 dω2 LD,em(ω1 − ωeq,D
µ0 )K(ω1 − ω2)LA,abs(ω2 − ωeq,A

0ν ) (29)

This is the general expression for the nonadiabatic PCEnT rate constant. Several specific cases of

this general expression will be given in Sections III and IV below.

Similar to proton transfer and PCET, the PCEnT rate constant will depend on the proton

donor-acceptor distance.50,57–59 The proton donor-acceptor motion can be included in this theory

by thermally averaging the rate constant over this distance. The thermally averaged PCEnT rate
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constant can be expressed as

ktherm-avg
PCEnT =

∫
dRPT kPCEnT(RPT)P (RPT) (30)

where P (RPT) is the probability distribution function for the proton donor-acceptor distance RPT.

Here kPCEnT(RPT) is obtained from the general rate constant expression in Eq. (29), or alternatively

one of the more specific expressions given below, at a series of different values of RPT. In some

cases, alternative treatments of the proton donor-acceptor motion may be warranted (i.e., when this

motion has high frequency or is strongly coupled to the solvent).57–59

C Vibronic Coupling

The vibronic coupling for PCEnT is given by

Vµν =
〈
ψI(re; rp, q

∗)χ(I)
µ (rp; q

∗)
∣∣∣ Ĥel + T̂p

∣∣∣ψII(re; rp, q
∗)χ(II)

ν (rp; q
∗)
〉

≈
〈
χ(I)
µ (rp; q

∗)
∣∣∣Vel(rp) ∣∣∣χ(II)

ν (rp; q
∗)
〉

(31)

where Vel(rp) = ⟨ψI(re; rp, q
∗)|Ĥel|ψII(re; rp, q

∗)⟩ is the electronic coupling, and q∗ denotes a spec-

ified set of fixed bath coordinates, which is typically chosen to be the crossing point of the two

diabatic vibronic states. Note that the second equality is an approximation because the first- and

second-derivative coupling terms related to the derivatives of the electronic wave functions for the

diabatic electronic states I and II with respect to the proton coordinate are assumed to be zero.60

Moreover, since we have applied the Condon approximation for the bath coordinates, Vel is indepen-

dent of q, but it could depend on the position of the transferring proton. In this case, Vel is calculated

as a function of the proton position, and the matrix element in Eq. (31) is computed numerically.

If we also apply the Condon approximation for the proton, assuming that Vel is independent of the

proton coordinate, the vibronic coupling becomes the product of the electronic coupling and the

overlap integral between the reactant and product proton vibrational wave functions:

Vµν = VelSµν (32)

where Sµν = ⟨χ(I)
µ |χ(II)

ν ⟩. We have shown that this Condon approximation for the proton is satisfied

for many PCET systems.61 Morever, this expression corresponds to electronically nonadiabatic

proton transfer within a general semiclassical formulation for the vibronic coupling derived for

PCET.60–62 Note that the vibronic coupling can be much less than the thermal energy even for a

relatively large electronic coupling if the overlap Sµν is sufficiently small.
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The quantity Vel in PCEnT theory is the same as that in Förster-Dexter theory for conven-

tional EnT. Generally, Vel includes contributions from both the Coulomb and exchange interactions

between the electrons. For singlet-singlet PCEnT, when the separation between the donor and ac-

ceptor moieties is large, the exchange interaction can be ignored due to the negligible electronic wave

function overlap. Furthermore, a dipole-dipole approximation can be used to model the Coulomb

interaction, leading to the famous dipole-dipole coupling term in Förster theory:22

V Förster
el ≈ κ

|dD||dA|
R3

(33)

where dD and dA are the transition dipole moments for the donor moiety and acceptor moiety,

respectively. This expression assumes that the electronic wave functions and the transition dipole

moments are real quantities. In addition, κ is the orientational factor, defined as

κ = edD
· edA

− 3(edD
· eR)(edA

· eR) (34)

where ev denotes the unit vector along the direction of vector v, and R is the vector connecting

the donor and acceptor moieties. If the Condon approximation were not made for the proton, Vel

would have exactly the same expression, but the transition dipoles and the orientational factor

would depend on the proton position, potentially leading to additional complications.

The dipole-dipole approximation is valid when the intermolecular distance R is larger than the

size of both parts, typically beyond 10 Å.26,63 For a smaller donor-acceptor separation, higher-order

multipole terms as well as the exchange coupling may also need to be included. However, the

dipole-dipole coupling will still be the dominant contribution even when the intermolecular distance

is smaller than 10 Å.63–65 One exception is triplet-triplet PCEnT, where the Coulomb interaction

vanishes due to the orthogonality of electrons with different spin. This case leads to Dexter-type

exchange coupling:27

V Dexter
el ∝ e

− R
Rmol (35)

which decreases exponentially with R. Here Rmol is a parameter that characterizes the size of the

donor and acceptor moieties. Several methods have been developed to calculate Vel for triplet-triplet

EnT,66 which could also be adopted for PCEnT.
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III Numerical Illustrations

A General Considerations

The physical quantities needed for the practical application of Eq. (29) are listed in Table 1. They

can be grouped into three classes. The first class is the electronic properties of the PCEnT sys-

tem, including the transition dipole moments of the donor and acceptor moieties, dD and dA, the

transition frequencies (including the proton vibrational zero-point energies), ωeq,D/A
00 and ω

⊥,D/A
00 ,

and the potential energy surfaces for the proton, EI(rp) and EII(rp), computed for a specified set

of bath coordinates. In practice, typically the proton potential energy surfaces are assumed to be

one-dimensional proton potential energy curves with shapes that are independent of the bath coor-

dinates. Although different bath coordinates will shift the energies of these proton potentials, such

shifts are already contained in ωeq,D/A
00 and ω⊥,D/A

00 . The transition dipole moments dD and dA can

be used to calculate the electronic coupling Vel using Eq. (33), which is a good approximation for

singlet-singlet PCEnT processes. All these quantities can be calculated using conventional electronic

structure methods such as time-dependent density functional theory (TDDFT) and correlated wave

function methods.

The second class of quantities includes the proton vibrational energy levels, ε(I)µ and ε
(II)
ν , and

wave functions, χ(I)
µ and χ

(II)
ν . They can be calculated numerically by solving the Schrödinger

equation for the proton moving on the potential energy surfaces EI(rp) and EII(rp) using the Fourier

grid Hamiltonian (FGH) method.67 These quantities in turn determine the Boltzmann populations

of the reactant vibronic states, PIµ, the overlap integrals Sµν , and the vibronic transition frequencies,

ωeq,D
µ0 = ωeq,D

00 +
ε
(I)
µ − ε

(I)
0

h̄
(36a)

ωeq,A
0ν = ωeq,A

00 +
ε
(II)
ν − ε

(II)
0

h̄
(36b)

ω⊥,D
µ0 = ω⊥,D

00 +
ε
(I)
µ − ε

(I)
0

h̄
(36c)

ω⊥,A
0ν = ω⊥,A

00 +
ε
(II)
ν − ε

(II)
0

h̄
(36d)

For the third class of quantities, we need to know the functional forms of the line shape functions,

LD,em(ω) and LA,abs(ω), as well as the convolution kernel K(ω). These functions can have arbitrary

forms as long as they are properly normalized:∫ ∞

−∞
LD,em(ω) dω =

∫ ∞

−∞
LA,abs(ω) dω =

∫ ∞

−∞
K(ω) dω = 2π (37)
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Table 1: Physical Quantities Needed to Calculate PCEnT Rate Constant

Class Quantities Calculation

Electronic
structure

dD, dA,
Conventional electronic structure methods
such as TDDFTω

eq,D/A
00 , ω⊥,D/A

00 ,a

EI(rp), EII(rp)

Proton
states

ε
(I)
µ , ε(II)ν ,b Solve 1D Schrödinger equation for proton

using FGH method
χ
(I)
µ , χ(II)

ν

Line shape
functions

LD,em(ω), LA,abs(ω),
K(ω)

Model as Gaussian or Lorentzian line shapes;
Extract from experimental spectra;
Calculate vibrationally resolved electronic spectra

a These frequencies include the proton vibrational zero-point energies.
b ε

(I)
µ and ε

(II)
ν are the proton vibrational energies relative to the minimum of the corresponding

proton potential.

The simplest approach is to model these functions as Gaussian or Lorentzian line shapes. A properly

normalized Gaussian line shape function is given by

L(ω − ω⊥; s) =
2πh̄√
2πskBT

exp

(
− h̄

2(ω − ω⊥)2

2skBT

)
(38)

where s is the Stokes shift in units of energy. For harmonic potential energy surfaces, s = 2λ, where

λ is the reorganization energy for the bath, as defined in Eq. (22). The relationship between ω⊥ and

ωeq is given in the Supplementary Material. A properly normalized Lorentzian line shape function

is

L(ω − ωeq; γ) =
2γ

(ω − ωeq)2 + γ2
(39)

where γ is the parameter determining the spectral width. Note that the Gaussian line shape is

centered at the vertical transition frequency, whereas the Lorentzian line shape is centered at the

equilibrium transition frequency.25 See the Supplementary Material for derivations of the Gaussian

line shape functions.

The advantage of using Gaussian and Lorentzian line shapes is that the spectral convolution

integral can be calculated analytically. On the other hand, these simple models fail to capture

any details of the actual spectra, especially the modulation of the line shape by high-frequency
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vibrational modes (see Supplementary Material). To obtain a better description of these line shape

functions, the vibrationally resolved electronic spectra can be calculated for the donor and acceptor

moieties.68,69 Similar to Förster theory, for intermolecular PCEnT, the spectral line shapes can be

obtained from the spectra of the individual molecules. For intramolecular PCEnT, the line shape

functions for the donor and acceptor moieties will be the same as the line shape functions for the

individual donor and acceptor molecules if the bath modes coupled to only the donor or acceptor

moieties are the same as the bath modes coupled to the individual donor or acceptor molecules.

This assumption is typically valid unless the common modes are strongly coupled with some modes

of the donor or acceptor. If one pair of vibronic states |Gσ⟩ and |Iµ⟩ dominates the donor emission,

and one pair of vibronic states |Gσ⟩ and |IIν⟩ dominates the acceptor absorption, the line shape

functions can be extracted from experimentally measured spectra in a straightforward manner. A

more detailed discussion about the relation between the line shape functions LD,em(ω) and LA,abs(ω)

and the experimentally measured spectra is provided in Section IV.A.

B Examples

In this section, we use a model system to illustrate key features of the PCEnT process. The diabatic

proton potentials, EG(rp), EI(rp), and EII(rp), are modeled as asymmetric double-well potentials.

For simplicity, we assume that EG(rp) and EI(rp) have the same potential energy profile and only

differ by a vertical shift of the energy. Figure 3a schematically depicts these proton potentials

with the transition frequencies ω⊥,D
µ0 and ω⊥,A

0ν annotated. Note that ω⊥,D
µ0 and ω⊥,A

0ν are calculated

at different bath coordinates. For ω⊥,D
µ0 , the bath coordinate is the equilibrium position on state

|I⟩, q
(I)
eq , while for ω⊥,A

0ν , the bath coordinate is q
(G)
eq (see Eq. (22) and Figure 2). As discussed

above, we have assumed that the equilibrium position of the bath coordinate is solely determined

by the electronic state, and the shape of the proton potential is independent of the bath coordinate.

Therefore, changing the bath coordinate just shifts the energy (see black and gray curves in Figure

3a). The line shape functions, LD,em(ω) and LA,abs(ω), are modeled as Gaussian line shapes given

by Eq. (38). For PCEnT, there will be two manifolds of Gaussian line shape functions centered at

ω⊥,D
µ0 or ω⊥,A

0ν . Increasing µ or ν shifts them toward higher frequencies, as illustrated in Figure 3b.

Finally, we assume that the vibronic coupling has the form given in Eq. (32). Eq. (29) can then be
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rewritten using the notations introduced in Eqs. (32) and (38) as

kPCEnT =
1

4π2h̄2
|Vel|2

∑
µ,ν

PIµ|Sµν |2

×
∫∫

dω1 dω2 LD,em(ω1 − ω⊥,D
µ0 ; sD)K(ω1 − ω2)LA,abs(ω2 − ω⊥,A

0ν ; sA) (40)

We investigate how the PCEnT rate constant changes with the relative magnitudes of ω⊥,D
00

and ω⊥,A
00 by fixing ω⊥,D

00 and varying ω⊥,A
00 . This is equivalent to changing the reaction free energy

∆G◦ = GII0 −GI0 of the system. ∆G◦ is related to the frequencies as (see Figure 2)

∆G◦ = h̄(ω⊥,A
00 − ω⊥,D

00 )− (λD00 + λA00) (41)

and the reorganization energy is related to the Stokes shift in Gaussian line shapes via sD = 2λD00

and sA = 2λA00 . Note that the surfaces in Figure 2 are free energy surfaces when they are interpreted

as the potential of mean force along a collective bath coordinate. The values of the parameters Vel,

ω⊥,D
00 , ω⊥,A

00 , sD, and sA used in this model system are listed in Table 2. Note that we simulated a

wide range of ω⊥,A
00 in this model study, corresponding to a ∆G◦ between +0.2 eV to −1.2 eV. A

realistic PCEnT system may not experience such a large range of driving force.

Table 2: Parameters for the Model PCEnT System

Parameter Value

Vel 1 kcal/mol

h̄ω⊥,D
00 2.675 eV

h̄ω⊥,A
00 1.975 – 3.375 eV

sD 0.5 eV

sA 0.5 eV

We first study an intermolecular PCEnT process, where the convolution kernel is given by

Eq. (26). Figure 4a depicts the calculated proton vibrational energy levels and wave functions for

both the reactant (µ = 0) and the product (ν = 0−5). The reactant and product correspond to the

energy localized on the donor (D, state |I⟩) or acceptor (A, state |II⟩), respectively. For simplicity,

the reactant and product proton potentials, EI and EII defined in Eq. 7, are mirror images of each

other about the point rp = 0 for this model system (see Supplementary Material). The reactant

and product states will thus have identical proton vibrational energy levels, and excited proton
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Figure 3: (a) Schematic illustration of the asymmetric double-well proton potentials used in the

model, with the transition frequencies ω⊥,D
µ0 and ω⊥,A

0ν (µ = 0, ν = 1) indicated. The proton

potentials for states |I⟩ (red) and |G(q
(I)
eq )⟩ (gray) are plotted at the equilibrium bath coordinate

for state |I⟩, and the proton potentials for states |G(q
(G)
eq )⟩ (black) and |II⟩ (blue) are plotted at

the equilibrium bath coordinate for state |G⟩. (b) Schematic illustration of the two manifolds of

Gaussian line shape functions LD,em(ω−ω⊥,D
µ0 , sD) and LA,abs(ω−ω⊥,A

0ν , sA) for donor emission and

acceptor absorption.
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Figure 4: (a) Model reactant (red) and product (blue) proton potentials and the associated proton

vibrational energy levels and wave functions. The minimum energy is set to zero for each proton

potential. (b) Square of the proton vibrational overlap integral |Sµν |2 between the first 10 reactant

and product proton vibrational states. Darker color indicates larger overlap.

vibrational wave functions of the reactant and product will also be mirror images of each other.

For this double-well potential, the first and second excited vibrational states are nearly degenerate

and are 0.29 eV and 0.32 eV higher in energy than the ground vibrational state. For the reactant,

the Boltzmann population PIµ of the reactant vibronic states µ = 1 and µ = 2 are only 1.4× 10−5

and 3.3× 10−6, respectively, at 298 K. Despite the low population, however, these excited reactant

vibronic states can still contribute significantly to the overall PCEnT rate constant, as discussed

below. The square of the overlap integral between the reactant and product proton vibrational wave

functions, |Sµν |2, is shown in Figure 4b. The maximum overlap was found for two pairs of vibronic

states, (µ, ν) = (0, 2) and (2, 0).

The calculated spectral convolution integrals Iµν between vibronic states µ and ν are plotted

for h̄ω⊥,A
00 = 3.175 eV and h̄ω⊥,A

00 = 2.175 eV in Figures 5a and 5c, respectively. The quantity Iµν is

defined as the double integral appearing in Eq. (40) and is given by

Iµν =

∫∫
dω1 dω2 LD,em(ω1 − ω⊥,D

µ0 ; sD)K(ω1 − ω2)LA,abs(ω2 − ω⊥,A
0ν ; sA) (42)

For the case of intermolecular PCEnT, K(ω1 − ω2) becomes a delta function (Eq. 26), and the

spectral convolution integral is reduced to a Förster-type spectral overlap integral. However, the

spectra correspond to transitions between vibronic states instead of electronic states. As illustrated

21



Figure 5: (a)(c) Spectral convolution integral Iµν between the first 10 reactant and product vibronic

states. (b)(d) Percentage contribution of each pair of reactant and product vibronic states to the

total PCEnT rate constant. In this model, h̄ω⊥,D
00 = 2.675 eV. In (a) and (b), h̄ω⊥,A

00 = 3.175 eV,

corresponding to ∆G◦ = 0.0 eV. Because ω⊥,A
00 > ω⊥,D

00 , higher µ and lower ν states have the largest

Iµν . In (c) and (d), h̄ω⊥,A
00 = 2.175 eV, corresponding to ∆G◦ = −1.0 eV. Because ω⊥,A

00 < ω⊥,D
00 ,

lower µ and higher ν states have the largest Iµν . Other parameters used for this figure are given in

Table 2, and the convolution kernel is given by Eq. (26), corresponding to intermolecular PCEnT.
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in Figure 3b, both manifolds of Gaussian line shape functions shift toward higher frequencies with

increasing µ or ν. The spectral overlap integral reaches its maximum when ω⊥,A
0ν ≈ ω⊥,D

µ0 . Figure 3b

also shows that when ω⊥,A
00 > ω⊥,D

00 , the transitions from higher µ states to lower ν states will have

larger spectral overlap, whereas when ω⊥,A
00 < ω⊥,D

00 , the transitions from lower µ states to higher

ν states will have larger spectral overlap. This trend is indeed observed in our model system, as

shown in Figures 5a and 5c.

The nonadiabatic rate constant between a pair of vibronic states µ and ν is defined as

kµν =
1

4π2h̄2
|Vel|2PIµ|Sµν |2Iµν (43)

and the percentage contribution of an individual pair of reactant and product vibronic states to the

total PCEnT rate constant is given by

% Contrib. =
kµν
ktot

(44)

where ktot = kPCEnT =
∑

µ,ν kµν . The contributions of each pair of vibronic states to the total

PCEnT rate constant with h̄ω⊥,A
00 = 3.175 eV and h̄ω⊥,A

00 = 2.175 eV cases are shown in Figures 5b

and 5d, respectively. These contributions are determined by a balance among PIµ, |Sµν |2, and Iµν .

When h̄ω⊥,A
00 = 3.175 eV > h̄ω⊥,D

00 , only the following five (µ, ν) pairs of vibronic states contribute

to the total PCEnT rate constant: (0, 0), (0, 1), (0, 2), (1, 0), and (2, 0). Each pair has comparable

contributions. The transitions from excited reactant vibronic states to the ground product vibronic

state, (1, 0) and (2, 0), have significantly larger spectral convolution integrals Iµν than the other

three transitions by 2 to 6 orders of magnitude (Figure 5a and Table S3). The overlap between

the proton vibrational wave functions is also sizable for these two pairs of states. Therefore, they

have significant contributions to the overall PCEnT rate constant despite small reactant vibronic

state Boltzmann populations PIµ. On the other hand, the transitions from the ground reactant

vibronic state to the ground and excited product vibronic states, (0, 0), (0, 1), and (0, 2), have a

large reactant vibronic state Boltzmann population, but the overlap between the proton vibrational

wave functions is very small for the pair (0, 0), and the spectral convolution integral is extremely

small for pairs (0, 1) and (0, 2). A balance of all these effects leads to comparable contributions of the

five pairs of vibronic states to the total PCEnT rate constant, which is 4.2×108 s−1. The numerical

values of PIµ, |Sµν |2, and Iµν for the (0, 0), (0, 1), (0, 2), (1, 0), and (2, 0) pairs are provided in Table

S3.

When h̄ω⊥,A
00 = 2.175 eV < h̄ω⊥,D

00 , only the (0, 1) and (0, 2) pairs of vibronic states contribute

to the total PCEnT rate constant. For these two pairs, all three quantities, PIµ, |Sµν |2, and Iµν , are
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sizable. Specifically, the (0, 2) pair has 1.6-fold larger |Sµν |2 and 1.3-fold larger Iµν than the (0, 1)

pair. Therefore, the contribution of the (0, 2) pair is about 2-fold larger than the contribution of

the (0, 1) pair. The relatively large values of PIµ, |Sµν |2, and Iµν for the two contributing pairs of

vibronic states lead to a significantly larger PCEnT rate constant (2.3× 1013 s−1) compared to the

previous case with h̄ω⊥,A
00 = 3.175 eV. The numerical values of PIµ, |Sµν |2, and Iµν for the (0, 1)

and (0, 2) pairs are provided in Table S3.

Figure 6a (black line) shows the total PCEnT rate constant as a function of the PCEnT driving

force −∆G◦. This model PCEnT system exhibits an inverted region when −∆G◦ > 0.8 eV, where

the rate constant decreases with increasing driving force. This type of inverted region behavior has

also been observed in both EnT70 and PCET71,72 systems. As discussed previously for PCET,71,72

inverted region behavior can be observed when the overlap integrals Sµν for higher product proton

vibrational states become negligible due to phase cancellation. This behavior is found mainly for

asymmetric double-well potentials with relatively low barriers, corresponding to hydrogen-bonded

systems. The same phenomenon can be observed for PCEnT for these types of systems, although

additional complexity is introduced by the spectral convolution integral. Figure 6b (black line) shows

the kinetic isotope effect (KIE), which is defined as the ratio between the PCEnT rate constant

for hydrogen and deuterium, as a function of the driving force. The KIE has a non-monotonic

dependence on the driving force, and an inverse KIE (< 1) is found at ∆G◦ ≈ −1.0 eV. Such

behavior has been observed in model PCET systems with similar asymmetric double-well proton

potentials.71 Note that the driving force dependence of the rate constant and KIE observed for this

model system may not be directly transferrable to experimental PCEnT systems. The behavior of

experimentally studied systems will strongly depend on the shape of the proton potential profiles

and the spectral line shape functions.

Next we examine the influence of common vibrational modes shared by the donor and acceptor

moieties on the total rate constant and KIE in an intramolecular PCEnT system. We assume a

Gaussian line shape for K(ω1 − ω2):

K(ω1 − ω2) =
2πh̄√

2πscomkBT
exp

(
−(h̄(ω1 − ω2)− scom/2)

2

2scomkBT

)
(45)

where scom is the Stokes shift for the common modes. From a physical perspective, scom characterizes

the reorganization of the common modes during PCEnT, where a larger scom indicates a larger

change in the common mode coordinates. For this analysis, scom = 0.2 or 0.6 eV. The calculated

total PCEnT rate constant and KIE are shown in Figure 6. The presence of common vibrational
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Figure 6: Driving force dependence of (a) total PCEnT rate constant and (b) KIE for a model

system. The results for intermolecular PCEnT with no common modes are shown in black. The

results for intramolecular PCEnT with common modes corresponding to scom = 0.2 eV and scom =

0.6 eV are shown in orange and green, respectively.

modes shifts the maximum of the log k vs. −∆G◦ curve to the right, and larger scom leads to a

larger shift. At lower driving force, the common modes slow down PCEnT, while at larger driving

force, the common modes speed up PCEnT. The non-monotonic change of the KIE as a function

of −∆G◦ remains the same with the presence of common modes, but the peak value of the KIE

becomes smaller. Both effects arise because the convolution with K(ω1 − ω2) changes the spectral

convolution integral Iµν .

For this model system, when ω⊥,A
0ν < ω⊥,D

µ0 , the common modes increase Iµν , whereas when

ω⊥,A
0ν > ω⊥,D

µ0 , the common modes decrease Iµν . When h̄ω⊥,A
00 = 3.175 eV > h̄ω⊥,D

00 , the common

modes decrease Iµν for the pairs that contribute the most to the total PCEnT rate constant (Figures

5a and S2a) and thus slow down intramolecular PCEnT. When h̄ω⊥,A
00 = 2.175 eV < h̄ω⊥,D

00 ,

the common modes increase Iµν for the pairs that contribute the most to the total PCEnT rate

constant (Figures 5c and S2c) and therefore speed up the overall PCEnT process. The behavior of

physically realistic systems will depend strongly on the shape of the proton potentials, the spectral

line shape functions, and the convolution kernel. In summary, if some high-frequency vibrational

modes (i.e., stretches) are shared by the donor and acceptor moieties, scom can be large, and these

common modes can significantly influence the PCEnT rate constant and KIE. Conversely, if only

low-frequency modes (i.e., dihedral twists) are shared by the donor and acceptor moieties, scom is
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small, and the influence of the common modes may be negligible.

IV Discussion

A Connection to the Overlap of Experimentally Measured Spectra

Previous experiments on the triad system43 suggested that PCEnT could occur without any de-

tectable overlap between the donor (An) emission and acceptor (PhOH-py) absorption spectra. We

emphasize that these experimentally measured spectra are not the same as the spectra LD,em(ω −

ωeq,D
µ0 ) and LA,abs(ω−ωeq,A

0ν ) used in Eq. (29). LD,em(ω−ωeq,D
µ0 ) and LA,abs(ω−ωeq,A

0ν ) describe the

line shape of the transition between specific vibronic states, |Iµ⟩ → |G0⟩ and |G0⟩ → |IIν⟩, but the

experimentally measured spectra intrinsically include the contributions of all vibronic (i.e., proton

vibrational) states. Using Fermi’s golden rule formula, we can derive the following expressions for

L̃D,em(ω) and L̃A,abs(ω), which are the line shape functions of experimentally measured spectra:

L̃D,em(ω) =
∑
µ,σ

PIµ|Sµσ|2LD,em(ω − ωeq,D
µσ ) (46a)

L̃A,abs(ω) =
∑
σ,ν

PGσ|Sσν |2LA,abs(ω − ωeq,A
σν ) (46b)

where σ denotes a proton vibrational state on the electronic ground state. Note that these ex-

pressions are not restricted to any specific line shapes, so the more general notation for line shape

functions in Eq. (29) is used. The experimentally measured absorbance and fluorescence intensities

are proportional to these line shape functions:28

Emission Intensity ∝ ω3L̃D,em(ω) (47a)

Absorbance ∝ ωL̃A,abs(ω) (47b)

Eq. (46) indicates that the experimentally measured donor emission and acceptor absorption

spectra are weighted sums of the line shape functions for transitions between vibronic states. The

main peaks correspond to vibronic transitions that have significant PIµ|Sµσ|2 and PGσ|Sσν |2 weight-

ings. For the model system with h̄ω⊥,A
00 = 3.175 eV, the dominant vibronic transitions to the total

line shape functions L̃D,em(ω) and L̃A,abs(ω) are |I0⟩ → |G0⟩ for donor emission and |G0⟩ → |II2⟩

for acceptor absorption. The spectral overlap integral between L̃D,em(ω) and L̃A,abs(ω) is∫
dω L̃D,em(ω)L̃A,abs(ω) =

∑
µ,ν,σ,σ′

PIµPGσ′ |Sµσ|2|Sσ′ν |2
∫

dω LD,em(ω − ωeq,D
µσ )LA,abs(ω − ωeq,A

σ′ν )

(48)
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For the model system with h̄ω⊥,A
00 = 3.175 eV, this integral is approximately

∫
dω L̃D,em(ω)L̃A,abs(ω)

≈
∫

dω LD,em(ω−ωeq,D
00 )LA,abs(ω−ωeq,A

02 ) when only the dominant vibronic transitions to the total

line shape functions are included. The separation between the peaks of L̃D,em(ω) and L̃A,abs(ω) is

0.82 eV. As shown in Figure 7a, L̃D,em(ω) and L̃A,abs(ω) have no apparent spectral overlap.

However, our calculation shows that this model system has a fairly large PCEnT rate constant

of 4.2× 108 s−1. For the simplest case with no common modes and the vibronic coupling given by

Eq. (32), the PCEnT rate constant is

kPCEnT =
1

2πh̄2
|Vel|2

∑
µ,ν

PIµ|Sµν |2
∫

dω LD,em(ω − ωeq,D
µ0 )LA,abs(ω − ωeq,A

0ν ) (49)

In contrast to the experimentally measured spectra, the pairs of vibronic states that dominate the

PCEnT rate constant are determined by a balance among PIµ, |Sµν |2, and Iµν , which is the integral

over ω in Eq. (49). Thus, the vibronic states that dominate the donor emission and acceptor absorp-

tion spectra may not be the same as the vibronic states that dominate the PCEnT rate constant.

Note that the overlap Sµν in the donor emission and acceptor absorption spectra involves proton

vibrational wave functions in an excited electronic state (donor or acceptor) and the ground elec-

tronic state, whereas the overlap in the PCEnT rate constant expression involves proton vibrational

wave functions in the donor and acceptor excited electronic states. For the model system with

h̄ω⊥,A
00 = 3.175 eV, the (0, 0) pair dominates the PCEnT rate constant (Figure 5b). The separation

between the peaks of LD,em(ω1 − ωeq,D
00 ) and LA,abs(ω2 − ωeq,A

00 ) is 0.5 eV, leading to more signif-

icant spectral overlap (Figure 7b) and enabling PCEnT. In summary, the pairs of vibronic states

that contribute the most to the PCEnT rate constant may correspond to spectroscopically dark

states. Therefore, PCEnT could occur even when there is no apparent spectral overlap between the

donor emission and acceptor absorption. The optically dark states have also been proposed to play

important roles in certain conventional EnT processes.26,73

As mentioned in the previous section, the line shape functions L(ω), which are input quantities

to the PCEnT rate constant expression in Eq. (29), can be extracted from experimental spectra.

The experimentally measured spectra provide L̃(ω), which are related to the line shapes L(ω) that

appear in the PCEnT rate constant expression through Eq. (46). In practice, PIµ, PGσ, |Sµσ|2, and

|Sσν |2 can be calculated by solving the 1D Schrödinger equation for the proton potentials using the

FGH method. The resulting proton vibrational wave functions and corresponding overlap integrals

in turn determine the contributions of transitions |Iµ⟩ → |Gσ⟩ and |Gσ⟩ → |IIν⟩ to the total line

shape functions L̃(ω). If one transition dominates, such as |Iµ∗⟩ → |Gσ∗⟩ and |Gσ∗⟩ → |IIν∗⟩, we
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Figure 7: (a) Plots of the total donor emission and acceptor absorption line shape functions,

L̃D,em(ω) and L̃A,abs(ω), for the model system with h̄ω⊥,A
00 = 3.175 eV. (b) Plots of the line shape

functions LD,em(ω1 − ωeq,D
µ0 ) and LA,abs(ω2 − ωeq,A

0ν ) for the (0, 0) pair, which has the dominant

contribution to the total PCEnT rate constant for the model system with h̄ω⊥,A
00 = 3.175 eV.
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can use Eq. (46) to approximate LD,em(ω−ωeq,D
µ∗σ∗) as L̃D,em(ω) and LA,abs(ω−ωeq,A

σ∗ν∗) as L̃A,abs(ω).

Note that σ∗ can be different for the donor emission and acceptor absorption. Since the line shapes

are assumed to be independent of the proton vibrational state, the input quantities for Eq. (29),

LD,em(ω−ωeq,D
µ0 ) and LA,abs(ω−ωeq,A

0ν ), can be obtained by simply changing the arguments. If there

is not a single dominant transition, the line shape functions L(ω) could be obtained from Eq. (46)

numerically.

B Connection to PCET Theory

Lastly, we compare this PCEnT theory to the PCET theory previously developed in our group.49–51

The two-level model Hamiltonian for PCEnT in Eq. (14) is formally the same as the model Hamil-

tonian for a PCET system.49 In the vibronically nonadiabatic limit, both the PCET and PCEnT

theories are derived from Fermi’s golden rule formula. These two theories are therefore closely con-

nected to each other. If we assume Gaussian line shapes for LD,em(ω), LA,abs(ω), and K(ω1 − ω2),

given in Eqs. (38) and (45), The spectral convolution integral can be calculated analytically, which

leads to

khigh-T
PCEnT =

2π

h̄

∑
µ,ν

PIµ|Vµν |2
1√

4πλtotkBT
exp

[
−(∆Gµν + λtot)

2

4λtotkBT

]
(50)

where ∆Gµν = GIIν −GIµ, and λtot = (sD + sA + scom)/2. Eq. (50) is formally the same expression

as the rate constant for vibronically nonadiabatic PCET processes. In the derivation of the PCET

rate constant, we used the multistate continuum model and assumed the high-temperature limit

for the bath.49 This high-temperature assumption is equivalent to a classical treatment of the bath

degrees of freedom.55 In PCEnT theory, if we model the bath modes as a set of harmonic oscillators

and take the low-frequency limit, both the line shape functions and the convolution kernel become

Gaussian line shapes (see Supplementary Material for full derivation). Therefore, the use of Gaussian

line shape functions implies a classical assumption for the bath where kBT ≫ h̄ωbath. The rate

constant expressions for PCET and Eq. (50) are formally identical because they are both based

on the same two-level model Hamiltonian with the same high-temperature approximation for the

bath. Interestingly, in this case the PCEnT process can be viewed in terms of direction transitions

between vibronic states Iµ and IIν, rather than an emission and absorption process involving the

ground electronic state.

Conversely, if we relax the linear response and high-temperature assumptions in the PCET

theory,48,49 we would arrive at an expression similar to Eq. (29). Analogous to electron transfer,25 the
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donor emission and acceptor absorption spectra could be interpreted in terms of spectra associated

with removing an electron from the donor and adding an electron to the acceptor. Moreover, for

the PCET case, the solvent bath modes may be more important.

However, we emphasize that PCET and PCEnT theories are fundamentally distinct. There

are two key differences. First, Eq. (50) is only a special case to the general expression given in

Eq. (29). Any arbitrary type of line shape functions, including those with structure and multiple

peaks, can be used to calculate the PCEnT rate constant. Using other types of line shape functions

could lead to significantly different behavior (e.g., KIE, driving force dependence, and so forth)

in a PCEnT system compared to a PCET system. Second, the characters of the initial and final

states are different in PCEnT and PCET. For PCEnT, the initial and final electronic states are two

local excited states corresponding to electronic energy transfer. For singlet-singlet energy transfer,

the electronic coupling is typically dominated by the long-range Coulomb interaction between the

transition dipole moments of the donor and acceptor moieties and has an inverse sixth power

dependence on the donor-acceptor separation. In contrast, the initial and final states for PCET

correspond to ET states, where an electron has transferred from one moiety to another, thereby

involving significant charge rearrangement. The electronic coupling is thus more short-ranged in

PCET and typically depends exponentially on the donor-acceptor separation.

This analysis provides some guidelines for distinguishing between PCET and PCEnT processes.

Measuring the dependence of the rate constant on the donor-acceptor distance could be one way

to experimentally distinguish between photoinduced PCEnT and PCET processes, although this

distinction may be less clear for Dexter-type energy transfer. Another diagnostic could be to measure

the change in the molecular dipole moment to determine if electron transfer has occurred. For

certain systems, such as the triads shown in Figure 1, the PCET and PCEnT process are clearly

distinguishable based on the characteristics of the excited electronic states. Specifically, PCET

involves electron transfer to the anthracene, resulting in a significant change in the molecular dipole

moment, whereas PCEnT does not involve any charge transfer to the anthracene. For other systems,

the distinction may not be as obvious.

V Conclusion

PCEnT is a recently discovered photochemistry mechanism where the transfer of electronic exci-

tation energies between chromophores is coupled to a proton transfer reaction. In this paper, we
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derived an analytical expression for the PCEnT rate constant in the vibronically nonadiabatic limit.

The final formula, Eq. (29), is expressed as a summation of the nonadiabatic transitions between all

pairs of reactant and product vibronic states µ and ν. The contribution of each (µ, ν) pair to the

overall PCEnT rate constant is proportional to the spectral convolution integral, which is a double

integral of the donor emission and acceptor absorption spectra convoluted by the kernel K(ω1−ω2).

The spectral line shape functions associated with emission and absorption are defined in terms of

transitions between vibronic states instead of electronic states. The convolution kernel arises from

the common bath modes shared by the donor and acceptor moieties, such as the solute vibrational

modes associated with the bridge connecting the donor and acceptor for intramolecular PCEnT.

The contribution of each (µ, ν) pair to the overall PCEnT rate constant is also proportional to the

square of the vibronic coupling |Vµν |2, which in certain limits can be calculated as a product of the

electronic coupling and the overlap integral between reactant and product proton vibrational wave

functions. The electronic coupling can be calculated with the same expressions as used in Förster

and Dexter theories for EnT. Thus, Eq. (29) is valid for both intermolecular and intramolecular

PCEnT and can be applied to both singlet-singlet and triplet-triplet PCEnT.

We illustrated the practical application of this theory for a model PCEnT system. We calculated

the total PCEnT rate constant and the contribution of each (µ, ν) pair under two different condi-

tions: the acceptor absorption frequency is higher or lower than the donor emission frequency. For

both cases, we found significant contributions from the excited vibronic states. These contributions

are determined by a subtle balance among the initial vibronic state population, the overlap between

the reactant and product proton vibrational wave functions, and the spectral convolution integral

between the vibronic states. We also studied the influence of the common vibrational modes on

the PCEnT rate constant. Depending on the driving force and other characteristics of the system,

the common modes can either slow down or speed up the process. The effect is more pronounced

if there are some high-frequency modes shared by the donor and acceptor. Similar to conventional

EnT and PCET, PCEnT could also exhibit an inverted region, where the rate constant decreases

with increasing driving force, under certain conditions. Our analysis also suggests that PCET and

PCEnT could be distinguished experimentally by measuring the dependence of the rate constant

on the distance between the electron or energy donor and acceptor. Conventional EnT and PCEnT

could be distinguished experimentally by measuring the KIE, although contributions from excited

vibronic states may complicate this analysis.51

Lastly, we showed how PCEnT could occur even when there is no apparent overlap between the
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donor emission and acceptor absorption spectra. Although the experimentally measured spectra

contain contributions from all proton vibrational states, the vibronic transitions with significant

overlap between proton vibrational wave functions associated with the donor or acceptor excited

electronic state and the ground electronic state will dominate these spectra. In contrast, the pairs of

vibronic states that dominate the PCEnT rate constant typically have significant overlap between

proton vibrational wave functions associated with the excited electronic states of the donor and

acceptor. Thus, the vibronic states that dominate the donor emission and acceptor absorption

spectra may not be the same as the vibronic states that dominate the PCEnT rate constant.

As a result, the PCEnT process could be dominated by vibronic transitions that correspond to

spectroscopically dark states. The theory presented in this paper is a powerful tool for understanding

the underlying physical principles of PCEnT processes and can be used to guide the design of new

PCEnT systems.

Supplementary Material

Derivations of line shape functions, construction of asymmetric double-well proton potentials, and

additional numerical results.
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