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Abstract

Proton transfer and hydrogen tunneling play key roles in many processes of chemical and
biological importance. The generalized nuclear-electronic orbital multistate density functional
theory (NEO-MSDFT) method was developed in order to capture hydrogen tunneling effects
in systems involving the transfer and tunneling of one or more protons. The generalized NEO-
MSDFT method treats the transferring protons quantum mechanically on the same level as
the electrons and obtains the delocalized vibronic states associated with hydrogen tunneling
by mixing localized NEO-DFT states in a nonorthogonal configuration interaction scheme.
Herein, we present the derivation and implementation of analytical gradients for the generalized
NEO-MSDFT vibronic state energies and the nonadiabatic coupling vectors between these
vibronic states. We use this methodology to perform adiabatic and nonadiabatic dynamics
simulations of the double proton transfer reactions in the formic acid dimer and the heterodimer
of formamidine and formic acid. The generalized NEO-MSDFT method is shown to capture the
strongly coupled synchronous or asynchronous tunneling of the two protons in these processes.
Inclusion of vibronically nonadiabatic effects is found to significantly impact the double proton
transfer dynamics. This work lays the foundation for a variety of nonadiabatic dynamics
simulations of multiple proton transfer systems, such as proton relays and hydrogen-bonding
networks.
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1. Introduction

Proton transfer and hydrogen tunneling are central to many processes of chemical and biological

interest,1–4 including photosynthesis5 and enzymatic activity.6,7 Capturing hydrogen tunneling ef-

fects is challenging due to the need to account for the delocalization of the tunneling proton(s). The

nuclear-electronic orbital (NEO) method provides an elegant framework in which this behavior can

be captured directly within quantum chemical calculations. The NEO method is a multicomponent

quantum chemistry approach in which both the electrons and select nuclei, usually protons, are

quantized and treated with molecular orbital techniques.8,9 This method incorporates the nuclear

quantum effects of the quantized protons, such as zero-point energy and nuclear delocalization, into

quantum chemical calculations. The NEO method still invokes the Born-Oppenheimer separation

between the quantum and classical subsystems, but the quantum subsystem is composed of both the

electrons and the quantized protons, and the classical subsystem is composed of the other, typically

heavier, nuclei. Therefore, in trajectory-based NEO quantum dynamics methods,10,11 the classi-

cal nuclei move on vibronic surfaces instead of conventional Born-Oppenheimer electronic surfaces.

These vibronic surfaces inherently include contributions from the zero-point energy and nuclear

delocalization of the quantized protons.

Many methods based on both wave function theory8,9,12,13 and density functional theory

(DFT)14–17 have been developed within the NEO framework. NEO-DFT has proven to be par-

ticularly useful in simulating proton transfer dynamics due to its balance between computational

cost and accuracy.10,18–20 An important aspect of NEO-DFT is the incorporation of electron-proton

correlation (epc) effects via the epc functionals.10,15,16 Real-time NEO time-dependent DFT (RT-

NEO-TDDFT) methods have been applied to gas phase proton transfer systems,18,20 as well as

polaritonic,21 plasmonic,22,23 and condensed phase systems.24 However, the description of hydro-

gen tunneling systems, where the vibrational wave function of the tunneling proton must delocalize

over both wells of a symmetric or nearly symmetric double-well potential,25–27 is challenging within

the NEO framework. In NEO-DFT, the proton densities tend to localize on one side of a hydrogen

tunneling system, corresponding to localization in one well of a symmetric double-well potential,

leading to incorrect, symmetry-broken solutions.9,28,29 This localization is mainly due to the lack
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of static electron-proton correlation in NEO-DFT, which uses a single product of electronic and

protonic Slater determinants as the reference, although dynamical correlation could also play a role.

To properly describe hydrogen tunneling systems within the NEO-DFT framework, we devel-

oped the nuclear-electronic orbital multistate density functional theory (NEO-MSDFT) method. 30

Similar to the conventional MSDFT method devised by Gao and coworkers,31–34 the delocalized

vibronic states characteristic of hydrogen tunneling systems are obtained by linearly combining lo-

calized NEO-DFT states in a nonorthogonal configuration interaction (NOCI)35,36 scheme. This

strategy directly incorporates both static electron-proton correlation (via the NOCI expansion) and

dynamical electron-proton correlation (via the epc functional) into the resulting adiabatic NEO-

MSDFT vibronic states. Our previous studies showed that NEO-MSDFT calculations with two

localized NEO-DFT states in the NOCI expansion produces bilobal proton densities and accurate

hydrogen tunneling splittings for a variety of hydrogen tunneling systems with one quantum pro-

ton.30 Moreover, our generalized NEO-MSDFT method,37 which allows for an arbitrary number of

localized NEO-DFT states in the NOCI expansion, was shown to produce bilobal proton densities

and accurate hydrogen tunneling splittings for systems involving multiple proton transfers.

In the conventional picture of hydrogen tunneling, the vibrational wave function of the tunneling

proton delocalizes over both wells of a double-well potential when the two minima become degenerate

or near-degenerate due to changes in the molecular and/or condensed phase environment. During

adiabatic dynamics, where the proton remains in its vibrational ground state, the proton tunnels

from the donor well to the acceptor well if the proton potential starts with the donor well lower

in energy and ends with the acceptor well lower in energy, passing through a symmetric or nearly

symmetric proton potential (left to right in top row of Figure 1). However, nonadiabatic effects

among the proton vibrational states can inhibit this tunneling from the donor well to the acceptor

well38 and must be taken into account for an accurate description of hydrogen tunneling dynamics.

In the context of NEO-MSDFT, the nonadiabatic effects between the ground and first excited

vibronic NEO-MSDFT states must be considered in the description of hydrogen tunneling. Nonadia-

batic dynamics methods,39–44 such as Ehrenfest45 and surface hopping dynamics,38,46,47 can be used

to incorporate such effects in hydrogen tunneling simulations. In previous studies, we derived and

implemented analytical gradients of the NEO-MSDFT vibronic state energies with respect to the
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classical nuclear coordinates,48 as well as the nonadiabatic coupling vectors between these vibronic

states, and investigated the nonadiabatic dynamics of hydrogen tunneling in the intramolecular

proton transfer of malonaldehyde.11 However, the methods employed to calculate these analytical

gradients and nonadiabatic coupling vectors were specific to systems with only a single quantum

proton and two localized NEO-DFT states.

Figure 1. Schematic of double-well proton potentials for the double proton transfer process corre-
sponding to a system such as the formic acid dimer (FAD) or formamidine-formic acid heterodimer
(FFAH) shown in Scheme 1. For the first (second) proton, the donor well is on the left (right), and
the acceptor well is on the right (left). The ground and first excited proton vibrational states are
represented by a solid blue line and a dashed red line, respectively. Due to fluctuations in the molec-
ular structure and/or condensed phase environment, the potentials evolve from being asymmetric
(left panels) to symmetric (middle panels) to asymmetric (right panels). The proton vibrational
wave functions are localized in one well for the asymmetric proton potentials but are delocalized
over both wells for the symmetric proton potential.

Herein, we present a general approach for computing the analytical gradients of the NEO-

MSDFT vibronic state energies and the nonadiabatic coupling vectors between these vibronic states.

This approach is amenable to the generalized NEO-MSDFT method, thus allowing for the simula-

tion of processes involving multiple proton transfer reactions. To demonstrate the capabilities of

the generalized NEO-MSDFT method and the new scheme for computing analytical gradients and

nonadiabatic coupling vectors, we performed nonadiabatic dynamics simulations of the intermolecu-

lar double proton transfer reactions of the formic acid dimer (FAD)49–53 and the formamidine-formic
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acid heterodimer (FFAH),54–56 as shown in Scheme 1. These simulations showcase the underlying

physical principles of these types of double proton transfer reactions. In particular, these simula-

tions capture the correlated tunneling behavior of the two protons in a manner shown schematically

in Figure 1. We emphasize that these two dimeric systems are used to illustrate the capabilities of

the NEO-MSDFT approach, and the simulations are not intended to be a comprehensive study of

the dynamics or to be comparable to experiments.
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Scheme 1. Double proton transfer mechanisms with arrows pointing in the direction of
proton transfer.

This paper is organized as follows. Section 2 provides an overview of the generalized NEO-

MSDFT method, presents the new methodology to compute the analytical gradients and nona-

diabatic coupling vectors for NEO-MSDFT vibronic states, and explains how these methods are

combined with adiabatic, Ehrenfest, and surface hopping dynamics. Section 3 provides the compu-

tational details of the simulated double proton transfer reactions. Section 4 gives the results of the

dynamics simulations of the two dimeric systems, and Section 5 summarizes this work and outlines

future directions.

2. Theory and Methods

2.1. Overview of the Generalized NEO-MSDFT Method

In this subsection, we provide a summary of the generalized NEO-MSDFT method for multiple

proton transfer systems. Consider a system with N transferring protons, each subject to a double-

well potential in the conventional Born-Oppenheimer picture. Quantizing each of these protons

within the NEO framework allows the construction of 2N localized NEO-DFT states, one for each

combination of the quantized protons being localized in their donor or acceptor wells. In NEO-
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MSDFT, we first solve for all NEO-DFT states {|Ψ̃0⟩, |Ψ̃1⟩, . . . |Ψ̃n⟩}, where n = 2N − 1 and each

NEO-DFT state |Ψ̃i⟩ is the product of an electronic and protonic Kohn-Sham determinant. These

NEO-DFT states are then used as a diabatic basis with which to expand the set of adiabatic NEO-

MSDFT states {|Ψ0⟩, |Ψ1⟩, . . . |Ψn⟩}:

|Ψ0⟩ = D0
0|Ψ̃0⟩+D0

1|Ψ̃1⟩+ · · ·+D0
n|Ψ̃n⟩

|Ψ1⟩ = D1
0|Ψ̃0⟩+D1

1|Ψ̃1⟩+ · · ·+D1
n|Ψ̃n⟩

...
...

...

|Ψn⟩ = Dn
0 |Ψ̃0⟩+Dn

1 |Ψ̃1⟩+ · · ·+Dn
n|Ψ̃n⟩

(1)

In practice, all 2N possible diabatic NEO-DFT states do not need to be included for an N -proton

transfer system, but here we include all diabatic states for the purpose of providing the working

equations for the method. The coefficients in Eq. (1) are found by solving the 2N × 2N generalized

matrix eigenvalue problem

HD = SDE (2)

The overlap matrix S contains the overlaps between the localized diabatic states

S =



S00 S01 · · · S0n

S10 S11 · · · S1n

...
...

. . .
...

Sn0 Sn1 · · · Snn


=



1 ⟨Ψ̃0|Ψ̃1⟩ · · · ⟨Ψ̃0|Ψ̃n⟩

⟨Ψ̃1|Ψ̃0⟩ 1 · · · ⟨Ψ̃1|Ψ̃n⟩
...

...
. . .

...

⟨Ψ̃n|Ψ̃0⟩ ⟨Ψ̃n|Ψ̃1⟩ · · · 1


(3)

The Hamiltonian matrix H is given by

H =



H00 H01 · · · H0n

H10 H11 · · · H1n

...
...

. . .
...

Hn0 Hn1 · · · Hnn


(4)

The diagonal matrix elements Hii for i ∈ {0, 1, . . . , n} are simply the NEO-DFT energies of the lo-
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calized diabatic states. Specifically, Hii = ENEO-DFT
i

[
ρe
i , ρ

p
i

]
, where ρ

e(p)
i is the electronic (protonic)

density of the diabatic state |Ψ̃i⟩. The off-diagonal matrix elements Hij for i ̸= j are computed

analogously to the conventional MSDFT method.32,33,57 These terms are given by

Hij = Hji = ⟨Ψ̃i|ĤNEO|Ψ̃j⟩+
1

2
Sij(E

corr
i + Ecorr

j ) (5)

Here ⟨Ψ̃i|ĤNEO|Ψ̃j⟩ is the energy computed with the NEO Hamiltonian ĤNEO at the NEO Hartree-

Fock (NEO-HF) level with the NEO Kohn-Sham determinants of diabatic states |Ψ̃i⟩ and |Ψ̃j⟩.

Moreover, Ecorr
i for i ∈ {0, 1, . . . , n} is the correlation energy for diabatic state |Ψ̃i⟩, defined

as the difference between the NEO-DFT and NEO-HF energies: Ecorr
i = ENEO-DFT

i

[
ρe
i , ρ

p
i

]
−

ENEO-HF
i

[
ρe
i , ρ

p
i

]
. Note that the matrix elements in Eq. (5) are dependent on the choice of dia-

batic basis, as is the case for all NOCI problems.35,36 The physical motivation for the form of these

off-diagonal Hamiltonian matrix elements30 is discussed in Section S2 of the Supporting Information

(SI). Additional details on the computation of all matrix elements are provided in Section S1 of the

SI.

As discussed in our previous work,30,37,48 we apply a correction function to the off-diagonal ele-

ments of the overlap matrix to account for the limitations of the epc17-2 electron-proton correlation

functional.15,16 This functional produces proton densities that are slightly too localized, leading to

off-diagonal overlap matrix elements that are slightly too small. In this scheme, the off-diagonal

matrix elements of the S matrix are replaced as follows:

S′
ij = α(Sij)

β , (6)

where α = 0.0604 and β = 0.492. Typically the corrected overlap is slightly larger than the original

overlap to mitigate the effects of the over-localized proton densities obtained with the epc17-2

functional. The two parameters were determined for a simple model system and were subsequently

shown to be robust and transferable for the systems studied. Specifically, the NEO-MSDFT method,

in conjunction with this corrected overlap matrix, has been shown to produce accurate hydrogen

tunneling splittings for a wide range of geometries of five different single quantum proton molecular

systems30 and four different double quantum proton molecular systems.37
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Analytical gradients of the NEO-MSDFT vibronic state energies have only been derived for the

original two-state NEO-MSDFT method,48 allowing nonadiabatic dynamics simulations of single

proton transfer systems11 but not multiple proton transfer systems that require more than two

diabatic vibronic states. The next subsection will present an approach to compute the analytical

gradients and nonadiabatic coupling vectors for the generalized NEO-MSDFT method.

2.2. Analytical Gradients and Nonadiabatic Coupling Vectors for Generalized

NEO-MSDFT

In this subsection, we present a new generalized algorithm for computing analytical gradients and

nonadiabatic coupling vectors for NEO-MSDFT adiabatic vibronic states. In the original two-

state NEO-MSDFT method, the NEO-MSDFT energies and their gradients could be expressed

analytically as a function of the matrix elements of H and S, which are 2× 2 matrices. However,

this is not generally true for Hamiltonian matrices of arbitrary dimensionality. To obtain the

analytical gradients of the NEO-MSDFT energies for the generalized case, we need a scheme that

is independent of the dimensionality of the NEO-MSDFT Hamiltonian, or equivalently, the number

of NEO-DFT diabatic states included in the NOCI expansion of Eq. (1). This subsection presents

such a scheme.

We assume that ∇RHij and ∇RSij have been computed for all i, j ∈ {0, 1, . . . , n}. We provide

the expressions for these gradients in Section S1 of the SI. We also assume that we have already

constructed and solved the NEO-MSDFT eigenvalue problem of Eq (2). Let xk be some arbitrary

nuclear coordinate. Then the gradient of the i-th NEO-MSDFT energy eigenvalue Ei with respect

to xk is given by
∂Ei

∂xk
= dT

i

(
∂H

∂xk
− Ei

∂S

∂xk

)
di (7)

where di is the i-th eigenvector satisfying dT
i Sdi = 1 (i.e., the vector di is a column of D with
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elements Di
q for q = 0, 1, . . . n). The matrix derivatives are of the form

∂H

∂xk
=



∂ENEO-DFT
0
∂xk

∂H01
∂xk

· · · ∂H0n
∂xk

∂H10
∂xk

∂ENEO-DFT
1
∂xk

· · · ∂H1n
∂xk

...
...

. . .
...

∂Hn0
∂xk

∂Hn1
∂xk

· · · ∂ENEO-DFT
n
∂xk


,

∂S

∂xk
=



0 ∂S01
∂xk

· · · ∂S0n
∂xk

∂S10
∂xk

0 · · · ∂S1n
∂xk

...
...

. . .
...

∂Sn0
∂xk

∂Sn1
∂xk

· · · 0


(8)

A derivation of Eq. (7) is given in Section S3 of the SI, along with a more general discussion about

computing derivatives for generalized eigenvalue problems. Thus, the problem of solving for the

gradient vector ∇REi reduces to applying Eq. (7) for each nuclear coordinate xk.

To perform nonadiabatic dynamics simulations, we must also compute the nonadiabatic coupling

vector between two NEO-MSDFT vibronic states, i.e., ⟨Ψi|∇RΨj⟩. Inserting the expansion of

Eq. (1) into ⟨Ψi|∇RΨj⟩ leads to

⟨Ψi|∇RΨj⟩ =

〈∑
q

Di
qΨ̃q

∣∣∣∣∣∇R

∑
r

Dj
rΨ̃r

〉

=
∑
qr

[
Di

q

(
∇RD

j
r

)
Sqr +Di

qD
j
r⟨Ψ̃q|∇RΨ̃r⟩

] (9)

Thus, the nonadiabatic coupling vector ⟨Ψi|∇RΨj⟩ depends on the gradients of the expansion

coefficients of Eq. (1) as well as the nonadiabatic coupling vector between diabatic NEO-DFT

states of the form ⟨Ψ̃q|∇RΨ̃r⟩. The ∇RD
j
r term in Eq. (9) is the gradient vector of the expansion

coefficient of diabatic state |Ψ̃r⟩ for the adiabatic state |Ψj⟩. The gradient of the associated j-th

eigenvector dj with respect to nuclear coordinate xk can be computed according to

∂dj

∂xk
= −D (E− EjI)

+DT
(
∂H

∂xk
− Ej

∂S

∂xk

)
dj −

1

2

(
dT
j

∂S

∂xk
dj

)
dj (10)

where the + superscript denotes the Moore-Penrose pseudoinverse. Thus, the problem of solving

for ∇RD
j
r reduces to applying Eq. (10) for each nuclear coordinate xk and taking the r-th element

of the resultant vector. More details are provided in Section Eq. S3 of the SI. The expression for

the ⟨Ψ̃i|∇RΨ̃j⟩ terms in Eq. (9) is more involved and is provided in Section S4 of the SI.

In conventional electronic structure theory, electron-translation factors 58,59 have been introduced
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to ensure translational invariance of the nonadiabatic coupling vectors. These electron-translation

factors are often negligible but have been shown to be important for some systems. In the NEO

framework, electron-proton translation factors may be required for this purpose. Based on previous

studies with conventional electronic structure methods Eq.59 and the use of fixed proton basis

function centers herein, we do not anticipate that such multicomponent translation factors would

significantly impact the nonadiabatic dynamics simulations presented in this work.

2.3. Adiabatic and Nonadiabatic Dynamics on NEO-MSDFT Vibronic Surfaces

This subsection presents the theory underlying adiabatic, Ehrenfest, and surface hopping dynam-

ics within the NEO-MSDFT framework. Note that the adiabatic NEO-MSDFT vibronic states

{|Ψ0⟩, |Ψ1⟩, . . . |Ψn⟩} depend explicitly on the positions of the electrons re and quantum protons rp

and depend parametrically on the positions of the classical nuclei R.

In adiabatic dynamics, the classical nuclei move on the NEO-MSDFT ground vibronic surface

according to Newton’s equations of motion. In this case,

MIR̈I(t) = −∇RI
⟨Ψ0(r

e, rp;R)|ĤNEO|Ψ0(r
e, rp;R)⟩ = −∇RI

E0 (11)

where MI and RI are the mass and position coordinate, respectively, of the I-th classical nucleus.

In both Ehrenfest and surface hopping dynamics, the total time-dependent vibronic wave func-

tion |Φ(re, rp, t;R)⟩ is expanded as a linear combination of the adiabatic NEO-MSDFT vibronic

states with time-dependent coefficients

|Φ(re, rp, t;R)⟩ =
∑
k

Ck(t)|Ψk(r
e, rp;R)⟩ (12)

where the sum in Eq. (12) is over all the adiabatic vibronic states of interest. In practice, this

summation is often limited to the ground and first excited NEO-MSDFT vibronic states because

the current implementation of NEO-MSDFT does not include bending modes in the diabatic ba-

sis and therefore does not provide a complete set of higher-lying vibrational states. 37 In principle,

the diabatic basis can be expanded to include such modes, but for most purposes, the two lowest-
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lying vibronic states are sufficient to describe hydrogen tunneling. Thus, although the generalized

NEO-MSDFT method allows for the inclusion of an arbitrary number of localized NEO-DFT di-

abatic states in the NOCI expansion of Eq. (1), often only the ground and first excited adiabatic

NEO-MSDFT vibronic states are relevant for describing nonadiabatic hydrogen tunneling dynamics.

However, the analytical expressions for the energies, gradients, and nonadiabatic coupling vectors,

as well as the dynamics methods discussed in this section, are applicable for an arbitrary number

of adiabatic NEO-MSDFT vibronic states.

The total time-dependent vibronic wave function |Φ(re, rp, t;R)⟩ obeys the time-dependent

Schrödinger equation

iℏ
∂

∂t
|Φ(re, rp, t;R)⟩ = ĤNEO|Φ(re, rp, t;R)⟩ (13)

Substituting the expansion in Eq. (12) into Eq. (13) leads to a coupled set of differential equations

describing the time evolution of the coefficients in Eq. (12):

Ċj(t) = −
∑
k

Ck(t)

(〈
Ψj(r

e, rp;R)

∣∣∣∣ ∂∂tΨk(r
e, rp;R)

〉
+

i

ℏ
Ekδjk

)
(14)

where the time-dependent nonadiabatic coupling element between adiabatic states |Ψj(r
e, rp;R)⟩

and |Ψk(r
e, rp;R)⟩ can be expressed as

〈
Ψj(r

e, rp;R)

∣∣∣∣ ∂∂tΨk(r
e, rp;R)

〉
= ⟨Ψj(r

e, rp;R)|∇RΨk(r
e, rp;R)⟩ · v (15)

Here djk ≡ ⟨Ψj(r
e, rp;R)|∇RΨk(r

e, rp;R)⟩ is the nonadiabatic coupling vector between the speci-

fied vibronic states, as introduced in Eq. (9), and v is the vector of velocities of the classical nuclei.

The nonadiabatic coupling elements can be computed analytically using Eq. (15) together with Eq.

(9). However, calculating the nonadiabatic coupling elements numerically is more stable and ensures

accuracy even when they increase rapidly over the course of a time step.60 Section 3 provides details

about the calculation of these nonadiabatic coupling terms in our simulations.

Although both Ehrenfest and surface hopping dynamics begin with the same ansatz for the

total vibronic wave function (Eq. (12)), they differ in how the nuclear dynamics are propagated. In
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Ehrenfest dynamics, the classical nuclei move on an average vibronic surface according to

MIR̈I(t) = −∇RI
⟨Φ(re, rp, t;R)|ĤNEO|Φ(re, rp, t;R)⟩

= −
∑
jk

C∗
j (t)Ck(t)⟨Ψj(r

e, rp;R)|∇RI
ĤNEO|Ψk(r

e, rp;R)⟩
(16)

The diagonal matrix elements of ∇RĤNEO are the gradients of the diabatic NEO-DFT states, and

the off-diagonal matrix elements are related to the nonadiabatic coupling vector as follows:

djk =
⟨Ψj(r

e, rp;R)|∇RĤNEO|Ψk(r
e, rp;R)⟩

Ek − Ej
(17)

The time-dependent coefficients in Eq. (16) are propagated numerically according to Eq. (14).

In surface hopping dynamics, the nuclear dynamics are propagated on a single adiabatic NEO-

MSDFT vibronic surface k according to

MIR̈I(t) = −∇RI
⟨Ψk(r

e, rp;R)|ĤNEO|Ψk(r
e, rp;R)⟩ = −∇RI

Ek (18)

Instantaneous transitions between adiabatic vibronic states can be incorporated through a stochas-

tic algorithm, such as Tully’s fewest switches algorithm,46 based on the time-dependent coefficients

obtained by numerically propagating Eq (14). In our simulations, we did not employ a stochastic

algorithm to determine when transitions between adiabatic vibronic states would occur. We elab-

orate on the procedure we used for incorporating nonadiabatic transitions in Section 3. After a

transition between adiabatic vibronic states occurs, the velocities of the classical nuclei are scaled,

typically in the direction of the nonadiabatic coupling vector, to maintain energy conservation. 38

3. Computational Details

In this section, we provide the computational details of the nonadiabatic dynamics simulations we

conducted of the double proton transfer reactions in the FAD and the FFAH systems. The FAD

exhibits a concerted double proton transfer and lacks a stable intermediate along the minimum

energy path connecting the two degenerate minima through the transition state on its ground-
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state electronic potential energy surface. Therefore, in our FAD simulations, only the two trans

NEO-DFT diabatic vibronic states were included in the NOCI expansion of Eq. (1), as shown in

Figure 2A. In contrast to FAD, however, the double proton transfer in FFAH involves the formation

of a stable intermediate corresponding to the zwitterionic state, which is a minimum on the ground

state electronic potential energy surface. Thus, in addition to the trans NEO-DFT diabatic vibronic

states, we also included the zwitterionic NEO-DFT diabatic vibronic state in the NOCI expansion,

as shown in Figure 2B.

Figure 2. The NEO-DFT diabatic vibronic states included in the NEO-MSDFT simulations of (A)
the FAD and (B) the FFAH. For the FAD, we only included the trans states of the double proton
transfer process. For the FFAH, we also included the zwitterionic intermediate (middle structure
in (B)). The proton density of each diabatic state is shown in cyan.

For each system, one adiabatic trajectory, one Ehrenfest trajectory, and one sample surface

hopping trajectory were propagated. The computational cost of the current implementation pro-

hibits us from running a converged surface hopping simulation, which would require at least ∼100

trajectories. Only two NEO-MSDFT adiabatic vibronic states were included in the expansion of

Eq. (12) for the nonadiabatic trajectories. All FAD trajectories were given the same initial condi-

tions, and all FFAH trajectories were given the same initial conditions. An equilibrium geometry

for each system was found, and velocities were initialized to facilitate motion toward an average

reactant-product structure for each system. More details on the initialization of these trajectories

and how these structures were obtained are given in Section S11 of the SI. Note that on the short
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timescales of these trajectories, the classical nuclei move only a small amount but enough to induce

double proton transfer.

The generalized NEO-MSDFT method was implemented in a development version of Q-Chem

6.161 and is currently available in the latest release version. The nuclear dynamics were propagated

using an in-house code interfaced with Q-Chem. A time step of 0.05 fs was used to propagate

the classical nuclei for a total of 7.00 fs for each trajectory. To integrate Eq. (14), a fourth-

order Runge-Kutta integration technique was employed with a time step of 0.0002 fs. To calculate

the time-dependent nonadiabatic coupling elements, we used a generalized version62 of the norm-

preserving interpolation procedure first introduced by Meek and Levine, 60 with more details given

in Section S6 of the SI.

The values of these nonadiabatic coupling elements were used to determine when the transitions

between adiabatic vibronic states occurred in each of our sample surface hopping trajectories. In

both surface hopping trajectories presented, we pre-determined two transitions: one from the ground

state to the first excited state, and one back down from the first excited state to the ground state.

The first transition was chosen to occur at the time where the nonadiabatic coupling element

reached its maximum value along the adiabatic trajectory for each system. The second transition

was chosen to occur at the first time step where the nonadiabatic coupling element dropped below

1.5 fs−1 after reaching its maximum, which is a large enough nonadiabatic coupling to be associated

with a reasonable probability of a transition in a stochastic surface hopping algorithm. At both

transitions, the velocities of the classical nuclei were rescaled in the direction of the nonadiabatic

coupling vector in order to maintain energy conservation. We emphasize that these choices for

incorporating nonadiabatic transitions were simply meant to produce a sample surface hopping

trajectory. Obtaining meaningful results for surface hopping dynamics requires the propagation of

a large number of trajectories.

In all calculations herein, we used the electronic B3LYP exchange-correlation functional 63,64

and the epc17-2 electron-proton correlation functional,15,16 along with the cc-pVDZ electronic basis

set65 and the PB4-D protonic basis set.66 In NEO-MSDFT, each quantum transferring proton

is given two protonic basis function centers, where each center is located near the minimum of

one of the two wells of the corresponding double-well proton potential. In our previous study of
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malonaldehyde,11 each of these centers was optimized variationally on the appropriate NEO-MSDFT

vibronic surface. However, in this work, the positions of these protonic basis function centers were

kept fixed because the proton transfer reactions occurred prior to translation or rotation of the

system, and the optimization of the centers proved to be the bottleneck of these simulations. Details

about the determination of the proton basis function center positions are provided in Section S11

of the SI.

We emphasize that a converged set of fixed proton basis function centers has been shown to

provide accurate quantum dynamics and to conserve energy for RT-NEO-TDDFT calculations. 19,20

A disadvantage of this scheme, however, is that the path of the proton must be known to ensure

convergence of the basis set. Alternative schemes have been devised to address this issue. For

example, the proton basis function center positions can be optimized variationally, as in our pre-

vious NEO-MSDFT nonadiabatic dynamics simulations of single proton transfer reactions. 11 The

analytical gradients presented herein could be used to optimize the proton basis function center

positions at each time step but were kept fixed for the sake of computational efficiency. Alterna-

tively, a traveling proton basis function center scheme19,20 could potentially be extended for use

with NEO-MSDFT. More computationally efficient optimization routines67–69 may also be used in

this regard. However, the qualitative dynamics presented in Section 4 are not impacted by the use

of fixed rather than optimized or traveling proton basis function centers.

4. Results and Discussion

4.1. Formic Acid Dimer

First we present an analysis of the FAD trajectories at a qualitative level. A more in-depth discussion

of the quantitative results for the FFAH trajectories will be presented below. The time evolution

of the proton densities for each of the three FAD trajectories is provided in Figure 3. The double

proton transfer reactions for all three of these FAD trajectories are concerted. The quantitative

results for the FAD trajectories are provided in Section S7 of the SI.

For the adiabatic trajectory, the system remains in the ground NEO-MSDFT vibronic state for

the duration of the trajectory (Figure 3A). The system begins in its initial reactant configuration,

15



Figure 3. Proton densities along the (A) adiabatic, (B) Ehrenfest, and (C) sample surface hopping
trajectories for the FAD. In (A), the proton density for the ground NEO-MSDFT vibronic state is
shown in cyan. In (B), the proton density associated with the average NEO-MSDFT vibronic surface
is shown in cyan. In (C), the proton densities for the ground and first excited NEO-MSDFT vibronic
states are shown in cyan and purple, respectively. For the sample surface hopping trajectory, the
system is in the ground vibronic state for all times shown except 3.95 fs, where it is in the first
excited vibronic state.
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where the quantum protons are localized near their respective oxygen donors on opposite sides of

the dimer structure (analogous to the solid blue lines in the left panels of Figure 1). At ∼3.85 fs,

the proton densities become delocalized across both wells but are still asymmetric. At 3.95 fs, the

system reaches its most symmetric configuration (analogous to the solid blue lines in the middle

panels of Figure 1). Then the system continues toward its product state, which is the opposite trans

structure from which it was initialized (analogous to the solid blue lines in the right panels of Figure

1), completing the double proton transfer process in the FAD.

The purely adiabatic picture of the double proton transfer process is incomplete because it

neglects the nonadiabatic effects associated with the first excited vibronic state, and these effects

are known to inhibit proton transfer events.38 We first incorporate these nonadiabatic effects at a

mean-field level via Ehrenfest dynamics (Figure 3B). The Ehrenfest trajectory proceeds in exactly

the same fashion as the adiabatic trajectory until the nonadiabatic coupling between the ground and

first excited NEO-MSDFT vibronic states becomes non-negligible at ∼3.50 fs (Figure S2D). The

nonadiabatic coupling in this region causes the proton density on the average NEO-MSDFT vibronic

surface to deviate from its adiabatic counterpart at comparable times (i.e., the Ehrenfest proton

density is not as delocalized as the adiabatic proton density at 3.85 fs in Figure 3). Similar to the

adiabatic trajectory, at ∼3.95 fs, the proton densities delocalize across both wells. However, at this

time, the nonadiabatic coupling between the ground and first excited NEO-MSDFT vibronic states

increases rapidly, causing the quantum probabilities to switch from |C0(t)|2 = 1 to |C1(t)|2 = 1 at

∼ 3.95 fs (Figure S2C). The system then quickly exits this region of strong nonadiabatic coupling,

preventing any further evolution of the quantum amplitudes. Therefore, the average NEO-MSDFT

vibronic surface dictating the nuclear dynamics is essentially the first excited NEO-MSDFT vibronic

state for the remainder of the trajectory. As a result, the proton densities are localized on their

donors at the end of the process (analogous to the dashed red lines in the right panels of Figure

1). Thus, the double proton transfer is inhibited when nonadiabatic effects are incorporated at the

mean field level for these initial conditions.

Nonadiabatic effects can also be incorporated via a surface hopping procedure, where the classi-

cal nuclei evolve on a single adiabatic vibronic state, with stochastic transitions between adiabatic

vibronic states incorporated according to an algorithm based on their quantum amplitudes. How-
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ever, such an approach would necessitate propagating a large number of trajectories in order to

obtain statistically meaningful results. Therefore, as a proof-of-concept, we only propagated one

surface hopping trajectory (Figure 3C), where two hops were predetermined to occur, as explained

in Section 3. Our FAD surface hopping trajectory proceeds in exactly the same manner as the

adiabatic trajectory until it reaches 3.95 fs, the time at which the first hop was predetermined to

occur. At this time, the system transitions to the first excited vibronic state, where it remains for

0.10 fs before it transitions back down to the ground vibronic state. For this trajectory, the system

did not remain in the first excited vibronic state long enough to produce obvious differences in the

proton densities compared to the adiabatic trajectory. As mentioned above, a converged surface

hopping simulation would require propagation of a large number of trajectories.

4.2. Formamimide-Formic Acid Heterodimer

The FAD double proton transfer system discussed in the previous subsection involves significant

contributions from only two localized NEO-DFT diabatic vibronic states. In contrast, the FFAH

system involves significant contributions from three localized NEO-DFT diabatic vibronic states,

thus necessitating the generalized algorithm for obtaining analytical gradients and nonadiabatic

couplings discussed in Section 2.1. For this system, we present a more detailed analysis of the

double proton transfer dynamics.

The double proton transfer of FFAH proceeds via a stepwise mechanism in the conventional

Born-Oppenheimer picture. The minimum energy path connecting the two degenerate minima

of its ground state electronic potential energy surface exhibits a local minimum corresponding to

the zwitterionic state of the heterodimer,54–56 where both protons are localized on the formamidine

side of the dimer structure with positive/negative charges distributed across the formamidine/formic

acid monomers, respectively. As shown below, the typical stepwise mechanism of this double proton

transfer is recast in the NEO framework as an asynchronous but strongly coupled tunneling of the

two protons, where one proton becomes delocalized and bilobal prior to the delocalization of the

other proton, but both protons can be delocalized and bilobal simultaneously.

For the adiabatic trajectory, the system begins in the reactant state, where the top proton is

localized near the formic acid monomer and the bottom proton is localized near the formamidine
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monomer (Figure 4). At ∼3.65 fs, the top proton becomes delocalized and bilobal, while the bottom

proton remains localized nears its donor. This process is analogous to the system approaching the

zwitterionic state in the conventional Born-Oppenheimer picture. See Figure S4 for a quantitative

analysis of how much the zwitterionic state contributes to each adiabatic NEO-MSDFT vibronic

state for all FFAH trajectories.

Figure 4. Analysis of the adiabatic trajectory for the FFAH dimer. The distances between the
(A) top and (B) bottom proton position expectation values and the corresponding donor (red)
and acceptor (blue) for the NEO-MSDFT ground vibronic state are plotted along the trajectory.
(C) Proton density of the ground NEO-MSDFT adiabatic vibronic state shown in cyan along the
adiabatic trajectory.

At ∼3.90 fs, the proton density of the top proton is delocalized and bilobal, and its expectation

value is equidistant from its donor and acceptor. At 4.05 fs, both protons are delocalized and

bilobal (solid blue lines in middle panels of Figure 1). Note that around this time, it appears that

the protons are moving further away from both their donors and acceptors (slightly after 4 fs in

Figure 4A and slightly before 4 fs in 4B). This behavior can be explained in terms of the relative

positioning of the protons in the zwitterionic state, which is the dominant diabatic vibronic state

in this range. In the trans diabatic vibronic states, the expectation values of the two protons
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are positioned nearly exactly on their respective donor-acceptor axes, defined as the straight line

connecting the donor and acceptor nuclei. In the zwitterionic diabatic vibronic state, however, the

expectation values of the protons are no longer close to their donor-acceptor axes and instead pucker

outward from the interior of the dimer structure.

After both protons delocalize and the system begins to exit the region dominated by the zwit-

terionic diabatic vibronic state, the two protons finish their transfers in the order in which they

delocalized. The top proton localizes completely on its acceptor at ∼4.55 fs, whereas the bottom

proton remains delocalized until a short time later, when it localizes completely on its acceptor.

Thus, instead of observing a stepwise mechanism for the double proton transfer, as in the con-

ventional Born-Oppenheimer picture of this process, we observe asynchronous but strongly coupled

tunneling of the two protons. First the top proton becomes delocalized and bilobal, then the bottom

proton becomes delocalized and bilobal, then the top proton becomes localized on its acceptor, and

finally the bottom proton becomes localized on its acceptor. Note that this mechanism serves as

an example of the type of behavior that can be captured with generalized NEO-MSDFT dynamics

and may not occur in the experimentally relevant regime for this system.

We now present the results for the Ehrenfest trajectory of this double proton transfer process, as

shown in Figure 5. The distances between the transferring protons and their donors and acceptors

are shown in Figures 5A and 5B. The trajectory begins in the same manner as the adiabatic

trajectory for the first ∼ 3 fs, at which point the quantum amplitudes of each adiabatic vibronic

state begin to change (Figure 5C). Differences in the proton densities between the Ehrenfest and

adiabatic trajectories are apparent even in this ∼3−4 fs range. Most notably, the two protons do not

appear to tunnel in an asynchronous manner as observed in the adiabatic trajectory. Instead, both

protons start to delocalize at approximately the same time due to the mixing of the two adiabatic

vibronic states in the total vibronic wave function (see the proton density at 3.85 fs in Figure 5E).

At 4.15 fs, both protons are delocalized and bilobal, and the zwitterionic diabatic vibronic state

begins to dominate the ground NEO-MSDFT adiabatic vibronic state. At this time, the first excited

NEO-MSDFT adiabatic vibronic state begins to be weighted more heavily than the ground adiabatic

vibronic state due to the large value of the nonadiabatic coupling in this region, and the zwitterionic

diabatic vibronic state begins dominating the first excited adiabatic vibronic state as the system
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Figure 5. Analysis of the Ehrenfest trajectory for the FFAH. The distances between the (A) top
and (B) bottom proton position expectation values and the corresponding donor (red) and acceptor
(blue) for the average NEO-MSDFT vibronic state are plotted along the trajectory. (C) Quantum
probabilities of the ground (orange) and first excited (gray) NEO-MSDFT adiabatic vibronic states.
(D) Nonadiabatic coupling element between the ground and first excited NEO-MSDFT adiabatic
vibronic states. (E) Proton density associated with the average NEO-MSDFT adiabatic vibronic
state shown in cyan along the Ehrenfest trajectory.
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exits this region of strong nonadiabatic coupling (Figure S4). This behavior causes the bottom

proton to localize back to its initial position on its donor, while the top proton remains delocalized

and bilobal (see the proton density at 4.55 fs in Figure 5E). When the top proton becomes localized

on its acceptor, the bottom proton begins to delocalize again (see the proton density at 5.30 fs in

Figure 5E), and the bottom proton does not complete its transfer over the course of this trajectory.

Thus, in the Ehrenfest trajectory, one proton transfer was inhibited, and the successful proton

transfer was delayed compared to the adiabatic trajectory. We emphasize that the bottom proton

is expected to localize on one side eventually due to thermal fluctuations. If the trajectory were

propagated for a longer time, the proton would most likely localize near its acceptor. Moreover,

another region of strong nonadiabatic coupling would eventually occur, leading to further nonadi-

abatic hydrogen tunneling dynamics. This short trajectory is simply an illustration of the type of

tunneling dynamics that can be captured by the NEO-MSDFT Ehrenfest approach.

Next we propagated a sample surface hopping trajectory, as illustrated in Figure 6. The sample

surface hopping trajectory proceeds in precisely the same manner as the adiabatic trajectory until

4.05 fs, when the nonadiabatic coupling reaches its maximum value (Figure 6D) and the transition

to the first excited NEO-MSDFT adiabatic vibronic state was pre-determined to occur. Note that

the top proton starts tunneling (i.e., becomes delocalized and bilobal) at ∼3.65 fs, as it did in

the adiabatic trajectory, prior to the nonadiabatic transition. The system remains in the first

excited NEO-MSDFT adiabatic vibronic state for 0.25 fs until a transition to the ground NEO-

MSDFT adiabatic vibronic state occurs at 4.30 fs. Note that the bottom proton is predicted to start

tunneling (i.e., become delocalized and bilobal) over this time range in the adiabatic trajectory. The

bottom proton also starts tunneling over this time range in the sample surface hopping trajectory,

even when the system is in the excited NEO-MSDFT adiabatic vibronic state. Thus, the proton

densities and expectation values are similar for the sample surface hopping trajectory as for the

adiabatic trajectory. Note that this single trajectory is not meaningful because surface hopping

requires the propagation of many trajectories.
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Figure 6. Analysis of the sample surface hopping trajectory for the FFAH. The distances between the
(A) top and (B) bottom proton position expectation values and the corresponding donor (red) and acceptor
(blue) for the ground (solid) and first excited (dashed) NEO-MSDFT adiabatic vibronic states are plotted
along the trajectory. (C) Quantum probabilities of the ground (orange) and first excited (gray) NEO-
MSDFT adiabatic vibronic states. (D) Nonadiabatic coupling element between the ground and first excited
NEO-MSDFT adiabatic vibronic states. (E) Proton densities of the ground and first excited NEO-MSDFT
adiabatic vibronic states shown in cyan and purple, respectively, along the sample surface hopping trajectory.
The two vertical dotted green lines in (A-D) indicate where the two predetermined nonadiabatic transitions
occurred along the trajectory. The system was in the first excited NEO-MSDFT adiabatic vibronic state for
the time between these two dotted green lines.

23



5. Conclusions

In this work, we have introduced a scheme for obtaining the analytical gradients and nonadiabatic

coupling vectors between NEO-MSDFT adiabatic vibronic states obtained using the generalized

NEO-MSDFT method.37 This scheme is amenable to an arbitrary number of localized NEO-DFT

diabatic vibronic states, thus allowing for the simulation of multiple proton transfer processes. We

applied this generalized gradient scheme to simulate the nonadiabatic hydrogen tunneling dynamics

of the double proton transfer processes in the FAD and the FFAH systems. The application of

the NEO-MSDFT method to the FAD requires only two diabatic vibronic states, corresponding

to the reactant and product states, but the application to the FFAH requires the inclusion of a

zwitterionic intermediate as well. We have shown that the generalized NEO-MSDFT approach can

provide insight into the hydrogen tunneling dynamics of multiple proton transfer systems, properly

accounting for the contribution of each localized diabatic vibronic state to the delocalized adiabatic

vibronic states. The incorporation of nonadiabatic effects for these systems was found to slow down,

or in some cases completely inhibit, these proton transfer processes.

A more quantitative picture of hydrogen tunneling dynamics comparable to experiment can be

captured with NEO-MSDFT by sampling over initial conditions at finite temperature and running

a large number of nonadiabatic dynamics trajectories. However, further refinement of the NEO-

MSDFT method may be required to allow the proton basis function centers to move during the

dynamics in a tractable manner. A more accurate description of hydrogen tunneling dynamics

may also require a quantum mechanical treatment of the heavier nuclei of the system. 70 This work

provides the foundation for simulating nonadiabatic hydrogen tunneling phenomena in a variety of

systems, from individual proton transfer processes to proton relays, potentially in condensed phases

using NEO hybrid quantum mechanical/molecular mechanical methods24,71 or even electronically

excited states.34
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NEO-MSDFT Hamiltonian and overlap matrix elements and their gradients; physical motivation
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