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A B S T R A C T

Each year, a significant number of single-use alkaline batteries with untapped energy are discarded. This study 
aims to analyze the usage patterns of alkaline batteries based on a dataset of 1021 used batteries, ranging from 
Size AA to 9V, collected from households in the State of New York. We measure the energy loss resulting from 
underutilized batteries and examine the corresponding environmental and economic impacts on a national scale. 
Discarded AA alkaline batteries maintain about 13 % of their initial energy, that results in an estimated annual 
energy loss of 660 MWh for all AA alkaline batteries in the U.S., and about 40 MWh in New York State. Annually 
in the U.S., consumers discard AA alkaline batteries with approximately $80 million worth of unused energy, 
including $4.8 million in New York State alone. We also show that the lifecycle impact of batteries should be 
multiplied by 1.25 to account for their underutilization. To address these issues, we propose actionable rec
ommendations for improving battery consumption practices and facilitating End-of-Life/Use (EoL/U) recovery 
processes. The findings show the need for policy interventions to better manage battery usage and disposal to
ward reducing energy waste and mitigating environmental impacts.

1. Introduction

Given the current concerns on resource depletion, waste generation, 
and environmental degradation, analyzing consumer consumption 
behavior becomes important. One area worth investigation is the con
sumption of single-use alkaline batteries. On average, the per capita 
consumption of primary batteries in the U.S. stands at eight units 
annually according to a study (U.S. Environmental protection Agency, 
2009). Single-use alkaline batteries constitute 80 % of the total primary 
batteries manufactured in the U.S. (Shin et al., 2020). Given the nation’s 
population of about 330 million according to the U.S. Census Bureau, 
this aggregate usage corresponds to the disposal of approximately 2.11 
billion single-use alkaline batteries on a yearly basis.

However, the utilization of the 2.11 billion alkaline batteries is not 
complete before disposal. Available evidence suggests that discarded 
alkaline batteries often retain residual energy at the time of disposal (Lee 
et al., 2021). Here, some questions arise: 1) To what extent do alkaline 
batteries retain residual energy when discarded by consumers? 2) What 
are the common patterns observed among consumers in the utilization 
of alkaline batteries? and 3) What are the economic and environmental 

impacts associated with the underutilization of alkaline batteries on a 
large scale?

This study provides an analysis of energy loss from underutilized 
single-use alkaline batteries. It also assesses the broader environmental 
and economic impacts on a national scale. The paper discusses the 
importance of incorporating usage patterns into lifecycle impact as
sessments. Moreover, it presents practical recommendations for 
improving alkaline battery consumption and EoL/U recovery processes.

To achieve the objectives of this study, we assess a sample of used 
single-use alkaline batteries. The technical characteristics of the batte
ries are measured and the dataset is used as input to our energy loss 
estimation model and conducting economic and environmental assess
ments. A summary of our findings shows that, 24 % of the collected 
batteries still retain significant energy. Approximately 17 % of the 
collected batteries have not been used, which indicates considerable 
inefficiencies in battery consumption. Based on the findings, we propose 
implementing a cascaded utilization guideline to improve consumer 
awareness of efficient battery usage, launching public awareness cam
paigns to highlight the environmental and economic advantages of 
extending battery lifespan before disposal, and adding energy displays 
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to batteries as a means to facilitate informed consumer decision-making.
The remainder of this paper is organized as follows: In Section 2, we 

present an overview of the literature. The method is explained in Section 
3, followed by a discussion of the battery samples in Section 4. In Section 
5, we assess the technical characteristics of batteries, such as open- 
circuit voltage, loaded-battery voltage, and internal resistance. The re
sults from Section 5 are used in Section 6 to estimate the energy left in 
the batteries. Section 7 provides the results of an environmental and 
economic impact analysis. In Section 8, we present a discussion on the 
findings from Section 7, along with suggesting recovery solutions for 
EoL/U alkaline batteries. Finally, Section 9 concludes the paper.

2. Literature review

We conduct a review of literature on consumer behavior regarding 
single-use batteries, the analysis of residual energy levels within these 
batteries, the potential for energy harvesting from remaining charge, 
and the energy, economic, and environmental impacts resulting from 
imperfect battery utilization. Based on the examination of existing 
research, we identify research gaps.

A stream of papers discusses consumer behavior and decision- 
making regarding household battery usage and disposal. For example, 
Islam et al. (2022) show that deposit return schemes and incentives such 
as old-for-new swaps encourage battery returns to collection centers. 
Duarte Castro et al. (2022) find that that awareness is key in influencing 
consumers’ choice of appropriate battery disposal methods. Duarte 
Castro et al. (2022) also report that poor handling of waste batteries is 
mainly due to untrained and unequipped waste pickers, as well as too 
few collection points. Kalmykova et al. (2017) reveal that half of the 
batteries are disposed of within three years, with another 30 % within 
3–11 years. Although alkaline batteries typically reach their EoL within 
a year (Song et al., 2017), they often remain in households long before 
disposal. Their performance is affected by temperature and storage 
conditions, with cold temperatures reducing reusability (Prauzek et al., 
2018).

There exist studies on underutilization of rechargeable batteries. For 
example, Schneider et al. (2009) evaluate the capacity of discarded but 
still functional NiMH battery cells and find that approximately 37 % 
could be reused. In another study, Kamath et al. (2020) propose using 
second-life electric vehicle batteries for energy storage in fast-charging 
systems to reduce costs and environmental impact. In a different 
study, Steckel et al. (2021) explore using retired electric vehicle batte
ries for energy storage, highlighting their cost-effectiveness and sug
gesting policy incentives to promote adoption. Despite these insights, 
there is limited research on consumer use of single-use alkaline 
batteries.

Lee et al. (2021) explore a self-adaptive pulse discharge method for 
recovering and reusing energy from single-use alkaline batteries by 
achieving efficiencies of 33.49 % to 46.43 %. However, several chal
lenges affect energy harvesting from semi-depleted alkaline batteries. 
There is a lack of data on the number and remaining energy of these 
batteries. Batteries packaged within products require dismantling for 
measurement (Saxena and Pecht, 2020). At the household level, non- 
technical users often need assistance to connect and use these batte
ries (Wei et al., 2016), and the limited number of batteries restricts the 
total recoverable energy. Also, households typically have only a few 
batteries, which further limits the potential for reuse.

Another section of relevant literature focuses on life cycle impacts 
and circularity assessments for single-use alkaline batteries, particularly 
post-disposal. For example, Hamade et al. (2020) find that reusing 
cathodes and anodes can lead to significant energy and CO2 savings. 
Tran et al. (2018) examine the collection and recycling of spent alkaline 
batteries using various life cycle impact assessment methods, and find 
that recycling preserves metals but consumes more energy compared to 
incineration. V. Valdrez et al. (2022) simplify zinc extraction from used 
alkaline batteries by focusing on the anode, and achieved a 58 % 

recovery rate without complex purification, with low costs, and mini
mum environmental impact. Our life cycle assessment differs by incor
porating uncertainty in battery utilization, which previous studies 
overlook. Dolci et al. (2016) find that using rechargeable batteries for 20 
cycles or fewer can have higher environmental impacts than single-use 
alkaline batteries but they did not consider the inefficient use of 
single-use batteries. Our approach addresses the underutilization of 
alkaline batteries and facilitates comparison between single-use alkaline 
and rechargeable batteries in the future studies. We also contribute to 
the energy analysis of alkaline batteries, an area that has been less 
emphasized compared to the traditional focus on resources and envi
ronmental impacts.

While consumer behavior about battery disposal is well-studied, 
there is a lack of studies on single-use alkaline batteries’ utilization 
and their energy left after they are discarded. In one recently published 
paper, Dai et al. (2023) propose a lightweight state-of-charge estimation 
method using Peukert’s Law to estimate battery capacity and cumulative 
current consumption. In another study, Liu et al. (2024) present a new 
way to estimate battery charge that is more accurate and stable for 
different batteries and conditions, and have lower errors, especially 
under duty cycle loads. Both studies are conducted with implications for 
primary battery powered sensor nodes. However, analyzing the reuse of 
single-use alkaline batteries and their remaining energy at the house
hold level has received limited attention. Finally, further investigation is 
needed to incorporate uncertainty in battery utilization into life cycle 
assessments. Overcoming these gaps will facilitate the development of 
more sustainable practices in alkaline battery usage, disposal, and 
recycling.

In summary, the literature review reveals various research gaps in 
the management of used alkaline batteries. The areas needing further 
investigation include, but are not limited to, the impact assessment of 
policy interventions on promoting responsible battery use and recycling, 
exploring opportunities for improving battery design to extend their 
lifespan, and analyzing consumer behavior and the impact of unsus
tainable battery use. Along this line, this study focuses on evaluating the 
energy, economic, and environmental impacts of single-use alkaline 
battery consumption.

3. Method

The first step of the proposed method includes the collection of a 
sufficiently large and representative sample of used single-use alkaline 
batteries. Careful consideration is given to factors such as collection 
regions to confirm that the battery sample accurately reflected the di
versity of the population. Moreover, random sampling methods are used 
to minimize bias and improve the generalizability of the study’s 
findings.

After the data collection and sampling procedure, the method in
cludes a step for the assessment of the technical characteristics of the 
collected single-use alkaline batteries. This assessment consists of the 
measurement of critical parameters, including open-circuit voltage, 
loaded-battery voltage, and internal resistance. Utilizing specialized 
instruments such as battery impedance testers, load resistors, and digital 
multimeters facilitates the evaluation of battery health and perfor
mance. Each battery is assessed twice by two different research assis
tants for the measurement accuracy. If a significant difference in 
measurement is observed, the battery goes through a final test by both 
assistants to finalize its records.

The next step includes the estimation of the remaining energy within 
each battery. This estimation is performed based on a relationship be
tween the remaining service hours, during which a battery can consis
tently supply a constant power rate, and its load voltage and internal 
resistance. Here, two approaches exist for determining the relationship. 
The first required conducting another experiment to gather data on 
remaining service hours. However, we choose the second method, where 
the relationship has already been established by the battery 
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manufacturer. Once the remaining service hours are estimated, deter
mining the remaining energy becomes a straightforward calculation 
involving the multiplication of the remaining service hours by the 
constant power rate.

The final step of the method evaluates the economic and environ
mental impact of inefficient battery consumption at a large scale. 
Analyzing these impacts at the state level and extrapolating findings to 
the national consumption of single-use alkaline batteries within the U.S., 
provide the broader implications of battery inefficiency in the country.

Our data from New York State can be extrapolated to the national 
level for several reasons. Our sampling strategy captures a diverse and 
representative sample of used single-use alkaline batteries from various 
regions within New York State, which is reflective of the overall di
versity in the U.S. population. Also, we employ random sampling tech
niques to minimize bias and achieve a statistically representative of the 
national population of single-use alkaline batteries. The technical as
sessments, including measurements of voltage, resistance, and other 
critical parameters, are based on standardized methods and instruments 
that are widely accepted in the industry and academic literature. 
Furthermore, our estimation of remaining energy in batteries is based on 
established relationships provided by battery manufacturers and aca
demic studies, with nationwide applicability.

In conclusion, the methodology used for assessing the technical 
characteristics of the batteries employs a representative sample as well 
as thorough measurement techniques. It uses the well-established 
method suggested by manufacturers for identifying relationships be
tween battery parameters and estimating remaining energy. Nonethe
less, there is room for improvements, such as expanding sampling 
regions and incorporating additional measurement methods to further 
address any remaining biases or inaccuracies.

4. Overview of battery samples

A sample of used batteries is collected in collaboration with the 
Coalition of Positively Charged People, a 501(c)(3) nonprofit organi
zation based in the State of New York. This organization has conducted a 
series of events aimed at educating residents about the safe disposal of 
batteries. They collect used batteries from different collection events in 
New York and send them to the recycling facilities in Ohio and Michi
gan. Since its launch, the program has collected over 400 kg of batteries.

We use a systematic sampling approach using a 1-kg bucket to 
extract four random samples of batteries from four large boxes con
taining collected used batteries. The total number of batteries in the 
sample is 1021. The sample of batteries comprises 839 alkaline batteries, 
7 ZnC batteries, 93 lithium-ion (Li) batteries, 17 nickel–cadmium (NiCd) 
batteries, 13 nickel–metal hydride NiMH batteries, 49 lead-contained 
(Pb) batteries, and 3 zinc chloride (ZnCl) batteries. Regarding battery 
size, there are 29 9V batteries, 706 AA batteries, 191 AAA batteries, 25C 

batteries, 69 D batteries, and 1 A23 battery. Of the batteries, 49.1 % are 
manufactured in China, 41.7 % in the U.S., and the remaining 9.2 % 
originate from Indonesia, Japan, Korea, Malaysia, Singapore, Thailand, 
Germany, or Canada. The group comprises batteries from 56 different 
brands, with 65.4 % of the 1021 batteries coming from two major bat
tery vendors. Table 1 summarizes the distribution of samples per 
chemical/size group.

There are several points worth mentioning about the collection of 
batteries. The presence of 17 NiCd batteries and 13 NiMH batteries 
shows that, despite advancements in newer technologies such Lithium- 
ion and lithium-polymer batteries, certain devices continue to depend 
on these older battery types. Alternatively, it is possible that individuals 
still have old rechargeable batteries in their households, which con
tributes to their inclusion in the sample (Cherrier and Türe, 2023).

In addition, the presence of 49 Pb batteries shows the continued use 
of lead-acid batteries, which points out the importance of proper 
disposal and recycling due to environmental concerns associated with 
lead. Finally, the diversity in battery types emphasizes the significance 
of responsible waste management, as different battery chemistries 
require different recycling processes to recover materials and minimize 
environmental impact.

The focus of this study is on single-use alkaline batteries, the most 
frequently observed model in our collected samples (839 out of 1021). 
This scope provides a detailed technical analysis and tailored recom
mendations for one of the most widely used battery types. To have a 
randomized sampling process, we use the 1-kg bucket method to extract 
two samples from a total of 839 alkaline batteries collected. Therefore, 
the final sample consists of 485 batteries, including 246 AA, 116 AAA, 
25C, 68 D, and 30 9V batteries. These quantities facilitate an examina
tion of energy levels for various battery sizes. Further insights into this 
analysis are discussed in Sections 5 and 6. As shown in Table 1, AA 
alkaline batteries are the most common size in the set of batteries, that 
account for 56.3 % of the total. The distribution of samples per size is 
consistent with the literature (Kalmykova et al., 2017), with the AA type 
leading the battery market, followed by the AAA type.

5. Battery assessment: voltage and resistance analysis

To assess the reusability of the collected batteries, we measure their 
technical characteristics, including loaded-battery voltage and internal 
resistance. The loaded-battery voltage, often referred to as the load 
voltage, is the voltage in a battery’s terminals when it is connected to an 
external load or circuit. On the other hand, the open-circuit voltage of a 
battery demonstrates the voltage measured in the terminals of a battery 
when it is disconnected from any external load or circuit. In simpler 
terms, it is the voltage generated by the battery in the absence of any 
current flowing through it. This property is also called the no-load 
voltage. Distinct from the open-circuit voltage, the loaded-battery 

Table 1 
The number (percentage) of battery samples per chemical/size group.

Size Chemical Total

Alkaline ZnC Li NiCd NiMH Pb ZnCl2

9V 16 
(1.6 %)

0 
(0.0 %)

0 
(0.0 %)

0 
(0.0 %)

0 
(0.0 %)

13 
(1.3 %)

0 
(0.0 %)

29 
(2.9 %)

A23 1 
(0.1 %)

0 
(0.0 %)

0 
(0.0 %)

0 
(0.0 %)

0 
(0.0 %)

0 
(0.0 %)

0 
(0.0 %)

1 
(0.1 %)

AA 575 
(56.3 %)

1 
(0.1 %)

93 
(9.1 %)

1 
(0.1 %)

11 
(1.1 %)

22 
(2.2 %)

3 
(0.3 %)

707 
(69.1 %)

AAA 154 
(15.1 %)

5 
(0.5 %)

0 
(0.0 %)

16 
(1.6 %)

2 
(0.2 %)

14 
(1.4 %)

0 
(0.0 %)

191 
(18.7 %)

C 25 
(2.4 %)

0 
(0.0 %)

0 
(0.0 %)

0 
(0.0 %)

0 
(0.0 %)

0 
(0.0 %)

0 
(0.0 %)

25 
(2.4 %)

D 68 
(6.7 %)

1 
(0.1 %)

0 
(0.0 %)

0 
(0.0 %)

0 
(0.0 %)

0 
(0.0 %)

0 
(0.0 %)

69 
(6.8 %)

Total 839 
(82.2 %)

7 
(0.7 %)

93 
(9.1 %)

17 
(1.7 %)

13 
(1.3 %)

49 
(4.8 %)

3 
(0.3 %)

1021 
(100 %)
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voltage considers the voltage drop that occurs when the battery is 
actively supplying current to power a device or perform work. The in
ternal resistance of a battery quantifies its resistance to the flow of 
electric current within the battery. This resistance occurs from the 
impedance encountered by charged particles (ions) as they move within 
the battery’s electrolyte and its internal components. The internal 
resistance results in a voltage drop in a battery, which is the difference 
between the open-circuit and loaded-battery voltages.

To determine the open-circuit and loaded-battery voltages, as well as 
the internal resistance of the batteries, we use a battery impedance 
tester, a load resistor, and a digital multimeter. First, a battery is con
nected to the battery impedance tester to measure its open-circuit 
voltage, which shows the voltage without any current draw. Following 
this, we connect the load resistor in the battery terminals to impose a 
load and replicate typical operating conditions. Utilizing the digital 
multimeter, we gauge the voltage in the battery terminals under this 
loaded state. By comparing this loaded voltage with the open-circuit 
voltage, we evaluate the battery’s voltage under load. Finally, we use 
the battery impedance tester to determine the internal resistance of the 
battery.

To estimate the energy left in non-rechargeable batteries, we place 
particular emphasis on alkaline batteries, as they constitute the pre
dominant type within our battery collection (comprising 82.2 % ac
cording to Table 1). Our inventory lacks a sufficient quantity of each 
battery type to perform a rigorous analysis. For instance, we only possess 
a single A23 alkaline battery. From this point onward, when referring to 
“battery types”, we are specifically addressing AA, AAA, C, D, and 9-V 
alkaline batteries.

A comparison of physical data for various sizes of alkaline batteries 
highlights differences in capacity, energy density, and dimensions. AA 
batteries, offering capacities from 1800 to 2700 mAh and measuring 
about 50.5 mm by 14.5 mm, are versatile and commonly used in 
everyday devices. On the other hand, AAA batteries are smaller, at 
approximately 44.5 mm by 10.5 mm, with capacities between 1000 and 
1200 mAh, and are suitable for compact electronics. C batteries, which 
have capacities of 7000 to 8000 mAh and larger dimensions of 50 mm by 
26.2 mm, are designed for high-drain applications such as large flash
lights. D batteries, the largest at 61.5 mm by 33.2 mm and with ca
pacities ranging from 12,000 to 18,000 mAh, are used in high-power 
devices. Finally, 9V batteries, with capacities of 500– 600 mAh and di
mensions of 48.5 mm by 26.5 mm, are specifically designed for 
specialized equipment such as smoke detectors.

Before comparing the technical characteristics of different battery 
types, we investigate whether these characteristics significantly vary 
among different producers of the same battery type. Upon analyzing the 
data, we discover that approximately 80 % of the 485 batteries are 
produced by two major brands. Therefore, for each battery type, we 
conduct a Mann-Whitney U test to examine potential effects. We choose 
this test due to the non-normal distribution of the data. The tests reveal 
that there is no significant difference in loaded-battery voltages for 
Types AA, AAA, C, and D among different producers, as the p-values 
(0.269, 0.453, 0.696, and 0.367, respectively) are all higher than the 
critical value of 0.05. The only significant difference is identified for 
Type 9V (p-value = 0.0008), which could be attributed to the limited 
number of samples available for this type in our dataset. A similar 
outcome is observed for the internal battery resistance (p-values of 
0.342, 0.339, 0.594, 0.217, and 0.05, respectively). Given the insignif
icant impact of the specific producer, we aggregate the data of brands for 
each type of alkaline battery. The box plots in Fig. 1 illustrate the dis
tribution of loaded-battery voltage and internal resistance for the 
batteries.

Next, we use the Kruskal-Wallis test to assess the significance of 
differences in technical characteristics among AA, AAA, C, D, and 9V 
alkaline batteries, with a critical value of 0.05. The initial test, including 
all alkaline battery types, reveals a significant difference in the load 
voltage (p-value = 0.024), that shows at least one difference among the 

five battery types at a 5 % significance level. Therefore, we repeat the 
Kruskal-Wallis test to assess subgroups of batteries. The new results 
show no significant difference among AA, C, and D alkaline batteries (p- 
value = 0.152). The same conclusion is reached for the second subgroup 
consisting of AAA and 9V alkaline batteries (p-value = 0.365). We 
conduct similar analyses for the internal resistance of batteries. The null 
hypothesis is rejected in favor of the alternative hypothesis of at least 
one difference among the five battery types (p-value = 0.000). Upon 
repeating the test, no significant difference is found between the samples 
of AA, C, and D alkaline batteries (p-value = 0.152). Nevertheless, it 
appears that 9V alkaline batteries exhibit a significantly higher internal 
resistance compared to AAA batteries (p-value = 0.000).

In the second step of data processing, we fit appropriate distributions 
to the technical characteristics data of battery samples. The Johnson’s 
SB distribution, denoted as J, is identified as the best fit for the load 
voltage data based on the Kolmogorov-Smirnov test. The fitted distri
butions for AA, AAA, C, D, and 9V alkaline batteries are J (0.2, 0.58, 1.8, 
−0.13), J (0.56, 0.38, 1.57, −0.003), J (−0.001, 0.6, 1.77, −0.16), J 
(0.26, 0.53, 1.53, −0.13), and J (1.1148, 0.51019, 4.1765, −0.17972), 
respectively. The corresponding p-values are 0.07, 0.07, 0.98, 0.06, and 
0.3 at the critical threshold of 0.05, which shows how well each distri
bution fits the data. It is important to note that Johnson’s SB distribution 
is a versatile continuous distribution, useful for various phenomena. For 
the internal resistance of batteries, the Weibull distribution, denoted as 
W, is found to be the best fit. The fitted distributions for AA, AAA, C, D, 
and 9V alkaline batteries are W (0.56, 2.31), W (0.65, 3.93), W (0.68, 
1.45), W (0.7, 3.64), and W (0.67, 51.68), respectively. The corre
sponding p-values are 0.4, 0.73, 0.06, 0.06, and 0.63 at the critical 
threshold of 0.05, indicating the goodness-of-fit of each distribution. 
Fig. 2 displays histograms and distributions of load voltage and internal 

Fig. 1. The box plots display the central tendencies and variations in the 
loaded-battery voltage and internal resistance of AA, AAA, C, D, and 9 V 
alkaline batteries.
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resistance for the batteries.
The Mann-Whitney U test showed that there are no significant dif

ferences in producer-specific variations for different types of alkaline 
batteries. Aggregating data by battery type and using the Kruskal-Wallis 
test revealed clearer comparisons of load voltage and internal resistance. 
9V batteries had higher internal resistance than AAA batteries, indi
cating performance differences among battery types that should be 
explored further. Other methods such as Tukey’s test, Bayesian analysis, 

and multivariate methods could provide additional insights, however, 
we chose not to use them due to various assumptions needed in those 
methods, and the sufficient robustness of our current results.

The load voltage data can be used to estimate the remaining service 
time of a used battery at a constant power rate. In Section 6, the rela
tionship between the load voltage and the remaining service time is 
modeled using a logistic transformation function, which estimates the 
remaining service hours based on the load voltage. Parameters of the 

Fig. 2. Histograms and fitted distributions for the load voltages and internal resistance of AA, AAA, C, D, and 9 V alkaline batteries.
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function are estimated to describe the shape of this relationship. This 
transformation converts the load voltage into the remaining service 
time, which represents the estimated remaining service hours. The lo
gistic transformation is chosen for its flexibility and interpretability to 
capture the nonlinear relationship between load voltage and remaining 
service time.

Furthermore, the power law distribution is found to be the best fit for 
the remaining service time data. This implies that the distribution of the 
remaining service time is characterized by heavy-tailed behavior, where 
smaller values of the remaining service time are more likely compared to 
a standard exponential or normal distribution. The power law distri
bution is suitable for describing the variability in remaining service time 
for different conditions of load voltage. In the next section, we demon
strate how to use the findings from this section to estimate the remaining 
service time and remaining energy in the used batteries in detail.

6. Energy loss estimation model

A research question is to analyze the amount of energy remained in 
the collected used batteries and their reusability. To answer this ques
tion, we utilize technical life cycle data provided by one of the major 
brands.1 The datapoints marked with symbols in Fig. 3 represent the 
remaining service time (hours) of an AA alkaline battery, determined by 
its load voltage, for constant powers ranging from 5 mW to 200 mW. For 
instance, if the current load voltage of a battery is 1.2 V, it can sustain a 
power output of 5 mW for approximately 200 h, whereas it can maintain 
a power output of 10 mW for about 100 h.

To illustrate how our proposed method can estimate the remaining 
energy in a used battery, we select AA alkaline batteries as a case study. 
Although the analysis mainly focuses on size AA batteries due to their 
widespread use, a similar analysis can be applied to other battery types. 
The producer provides additional information about the relationship 
between the load voltage and the remaining service hours in Fig. 3. 
Other than data provided by specific producers, to the best of our 
knowledge, there is no universally established formula that represents 
the relationship between the load voltage of a used alkaline battery and 

its remaining service time or charge. For rechargeable batteries, Peu
kert’s Law is an empirical relationship that describes how battery ca
pacity varies with its discharge current. Recent research (Dai et al., 
2023) has verified its applicability to primary batteries. However, 
applying Peukert’s Law to primary batteries requires conducting ex
periments to estimate its constant parameters, which is beyond the scope 
of our study. We link the load voltage data from Fig. 2 to the remaining 
service time in Fig. 3, by using appropriate transformation functions and 
fitting them to the datapoints presented in Fig. 3.

The variation in the remaining service time in Fig. 3 is well described 
by a logistic function, with high coefficients of determination (R2 =

0.996, 0.993, 0.996, 0.999, 0.993, and 0.998). The logistic function 
model accurately represents the sigmoid growth profile (Ríos-Ocampo 
and Gary, 2022). The general form of this logistic function is defined as 
follows: 

S =
a

1 + becV , (1) 

Where S shows the remaining service time (hours), and V presents the 
load voltage, while a, b, and c are the three parameters defining the 
logistic function. The specific values of these parameters for the fitted 
functions presented in Fig. 3 can be found in Table 2. A nonlinear 
regression technique, known as the Levenberg-Marquardt algorithm, is 
used to estimate the parameters of the logistic function model from a 
dataset consisting of 10 data points. Using MATLAB, the model is fitted 
to the observed data points, adjusting the parameters to minimize the 
difference between the predicted and observed values. The process op
timizes the parameters to best describe the data.

Fig. 4 provides histograms and fitted distributions (fS) of the 
remaining service time for constant powers of 5 mW, 10 mW, and 25 
mW. The power law distribution appears to be the most suitable sta
tistical distribution for the data, with p-values of 0.14, 0.15, and 0.06 at 
the critical threshold of 0.05. A power law distribution represents a 
probability distribution where the likelihood of an outcome is inversely 
related to its magnitude, following a power law relationship.

By using the fitted distributions, we compute the survival probability 
(Kalbfleisch and Prentice, 2011), denoted as SP, which shows the 
probability that a used AA battery can be reused beyond a specified time 
s′. This probability is expressed as follows: 

SP = Pr(S ≥ ś ) =

∫a

ś

fS(s)ds, (2) 

Where a represents the parameter obtained from the fitted logistic 
functions in Table 2. Fig. 5 (a) illustrates this probability for constant 
powers of 5 mW, 10 mW, and 25 mW. For the sake of comparison, the 
probability that a used AA alkaline battery can be reused in a 5-mW 
device for at least 200 h is about 0.2. However, this probability be
comes zero for a 25-mW device. The mean remaining service time for 
this battery is 108.3 h, 54.2 h, and 17.5 h for 5 mW, 10 mW, and 25 mW 
devices, respectively.

Next, the energy left in the batteries, denoted as E, can be computed 
by multiplying the constant power consumption rate, denoted as P, by 

Fig. 3. The chart illustrates the remaining service time (in hours) of an AA 
alkaline battery in relation to its load voltage (in volts) for a range of constant 
powers(.
Source: Duracell Inc., 2017)

Table 2 
The estimated parameters for the logistic functions fitted to the data of 
remaining service hours versus the load voltage.

Power (mW) Parameters

a b c

5 942.48 828,798 −10.28
10 474.23 383,634 −9.68
25 167.62 5,802,430 −11.78
50 81.71 3,702,320 −11.59
100 36.32 15,340,500 −12.99
200 14.67 11,784,800 −13.27

1 Technical Bulletins: https://www.duracell.com/en-us/techlibrary/tech
nical-bulletins/.
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the remaining service time, shown as S (Hambley, 2018): 

E = P × S, (3) 

As a result, the unit of energy loss is measured in watt-hours. In Fig. 5
(b), we present the probability that the energy loss exceeds a specified 
value, denoted as e′. It is important to mention that the energy loss 
calculations are based on a constant power consumption of 5 mW per 
hour. However, it is worth noting that the results will not differ if other 
rates are employed. Equation (4) defines the energy-loss probability, 
denoted as EP. In this formula, fE represents the distribution of the 

remaining energy, as obtained directly from Equation (3): 

EP = Pr(E ≥ é ) =

∫aʹ

é

fE(e)ds, (4) 

Where a′ indicates the maximum energy capacity in a battery, which is 
equal to the product of the maximum service hours, denoted as a, and 
the constant power rate, denoted as P.

Based on Fig. 5 (b), the average energy left for a used AA alkaline 
battery is 0.54 Wh, approximately 13 % of its total energy. This repre
sents the expected energy loss incurred if the used battery is not reused 
after the first life cycle. It is worth noting that improving the accuracy of 
remaining energy estimates will benefit from expanding the dataset to 
include a broader range of battery types and brands. In addition, future 
research should employ advanced techniques such as Bayesian updating 
and machine learning algorithms to increase prediction accuracy and 
better capture data patterns.

7. Impact analysis: findings and results

The disposal of approximately 2.11 billion single-use batteries 
annually in the U.S., as estimated in the introduction section, empha
sizes the significant scale of the issue. In our battery samples, Type AA 
alkaline batteries constitute 57.9 % of all single-use batteries, that shows 
the consumption of about 1.22 billion AA alkaline batteries each year. 
While we acknowledge the limitations of our relatively small sample size 
and its collection from different locations within a specific state, we 
extrapolate the findings of this study to the U.S. market to provide an 
estimation. We need to mention a few points about our dataset. First, the 
distribution of samples per battery size aligns with existing literature 
(Kalmykova et al., 2017). Second, the batteries are collected from 
various locations with the aim of representing the market from diverse 
demographics and socio-economic factors as much as possible, given the 
point that there is no integrated system for collecting batteries from 
different regions in the U.S. In the following, we analyze the total en
ergy, economic impact, and environmental impact from the imperfect 
utilization of AA alkaline batteries in the U.S. We also acknowledge the 
issue of extrapolating data to the national level and calculate the impacts 
specifically for the region from which the data are collected.

7.1. Total energy impact

The average per-unit energy loss is calculated at 0.54 Wh. Therefore, 

Fig. 4. These figures display histograms and the fitted distributions repre
senting the remaining service time of an AA alkaline battery for constant 
powers of 5 mW, 10 mW, and 25 mW.

Fig. 5. (a) Survival probability (SP) of an AA alkaline battery at constant powers: 5 mW, 10 mW, and 25 mW. (b) Probability that the remaining energy in an AA 
alkaline battery (EP) exceeds a specified value based on a constant power consumption of 5 mW per hour.
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the total energy loss amounts to approximately 660 MWh in the U.S. 
Taking into account the other types of single-use batteries, the overall 
energy loss is significant. For the State of New York, where the data were 
collected, the energy loss is approximately 40 MWh, given a total pop
ulation of 19.70 million.

As we study energy utilization, addressing and minimizing these 
losses is an important step towards building a more sustainable and 
resilient energy infrastructure for the future. The average daily elec
tricity consumption for a standard U.S. household is estimated at about 
30 kWh. Therefore, 660 MWh of electrical energy could sustain the 
energy needs of about 22,000 U.S. households for a single day. Similarly, 
40 MWh of energy loss in New York could meet the energy needs of 
approximately 1333 households for a single day. While this energy loss 
may appear relatively small for the U.S. economy, it becomes significant 
when considering all types of batteries. Moreover, the energy consumed 
during the recycling process is directly proportional to the quantity of 
waste batteries generated. Thus, any increase in the volume of waste 
batteries due to inefficient consumption practices would increase the 
energy demand for recycling.

7.2. Total economic impact

The per-unit energy loss for AA alkaline batteries stands at about 13 
%. Consumers pay the full price for a battery, but they do not fully utilize 
its capacity. The per-unit price of AA alkaline batteries is approximately 
US$0.50, might seem relatively low on an individual basis. However, 
when scaled up to the collective consumption patterns, consumers end 
up wasting approximately US$80 million per year. For the State of New 
York, this translates to a waste of approximately $4.8 million per year. 
The underutilization of batteries can lead to additional economic con
cerns. The collection of spent batteries is a costly process, and recycling 
batteries carries its own costs. Therefore, any unnecessary increase in 
battery consumption worsens economic issues. This results in a financial 
loss for individuals and has broader implications for the environment. 
The discarded batteries contribute to electronic waste, and create 
challenges for proper disposal and recycling. In addition, improper 
recycling or landfilling of used batteries can lead to severe health issues.

Future research should address the economic challenges faced by 
waste management systems due to underutilized batteries. This includes 
conducting a thorough assessment of the costs associated with managing 
these batteries and analyzing their broader economic impacts on waste 
management infrastructure.

7.3. Total environmental impact

In this study, we seek to account for the environmental impacts of 
alkaline battery consumption in their entire life cycle. Typically, the life 
cycle impact of batteries remains constant unless there are changes in 
production technology or EoL/U recovery strategies. Previous research, 
such as a life cycle assessment study by Olivetti et al. (2011), quantifies 
the life cycle impact of alkaline batteries, including stages such as pro
duction and EoL recovery, using five key categories: Cumulative Energy 
Demand (CED), Global Warming Potential (GWP), Human Health, 
Ecosystem Quality, and Resources. The estimated values of these five 
categories per 1 kg of alkaline batteries are reported as 68 Mj, 4.3 kg CO2 
equivalent, 0.000012 DALY, 2.1 PDF*m2yr, and 4.9 Mj surplus, 
respectively. In this study, we adopt a functional unit of 1 kg of alkaline 
batteries that are fully utilized by a consumer. We also consider a cradle- 
to-grave time horizon, which includes production, usage, and disposal/ 
recycling phases.

While valuable, the above-mentioned estimated values by the liter
ature should be adjusted to account for the impact of battery underuti
lization during their usage phase. Our analysis of discarded batteries 
reveals the imperfect utilization of batteries, which can result in an 
increased consumption rate of batteries by consumers. The estimated 
values for the five categories should be adjusted to incorporate the 

impact of imperfect battery utilization. To address it, we use data on 
remaining service hours. This is equivalent to the remaining energy 
inside the batteries, which is a battery utilization indicator for each 
individual consumer. For example, if it is estimated that 20 % of the 
nominal energy inside a battery remains unused, this implies that the 
battery owner has used only 80 % of the available energy. Therefore, this 
consumer would need to purchase alkaline batteries 1.25 times more 
often than in the case of perfect utilization to meet their battery demand. 
In this case, the consumer fully utilizes four out of five batteries in long 
term on average. Therefore, the life cycle impact associated with 1 kg of 
fully utilized batteries should be multiplied by 1.25 to account for the 
impact of underutilization for this consumer.

We hypothesize that underutilization of batteries might occur in two 
different ways: (1) the first group of consumers would not be willing to 
underutilize batteries, however they could not find secondary applica
tions for the remaining energy due to improper design; and (2) the 
second group of consumers would not necessarily need the full energy 
inside batteries, but they often purchase battery packs that might not be 
completely utilized. Therefore, new batteries might be discarded along 
with partially used ones.

In Fig. 6, we present the adjusted life cycle impact values per 1 kg of 
alkaline batteries, along with 95 % confidence intervals to account for 
uncertainty in batteries utilization patterns. To determine these confi
dence intervals, we follow three steps: (1) we use the remaining service 
time data from Section 6; (2) the estimated energy left inside each 
battery is divided by its nominal energy, which results in the estimated 
utilization indicator; and (3) finally, the estimated utilization indicator 
is multiplied by the life cycle impact values from Olivetti et al. (2011) to 
derive the adjusted life cycle impact values. The range of adjusted life 
cycle impact is presented by confidence intervals for five impact 
categories.

In summary, the adjusted life cycle impact provides new questions 
for future research: How can manufacturers facilitate consumer utili
zation of their products? How responsibly do consumers use available 
resources? And how should manufacturers design batteries to minimize 
resource wastage? To examine the underutilization of resources, a more 
detailed analysis is required to determine the respective contributions of 
consumers and manufacturers.

8. Discussion and recovery solutions

The used AA alkaline batteries can be categorized into three primary 
groups based on the results of Section 6. The 246 AA alkaline batteries in 
our dataset can be categorized into three groups based on their 
remaining energy. The first group consists of 187 batteries (approxi
mately 76 % of all AA batteries) that have minimal energy left, capable 
of supplying less than 100 h of constant power at 5 mW, as shown in the 
first plot of Fig. 4. The second group includes 18 batteries (7.3 %) with a 
remaining service time ranging from 100 to 400 h at a constant power of 
5 mW. The third group comprises 41 batteries (16.7 %) with the highest 
energy levels, with a remaining service time of over 400 h at a constant 
power of 5 mW.

The first group, with the highest frequency (76 %), predominantly 
contains nearly depleted batteries. These batteries retain such a low 
amount of energy that it is impractical for a single used battery to be 
repurposed for common electronic devices. While using multiple bat
teries together may seem a preferable solution to reduce energy loss, it 
may not be practical at the household level due to technical challenges 
and limitations. In addition, non-technical users may require assistance 
in connecting used batteries to make use of their remaining useful life. 
Moreover, households typically have a limited number of batteries, 
which prevents the total remaining energy from being considered for 
reuse.

To improve the recovery strategy for this group of batteries, future 
research is recommended on improving collection methods for recy
cling. Exploring decentralized collection within communities could be a 
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viable approach. By dispersing collection facilities, consumers may be 
motivated to return fully depleted batteries. Research can explore 
logistical, behavioral, and environmental aspects to inform more sus
tainable recycling practices.

Batteries in the second group are less common (7.3 %), yet they 
possess a considerable amount of energy suitable for devices with lower 
power consumption, such as wall clocks. We hypothesize that consumers 
may mistakenly perceive these batteries as weak due to the absence of 
indicators displaying their health status. This misconception might arise, 
particularly when multiple batteries are used to meet voltage and power 
requirements, which leads to decisions based on the weakest battery. 
Further behavioral research is needed to validate this hypothesis. In 
addition, future studies could explore providing a cascaded utilization 
guideline to increase consumer awareness of battery consumption. This 
guideline could be a structured recommendation outlining the sequen
tial allocation and usage of battery energy across multiple devices based 
on their energy requirements.

The third group contains batteries that are nearly new and more 
common than the second group (16.7 %). The reasons for consumers 
discarding these batteries are unclear, but it might be due to the absence 
of a gauge to display the remaining energy. While some rechargeable 
batteries have built-in indicators, disposable batteries often lack a 
feature that allows users to monitor how much energy is left. In addition, 
disposable batteries are readily available at affordable prices. This might 
make consumers less sensitive to efficient battery consumption. The 
implementation of public awareness campaigns for educating con
sumers on the environmental and economic benefits of extending the 
lifespan of batteries before disposal, may alleviate this issue.

While our analyses focus on single-use alkaline batteries, these 
methods can be extended to other battery types, including rechargeable 
ones. Extending the analysis to household rechargeable batteries 
necessitate revising the methodology to estimate their reusability, 
considering factors like the remaining number of charge–discharge cy
cles and full charge capacity.

Future solutions are needed to facilitate the full utilization of energy 
within batteries. These solutions should include a combination of tech
nical improvements and consumer awareness initiatives. For example, 
batteries can be sequentially used in a set of devices based on their 
remaining energy, and this voltage-dependent consumption information 
can be included on labels. In addition, developing a smart battery tester 

with the ability to intelligently measure the remaining energy in batte
ries is worth investigating. Furthermore, it is possible to design tech
nologies that facilitate the extraction of residual energy from partially 
depleted batteries. This needs energy harvesting devices for capturing 
and storing the remaining energy, and making it accessible for use in 
low-power applications.

In conclusion, promoting sustainable battery consumption practices 
need several actions. Raising awareness about the remaining energy in 
moderately used batteries is important to avoid their early disposal. 
Public campaigns should also focus on the benefits of prolonging the use 
of nearly new batteries. Innovations such as smart battery testers, energy 
recovery technologies, and clear labeling can help maximize battery 
efficiency. Furthermore, implementing community-based battery ex
change programs and creating convenient drop-off locations can facili
tate collection efforts and reduce waste.

9. Conclusion

In this paper, we assess a set of household-used batteries with the 
objective of exploring consumers’ usage behavior. We measure the 
technical characteristics of these batteries to quantify the amount of 
remaining energy. In addition, we discuss the environmental and eco
nomic impact of energy loss in batteries. The findings show that the 
energy loss per unit for AA alkaline batteries is approximately 13 %, 
resulting in an annual energy loss of 660 MWh in the U.S. While an 
individual AA alkaline battery may cost around US$0.50, inefficient 
utilization across the U.S. results in an annual waste of approximately US 
$80 million. The EoL/U alkaline batteries are classified into three main 
categories: nearly depleted, partially spent, and nearly new, with sug
gested recovery solutions provided for each group. The main aspect of 
this study is quantifying the energy loss from underutilized single-use 
alkaline batteries. This shows the need for improved battery designs, 
recycling processes, as well as informing policies to reduce waste.

This study has several implications for policymakers, industry 
stakeholders, and consumers. For policymakers, it illustrates the need to 
improve recycling and collection infrastructure, potentially through 
decentralized collection points within communities to increase battery 
recovery rates. Industry stakeholders can utilize the findings to develop 
innovative technologies, such as smart usage indicators and easy-to- 
dismantle designs, to optimize battery usage and improve disposal 

Fig. 6. The 95 % confidence intervals show the adjusted life cycle impact per 1 kg of fully utilized alkaline batteries considering the batteries utilization patterns.
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practices. Finally, consumers could benefit from increased awareness 
about proper battery usage and disposal practices through public edu
cation campaigns.

We acknowledge certain limitations in this study. Our conclusions 
regarding energy loss and its associated impacts are based on a dataset 
from a specific geographical region and may not be directly applied to 
other regions characterized by different consumption patterns, pricing 
structures, or recycling systems. The majority of our samples were 
collected from New York State, which may introduce regional biases that 
affect the generalizability of our findings. Regional differences in usage 
patterns, environmental conditions, and recycling practices could 
impact the broader applicability of our conclusions. In the future, 
expanding the dataset to include batteries from additional states and 
regions, and collaborating with multiple facilities, is needed to better 
generalize the findings.

Furthermore, the calculation of energy loss and economic impact is 
based on certain assumptions and estimations, which may introduce 
uncertainties into the results. The study’s reliance on manufacturer data 
for estimating remaining service hours and energy may not fully capture 
real-world usage patterns or EoL/U battery conditions.

Also, the study provides usage patterns for single-use alkaline bat
teries and their consequences for a specific timeframe but does not track 
changes over time. Future research should discuss potential trends or 
shifts in those patterns.

Also, future research should aim for a more geographically diverse 
sample and consider incorporating real-world usage data to improve the 
accuracy and relevance of the conclusions.

Also, further research is needed to conduct a thorough analysis that 
considers all related costs and benefits of battery recovery. This includes 
evaluating the economic feasibility of extracting the remaining energy 
relative to its value, as well as assessing the environmental impacts and 
societal considerations. Furthermore, the lack of an industrialized pro
cess to practically harvest energy from collected used batteries adds 
complexity to the feasibility of widespread energy recovery efforts.

Also, it is suggested to explore the impact of environmental factors 
such as temperature and humidity on battery performance. Assessing the 
rate at which single-use alkaline batteries lose charge when not in use 
can provide insights into their degradation and usability over time.

Future work will also incorporate more extensive real-world data 
and advanced predictive models to improve accuracy. Collaboration 
with manufacturers and gathering user feedback will be needed to refine 
estimations. Finally, we provide suggestions to improve battery utili
zation from an energy perspective. However, further technical research 
is needed to develop practical solutions for large-scale energy harvesting 
from alkaline batteries.
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