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Abstract

Hallucinations in large language models
(LLMs), where they generate fluent but fac-
tually incorrect outputs, pose challenges for
applications requiring strict truthfulness. This
work proposes a multi-faceted approach to
detect such hallucinations across various lan-
guage tasks. We leverage automatic data an-
notation using a proprietary LLM, fine-tuning
of the Mistral-7B-instruct-v0.2 model on an-
notated and benchmark data, role-based and
rationale-based prompting strategies, and an
ensemble method combining different model
outputs through majority voting. This compre-
hensive framework aims to improve the robust-
ness and reliability of hallucination detection
for LLM generations. Code and data1

1 Introduction

The modern natural language generation (NLG)
(OpenAI et al., 2023; Touvron et al., 2023) land-
scape faces two interconnected challenges: firstly,
current neural models have a tendency to produce
fluent yet inaccurate outputs, and secondly, our
evaluation metrics are better suited for assessing
fluency rather than correctness(Bang et al., 2023;
Guerreiro et al., 2023). This phenomenon, known
as "hallucination," (Ji et al., 2023) where neural
networks generate plausible-sounding but factually
incorrect outputs, is a significant hurdle, especially
for NLG applications that require strict adherence
to correctness. For instance, in machine transla-
tion(Lee et al., 2019), producing a fluent transla-
tion that deviates from the source text’s meaning
renders the entire translation pipeline unreliable.
This issue may arise as LLMs are trained on vast
amounts of data from the internet, which can con-
tain inaccuracies, biases, and false information.
Also, it may arise due improper representations
learned during training even if good quality data is

1https://github.com/souvikdgp16/shroom_compos_mentis

used. As a result, LLMs can sometimes hallucinate
or fabricate details, especially when prompted to
discuss topics outside their training data or make
inferences beyond their capabilities.
Hallucination detection (Liu et al., 2022), also

known as factual verification or truthfulness evalu-
ation, identifies and mitigates these hallucinations
in the outputs of LLMs. This is an active area of
research and development, as it is crucial for en-
suring the reliability and trustworthiness of LLM-
generated content, particularly in high-stakes do-
mains such as healthcare, finance, and legal appli-
cations. In this task, the primary focus will be to
classify whether a generation is hallucinated.

This work proposes a multi-faceted approach to
detecting hallucinations in large language models’
outputs. We employ automatic data annotation us-
ing a proprietary LLM (Claude 2.12) to label exam-
ples from the provided training set as hallucinated
or not. Then we fine-tune the Mistral-7B-instruct-
v0.23 model on this annotated data as well as the
HaluEval benchmark (Li et al., 2023) to create two
fine-tuned models. To improve performance, we
use role-based prompting that casts the task in spe-
cific contexts like fact-checking. We also leverage
rationale-based prompting, asking the LLM to jus-
tify its hallucination label. Finally, an ensemble
method combines outputs from the fine-tuned Mis-
tral models, Claude 2.1, and different prompting
strategies via majority voting. This comprehensive
approach aims to enhance the robustness and re-
liability of hallucination detection across various
language tasks.

2 Task Details

This shared task (Mickus et al., 2024) aims to foster
the growing interest within the community in ad-

2https://www.anthropic.com/news/claude-2
3https://huggingface.co/mistralai/Mistral-7B-Instruct-

v0.2
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dressing this issue. Participants are tasked with per-
forming binary classification to identify instances
of fluent overgeneration hallucinations in two dif-
ferent setups: a model-aware track and a model-
agnostic track. Essentially, participants must detect
grammatically sound outputs that contain incorrect
or unsupported semantic information, inconsistent
with the source input, with or without having access
to the model that produced the output.
To facilitate this task, participants are provided

with a collection of checkpoints, inputs, references,
and outputs from systems covering three different
NLG tasks: definition modeling (DM), machine
translation (MT), and paraphrase generation (PG).
These systems will be trained with varying degrees
of accuracy. The validation and test sets will in-
clude binary annotations from at least five anno-
tators, with a majority vote determining the gold
label.

2.1 Data

The data split is shown in Table 1.

Task Validation Test
model agnostic 500 1500
model aware 500 1500

Table 1: Data-split statistics.

Each data split file is formatted as a JSON list.
Each element in this list corresponds to a data point
as shown:

Each data instance contains the following key
elements: a task (task) indicating the language
model’s objective; a source (src) input; a target
reference (tgt); a hypothesis (hyp) which is the
model’s actual output; a set of per annotator hal-
lucination labels (labels); a majority-based gold
hallucination label (label); and a probability score
(p(Hallucination)) representing the proportion of
annotators who labeled the instance as hallucinated.

2.2 Evaluation Protocol
Submissions are evaluated using two criteria:

1. Accuracy: the system accuracy reached on
the binary classification.

2. ρ: the Spearman correlation of the systems’
output probabilities with the proportion of the
annotators marking the item as overgenerat-
ing.

3 System Description

3.1 Automatic Data Annotation
We automatically annotate the unlabeled training
data provided by the organizers. We use a strong
proprietary Large Language Model(LLM) Claude
2.1 to annotate the data automatically. Since, anno-
tations from Claude 2.1 might not be fully reliable
we use a confidence-based measure to select only
those training examples where the LLM is confi-
dent enough. We use the following prompts:

First, we prompt the LLM to get the hallucina-
tion label. Then we again prompt the LLM to do a
retrospect on the decision it has made by asking it
how confident it is with the decision. We filter out
all the examples with a score less than 5.

3.2 Fine-tuning Mistral-7B-instruct-v0.2
We train two fine-tuned versions of Mistral-7B-
instruct-v0.2 for this task:
Fine-tuned on our data: We split our automati-
cally annotated dataset in 8:1:1 split for training,
validation and testing. We adopt a generative ap-
proach for classification where the instruction was
fed in this fashion: [INST]prompt[/INST], where
the prompt is the same as it is used during annota-
tion phase. The goal is to generate the hallucination
label. The test F1-score was 82.03%. We name this
model as Mistral-7B-instruct-v0.2-halu-internal.
Fine-tuned on HaluEval dataset:Hallucination
Evaluation benchmark for Large Language Mod-
els (HaluEval), a large collection of generated and
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Figure 1: Our overall ensemble-based inference pipeline. We use majority voting at the model level and overall
pipeline level to determine the final hallucination label.

human-annotated hallucinated samples for evaluat-
ing the performance of LLMs in recognizing hallu-
cination HaluEval dataset contains 30, 000 halluci-
nated samples with 10, 000 examples for each task
of QA, dialogue, and summarization. Here also,
we adopt a generative approach for classification
with the same instruction sequence as used dur-
ing fine-tuning using our data. The test F1-score
was 77.95%. We name this model as Mistral-7B-
instruct-v0.2-halu-eval.

Hyperparameters: We use the original weights
of Mistral-7B-instruct-v0.2 released by Mistral
AI. We use QLoRA(Dettmers et al., 2023) for
parameter-efficient fine-tuning. We set the max-
imum length of the input sequence to 512 and
the rank k and α in QLoRA to 16 and 8, respec-
tively. We use the bitsandbytes library to initial-
ize the QLoRA parameters. We use an 8-bit Paged
Adam optimizer to update QLoRA parameters with
a batch size of 64 and learning rates of 1e-7. The
trainable QLoRA parameters (∼ 19.5M) are fine-
tuned on 2 NVIDIA A5000-24GB GPUs. All the
hyperparameter are tuned using the provided trial
data, k and α were varied in the range of [4,16]
with a step of 4, batch size was varied in the range
of [32,72] with a step of 16, and the learning rate
was varied from 1e-8 to 1e-7, the best performing
hyperparameters are reported.

3.3 Role Based Prompting

Since we are dealing with multiple tasks, the same
prompt might not be suitable for all the tasks dur-
ing inference. We create task-specific role-based
prompt for each task using the following prompt
template:

<intended_response> is the golden response,
<actual_response> is the actually generated re-
sponse. Here the inference-time roles will be based
on the following Table:

Role

Definition Modelling
Imagine yourself as a fact-checker;
your job is to check whether
<actual_response>is the definition of <context>.

Paraphrase Generation

Imagine yourself as a paraphrase-checker;
your job is to check whether <actual_response>
is an actual paraphrase of <context>.
That means the meaning of <actual_response>
should be the same as <context>, however <actual_response>
will contain lesser words than <context>.

Machine Translation
Imagine yourself as a translation-checker;
your job is to check whether <actual_response>
is an actual translation of <context>.

Table 2: Role Definitions.

3.4 Rationale Based Prompting

We notice that when LLMs are prompted to pro-
duce rationale for its decision it often elicits more
truthful response. Due to this observation we
prompt the LLM to generate the explanation clas-
sifying the generation is hallucinated or not. The
prompt is as follows:

1451



3.5 Inference Ensemble

We combine all our prompting strategies to simu-
late an annotator for each sample. Also, we cre-
ate an ensemble of three models: (1) Mistral-7B-
instruct-v0.2-halu-internal (2) Mistral-7B-instruct-
v0.2-halu-eval (3) Claude 2.1. Along with the role-
based and rationale-based prompting we also in-
corporate a vanilla prompting where we just ask
the LLM to come up with the hallucination label
without assuming any role or generating a rationale,
like this:

For each model pipeline, we get 3 hallucination
labels; the pipeline label is the most common la-
bel out of 3. The hallucination probability score is
determined by this equation: p(Hallucination) =
#halluciation_labels

3 . We get the hallucination label
and p(Hallucination) for the three pipelines, and
again we do a majority voting to get the final hal-
lucination label. The final p(Hallucination) is set
to the maximum probability of the selected hallu-
cination label across the pipeline. We use greedy
decoding for the Mistral-based models with a tem-
perature of 0.8. Average cost of running Claude
APIs for each is about 7$ for validation set and
16$ for test set. For Claude inference we use a
temperature of 0.9.

4 Results

Table 3 and 4 show the results for model-aware
and model-agnostic hallucination detection tasks
for validation split. For both cases, we notice in-
creased performance with rationale-based prompts

for all the models. Subsequently, our ensemble-
based pipeline boosts the performance even more.
On the other hand, the performance of the Halu-
Eval fine-tuned dataset is superior to our annotated
dataset because there is a large possibility of noise
getting introduced during our annotation process.
Our annotation process uses verbalized model con-
fidence as a proxy for data filtration; if the model is
not calibrated correctly, this might lead to a faulty
filtration process.

Configuration Prompting Technique Accuracy Rho
Mistral-7B-instruct-
v0.2-halu-internal

role-based 0.711 0.562

Mistral-7B-instruct-
v0.2-halu-eval

role-based 0.724 0.588

Claude2.1 role-based 0.723 0.563
Mistral-7B-instruct-
v0.2-halu-internal

rationale-based 0.724 0.566

Mistral-7B-instruct-
v0.2-halu-eval

rationale-based 0.73 0.564

Claude2.1 rationale-based 0.728 0.566
Mistral-7B-instruct-
v0.2-halu-internal

vanilla 0.712 0.562

Mistral-7B-instruct-
v0.2-halu-eval

vanilla 0.72 0.553

Claude2.1 vanilla 0.712 0.565
3-model-ensemble all 0.738 0.568

Table 3: Validation results for model-agnostic task.

Configuration Prompting Technique Accuracy Rho
Mistral-7B-instruct-
v0.2-halu-internal

role-based 0.713 0.568

Mistral-7B-instruct-
v0.2-halu-eval

role-based 0.733 0.576

Claude2.1 role-based 0.723 0.556
Mistral-7B-instruct-
v0.2-halu-internal

rationale-based 0.726 0.567

Mistral-7B-instruct-
v0.2-halu-eval

rationale-based 0.723 0.569

Claude2.1 rationale-based 0.731 0.572
Mistral-7B-instruct-
v0.2-halu-internal

vanilla 0.708 0.562

Mistral-7B-instruct-
v0.2-halu-eval

vanilla 0.723 0.533

Claude2.1 vanilla 0.726 0.566
3-model-ensemble all 0.736 0.579

Table 4: Validation results for model-aware task.

Task Configuration Accuracy Rho
model agnostic 3-model-ensemble 0.738 0.595
model aware 3-model-ensemble 0.756 0.566

Table 5: Evaluation results.

During evaluation, we ran our best-performing
pipeline i.e., the ensemble of 3 models. A perfor-
mance similar to the validation set is observed here.
Our team ranked 33 out of 48 for model agnostic
sub-task and 29 out of 45 for model aware sub-task.
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5 Conclusion

This work proposes a multi-faceted approach for de-
tecting hallucinations in large language model out-
puts across various natural language tasks. It em-
ploys automatic data annotation, fine-tuning state-
of-the-art models on annotated data and bench-
marks, role-based and rationale-based prompting
strategies, and an ensemble method combining
multiple model outputs. The ensemble pipeline
achieves promising results on model-agnostic and
model-aware evaluation settings for hallucination
detection. While challenges remain, this compre-
hensive framework highlights the potential of care-
fully designed prompting, model fine-tuning, and
ensembling techniques to enhance the robustness
and reliability of factual verification in language
model generations, paving the way for develop-
ing more trustworthy natural language generation
systems.
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