
Accelerated Training via Incrementally

Growing Neural Networks using

Variance Transfer and Learning Rate Adaptation

Xin Yuan
University of Chicago
yuanx@uchicago.edu

Pedro Savarese
TTI-Chicago

savarese@ttic.edu

Michael Maire
University of Chicago

mmaire@uchicago.edu

Abstract

We develop an approach to efficiently grow neural networks, within which param-
eterization and optimization strategies are designed by considering their effects
on the training dynamics. Unlike existing growing methods, which follow simple
replication heuristics or utilize auxiliary gradient-based local optimization, we craft
a parameterization scheme which dynamically stabilizes weight, activation, and
gradient scaling as the architecture evolves, and maintains the inference functional-
ity of the network. To address the optimization difficulty resulting from imbalanced
training effort distributed to subnetworks fading in at different growth phases, we
propose a learning rate adaption mechanism that rebalances the gradient contribu-
tion of these separate subcomponents. Experiments show that our method achieves
comparable or better accuracy than training large fixed-size models, while saving a
substantial portion of the original training computation budget. We demonstrate
that these gains translate into real wall-clock training speedups.

1 Introduction

Modern neural network design typically follows a “larger is better” rule of thumb, with models
consisting of millions of parameters achieving impressive generalization performance across many
tasks, including image classification [22, 32, 30, 46], object detection [13, 26, 11], semantic segmen-
tation [27, 3, 24] and machine translation [34, 7]. Within a class of network architecture, deeper or
wider variants of a base model typically yield further improvements to accuracy. Residual networks
(ResNets) [15] and wide residual networks [45] illustrate this trend in convolutional neural network
(CNN) architectures. Dramatically scaling up network size into the billions of parameter regime has
recently revolutionized transformer-based language modeling [34, 7, 1].

The size of these models imposes prohibitive training costs and motivates techniques that offer
cheaper alternatives to select and deploy networks. For example, hyperparameter tuning is notoriously
expensive as it commonly relies on training the network multiple times, and recent techniques aim to
circumvent this by making hyperparameters transferable between models of different sizes, allowing
them to be tuned on a small network prior to training an original large model once [41].

Our approach incorporates these ideas, but extends the scope of transferability to include the pa-
rameters of the model itself. Rather than view training small and large models as separate events,
we grow a small model into a large one through many intermediate steps, each of which introduces
additional parameters to the network. Our contribution is to do so in a manner that preserves the
function computed by the model at each growth step (functional continuity) and offers stable training
dynamics, while also saving compute by leveraging intermediate solutions. More specifically, we
use partially trained subnetworks as scaffolding that accelerates training of newly added parameters,
yielding greater overall efficiency than training a large static model from scratch.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

��

��

��

���

� �/� �/�

� + ��� + ��
�

�
Split / Add

Add Neurons

�, � : Old

�/�: Split

�, �: Grad-based Init.

��, �� : Small Noise

Parameterization

Optimization

Split Neurons

��
Global LR

(a) Existing Methods: Splitting Init, Global LR

��

��

��

�

�

�2
� + ��

2�

Grow Neurons

��

� + ��

+� �2

��

��

��

��

�� ��
Separate LR

�, � : Old

�#, �#: Var. Transfer

�, �: Grad-Free Init.

��, �� : Small Noise

Parameterization

Optimization

Grow

(b) Ours: Function-Preserving Init, Stagewise LR

Figure 1: Dynamic network growth strategies. Different from (a) which rely on either splitting [4, 25,
39] or adding neurons with auxiliary local optimization [38, 10], our initialization (b) of new neurons
is random but function-preserving. Additionally, our separate learning rate scheduler governs weight
updating to address the discrepancy in total accumulated training between different growth stages.

Competing recent efforts to grow deep models from simple architectures [4, 23, 5, 25, 39, 37, 38, 44,
10] draw inspiration from other sources, such as the progressive development processes of biological
brains. In particular, Net2Net [4] grows the network by randomly splitting learned neurons from
previous phases. This replication scheme, shown in Figure 1(a) is a common paradigm for most
existing methods. Gradient-based methods [38, 39] determine which neurons to split and how to split
them by solving a combinatorial optimization problem with auxiliary variables.

At each growth step, naive random initialization of new weights destroys network functionality and
may overwhelm any training progress. Weight rescaling with a static constant from a previous step
is not guaranteed to be maintained as the network architecture evolves. Gradient-based methods
outperform these simple heuristics but require additional training effort in their parameterization
schemes. Furthermore, all existing methods use a global LR scheduler to govern weight updates,
ignoring the discrepancy among subnetworks introduced in different growth phases. The gradient
itself and other parameterization choices may influence the correct design for scaling weight updates.

We develop a growing framework around the principles of enforcing transferability of parameter
settings from smaller to larger models (extending [41]), offering functional continuity, smoothing opti-
mization dynamics, and rebalancing learning rates between older and newer subnetworks. Figure 1(b)
illustrates key differences with prior work. Our core contributions are:

• Parameterization using Variance Transfer: We propose a parameterization scheme accounting
for the variance transition among networks of smaller and larger width in a single training process.
Initialization of new weights is gradient-free and requires neither additional memory nor training.

• Improved Optimization with Learning Rate Adaptation: Subnetworks trained for different
lengths have distinct learning rate schedules, with dynamic relative scaling driven by weight norm
statistics.

• Better Performance and Broad Applicability: Our method not only trains networks fast, but
also yields excellent generalization accuracy, even outperforming the original fixed-size models.
Flexibility in designing a network growth curve allows choosing different trade-offs between
training resources and accuracy. Furthermore, adopting an adaptive batch size schedule provides
acceleration in terms of wall-clock training time. We demonstrate results on image classification
and machine translation tasks, across various network architectures.

2 Related Work

Network Growing. A diverse range of techniques train models by progressively expanding the
network architecture [36, 9, 5, 37, 44]. Within this space, the methods of [4, 25, 39, 38, 10] are
most relevant to our focus – incrementally growing network width across multiple training stages.
Net2Net [4] proposes a gradient-free neuron splitting scheme via replication, enabling knowledge
transfer from previous training phases; initialization of new weights follows simple heuristics. Liu et
al.’s splitting approach [25] derives a gradient-based scheme for duplicating neurons by formulating
a combinatorial optimization problem. FireFly [38] gains flexibility by also incorporating brand new
neurons. Both methods improve Net2Net’s initialization scheme by solving an optimization problem
with auxiliary variables, at the cost of extra training effort. GradMax [10], in consideration of training
dynamics, performs initialization via solving a singular value decomposition (SVD) problem.

2

Neural Architecture Search (NAS) and Pruning. Another subset of methods mix growth with
dynamic reconfiguration aimed at discovering or pruning task-optimized architectures. Network
Morphism [36] searches for efficient networks by extending layers while preserving the parameters.
AutoGrow [37] takes an AutoML approach governed by heuristic growing and stopping policies.
Yuan et al. [44] combine learned pruning with a sampling strategy that dynamically increases or
decreases network size. Unlike these methods, we focus on the mechanics of growth when the target
architecture is known, addressing the question of how to best transition weight and optimizer state
to continue training an incrementally larger model. NAS and pruning are orthogonal to, though
potentially compatible with, the technical approach we develop.

Hyperparameter Transfer. Multiple works [42, 29, 16] explore transferable hyperparameter (HP)
tuning. The recent Tensor Program (TP) work of [40] and [41] focuses on zero-shot HP transfer
across model scale and establishes a principled network parameterization scheme to facilitate HP
transfer. This serves as an anchor for our strategy, though, as Section 3 details, modifications are
required to account for dynamic growth.

Learning Rate Adaptation. Surprisingly, the existing spectrum of network growing techniques
utilize relatively standard learning rate schedules and do not address potential discrepancy among
subcomponents added at different phases. While general-purpose adaptive optimizers, e.g., Ada-
Grad [8], RMSProp [33], Adam [20], or AvaGrad [31], might ameliorate this issue, we choose to
explicitly account for the discrepancy. As layer-adaptive learning rates (LARS) [12, 43] benefit in
some contexts, we explore further learning rate adaption specific to both layer and growth stage.

3 Method

3.1 Parameterization and Optimization with Growing Dynamics

Functionality Preservation. We grow a network’s capacity by expanding the width of computational
units (e.g., hidden dimensions in linear layers, filters in convolutional layers). To illustrate our scheme,
consider a 3-layer fully-connected network with ReLU activations φ at a growing stage t:

ut = φ(W x
t x) ht = φ(W u

t ut) yt = W h
t ht , (1)

where x ∈ R
Cx

is the network input, yt ∈ R
Cy

is the output, and ut ∈ R
Cu

t ,ht ∈ R
Ch

t are the
hidden activations. In this case, W x

t is a Cu
t × Cx matrix, while W u

t is Ch
t × Cu

t and W h
t is

Cy × Ch
t . Our growing process operates by increasing the dimensionality of each hidden state, i.e.,

from Cu
t and Ch

t to Cu
t+1 and Ch

t+1, effectively expanding the size of the parameter tensors for the
next growing stage t+ 1. The layer parameter matrices Wt have their shapes changed accordingly
and become Wt+1. Figure 2 illustrates the process for initializing Wt+1 from Wt at a growing step.1

Following Figure 2(a), we first expand W x
t along the output dimension by adding two copies of new

weights V x
t of shape

Cu
t+1−Cu

t

2
× Cx, generating new features φ(V x

t x). The first set of activations
become

ut+1 = concat (ut, φ(V
x
t x), φ(V x

t x)) , (2)

where concat denotes the concatenation operation. Next, we expand W u
t across both input and

output dimensions, as shown in Figure 2(b). We initialize new weights Zu
t of shape Ch

t ×
Cu

t+1−Cu
t

2

and add to W u
t two copies of it with different signs: +Zu

t and −Zu
t . This preserves the output of

the layer since φ(W u
t ut + Zu

t φ(V
x
t x) + (−Zu

t)φ(V
x
t x)) = φ(W u

t ut) = ht . We then add two

copies of new weights V u
t , which has shape

Ch
t+1−Ch

t

2
× Cu

t+1, yielding activations

ht+1 = concat(ht, φ(V
u
t ut+1), φ(V

u
t ut+1)) . (3)

We similarity expand W h
t with new weights Zh

t to match the dimension of ht+1, as shown in
Figure 2(c). The network’s output after the growing step is:

yt+1 = W h
t ht +Zh

t φ(V
u
t ut+1) + (−Zh

t)φ(V
u
t ut+1)

= W h
t ht = yt ,

(4)

which preserves the original output features in Eq. 1. Appendix B provides illustrations for more
layers.

1We defer the transformation between Wt and W
′

t to the next subsection. It involves rescaling by constant
factors, does not affect network functionality, and is omitted in Eq. 1- 4 for simplicity.

3

(a) Input Layer

(b) Hidden Layer

(c) Output Layer

Figure 2: Initialization scheme. In practice, we also add noise to the
expanded parameter sets for symmetry breaking.

Weights Initialization with Variance Transfer (VT). Yang et al. [41] investigate weight scaling
with width at initialization, allowing hyperparameter transfer by calibrating variance across model
size. They modify the variance of output layer weights from the commonly used 1

fanin
to 1

fan2
in

. We

adopt this same correction for the added weights with new width: W h and Zh are initialized with
variances of 1

Ch
t

2 and 1

Ch
t+1

2 .

However, this correction considers training differently-sized models separately, which fails to accom-
modate the training dynamics in which width grows incrementally. Assuming that the weights of the
old subnetwork follow W h

t ∼ N (0, 1

Ch
t

2) (which holds at initialization), we make them compatible

with new weight tensor parameterization by rescaling it with the fanin ratio as W h′

t = W h
t · Ch

t

Ch
t+1

.

See Table 1 (top). Appendix A provides detailed analysis.

This parameterization rule transfers to modern CNNs with batch normalization (BN). Given a weight
scaling ratio of c, the running mean µ and variance σ of BN layers are modified as cµ and c2σ,
respectively.

Stage-wise Learning Rate Adaptation (LRA). Following [41], we employ a learning rate scaling
factor of ∝ 1

fanin
on the output layer when using SGD, compensating for the initialization scheme.

However, subnetworks from different growth stages still share a global learning rate, though they have
trained for different lengths. This may cause divergent behavior among the corresponding weights,
making the training iterations after growing sensitive to the scale of the newly-initialized weights.
Instead of adjusting newly added parameters via local optimization [38, 10], we govern the update of
each subnetwork in a stage-wise manner.

Let Wt denote the parameter variables of a layer at a growth stage t, where we let Wt and W ′

t

correspond to the same set of variables such thatWt+1 \ Wt denotes the new parameter variables
whose values are initialized with Zt and Vt. Moreover, let W∆k and G∆k denote the values and
gradients of Wk \ Wk−1. We adapt the learning rate used to update each sub-weight W∆k, for

4

Table 1: Parameterization and optimization transition for different layers during growing. Ct and
Ct+1 denote the input dimension before and after a growth step.

Input Layer Hidden Layer Output Layer

Init.
Old Re-scaling 1

√

Cu
t /C

u

t+1 Ch

t /C
h

t+1

New Init. 1/Cx

t 1/Cu

t+1 1/(Ch

t+1)
2

Adapt.
0-th Stage 1 1 1/C0

t-th Stage
∥Wx

∆t∥

∥Wx
∆0

∥

∥Wu
∆t∥

∥Wu
∆0

∥

∥Wh
∆t∥

∥Wh
∆0

∥

0 f k f t, as follows:

ηk = η0 ·
f(W∆k)

f(W∆0)
W∆k ←W∆k − ηkG∆k , (5)

where η0 is the base learning rate, f is a function that maps subnetworks of different stages to
corresponding train-time statistics, and W∆0 are the layer’s parameter variables at the first growth
stage. Table 1 (bottom) summarizes our LR adaptation rule for SGD when f is instantiated as
weight norm, providing an stage-wise extension to the layer-wise adaptation method LARS [12], i.e.,
LR ∝ ||W ||. Alternative heuristics are possible; see Appendices C and D.

3.2 Flexible and Efficient Growth Scheduler

Algorithm 1 : Growing using Var. Transfer and
Learning Rate Adapt. with Flexible Scheduler

Input: Data X , labels Y , task loss L
Output: Grown modelW
Initialize: W0 with C0, T0, B0, η0
for t = 0 to N − 1 do

if t > 0 then
Init. Sn from Sn−1 using VT in Table 1.
Update Ct and Tt using Eq. 6 and Eq. 7.
Update Bt using Eq. 8 (optional)
Itertotal = Tt ∗ len(X)//Bt

end if
for iter = 1 to Itertotal do

Forward and calculate l = L(Wt(x),y)).
Back propagation with l.
Update each sub-component using Eq. 5.

end for
end for
returnWN−1

We train the model for Ttotal epochs by ex-
panding the channel number of each layer to
Cfinal across N growth phases. Existing meth-
ods [25, 38] fail to derive a systemic way for
distributing training resources across a growth
trajectory. Toward maximizing efficiency, we
experiment with a coupling between model size
and training epoch allocation.

Architectural Scheduler. We denote initial
channel width as C0 and expand exponentially:

Ct =

{

Ct−1 + +pcCt−1,2 if t < N − 1

Cfinal if t = N − 1
(6)

where +·,2 rounds to the nearest even number
and pc is the growth rate between stages.

Epoch Scheduler. We denote number of epochs
assigned to t-th training stage as Tt, with
∑N−1

t=0
Tt = Ttotal. We similarly adapt Tt via

an exponential growing scheduler:

Tt =

{

Tt−1 + +ptTt−1, if t < N − 1

Ttotal −
∑N−2

i=0
Ti if t = N − 1

(7)

Wall-clock Speedup via Batch Size Adaptation. Though the smaller architectures in early growth
stages require fewer FLOPs, hardware capabilities may still restrict practical gains. When growing
width, in order to ensure that small models fully utilize the benefits of GPU parallelism, we adapt the
batch size along with the exponentially-growing architecture in a reverse order:

Bt−1 =

{

Bbase if t = N

Bt + +pbBt, if t < N
(8)

where Bbase is the batch size of the large baseline model. Algorithm 1 summarizes our full method.

5

4 Experiments

We evaluate on image classification and machine translation tasks. For image classification, we use
CIFAR-10 [21], CIFAR-100 [21] and ImageNet [6]. For the neural machine translation, we use the
IWSLT’14 dataset [2] and report the BLEU [28] score on German to English (De-En) translation.

Large Baselines via Fixed-size Training. We use VGG-11 [32] with BatchNorm [19], ResNet-
20 [15], MobileNetV1 [17] for CIFAR-10 and VGG-19 with BatchNorm, ResNet-18, Mo-
bileNetV1 for CIFAR-100. We follow [18] for data augmentation and processing, adopting random
shifts/mirroring and channel-wise normalization. CIFAR-10 and CIFAR-100 models are trained for
160 and 200 epochs respectively, with a batch size of 128 and initial learning rate (LR) of 0.1 using
SGD. We adopt a cosine LR schedule and set the weights decay and momentum as 5e-4 and 0.9.
For ImageNet, we train the baseline ResNet-50 and MobileNetV1 [17] using SGD with batch sizes
of 256 and 512, respectively. We adopt the same data augmentation scheme as [14], the cosine LR
scheduler with initial LR of 0.1, weight decay of 1e-4 and momentum of 0.9.

For IWSLT’14, we train an Encoder-Decoder Transformer (6 attention blocks each) [34]. We set width
as dmodel = 1/4dffn = 512, the number of heads nhead = 8 and dk = dq = dv = dmodel/nhead =
64. We train the model using Adam for 20 epochs with learning rate 1e-3 and (β1, β2) = (0.9, 0.98).
Batch size is 1500 and we use 4000 warm-up iterations.

Table 2: Growing ResNet-20, VGG-11, and MobileNetV1 on CIFAR-10.

ResNet-20 VGG-11 MobileNetv1

Method
Train Test Train Test Train Test

Cost(%) ³Accuracy(%) ↑ Cost(%) ³Accuracy(%) ↑ Cost(%) ³Accuracy(%) ↑
Large Baseline 100 92.62± 0.15 100 92.14± 0.22 100 92.27± 0.11

Net2Net 54.90 91.60± 0.21 52.91 91.78± 0.27 53.80 90.34± 0.20
Splitting 70.69 91.80± 0.10 63.76 91.88± 0.15 65.92 91.50± 0.06
FireFly-split 58.47 91.78± 0.11 56.18 91.91± 0.15 56.37 91.56± 0.06
FireFly 68.96 92.10± 0.13 60.24 92.08± 0.16 62.12 91.69± 0.07

Ours 54.90 92.53± 0.11 52.91 92.34± 0.15 53.80 92.01± 0.10

Table 3: Growing ResNet-18, VGG-19, and MobileNetV1 on CIFAR-100.

ResNet-18 VGG-19 MobileNetv1

Method
Train Test Train Test Train Test

Cost(%) ³Accuracy(%) ↑ Cost(%) ³Accuracy(%) ↑ Cost(%) ³Accuracy(%) ↑
Large Baseline 100 78.36± 0.12 100 72.59± 0.23 100 72.13± 0.13

Net2Net 52.63 76.48± 0.20 52.08 71.88± 0.24 52.90 70.01± 0.20
Splitting 68.01 77.01± 0.12 60.12 71.96± 0.12 58.39 70.45± 0.10
FireFly-split 56.11 77.22± 0.11 54.64 72.19± 0.14 54.36 70.69± 0.11
FireFly 65.77 77.25± 0.12 57.48 72.79± 0.13 56.49 70.99± 0.10

Ours 52.63 78.12± 0.15 52.08 73.26± 0.14 52.90 71.53± 0.13

Implementation Details. We compare with the growing methods Net2Net [4], Splitting [25], FireFly-
split, FireFly [38] and GradMax [10]. In our method, noise for symmetry breaking is 0.001 to the
norm of the initialization. We re-initialize the momentum buffer at each growing step when using
SGD while preserving it for adaptive optimizers (e.g., Adam, AvaGrad).

For image classification, we run the comparison methods except GradMax alongside our algorithm
for all architectures under the same growing scheduler. For the architecture scheduler, we set pc
as 0.2 and C0 as 1/4 of large baselines in Eq. 6 for all layers and grow the seed architecture within
N = 9 stages towards the large ones. For epoch scheduler, we set pt as 0.2, T0 as 8, 10, and 4 in
Eq. 7 on CIAFR-10, CIFAR-100, and ImageNet respectively. Total training epochs Ttotal are the
same as the respective large fixed-size models. We train the models and report the results averaging
over 3 random seeds.

6

For machine translation, we grow the encoder and decoder layers’ widths while fixing the embedding
layer dimension for a consistent positional encoding table. The total number of growing stages is
4, each trained for 5 epochs. The initial width is 1/8 of the large baseline (i.e., dmodel = 64 and
dk,q,v = 8). We set the growing ratio pc as 1.0 so that dmodel evolves as 64, 128, 256 and 512.

We train all the models on an NVIDIA 2080Ti 11GB GPU for CIFAR-10, CIFAR-100, and IWSLT’14,
and two NVIDIA A40 48GB GPUs for ImageNet.

4.1 CIFAR Results

All models grow from a small seed architecture to the full-sized one in 9 stages,
each trained for {8, 9, 11, 13, 16, 19, 23, 28, 33} epochs (160 total) on CIFAR-10, and
{10, 12, 14, 17, 20, 24, 29, 35, 39} (200 total) on CIFAR-100. Net2Net follows the design of growing
by splitting via simple neuron replication, hence achieving the same training efficiency as our gradient-
free method under the same growing schedule. Splitting and Firely require additional training effort
for their neuron selection schemes and allocate extra GPU memory for auxiliary variables during the
local optimization stage. This is computationally expensive, especially when growing a large model.

ResNet-20, VGG-11, and MobileNetV1 on CIFAR-10. Table 2 shows results in terms of test
accuracy and training cost calculated based on overall FLOPs. For ResNet-20, Splitting and Firefly
achieve better test accuracy than Net2Net, which suggests the additional optimization benefits
neuron selection at the cost of training efficiency. Our method requires only 54.9% of the baseline
training cost and outperforms all competing methods, while yielding only 0.09p.p (percentage points)
performance degradation compared to the static baseline. Moreover, our method even outperforms
the large fixed-size VGG-11 by 0.20p.p test accuracy, while taking only 52.91% of its training cost.
For MobileNetV1, our method also achieves the best trade-off between training efficiency and test
accuracy among all competitors.

ResNet-18, VGG-19, and MobileNetV1 on CIFAR-100. We also evaluate all methods on CIFAR-
100 using different network architectures. Results in Table 3 show that Firely consistently achieves
better test accuracy than Firefly-split, suggesting that adding new neurons provides more flexibility
for exploration than merely splitting. Both Firely and our method achieve better performance than
the original VGG-19, suggesting that network growing might have an additional regularizing effect.
Our method yields the best accuracy and largest training cost reduction.

Table 4: ResNet-50 and MobileNetV1 on ImageNet.

ResNet-50 MobileNet-v1

Method
Train Test Train Test

Cost(%) ³ Acc.(%) Cost(%) ³ Acc.(%)

Large 100 76.72± 0.18 100 70.80± 0.19

Net2Net 60.12 74.89± 0.21 63.72 66.19± 0.20
FireFly 71.20 75.01± 0.11 86.67 66.40± 0.14
GradMax - - 86.67 68.60± 0.20

Ours 60.12 75.90± 0.14 63.72 69.91± 0.16

Table 5: Transformer on IWSLT’14.

Transformer

Method Train Cost(%) ³ BLEU↑
Large 100 32.82± 0.21

Net2Net 64.64 30.97± 0.35

Ours-w/o buffer 64.64 31.44± 0.18
Ours-w buffer 64.64 31.62± 0.16
Ours-w buffer-RA 64.64 32.01± 0.16

7

4.2 ImageNet Results

We first grow ResNet-50 on ImageNet and compare the performance of our method to Net2Net
and FireFly under the same epoch schedule: {4, 4, 5, 6, 8, 9, 11, 14, 29} (90 total) with 9 growing
phases. We also grow MobileNetV1 from a small seed architecture, which is more challenging than
ResNet-50. We train Net2Net and our method uses the same scheduler as for ResNet-50. We also
compare with Firefly-Opt (a variant of FireFly) and GradMax and report their best results from [10].
Note that both methods not only adopt additional local optimization but also train with a less efficient
growing scheduler: the final full-sized architecture needs to be trained for a 75% fraction while ours
only requires 32.2%. Table 4 shows that our method dominates all competing approaches.

4.3 IWSLT14 De-En Results

We grow a Transformer from dmodel = 64 to dmodel = 512 within 4 stages, each trained with 5
epochs using Adam. Applying gradient-based growing methods to the Transformer architecture is
nontrivial due to their domain specific design of local optimization. As such, we only compare with
Net2Net. We also design variants of our method for self-comparison, based on the adaptation rules
for Adam in Appendix C. As shown in Table 5, our method generalizes well to the Transformer
architecture.

4.4 Analysis

Ablation Study. We show the effects of turning on/off each of our modifications to the baseline
optimization process of Net2Net (1) Growing: adding neurons with functionality preservation. (2)
Growing+VT: only applies variance transfer. (3) Growing+RA: only applies LR rate adaptation.
(4) Full method. We conduct experiments using both ResNet-20 on CIFAR-10 and ResNet-18 on
CIFAR-100. As shown in Table 6, different variants of our growing method not only outperform
Net2Net consistently but also reduce the randomness (std. over 3 runs) caused by random replication.
We also see that, both RA and VT boost the baseline growing method. Both components are designed
and woven to accomplish the empirical leap. Our full method bests the test accuracy.

Variant Res-20 on C-10 (%) Res-18 on C-100 (%)

Net2Net 91.60± 0.21(+0.00) 76.48± 0.20(+0.00)
Growing 91.62± 0.12(+0.02) 76.82± 0.17(+0.34)

Growing+VT 92.00± 0.10(+0.40) 77.27± 0.14(+0.79)
Growing+RA 92.24± 0.11(+0.64) 77.74± 0.16(+1.26)

Full 92.53± 0.11(+0.93) 78.12± 0.15(+1.64)

Table 6: Ablation study on VT and RA components.

2 6 2 4 2 2 20

Learning Rate

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Tr
ai

n
Lo

ss

Large Standard(2.3x Cost)
Large Standard(1x Cost)
Large with Transfer(2.3x Cost)
Large with Transfer(1x Train Cost)
Growing(Standard)
Growing(Ours Var. Transfer+Standard SGD)
Growing(Ours Var. Transfer+SGD with Rate Adaptation)

(a) Train Loss

2 6 2 4 2 2 20

Learning Rate
55

60

65

70

75

80

85

Te
st

 A
cc

ur
ac

y(
%

)

Large Standard(2.3x Cost)
Large Standard(1x Cost)
Large with Transfer(2.3x Cost)
Large with Transfer(1x Train Cost)
Growing(Standard)
Growing(Ours Var. Transfer+Standard SGD)
Growing(Ours Var. Transfer+SGD with Rate Adaptation)

(b) Test Accuracy

Figure 3: Baselines of 4-layer simple CNN.

8

130 135 140 145 150 155 160
Epochs(Last Stage)

88

89

90

91

92

Te
st

 A
cc

ur
ac

y
(%

)

Standard Init. + SGD
Var. Transfer + Standard SGD
Var. Transfer + SGD with Rate Adapt.

(a) Test Accuracy

7-th Stage 8-th Stage

(b) Global LR

7-th Stage 8-th Stage

(c) Rate Adaptation

Figure 4: (a) Performance with Var. Transfer and Rate Adaptation growing ResNet-20. (b) and (c)
visualize the gradients for different sub-components along training in the last two stages.

Justification for Variance Transfer. We train a simple neural network with 4 convolutional layers on
CIFAR-10. The network consists of 4 resolution-preserving convolutional layers; each convolution
has 64, 128, 256 and 512 channels, a 3 × 3 kernel, and is followed by BatchNorm and ReLU
activations. Max-pooling is applied to each layer for a resolution-downsampling of 4, 2, 2, and
2. These CNN layers are then followed by a linear layer for classification. We first alternate this
network into four variants, given by combinations of training epochs ∈ {13(1×), 30(2.3×)} and
initialization methods ∈ {standard, µtransfer [41]}. We also grow from a thin architecture within
3 stages, where the channel number of each layer starts with only 1/4 of the original one, i.e.,
{16, 32, 64, 128} → {32, 64, 128, 256} → {64, 128, 256, 512}, each stage is trained for 10 epochs.

For network growing, we compare the baselines with standard initialization and variance transfer.
We train all baselines using SGD, with weight decay set as 0 and learning rates sweeping over
{0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 0.8, 1.0, 1.2, 1.5, 2.0}. In Figure 3(b), growing with Var. Transfer
(blue) achieves overall better test accuracy than standard initialization (orange). Large baselines
with merely µtransfer in initialization consistently underperform standard ones, which validate that
the compensation from the LR rescaling is necessary in [41]. We also observe, in both Figure 3(a)
and 3(b), all growing baselines outperform fixed-size ones under the same training cost, demonstrating
positive regularization effects. We also show the effect of our initialization scheme by comparing test
performance on standard ResNet-20 on CIFAR-10. As shown in Figure 4(a), compared with standard
initialization, our variance transfer not only achieves better final test accuracy but also appears more
stable. See Appendix F for a fully-connected network example.

Justification for Learning Rate Adaptation. We investigate the value of our proposed stage-wise
learning rate adaptation as an optimizer for growing networks. As shown in the red curve in Figure 3,
rate adaptation not only bests the train loss and test accuracy among all baselines, but also appears to
be more robust over different learning rates. In Figure 4(a), rate adaptation further improves final test
accuracy for ResNet-20 on CIFAR-10, under the same initialization scheme.

Figure 4(b) and 4(c) visualize the gradients of different sub-components for the 17-th convolutional
layer of ResNet-20 during last two growing phases of standard SGD and rate adaptation, respectively.
Our rate adaptation mechanism rebalances subcomponents’ gradient contributions to appear in lower
divergence than global LR, when components are added at different stages and trained for different
durations. In Figure 5, we observe that the LR for newly added Subnet-8 (red) in last stage starts
around 1.8× the base LR, then quick adapts to a smoother level. This demonstrates that our method
is able to automatically adapt the updates applied to new weights, without any additional local
optimization costs [39, 10]. All above show our method has a positive effect in terms of stabilizing
training dynamics, which is lost if one attempts to train different subcomponents using a global LR
scheduler. Appendix D provides more analysis.

Flexible Growing Scheduler. Our growing scheduler gains the flexibility to explore the best trade-
offs between training budgets and test performance in a unified configuration scheme (Eq. 6 and Eq. 7).
We compare the exponential epoch scheduler (pt ∈ {0.2, 0.25, 0.3, 0.35}) to a linear one (pt = 0)
in ResNet-20 growing on CIFAR-10, denoted as ‘Exp.’ and ‘Linear’ baselines in Figure 6. Both
baselines use the architectural schedulers with pc ∈ {0.2, 0.25, 0.3, 0.35}, each generates trade-offs
between train costs and test accuracy by alternating T0. The exponential scheduler yields better

9

130 135 140 145 150 155 160
Epochs (Last Stage)

1.0

1.2

1.4

1.6

1.8

Ra
te

 A
da

pt
at

io
n

Fa
ct

or
s

Subnet-0(Seed Arch.)
Subnet-1
Subnet-2

Subnet-3
Subnet-4
Subnet-5

Subnet-6
Subnet-7
Subnet-8

Figure 5: Visualization of our adaptive LR.

B
e
tte
r

Figure 6: Comparison of growing schedules.

0 1 2 3 4 5 6 7 8
Stages

0

200

400

600

800

1000

1200

GP
U

M
em

or
y

(M
)

Large Model Fix-BatchSize Grow Ada-BatchSize Grow

(a) GPU memory allocations

0 1 2 3 4 5 6 7 8
Stages

0

10

20

30

40

Tr
ai

n
Ti

m
e/

Ep
oc

h
(s

)

Large Model Fix-BatchSize Grow Ada-BatchSize Grow

(b) Training time

Figure 7: Track of GPU memory and wall clock training time for each growing phase of ResNet-18.

overall trade-offs than the linear one with the same pc. In addition to different growing schedulers,
we also plot a baseline for fixed-size training with different models. Growing methods with both
schedulers consistently outperform the fixed-size baselines, demonstrating that the regularization
effect of network growth benefits generalization performance.

Wall-clock Training Speedup. We benchmark GPU memory consumption and wall-clock training
time on CIFAR-100 for each stage during training on single NVIDIA 2080Ti GPU. The large
baseline ResNet-18 trains for 140 minutes to achieve 78.36% accuracy. As shown in the green bar
of Figure 7(b), the growing method only achieves marginal wall-clock acceleration, under the same
fixed batch size. As such, the growing ResNet-18 takes 120 minutes to achieve 78.12% accuracy.
The low GPU utilization in the green bar in Figure 7(a) hinders FLOPs savings from translating into
real-world training acceleration. In contrast, the red bar of Figure 7 shows our batch size adaptation
results in a large proportion of wall clock acceleration by filling the GPU memory, and corresponding
parallel execution resources, while maintaining test accuracy. ResNet-18 trains for 84 minutes (1.7×
speedup) and achieves 78.01% accuracy.

5 Conclusion

We tackle a set of optimization challenges in network growing and invent a corresponding set of
techniques, including initialization with functionality preservation, variance transfer and learning
rate adaptation to address these challenges. Each of these techniques can be viewed as ‘upgrading’
an original part for training static networks into a corresponding one that accounts for dynamic
growing. There is a one-to-one mapping of these replacements and a guiding principle governing
the formulation of each replacement. Together, they accelerate training without impairing model
accuracy – a result that uniquely separates our approach from competitors. Applications to widely-
used architectures on image classification and machine translation tasks demonstrate that our method
bests the accuracy of competitors while saving considerable training cost.

Acknowledgments and Disclosure of Funding

This work was supported by the National Science Foundation under grant CNS-1956180 and the
University of Chicago CERES Center.

10

References

[1] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark,
Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models
are few-shot learners. In NeurIPS, 2020.

[2] Mauro Cettolo, Jan Niehues, Sebastian Stüker, Luisa Bentivogli, and Marcello Federico. Report on the
11th IWSLT evaluation campaign. In Proceedings of the 11th International Workshop on Spoken Language
Translation: Evaluation Campaign, 2014.

[3] Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. Rethinking atrous convolution
for semantic image segmentation. arXiv:1706.05587, 2017.

[4] Tianqi Chen, Ian J. Goodfellow, and Jonathon Shlens. Net2Net: Accelerating learning via knowledge
transfer. In ICLR, 2016.

[5] Xiaoliang Dai, Hongxu Yin, and Niraj K. Jha. NeST: A neural network synthesis tool based on a
grow-and-prune paradigm. IEEE Trans. Computers, 2019.

[6] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale hierarchical
image database. In CVPR, 2009.

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In NAACL, 2019.

[8] John C. Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. JMLR, 2011.

[9] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Simple and efficient architecture search for
convolutional neural networks. In ICLR Workshop, 2018.

[10] Utku Evci, Bart van Merrienboer, Thomas Unterthiner, Fabian Pedregosa, and Max Vladymyrov. GradMax:
Growing neural networks using gradient information. In ICLR, 2022.

[11] Golnaz Ghiasi, Tsung-Yi Lin, Ruoming Pang, and Quoc V. Le. NAS-FPN: Learning scalable feature
pyramid architecture for object detection. arXiv:1904.07392, 2019.

[12] Boris Ginsburg, Igor Gitman, and Yang You. Large batch training of convolutional networks with layer-wise
adaptive rate scaling. 2018.

[13] Ross B. Girshick. Fast R-CNN. In ICCV, 2015.

[14] Sam Gross and Michael Wilber. Training and investigating residual nets. http://torch.ch/blog/
2016/02/04/resnets.html, 2016.

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In CVPR, 2016.

[16] Samuel Horváth, Aaron Klein, Peter Richtárik, and Cédric Archambeau. Hyperparameter transfer learning
with adaptive complexity. In AISTATS, 2021.

[17] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. MobileNets: Efficient convolutional neural networks for mobile
vision applications. arXiv:1704.04861, 2017.

[18] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q. Weinberger. Deep networks with stochastic
depth. In ECCV, 2016.

[19] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In ICML, 2015.

[20] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

[21] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. The CIFAR-10 dataset. http://www.cs.toronto.
edu/~kriz/cifar.html, 2014.

[22] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet classification with deep convolutional
neural networks. In NeurIPS, 2012.

[23] Xilai Li, Yingbo Zhou, Tianfu Wu, Richard Socher, and Caiming Xiong. Learn to grow: A continual
structure learning framework for overcoming catastrophic forgetting. arXiv:1904.00310, 2019.

[24] Chenxi Liu, Liang-Chieh Chen, Florian Schroff, Hartwig Adam, Wei Hua, Alan L. Yuille, and Li Fei-Fei.
Auto-DeepLab: Hierarchical neural architecture search for semantic image segmentation. In CVPR, 2019.

[25] Qiang Liu, Wu Lemeng, and Wang Dilin. Splitting steepest descent for growing neural architectures. In
NeurIPS, 2019.

11

[26] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott E. Reed, Cheng-Yang Fu, and
Alexander C. Berg. SSD: Single shot multibox detector. In ECCV, 2016.

[27] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic segmenta-
tion. In CVPR, 2015.

[28] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic evaluation
of machine translation. In ACL, 2002.

[29] Valerio Perrone, Rodolphe Jenatton, Matthias W. Seeger, and Cédric Archambeau. Scalable hyperparameter
transfer learning. In NeurIPS, 2018.

[30] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V. Le. Regularized evolution for image classifier
architecture search. In AAAI, 2019.

[31] Pedro Savarese, David McAllester, Sudarshan Babu, and Michael Maire. Domain-independent dominance
of adaptive methods. In CVPR, 2021.

[32] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recogni-
tion. In ICLR, 2015.

[33] Tijmen Tieleman, Geoffrey Hinton, et al. Lecture 6.5-rmsprop: Divide the gradient by a running average
of its recent magnitude. COURSERA: Neural networks for machine learning, 2012.

[34] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, 2017.

[35] Chengcheng Wan, Henry Hoffmann, Shan Lu, and Michael Maire. Orthogonalized SGD and nested
architectures for anytime neural networks. In ICML, 2020.

[36] Tao Wei, Changhu Wang, Yong Rui, and Chang Wen Chen. Network morphism. In ICML, 2016.

[37] Wei Wen, Feng Yan, Yiran Chen, and Hai Li. AutoGrow: Automatic layer growing in deep convolutional
networks. In KDD, 2020.

[38] Lemeng Wu, Bo Liu, Peter Stone, and Qiang Liu. Firefly neural architecture descent: a general approach
for growing neural networks. In NeurIPS, 2020.

[39] Lemeng Wu, Mao Ye, Qi Lei, Jason D Lee, and Qiang Liu. Steepest descent neural architecture optimiza-
tion: Escaping local optimum with signed neural splitting. arXiv:2003.10392, 2020.

[40] Greg Yang and Edward J. Hu. Tensor Programs IV: Feature learning in infinite-width neural networks. In
ICML, 2021.

[41] Greg Yang, Edward J Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick Ryder, Jakub
Pachocki, Weizhu Chen, and Jianfeng Gao. Tuning large neural networks via zero-shot hyperparameter
transfer. In NeurIPS, 2021.

[42] Dani Yogatama and Gideon Mann. Efficient transfer learning method for automatic hyperparameter tuning.
In AISTATS, 2014.

[43] Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan Song,
James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep learning: Training
BERT in 76 minutes. In ICLR, 2020.

[44] Xin Yuan, Pedro Henrique Pamplona Savarese, and Michael Maire. Growing efficient deep networks by
structured continuous sparsification. In ICLR, 2021.

[45] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv:1605.07146, 2016.

[46] Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transformers. In
CVPR, 2022.

12

A More Analysis on Variance Transfer

Our fixed rescaling formulation, regarding relative network width, is an extension to the principled zero-shot HP
transfer method [40, 41], based on the stability assumption, denoted as VT. A dynamic rescaling based on actual
old weight values is an alternative plausible implementation choice, denoted as VT-constraint.

Theorem A.1. Suppose the goal is to enforce the unit variance feature, then the scaling factor of an input layer

with weights W x with input shape Cx is
√

1
CxV[Wx]

, while for a hidden layer with weights W u and input

shape Cu, it is
√

1
CuV[Wu]

.

Proof. Consider a hidden layer that computes u = W xx followed by another layer that computes h = W uu
(ignoring activations for simplicity). At a growth step, the first layer’s outputs change from

ut = W
x
t x (9)

to

ut+1 = [ut
′,ut

′′,ut
′′] = [sxW x

t x,V
x
t x,V x

t x]. (10)

where sx denotes the scaling factor applied to W x. The second layer’s outputs change from

ht = W
u
t ut (11)

to

ht+1 = [ht
′,ht

′′,ht
′′] = [suW u

t ut
′,V u

t ut+1,V
u
t ut+1]. (12)

where su denotes the scaling factor applied to W u.

The variance of the features after the growth step are:

V[ut
′] = (sx)2Cx

V[W x
t] (13)

V[ut
′′] = Cx

V[V x
t] (14)

V[ht
′] = (su)2Cu

t V[W
u
t]V[ut

′] (15)

V[ht
′′] = V[V u

t](Cu
t V[ut

′] + (Cu
t+1 − Cu

t)V[ut
′′]) (16)

Given the goal of enforcing unit-variance features for across all four vectors, we get:

sx =

√

1

CxV[W x
t]

=⇒ V[ut
′] = 1 (17)

su =

√

1

Cu
t V[W

u
t]

=⇒ V[ht
′] = V[ut

′] = 1 (18)

V[V x
t] =

1

Cx
=⇒ V[ut

′′] = 1 (19)

V[V u
t] =

1

Cu
t+1

=⇒ V[ht
′′] =

1

Cu
t+1

(Cu
t V[ut

′] + (Cu
t+1 − Cu

t)V[ut
′′]) = 1 . (20)

This differs from the default VT formulation in Section 3.1, which corresponds to scaling factors of sx = 1 and

su =

√

Cu

t

Cu

t+1

We compare the default VT with VT-constraint by growing ResNet-20 on CIFAR-10. As shown in Table 7, both
VT and VT-constraint outperform the standard baseline, which suggests standard initialization is a suboptimal
design in network growing. We also note that involving the weight statistics is not better than our simpler design,
which suggests that enforcing the old and the new features to have the same variance is not a good choice.

Variants Test Acc. (%)

Standard 91.62± 0.12
VT-constraint 91.93± 0.12

VT 92.00± 0.10

Table 7: Comparisons among standard initial-
ization, VT-constraint (Theorem A.1) and the
default VT (Section 3.1) for growing ResNet-20
on CIFAR-10.

13

Growing
CNN Hidden Layer

(a) Growing CNN hidden layer

Conv 1 Conv 2Input

Input Shape Weight Shape Weight Shape

+

Shortcut

Weight Shape

Output

Output Shape

Residual
Block

Width Growth
with Same Rate

Conv 1 Conv 2Input

Input Shape Weight Shape Weight Shape

+

Shortcut

Weight Shape

Output

Output Shape

Residual
Block

(b) Growing residual block

Figure 8: Illustration for growing other layers.

B General Network Growing in Other Layers

We have shown network growing for 3-layer fully connected networks as a motivating example in Section 3.1.
We now show how to generalize network growing with K (>3) layers, with conv layers, residual connections.

Generalization to K (> 3) Layers. In our network-width growing formulation, layers may be expanded in 3
patterns. (1) Input layer: output channels only; (2) Hidden layer: Both input (due to expansion of the previous
layer) and output channels. (3) Output layer: input channels only. As such, the 3-layer case is sufficient to serve
as a motivating example without loss of generality. For K (> 3) layer networks, the 2nd to (K − 1)th layers
simply follow the hidden layer case defined in Section 3.1.

Generalization to Convolutional layers. In network width growth, we only need to consider the expansion
along input and output channel dimensions no matter for fully connected networks or CNNs. Equations 1-4 still
hold for CNN layers. Specifically, when generalizing to CNNs (from 2-d Cout × Cin weight matrices to 4-d
Cout × Cin × k × k ones), we only consider the matrix operations on the first two dimensions since we do not
change the kernel size k. For example, in Figure 2(b), newly added weights +Zu

t in linear layer can be indexed

as W [0 : Ch
t , C

u
t : Cu

t +
Cu

t+1−Cu

t

2
]. In CNN layer, it is simply W [0 : Ch

t , C
u
t : Cu

t +
Cu

t+1−Cu

t

2
, :, :].

Residual Connections. We note that differently from plain CNNs like VGG, networks with residual connections
do require that the dimension of an activation and its residual match since these will be added together. Our
method handles this by growing all layers at the same rate. Hence, at each growth step, the shape of the two
tensors to be added by the skip connections always matches.

Concrete Example of Adding Units to a Network. In model width growth, our common practice is to first
determine the output dimension expansion from the growth scheduler. If a previous layer’s output channels are
to be grown, then the input dimension of the current layer should be also expanded to accommodate that change.

Let’s consider a concrete example for a CNN with more layers (> 3) and residual blocks. Without loss of
generality, we omit the kernel size k and denote each convolutional layer channel shape as (Cin, Cout). We
denote the input feature with 1 output dimension as x. Initially, we have the input layer W 1 with channel
dimensions of (1,2) to generate h1 (2-dimensional), followed by a 2-layer residual block (identity mapping

for residual connection) with weights W (2)(2, 2) and W (3)(2, 2), followed by an output layer with weights

W (4)(2, 1).

The corresponding computation graph (omitting BN and ReLU for simplification) is

y = W (4)
(

W (3)W (2)W (1)x+W (1)x
)

,

In more detail, we rewrite the computation in the matrix formulation:

14

h(1) = W (1)x =

[

w
(1)
1,1

w
(1)
2,1

]

x =

[

h
(1)
1

h
(1)
2

]

h(2) = W (2)h(1) =

[

w
(2)
1,1 w

(2)
1,2

w
(2)
2,1 w

(2)
2,2

][

h
(1)
1

h
(1)
2

]

=

[

h
(2)
1

h
(2)
2

]

h(3) = W (3)h(2) =

[

w
(3)
1,1 w

(3)
1,2

w
(3)
2,1 w

(3)
2,2

][

h
(2)
1

h
(2)
2

]

=

[

h
(3)
1

h
(3)
2

]

h(4) = h(3) + h(1) =

[

h
(3)
1

h
(3)
2

]

+

[

h
(1)
1

h
(1)
2

]

=

[

h
(4)
1

h
(4)
2

]

y = W (4)h(4) =
[

w
(4)
1,1 w

(4)
1,2

]

[

h
(4)
1

h
(4)
2

]

Now assume that we want to grow the dimension of the network’s hidden activations from 2 to 4 (i.e.,

h(1), h(2), h(3), h(4), which are 2-dimensional, should become 4-dimensional each).

h(1) = W (1)x =











w
(1)
1,1

w
(1)
2,1

w
(1)
3,1

w
(1)
4,1











x =











h
(1)
1

h
(1)
2

h
(1)
3

h
(1)
4











h(2) = W (2)h(1) =











w
(2)
1,1 w

(2)
1,2 w

(2)
1,3 w

(2)
1,4

w
(2)
2,1 w

(2)
2,2 w

(2)
2,3 w

(2)
2,4

w
(2)
3,1 w

(2)
3,2 w

(2)
3,3 w

(2)
3,4

w
(2)
4,1 w

(2)
4,2 w

(2)
4,3 w

(2)
4,4





















h
(1)
1

h
(1)
2

h
(1)
3

h
(1)
4











=











h
(2)
1

h
(2)
2

h
(2)
3

h
(2)
4











h(3) = W (3)h(2) =











w
(3)
1,1 w

(3)
1,2 w

(3)
1,3 w

(3)
1,4

w
(3)
2,1 w

(3)
2,2 w

(3)
2,3 w

(3)
2,4

w
(3)
3,1 w

(3)
3,2 w

(3)
3,3 w

(3)
3,4

w
(3)
4,1 w

(3)
4,2 w

(3)
4,3 w

(3)
4,4





















h
(2)
1

h
(2)
2

h
(2)
3

h
(2)
4











=











h
(3)
1

h
(3)
2

h
(3)
3

h
(3)
4











h(4) = h(3) + h(1) =











h
(3)
1

h
(3)
2

h
(3)
3

h
(3)
4











+











h
(1)
1

h
(1)
2

h
(1)
3

h
(1)
4











=











h
(4)
1

h
(4)
2

h
(4)
3

h
(4)
4











y = W (4)h(4) =
[

w
(4)
1,1 w

(4)
1,2 w

(4)
1,3 w

(4)
1,4

]











h
(4)
1

h
(4)
2

h
(4)
3

h
(4)
4











We added 2 rows to the input layer’s weights W (1) (to increase its output dimension from 2 to 4), added 2 rows

and 2 columns to the hidden layer’s weights W (2),W (3) (to increase its output dimensions from 2 to 4, and to
increase its input dimension from 2 to 4 so they are consistent with the previous layers), and added 2 columns to

the output layer’s weights W (4) (to increase its input dimension from 2 to 4 so it is consistent with the increase

15

Table 8: Concrete growing example.

Layer Initial Arch After Growth New weights added

W (1) (1,2) (1,4) 4× 1− 2× 1 = 2

W (2) (2,2) (4,4) 4× 4− 2× 2 = 12

W (3) (2,2) (4,4) 4× 4− 2× 2 = 12

W (4) (2,1) (4,1) 4× 1− 2× 1 = 2

in dimensionality of h(4)). Note that h(3) and h(1) still maintain matching shapes (to be added up) in the residual

block since we grow W (1) and W (3)’s output dimensions with the same rate.

We summarize the architectural growth in terms of Cin and Cout (omitting kernel size k) in Table 8. We also
show the growing for CNN hidden layer in Figure 8(a) and residual blocks in Figure 8(b) for better illustration.

Note that this example shows how growing works in general; our specific method also includes particulars as to
what values are used to initialize the newly-added weights, as well as modifications to optimizer state.

C Generalization to Other Optimizers

We generalize our LR adaptation rule to Adam [20] and AvaGrad [31] in Table 9. Both methods are adaptive
optimizers where different heuristics are adopted to derive a parameter-wise learning rate strategy, which
provides primitives that can be extended using our stage-wise adaptation principle for network growing. For
example, vanilla Adam adapts the global learning rate with running estimates of the first moment mt and the
second moment vt of the gradients, where the number of global training steps t is an integer when training
a fixed-size model. When growing networks, our learning rate adaptation instead considers a vector t which
tracks each subcomponent’s ‘age’ (i.e., number of steps it has been trained for). As such, for a newly grown
subcomponent at a stage i > 0, t[i] starts as 0 and the learning rate is adapted from mt/

√
vt (global) to

mt[i]\mt[i−1]√
vt[i]\vt[i−1]

(stage-wise). Similarly, we also generalize our approach to AvaGrad by adopting ηt, dt,mt of

the original paper as a stage-wise variables.

Preserving Optimizer State/Buffer. Essential to adaptive methods are training-time statistics (e.g., running
averages mt and vt in Adam) which are stored as buffers and used to compute parameter-wise learning rates.
Different from fixed-size models, parameter sets are expanded when growing networks, which in practice
requires re-instantiating a new optimizer at each growth step. Given that our initialization scheme maintains
functionality of the network, we are also able to preserve and inherit buffers from previous states, effectively
maintaining the optimizer’s state intact when adding new parameters. We experimentally investigate the effects
of this state preservation.

Table 9: Rate adaptation rules for Adam [20] and AvaGrad [31].

Our LR Adaptation

Adam
0-th Stage mt[0]/

√
vt[0]

i-th Stage
mt[i]\mt[i−1]√

vt[i]\vt[i−1]

AvaGrad
0-th Stage

ηt[0]

||ηt[0]/
√

dt[0]||2
»mt[0]

i-th Stage
ηt[i]\ηt[i−1]

||ηt[i]\ηt[i−1]/
√

dt[i]−dt[i−1]||2
» (mt[i] \mt[i−1])

16

Table 10: Generalization to Adam and AvaGrad for ResNet-20 on CIFAR-10.

Optimizer Training Method Preserve Opt. Buffer Train Cost (%) Test Acc. (%)

Adam Large fixed-size NA 100 92.29
Adam Growing No 54.90 91.44
Adam Growing Yes 54.90 91.61

Adam+our RA. Growing Yes 54.90 92.13

AvaGrad Large fixed-size NA 100 92.45
AvaGrad Growing No 54.90 90.71
AvaGrad Growing Yes 54.90 91.27

AvaGrad+our RA. Growing Yes 54.90 91.72

Optimizer Test Acc. (%)

Standard SGD 91.95± 0.09
SGD with Layer-wise Adapt. (LARS) 91.32± 0.11

Ours 92.53± 0.11

Table 11: Comparisons
among standard SGD,
LARS, and our adaptation
method for growing
ResNet-20 on CIFAR-10.

Results with Adam and AvaGrad. Table 10 shows the results of growing ResNet-20 on CIFAR-10 with Adam
and Avagrad. For the large, fixed-size baseline, we train Adam with lr = 0.1, ϵ = 0.1 and AvaGrad with
lr = 0.5, ϵ = 10.0, which yields the best results for ResNet-20 following [31]. We consider different settings for
comparison: (1) optimizer without buffer preservation: the buffers are refreshed at each new growing phase; (2)
optimizer with buffer preservation: the buffer/state is inherited from the previous phase, hence being preserved at
growth steps; (3) optimizer with buffer and rate adaptation (RA): applies our rate adaptation strategy described
in Table 9 while also preserving internal state/buffers. We observe that (1) consistently underperforms (2), which
suggests that preserving the state/buffers in adaptive optimizers is crucial when growing networks. Option (3)
bests the other settings for both Adam and AvaGrad, indicating that our rate adaptation strategy generalizes
effectively to Adam and AvaGrad for the growing scenario. Together, these also demonstrate that our method
has the flexibility to incorporate different statistics that are tracked and used by distinct optimizers, where we
take Adam and AvaGrad as examples. Finally, our proposed stage-wise rate adaptation strategy can be employed
with virtually any optimizer.

Comparison with Layer-wise Adaptive Optimizer. We also consider LARS [12, 43], a layer-wise adap-
tive variant of SGD, to compare different adaptation concepts: layer-wise versus layer + stage-wise (ours).
Note that although LARS was originally designed for training with large batches, we adopt a batch size
of 128 when growing ResNet-20 on CIFAR-10. We search the initial learning rate (LR) for LARS over
{1e-3, 2e-3, 5e-3, 1e-2, 2e-2, 5e-2, 1e-1, 2e-1, 5e-1} and observe that a value of 0.02 yields the best results. We
adopt the default initial learning rate of 0.1 for both standard SGD and our method. As shown in Table 11,
LARS underperforms both standard SGD and our adaptation strategy, suggesting that layer-wise learning rate
adaptation by itself – i.e., without accounting for stage-wise discrepancies – is not sufficient for successful
growing of networks.

D More Analysis on Rate Adaptation

We show additional plots of stage-wise rate adaptation when growing a ResNet-20 on CIFAR-10. Figure 9
shows the of adaptation factors based on the LR of the seed architecture from 1st to 8th stages (the stage index
starts at 0). We see an overall trend that for newly-added weights, its learning rate starts at > 1× of the base LR
then quickly adapts to a relatively stable level. This demonstrates that our approach is able to efficiently and
automatically adapt new weights to gradually and smoothly fade in throughout the current stage’s optimization
procedure.

We also note that rate adaptation is a general design that different subnets should not share a global learning rate.
The RA formulation is designed empirically. max(1, ||Wi \Wi−1||) is a plausible implementation choice,

RA Implementation Choice Test Acc. (%)

NA (Standard SGD) 91.62± 0.12
max(1, ||Wi \Wi−1||) 91.42± 0.12

Ours 92.53± 0.11

Table 12: Comparisons among
different RA implementation
choices for growing ResNet-20
on CIFAR-10.

17

9 10 11 12 13 14 15 16 17
Epochs (1-th Stage)

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

R
a
te

 A
d
a
p
ta

ti
o
n
 F

a
ct

o
rs

Subnet-0(Seed Arch.) Subnet-1

(a) 1-st Stage

18 20 22 24 26 28
Epochs (2-th Stage)

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

R
a
te

 A
d
a
p
ta

ti
o
n
 F

a
ct

o
rs

Subnet-0(Seed Arch.) Subnet-1 Subnet-2

(b) 2-nd Stage

30 32 34 36 38 40
Epochs (3-th Stage)

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

R
a
te

 A
d
a
p
ta

ti
o
n
 F

a
ct

o
rs

Subnet-0(Seed Arch.)
Subnet-1

Subnet-2 Subnet-3

(c) 3-rd Stage

42 44 46 48 50 52 54 56
Epochs (4-th Stage)

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

R
a
te

 A
d
a
p
ta

ti
o
n
 F

a
ct

o
rs

Subnet-0(Seed Arch.)
Subnet-1

Subnet-2
Subnet-3

Subnet-4

(d) 4-th Stage

58 60 62 64 66 68 70 72 74 76
Epochs (5-th Stage)

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

R
a
te

 A
d
a
p
ta

ti
o
n
 F

a
ct

o
rs

Subnet-0(Seed Arch.)
Subnet-1

Subnet-2
Subnet-3

Subnet-4
Subnet-5

(e) 5-th Stage

77.5 80.0 82.5 85.0 87.5 90.0 92.5 95.0 97.5
Epochs (6-th Stage)

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

R
a
te

 A
d
a
p
ta

ti
o
n
 F

a
ct

o
rs

Subnet-0(Seed Arch.)
Subnet-1
Subnet-2

Subnet-3
Subnet-4

Subnet-5
Subnet-6

(f) 6-th Stage

100 105 110 115 120 125
Epochs (7-th Stage)

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

R
a
te

 A
d
a
p
ta

ti
o
n
 F

a
ct

o
rs

Subnet-0(Seed Arch.)
Subnet-1
Subnet-2

Subnet-3
Subnet-4
Subnet-5

Subnet-6
Subnet-7

(g) 7-th Stage

130 135 140 145 150 155 160
Epochs (8-th Stage)

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

R
a
te

 A
d
a
p
ta

ti
o
n
 F

a
ct

o
rs

Subnet-0(Seed Arch.)
Subnet-1
Subnet-2

Subnet-3
Subnet-4
Subnet-5

Subnet-6
Subnet-7
Subnet-8

(h) 8-th Stage

Figure 9: Visualization of rate adaptation factor dynamics across all growing stages (except 0-th)

based on the assumption that new weights must have a higher learning rate. We conducted experiments by
growing ResNet-20 on CIFAR-10. As shown in Table 12, we see that this alternative does not work better than
our original design, and even underperforms standard SGD.

E More Visualizations on Sub-Component Gradients

We further compare global LR and our rate adaptation by showing additional visualizations of sub-component
gradients of different layers and stages when growing ResNet-20 on CIFAR-10. We select the 2nd (layer1-
block1-conv1) and 17th (layer3-block2-conv2) convolutional layers and plot the gradients of each sub-component
at the 3rd and 5th growing stages, respectively, in Figures 10, 11, 12, 13. These demonstrate that our rate
adaptation strategy is able to re-balance and stabilize the gradient’s contribution of different subcomponents,
hence improving the training dynamics compared to a global scheduler.

F Simple Example on Fully-Connected Neural Networks

Additionally, we train a simple fully-connected neural network with 8 hidden layers on CIFAR-10 – each hidden
layer has 500 neurons and is followed by ReLU activations. The network is has a final linear layer with 10
neurons for classification. Note that each CIFAR-10 image is flattened to a 3072-dimensional (32× 32× 3)
vector as prior to being given as input to the network. We consider two variants of this baseline network by
adopting training epochs (costs) ∈ {25(1×), 50(2×)}. We also grow from a thin architecture to the original
one within 10 stages, each stage consisting of 5 epochs, where the number of units of each hidden layer
grows from 50 to 100, 150, ..., 500. The total training cost is equivalent to the fixed-size one trained for
25 epochs. We train all baselines using SGD, with weight decay set as 0 and learning rates sweeping over
{0.01, 0.02, 0.05, 0.1, 0.2, 0.5}: results are shown in Figure 14(a). Compared to standard initialization (green),

28 30 32 34 36 38 40
Epochs (3-th Stage)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

G
ra

d
ie

n
t

N
o
rm

1e 3
Subnet-0
Subnet-1
Subnet-2
Subnet-3

(a) Using Global

28 30 32 34 36 38 40
Epochs (3-th Stage)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

G
ra

d
ie

n
t

N
o
rm

1e 3
Subnet-0
Subnet-1
Subnet-2
Subnet-3

(b) Using RA

Figure 10: Gradients of 2nd conv at 3rd stage.

57.5 60.0 62.5 65.0 67.5 70.0 72.5 75.0
Epochs (5-th Stage)

1

2

3

4

5

G
ra

d
ie

n
t

N
or

m

1e 4
Subnet-0
Subnet-1
Subnet-2
Subnet-3
Subnet-4
Subnet-5

(a) Using Global

57.5 60.0 62.5 65.0 67.5 70.0 72.5 75.0
Epochs (5-th Stage)

1

2

3

4

5

6

7

G
ra

d
ie

n
t

N
or

m

1e 4
Subnet-0
Subnet-1
Subnet-2
Subnet-3
Subnet-4
Subnet-5

(b) Using RA

Figure 11: Gradients of 2nd conv at 5th stage.

18

28 30 32 34 36 38 40
Epochs (3-th Stage)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

G
ra

d
ie

n
t

N
o
rm

1e 4

Subnet-0
Subnet-1
Subnet-2
Subnet-3

(a) Using Global

28 30 32 34 36 38 40
Epochs (3-th Stage)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

G
ra

d
ie

n
t

N
o
rm

1e 4
Subnet-0
Subnet-1
Subnet-2
Subnet-3

(b) Using RA

Figure 12: Gradients of 17th conv at 3rd stage.

57.5 60.0 62.5 65.0 67.5 70.0 72.5 75.0
Epochs (5-th Stage)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

G
ra

d
ie

n
t

N
o
rm

1e 4

Subnet-0
Subnet-1
Subnet-2
Subnet-3
Subnet-4
Subnet-5

(a) Using Global

57.5 60.0 62.5 65.0 67.5 70.0 72.5 75.0
Epochs (5-th Stage)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

G
ra

d
ie

n
t

N
o
rm

1e 4
Subnet-0
Subnet-1
Subnet-2
Subnet-3
Subnet-4
Subnet-5

(b) Using RA

Figure 13: Gradients of 17th conv at 5th stage.

2 6 2 5 2 4 2 3 2 2 2 1

Learning Rate

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Tr
ai

n
Lo

ss

Large Model 1x Train Cost
Large Model 2x Train Cost
Growing (Standard)
Growing (Ours Var. Transfer + Standard SGD)
Growing (Ours Var. Transfer + SGD with Rate Adaptation)

(a) Train Loss

2 6 2 5 2 4 2 3 2 2 2 1

Learning Rate

50

51

52

53

54

55

Te
st

 A
cc

ur
ac

y(
%

)
Large Model 1x Train Cost
Large Model 2x Train Cost
Growing (Standard)
Growing (Ours Var. Transfer + Standard SGD)
Growing (Ours Var. Transfer + SGD with Rate Adaptation)

(b) Test Accuracy

Figure 14: Results of simple fully-connected neural network.

the loss curve given by growing variance transfer (blue) is more similar to the curve of the large baseline – all
using standard SGD – which is also consistent with the observations when training model of different scales
separately [41]. Rate adaptation (in red) further lowers training loss. Interestingly, we observe in Figure 14(b)
that the test accuracy behavior differs from the training loss one given in Figure 14(a), which may suggest
that regularization is missing due to, for example, the lack of parameter-sharing schemes (like CNN) in this
fully-connected network.

G More Comparisons with GradMax [10]

For CIFAR-10 and CIFAR-100, GradMax used different models for growing and we did not re-implement
GradMax on both datasets. Also, generalizing such gradient-based growing methods to the Transformer
architecture is nontrivial. As such, we only cover MobileNet on ImageNet which is used in both ours and
GradMax. Our accuracy outperforms GradMax by 1.3 while lowering training costs, which is significant to
demonstrate the benefit of our method. We also trained our method to grow WRN-28-1 (w/wo BatchNorm, used
in GradMax paper) on CIFAR-10 and CIFAR-100 and compare it with GradMax in Table 13. We see that ours
still consistently outperforms GradMax.

Table 13: Comparison with GradMax.

CIFAR-10 (w BN) CIFAR-10 (w/o BN) CIFAR-100 (w/o BN)

Method
Train Test Train Test Train Test

Cost (%) ↓ Acc. (%) ↑ Cost (%) ↓ Acc. (%) ↑ Cost (%) ↓ Acc. (%) ↑

Large Baseline 100 93.40± 0.10 100 92.90± 0.20 100 69.30± 0.10

GradMax [10] 77.32 93.00± 0.10 77.32 92.40± 0.10 77.32 66.80± 0.20
Ours 58.24 93.29± 0.12 58.24 92.61± 0.10 58.24 67.83± 0.15

19

H Extension to Continuously Incremental Datastream

Another direct and intuitive application for our method is to fit continuously incremental datastream where
D0 ⊂ D1, ... ⊂ Dn... ⊂ DN−1. The network complexity scales up together with the data so that larger
capacity can be trained on more data samples. Orthogonalized SGD (OSGD) [35] address the optimization
difficulty in this context, which dynamically re-balances task-specific gradients via prioritizing the specific loss
influence. We further extend our optimizer by introducing a dynamic variant of orthogonalized SGD, which
progressively adjusts the priority of tasks on different subnets during network growth.

Suppose the data increases from Dn−1 to Dn, we first accumulate the old gradients Gn−1 using one additional
epoch on Dn−1 and then grow the network width. For each batch of Dn, we first project gradients of the

new architecture (n-th stage), denoted as Gn, onto the parameter subspace that is orthogonal to G
pad

n−1
, a

zero-padded version of Gn−1 with desirable shape. The final gradients G∗

n are then calculated by re-weighting
the original Gn and its orthogonal counterparts:

G
∗

n = Gn − λ ∗ proj
G

pad

n−1

(Gn), λ : 1 → 0 (21)

where λ is a dynamic hyperparameter which weights the original and orthogonal gradients. When λ = 1,
subsequent outputs do not interfere with earlier directions of parameters updates. We then anneal λ to 0 so that
the newly-introduced data and subnetwork can smoothly fade in throughout the training procedure.

Implementation Details. We implement the task in two different settings, denoted as ‘progressive class’ and
‘progressive data’ on CIFAR-100 dataset within 9 stages. In the progressive class setting, we first randomly
select 20 classes in the first stage and then add 10 new classes at each growing stage. In the progressive data
setting, we sequentially sample a fraction of the data with replacement for each stage, i.e., 20%, 30%, ..., 100%.

ResNet-18 on Continuous CIFAR-100. We evaluate our method on continuous datastreams by growing a
ResNet-18 on CIFAR-100 and comparing the final test accuracies. As shown in Table 14, compared with the
large baseline, our growing method achieves 1.53× cost savings with a slight performance degradation in both
settings. The dynamic OSGD variant outperforms the large baseline with 1.46× acceleration, demonstrating
that the new extension improves the optimization on continuous datastream through gradually re-balancing the
task-specific gradients of dynamic networks.

Table 14: Growing ResNet-18 on incremental CIFAR-100.

Progressive Class Progressive Data

Method
Train Test Train Test

Cost (%) ↓ Acc. (%) ↑ Cost (%) ↓ Acc. (%) ↑

Large fixed-size Model 100 76.80 100 76.65

Ours 65.36 76.50 65.36 76.34
Ours-Dynamic-OSGD 68.49 77.53 68.49 77.85

20

	Introduction
	Related Work
	Method
	Parameterization and Optimization with Growing Dynamics
	Flexible and Efficient Growth Scheduler

	Experiments
	CIFAR Results
	ImageNet Results
	IWSLT14 De-En Results
	Analysis

	Conclusion
	More Analysis on Variance Transfer
	General Network Growing in Other Layers
	Generalization to Other Optimizers
	More Analysis on Rate Adaptation
	More Visualizations on Sub-Component Gradients
	Simple Example on Fully-Connected Neural Networks
	More Comparisons with GradMax evci2022gradmax
	Extension to Continuously Incremental Datastream

