LARGE LANGUAGE MODELS, THE NEW SCRUM MASTERS

J. Ortiz Couder, O. Ochoa
Embry-Riddle Aeronautical University (UNITED STATES)

Abstract

Agile is an approach to software development that emphasizes flexibility, collaboration, and customer
feedback. It focuses on iterative development cycles, where requirements and solutions evolve through
the collaborative effort of self-organizing and cross-functional teams. Scrum is a framework used within
agile software development but has found application in various other fields as well. It provides a
structure for teams to collaborate effectively on complex projects, allowing them to adapt to changes
quickly and deliver high-quality products efficiently. New software engineers need to learn to work in
teams with other engineers in complex systems. One method to do so is through capstone classes.
These capstone classes tend to be led by one or two professors who must take care of at least 5 groups
each. In this paper we propose the usage of Large Language Models (LLMs) as Scrum Masters for the
groups to light up the load work of professors. LLMs are a type of artificial intelligence (Al) model
designed to understand and generate human-like text. These models are built using deep learning
techniques, particularly using architectures like transformers, and are trained on vast amounts of text
data to learn patterns, relationships, and language structures. Due to the vast amount in knowledge
contained within LLMs and their natural language understanding, the development team and product
owners could utilize LLMs as their Scrum Master. Scrum Masters oversee facilitating the Scrum process,
removes impediments, and ensures the team adheres to Scrum principles and practices. In this paper
we show an approach that, through the use of template queries, allows LLMs to capture the work of a
Scrum Master during the daily standup meetings. In our approach, every member of the development
team will answer the three daily standup questions to the LLM. The LLM will condense the information,
e.g., if a developer is facing an issue that is blocking their progress, the LLM will create a concise report
of this. In this work we show how the LLM can point out a potential solution. The professor gets reported
on the progress and on anything preventing their progress which the LLM cannot assist on solving. Even
though there are still some things that LLMs cannot comprehend nor provide such as empathy, or
leadership skills, LLMs may have the necessary technical skills required to successfully carry out Scrum
Master related tasks. The main issue LLMs face is that there are some physical impediments that LLMs
cannot directly overcome. However, by using the proposed approach, could save time for professors to
directly focus on fixing other issues the students are facing.

Keywords: Large Language Model, Scrum, Education, Project Management, Software Engineering,
Agile, Scrum Master.

1 INTRODUCTION

In the ever-evolving landscape of project management, the Agile methodology has emerged as a
beacon of efficiency and adaptability. At the heart of Agile lies the Scrum framework, providing structure
and flexibility for teams to navigate complex projects seamlessly [1]. Scrum is a specific implementation
of Agile principles and practices. While Agile provides the overarching philosophy and values, Scrum
offers a structured framework with defined roles, ceremonies (such as Sprint Planning, Daily Stand-ups,
Sprint Reviews, and Retrospectives), and artifacts (such as the Product Backlog, Sprint Backlog, and
Increment) to guide teams in executing Agile principles effectively [2]. There are three primary roles
within the Scrum framework; Scrum Master, servant-leaders responsible for ensuring that the Scrum
process is followed properly, Product Owner, person who represents the stakeholders and is responsible
for maximizing the value of the product by managing the Product Backlog, and, Development Team,
which consists of professionals who work together to deliver increments of potentially shippable product
functionality during each Sprint. Traditionally, Scrum Masters have been human facilitators, guiding
teams through the intricacies of Agile processes. However, as technology continues to advance, the
integration of Language Models (LMs), particularly Large Language Models (LLMs), presents a novel
and compelling opportunity to revolutionize the role of the Scrum Master. One of the fundamental
responsibilities of a Scrum Master is to foster communication and collaboration within the team [3]. LLMs
can augment this aspect by analyzing team communications, identifying patterns, and offering insights
to enhance team dynamics. For instance, by parsing through Slack messages, emails, and meeting

Proceedings of EDULEARN24 Conference 0928 ISBN: 978-84-09-62938-1
1st-3rd July 2024, Palma, Mallorca, Spain



transcripts, LLMs can discern trends in communication breakdowns or areas where clarification is
required, enabling Scrum Masters to intervene proactively.

Large Language Models (LLMs) are sophisticated artificial intelligence models designed to process and
generate human-like text based on vast amounts of training data [4]. Specifically, they are a type of
neural network-based model designed to process and generate human-like text. LLMs utilize deep
learning architectures, particularly transformer-based architectures. These models, often built using
deep learning techniques such as neural networks, have millions or even billions of parameters [5]. They
can understand and generate text in natural language with a high degree of fluency and coherence.

LLMs stand out as computational models renowned for their capacity to accomplish general-purpose
language generation along with other tasks in natural language processing, including classification [6].
LLMs have demonstrated remarkable capabilities in understanding and generating human-like text
across a diverse range of domains [7]. Their proficiency in natural language understanding, coupled with
their ability to process vast amounts of data, equips them with the potential to excel in roles requiring
communication, coordination, and problem-solving—qualities inherent to effective Scrum Masters. LLMs
have been used for a huge variety of uses related to the software development process; from code
generation [8], to code explanation [9], or comparing if pieces of code meet the software requirements
specifications agreed between the development team and the customer [10], among other uses

Moreover, the iterative nature of Agile development necessitates constant feedback loops. LLMs can
play a pivotal role in providing timely feedback to team members based on their interactions and outputs
[11]. Through sentiment analysis and language comprehension, LLMs can gauge the morale of the
team, detect potential bottlenecks, and suggest adaptive strategies to maintain project momentum. The
Scrum Master serves as a coach, guiding team members in adopting Agile principles and practices.
LLMs can serve as repositories of knowledge, offering on-demand guidance and training resources
tailored to the team's specific needs [12]. By synthesizing vast repositories of Agile best practices, case
studies, and troubleshooting guides, LLMs can provide comprehensive support to teams, empowering
them to navigate challenges autonomously.

Critics may express concerns about the ability of LLMs to comprehend the nuances of human interaction
and context-specific challenges. However, recent advancements in natural language processing,
coupled with fine-tuning techniques, have significantly enhanced LLMs' contextual understanding and
adaptability [13]. The integration of LLMs as Scrum Masters represents a paradigm shift in Agile project
management. By harnessing the capabilities of these advanced language models, organizations can
streamline communication, enhance productivity, and foster a culture of continuous improvement within
Agile teams. While challenges and ethical considerations remain, the potential benefits of leveraging
LLMs in Scrum Master roles are too compelling to ignore, heralding a new era of Al-enabled Agile project
management.

In this paper we propose that LLMs, more specifically GPT, can be used as Scrum Masters in a
classroom setting, to aid professors by relieving the load of having to be Scrum Masters for multiple
capstone groups. By doing this, the professors can focus on dealing with the most important issues, that
LLMs can’t aid by fixing them. The main reason why GPT-3.5 was the used LLM is because it is one of
the most widely used LLM [14].

The organization of this paper is as follows. Section | introduces the main issues with existing capstone
classes, and why LLMs could prove a potential solution. Section Il displays the followed methodology to
test if LLMs can indeed be used as a tool to decrease instructor’s workload. Section Il shows the results
and Section IV contains the authors’ suggested future work and concluding statements.

2 METHODOLOGY

As stated earlier, Scrum is a framework used in Agile project management that emphasizes iterative
and incremental development to deliver high-value products efficiently [1]. One of the most important
ceremonies that occur during the development of a product are daily standup meetings. They are usually
15-minute-long meetings where each member of the development team meets with the scrum master
and answers three questions: What did you do since the last scrum meeting? Do you have any
obstacles? What will you do before the next meeting? [15].

9929



These three questions set the foundation that the paper will utilize. A template is used that allows the
developers to write the answers for each question and notify GPT on their answers. If there are any
obstacles to which GPT can provide guidelines on how to solve, it will do so. However, if there are
obstacles to which it doesn’t have a solution to or is unable to find the solution by itself, that obstacle is
GPT then gets all the information and tells it to the Scrum Master later. Once the team is done with their
standup meeting, the professor will interact with GPT. This is when the professor asks for any updates
regarding the team’s progress. If everything is going smoothly or there were some obstacles GPT could
help fix, GPT will simply update the professor on that progress, yet if there are obstacles GPT could not
help with, the professor will be notified about this.

Student 1(Frontend Developer):

1. Yesterday, | immplemented the user registration page.
2. Today, | plan to implement the login page.

3. No obstacles.

Student 2 (Backend Developer):

1. Yesterday, | set up the database schema for user accounts creation.
2. Today, I'll set up the database schema for user account authentication.

3. No obstacles.

Student 3 (UI/UX Designer):

1. Yesterday, | finalized the wireframes for the parking spot selection screen.
2. Today, I'll start working on high-fidelity mockups for the parking spot reservation flow.

3. No obstacles.

Summary for Main Scrum Master:

Student 1 is working on implementing the login page after completing user registration.

Student 2 progressed with backend tasks, focusing on database schema for user

account authentication.

Student 3 continued with UI/UX design, moving to high-fidelity mockups.

No obstacles reported by any team member.
Figure 1. Example of standup meeting’s notes taken by GPT.

Fig. 1. displays the summary of the interaction between a group of three developers and GPT. In this
case, the project is an app that aims to provide remote selection of parking spots for other students on
campus and reduce the time it usually takes to park in school. The development is still in the early stages
and there are no obstacles to be reported yet. However, Fig. 2. below displays a scenario when there is
indeed an obstacle. In this situation, Student 1, who oversees the Front-end of the app, is having issues
with the reservation of the parking spots. It seems like there might be a contradiction between two
customer requirement specifications, one which requires the selected spot to be displayed within 250
milliseconds, and one that made the refresh rate of the page to be 500 milliseconds to maintain a low
energy consumption.

9930



Student 1 (Frontend Developer):

1. Yesterday, | tried to show in the parking map the selected spots by the user within the 250-
millisecond constraint given by the customer, but since we are refreshing the page every 500
milliseconds, it is not possible to do so.

2. Today, | will try to fix this issue.

3. The ping to the server is every 500 milliseconds to meet the energy consumption requirement made
by the customer, but the customer also wanted to display the selected spot within 250 milliseconds.
They are mutually exclusive so one has to be modified.

Student 2 (Backend Developer):

1. Yesterday, | set up the parking spot blocking call. Now if a user has selected a parking spot, that
spot's status is set to unavailable so no other user can select it.

2. Today, | will work on setting the server confirmation response when that spot has been successfully
selected.

3. No obstacles.

Student 3 (UI/UX Designer):

1. Yesterday, | designed the parking spot selection screen. Now if a user has selected a parking spot,
that spot will be displayed as yellow until it is confirmed reserved, when it will change to red.

2. Today, | will work on the reservation confirmation message displayed.

3. No obstacles.

Summary for Professor (Main Scrum Master):

» Student 1 (Frontend Developer) encountered challenges with displaying selected spots within the
time constraint and the conflicting server ping frequency requirement. They will work on resolving
these issues.

» Student 2 (Backend Developer) set up the parking spot blocking call and will work on server
confirmation responses today.

» Student 3 (UI/UX Designer) designed the parking spot selection screen and will work on the
reservation confirmation message today.

« No obstacles reported by any other team member.

Figure 2. Example of standup meeting’s notes where a student reports an obstacle taken by GPT.

When GPT could envision a solution to an obstacle, it would instantly describe it to the student, instead of
doing so after the standup meeting. This is something that could become troublesome as it could extend
the duration of standup meetings. In the scenario when GPT could not instantly find a potential solution to
an obstacle a student faced, it would not mention anything and simply report it to the professor at the post-
standup meeting, as shown in Fig. 3. This figure displays the post-standup meeting between the professor
and GPT. In this case, since there is an obstacle to which GPT could not provide a solution, it asks the
professor for assistance in resolving the conflicts between the two contradictory requirement specifications
by potentially meeting with the customer and discussing potential changes in those requirements.

9931



Post-Standup Meeting:

Professor:

How did the standup meeting go today?

GPT Scrum Master (Scrum Master for Developers):

Overall, it went well. However, Student 1 encountered challenges with the time constraint and conflicting

requirements, while Student 3 made good progress with their tasks.

Professor:

| see. Do you require any assistance in resolving those challenges?

GPT Scrum Master:

Yes, indeed. We'll need your guidance to navigate through the conflicting requirements and find a

suitable solution.

Professor:

Of course, I'll be happy to help. Let's discuss the details and come up with a plan to address these

challenges.

GPT Scrum Master:

Great, thank you!

And that concludes our morning standup! If you have any further questions or need additional

information, feel free to ask.

Figure 3. Post-standup meeting where GPT reports to
the professor an obstacle to which it cannot find a solution.

3 RESULTS

In total, six groups of students were used to evaluate this procedure. Each of the groups had a different
project to conduct but all had the same professor overseeing those projects.

Table 1. Summary of obstacles reported and solutions by GPT.

Obstacles to which

Obstacles to which

Obstacles to which

Obstacles reported GPT provided a GPT’s provided GPT could not
potential solution solution worked provide a solution
Group 1 25 15 11 10
Group 2 33 20 15 13
Group 3 21 16 10 5
Group 4 15 8 5 7
Group 5 35 30 20 55
Group 6 29 25 22 4
Total 158 114 83 44

In total, 158 obstacles were reported, and GPT gave a solution to 114 of them. However, out of those 114,
only 83 proved to be successful in fixing the obstacles, meaning that GPT gave a solution to 72% of the
problems and gave a successful solution to 52.5% of the total reported obstacles. In total, GPT could not
provide a solution to 44 (27.8%) obstacles and required the assistance of the professor to help the teams
with the hurdle. Between the solutions GPT provided that didn’t solve the obstacle, and the ones GPT
couldn’t find the solution to, total of 75, GPT was incapable of solving 47.5% of the obstacles reported.

9932



It is true that each of the projects was different with a different level of difficulty, which could affect the
number of obstacles each group faced, and how easy it was for GPT to provide solutions. The skill level
of each group is also varying, which again could vary the number of obstacles found. If two groups, one
of highly skilled developers, and one of less skilled developers tackled the same project, it is to be
assumed the one with the most skilled developers would encounter less obstacles they couldn’t solve
themselves. This discrepancy in skill levels also means that GPT was tasked with solving more complex
issues and would struggle more to do so.

Table 2. Categorization of obstacles found.

Category Obstacles | Solved
Logical errors 60 53
Contradicting/incorrect requirement 12 0
Compatibility issue 25 10
Need of new/different hardware 33 0
Integration between front-end and back-end 28 20
Total 158 83

Table 2 displays the different categories of the obstacles reported. There are five total categories: logical
errors, contradicting or incorrect requirements, compatibility issues with the hardware, need of a new or
different hardware, and integration between the front-end and the back-end. Logical errors are problems
that occur when the code doesn’t behave as expected [16]. They are usually due to logic errors. The
code compiles and runs yet the behavior is not the expected one. There were 60 reported logical errors
to the code and GPT could solve 53 by giving the entering the code and asking it to debug the code.
Compatibility issues seemed to be another common issue encountered. When developing a mobile
application for instance, all different hardware must be considered and might require different interfaces.
There were 25 reported compatibility issues reported and GPT could solve 10. The integration between
the front-end and back-end seemed to be another common obstacle. These obstacles tend to happen
when the communication between the part of the application the user interacts with and the one that
makes the program work correctly is broken [17]. GPT could fix 20 out of the 28 reported integration
issues. When looking at these three categories, GPT could fix 83 of 113 (73.5%).

However, there were two categories in which GPT could not provide any assistance with. These two
were contradictory or incorrect requirements and when the new hardware was required. A total of 40
obstacles were reported and GPT was incapable of fixing any of them. This also aligns with the idea
that GPT needs a person to oversee its work. In these cases, either communication with the customer
was required, to fix or modify the requirements, or some sort of interaction with vendors was required to
order hardware. Since GPT was not allowed to perform said actions, it relied on the professor overseeing
the projects to handle them instead.

4 CONCLUSIONS

This paper suggests that LLMs could be used to lighten the load professors have when teaching
capstone classes focused on group projects. This paper proves that GPT can be utilized to solve
obstacles development teams encounter, yet there are some problems that require direct interaction
with external sources — customers or vendors — which GPT cannot assist in solving. If issues like these
are encountered, then a professor (or supervisor) is required to help overcoming them. Yet, if the issues
encountered are strictly code related, GPT could be a potential aid to solve the problems so the
professor can focus on other obstacles.

It is worth noting that this paper does not believe LLMs should be a replacement for other developers
during these activities but a tool that could aid during them. While our research offers promising results,
future studies might consider evaluating different LLMs and versions within those LLMs against the
same projects and obstacles to compare how capable each version is at solving those reported
obstacles.

9933



REFERENCES

(]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(1]

[12]

(13]

(14]

(19]
(16]

(171

A. Srivastava, S. Bhardwaj and S. Saraswat, "SCRUM model for agile methodology," in 2017
International Conference on Computing, Communication and Automation (ICCCA), 2017.

M. Paasivaara, S. Durasiewicz and C. Lassenius, "Distributed agile development: Using scrumin a
large project," in 2008 IEEE International Conference on Global Software Engineering, 2008.

K. Schwaber, "The Scrum Master," in Agile project management with Scrum, Microsoft Press,
2004, pp. 36-47.

J. Hoffman, S. Borgeaud, A. Mensch, E. Buchatskaya, T. Cai, E. Rutherford, D. de Las Casas,
L. A. Hendricks, J. Welbl, A. Clark, T. Henningan, E. Noland, K. Millican, G. van den Driessche,
B. Damoc, A. Guy, S. Osindero, K. Simonyan, E. Elsen, J. W. Rae, O. Vinyals and L. Sifre,
"Training compute-optimal large language models," arXiv preprint arXiv:2203.15556, 2022.

M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper and B. Catanzaro, "Megatron-Im:
Training multi-billion parameter language models using model parallelism," arXiv preprint
arXiv:1909.08053, 2019.

J. Wei, Y. Tay, R. Bommasani, C. Raffel, B. Zoph, S. Borgeaud, D. Yogatama, M. Bosma, D.
Zhou, D. Metzler, E. H. Chi, T. Hashimoto, O. Vinyals, P. Liang, J. Dean and W. Fedus,
"Emergent abilities of large language models," arXiv preprint arXiv:2206.07682, 2022.

Y. Chang, X. Wang, J. Wang, Y. Wu, L. Yang, K. Zhu, H. Chen, X. Yi, C. Wang, W. Yu, Y. Zhang,
Y. Chang, P. S. Yu, Q. Yang and X. Xie, "ASurvey on Evaluation of Large Language Models," ACM
Transactions on Intelligent Systems and Technology, vol. 15, no. 3, pp. 1-45, 2024.

J. Liu, C. S. Xia, Y. Wang and L. Zhang, "Is your code generated by chatgpt really correct?
rigorous evaluation of large language models for code generation," Advances in Neural
Information Processing Systems, vol. 36, 2024.

S. Sarsa, P. Denny, A. Hellas and J. Leinonen, "Automatic generation of programming
exercises and code explanations using large language models," in Proceedings of the 2022
ACM Conference on International Computing Education Research-Volume 1, 2022,

J. Ortiz Couder, D. Gomez and O. Ochoa, "Requirements Verification Through the Analysis of
Source Code by Large Language Models," in SoutheastCon 2024, 2024.

T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakatantan, P.
Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child,
A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray,
B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, |. Sutskever and D. Amodei,
"Language models are few-shot learners," Advances in neural information processing systems,
vol. 33, pp. 1877-1901, 2020.

F. Petroni, T. Rocktaschel, P. Lewis, A. Bakhtin, Y. Wu, A. H. Miller and S. Riedel, "Language
models as knowledge bases?," arXiv:1909.01066, 2019.

B. Wang, G. Li and Y. Li, "Enabling conversational interaction with mobile ui using large
language models," in Proceedings of the 2023 CHI Conference on Human Factors in
Computing Systems, 2023.

T. Wu, S. He, J. Liu, S. Sun, K. Liu, Q.-L. Han and Y. Tang, "A brief overview of ChatGPT: The
history, status quo and potential future development," IEEE/CAA Journal of Automatica Sinica,
vol. 10, no. 5, pp- 1122-1136, 2023.

K. Schwaber and M. Beedle, Agile software development with Scrum, Prentice Hall PTR, 2001.

A. Ettles, A. Luxton-Reilly and P. Denny, "Common logic errors made by novice programmers,"
in Proceedings of the 20th Australasian Computing Education Conference, 2018.

F. Guinzel and A. B. Holm, "One size does not fit all—understanding the front-end and back-end
of business model innovation," International journal of innovation management, vol. 17, no. 1, p.
1340002, 2013.

9934



