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Cybersecurity operations centers (CSOCs) protect organizations by monitoring network traffic and detecting suspicious
activities in the form of alerts. The security response team within CSOCs is responsible for investigating and mitigating
alerts. However, an imbalance between alert volume and available analysts creates a backlog, putting the network at risk of
exploitation. Recent research has focused on improving the alert-management process by triaging alerts, optimizing analyst
scheduling, and reducing analyst workload through systematic discarding of alerts. However, these works overlook the delays
caused in alert investigations by several factors, including: (i) false or benign alerts contributing to the backlog; (ii) analysts
experiencing cognitive burden from repeatedly reviewing unrelated alerts; and (iii) analysts being assigned to alerts that do
not match well with their expertise. We propose a novel framework that considers these factors and utilizes machine learning
and mathematical optimization methods to dynamically improve throughput during work shifts. The framework achieves
efficiency by automating the identification and removal of a portion of benign alerts, forming clusters of similar alerts, and
assigning analysts to alerts with matching attributes. Experiments conducted using real-world CSOC data demonstrate a
60.16% reduction in the alert backlog for an 8-h work shift compared to currently employed approach.
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1 INTRODUCTION

Cybersecurity operations centers (CSOCs) are primarily responsible for protecting organizations from cy-
ber threats. Equipped with state-of-the-art intrusion detection systems (IDS) or security information and
event management (SIEM) systems, often powered by machine learning (ML) and deep learning (DL)
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Fig. 1. Typical alert-management process at cybersecurity operations centers (CSOCs).

algorithms, CSOCs continuously monitor network traffic and generate alerts upon detecting suspicious activ-
ities [5-7]. Concurrently, adversaries possess advanced toolchains, enhancing their ability to generate cyber-
attacks in scale as well as sophistication. As a result, CSOCs face the challenge of investigating a large number of
suspicious activities flagged by their detection mechanisms in a timely manner to identify and remediate attacks.

Security response team (SRT) within a CSOC is responsible for thoroughly investigating and timely miti-
gating these alerts to minimize the damage from cyber-attacks [21]. IDS/SIEM alerts awaiting investigation are
assigned to SRT personnel using an organization-specific triage and assignment process. Cybersecurity analysts
perform two levels of alert inspections: primary and secondary. The primary inspection aims to identify sig-
nificant alerts among the flagged suspicious activities, typically requiring a few minutes to examine each alert.
Significant alerts are escalated, and then sent for secondary inspection for further investigation and remediation
of the attack incident, a process that may take several hours to days to complete. The findings from these inves-
tigations are documented to develop threat intelligence and response procedures for future incidents. Figure 1
shows the typical alert-management process followed by a CSOC.

The effectiveness of a CSOC in protecting the organization from cyber threats is directly tied to the perfor-
mance of its SRT. However, a notable issue arises due to a severe imbalance in the number of alerts that are
generated for investigation and the number and types of security analysts available in a work shift to efficiently
perform these investigations. As a result, a significant backlog of uninvestigated alerts is created, posing a sub-
stantial risk of network exploitation for the organization. Recent research studies have examined this problem
from both analyst-centric and alert-centric perspectives, aiming to address this critical challenge faced by orga-
nizations of various sizes.

Ganesan et al. [14, 15] and Shah et al. [30] presented mathematical models to optimally schedule regular
and on-call analysts to meet the demands of expected alert workloads with minor deviations across various
shifts in 14-day work cycles. Altner et al. [3] and Chen et al. [9] studied scheduling of analysts under different
probabilistic scenarios. Ganesan et al. [14] and Shah et al. [29, 32] developed optimization models to allocate
analysts to strategically placed sensors in computer networks, ensuring an even distribution of alert workload
and minimizing the risk of unanalyzed alerts at the end of work shifts. These studies considered analyst
characteristics such as experience (seniority), tooling proficiency, and credentials in their scheduling and
sensor allocation models. Other notable studies presented innovative approaches to reduce the alert workload
for analysts, utilizing data-driven and learning-based techniques [4, 9, 13, 25, 26, 33, 34, 37]. Shah et al. [34]
developed a reinforcement learning (RL) model to intelligently discard alerts from the investigation queue,
while Chen et al. [9] employed supervised ML to identify and remove potential false alerts. In another study,
Shah et al. [33] presented an alert prioritization strategy based on organization-specific factors and developed
an optimization model to maximize the selection of alerts for investigation in each work shift. We present a
detailed review of the literature in the next section. Notably, these studies did not consider identification and
grouping of similar alerts and matching them with analyst skills. In particular, none of these studies took into
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account the specific skill sets and familiarity (attributes) of the analysts, such as their expertise in investigating
particular types of alerts, operating systems (OS), machines, or assets, before assigning them to alerts.

The existing literature overlooks two crucial factors that hinder the SRT’s ability to conduct efficient alert
investigations. (i) Repeatedly reviewing unrelated alert logs can strain the cognitive abilities of security analysts,
resulting in inefficient alert investigations [42]. (ii) The analyst-to-alert assignment decisions are made without
matching their respective attributes. This means that an analyst who excels in handling Windows OS-related
alerts may spend more time to thoroughly investigate an alert related to Linux OS, directly impacting the alert
queue length in sub-optimal pairings. Our study aims to fill these gaps in the literature by proposing a novel
framework that groups alerts into clusters based on similarities in their features and then matches the attributes
of the formed clusters of alerts to the skill sets of analysts for alert investigation assignment decisions.

The primary contribution is the development of a novel ML- and optimization-enabled framework that forms
clusters of alerts and assigns them to analysts with matching skills for efficient alert management. The clustering
of alerts is achieved with the development of an unsupervised ML model, and the alert investigation assignment
decisions are made with the development of a mathematical model. The sequential execution of these compo-
nents in the framework enables a CSOC to dynamically optimize alert investigations at the start of a work shift
based on the number and types of analysts reported to work and the number and types of alerts waiting in the
investigation queue. An additional distinctive feature of this framework is its automated feedback component,
which utilizes a rule-based human-centric approach to identify and filter out a subset of benign alerts through
historical investigations conducted at the CSOC. The insights obtained from the execution of the framework
on a real-world data set validates the need for matching the skills of analysts to those required by alerts for
efficient alert investigation. In addition, CSOCs can identify new skills required in their SRTs obtained from the
key features of the formed clusters. They can then use this information to better staff/hire their workforce and
to provide training to enhance the skill sets of their analysts.

The remainder of this article is presented in the following order. Section 2 provides a review of the relevant
literature in alert management in CSOCs. In Section 3, the novel ML and optimization framework is presented,
along with the description of its components. Section 4 describes the experimental setup and presents the results
obtained from each component of the framework. Section 5 provides a comparison of our methodology with
another alert-management approach from recent literature to demonstrate the effectiveness of our framework.
Finally, Section 6 discusses the conclusions and future directions.

2 LITERATURE REVIEW

An efficient alert management at a CSOC involves making critical decisions that include scheduling the appropri-
ate types and amounts of resources (analysts) who have varying levels of experience and technical skills, as well
as optimizing the alert investigation process. The goal of the SRT in alert-management process is to minimize
the organization’s risk from cyber threats while considering resource availability, work schedules, and other
organization-specific constraints. The alert-management process is examined from various perspectives in the
literature, including analyst scheduling and task assignment, team formation, and alert prioritization. Next, we
present a review of the recent literature from these aspects, followed by the observed gaps.

One of the key focus areas in alert management has been the optimization of cybersecurity analyst scheduling
and their allocation to sensors that generate the alerts. This optimization aims to achieve different objectives,
such as workload balancing and risk minimization [3, 14-17, 29, 32]. Mathematical models have been developed
to address these optimization challenges. For instance, Ganesan et al. [14] presented a model for the optimal
scheduling of regular analysts and their allocation to sensors. Additionally, they proposed dynamic scheduling
techniques for the cyber workforce that includes on-call analysts, aiming to minimize the risk of unanalyzed
significant alerts remaining at the end of a shift [15]. To further optimize the alert-management process, Gane-
san et al. [18] proposed an optimization modeling framework that considered historical and predicted demand
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patterns for alert analysis over a 14-day work cycle. This framework selected additional on-call analysts required
for a shift and provided the optimal allocation of all required analysts on a day-to-day basis. Alert-management
strategies are also explored in the literature, in which sensors are first organized into clusters, and then analysts
are assigned to investigate alerts generated by these sensors. Analysts are matched with sensor clusters based
on factors such as experience, tooling, and credential levels [14, 29, 32], without taking alert characteristics into
account.

Another crucial aspect is team formation for SRT, which involves selecting groups of analysts who work
together to investigate and mitigate alerts. Killcrese et al. [23] identified the first responders, who perform triage
analysis [11], and the alert handlers as the core members of these teams. Effective team formation is recognized
as a critical factor in determining the success of a CSOC by Steinke et al. [36]. Recent studies have focused on
having the right mix of experience and tooling proficiency levels among analysts when forming teams [32, 35].
Shah et al. [35] presented a novel team formation framework that integrates optimization, simulation, and scoring
methods to form effective teams utilizing these characteristics of the analysts.

Alert characteristics are primarily considered for prioritizing the alert investigation queue in literature
studies [8, 19, 24, 40, 41, 43]. Apruzzese et al. [8] presented a pivoting detection algorithm based on network flow
analyses, without relying on a priori assumptions about protocols and hosts. They introduced a prioritization
algorithm that ranked detected paths according to a threat score, enabling security analysts to focus on the
most suspicious pivoting tunnels. Experimental assessments demonstrated the proposal’s higher accuracy and
performance compared to related algorithms. Gupta et al. [19] proposed a novel event classification approach,
identifying features through graphical analysis and utilizing a deep neural network model for classification.
Their experimental evaluation with real CSOC event log data yielded promising results in terms of classification
accuracy. Vidovic et al. [41] introduced a method employing a learning-to-rank algorithm to rank device reports,
aiding end-users in detecting higher-priority alarms more easily. Their incremental training approach showed an
upward trend in model accuracy across various testing scenarios. An important challenge in alert prioritization
is that adversaries may take advantage of the alert prioritization rules to evade detection, specifically by mount-
ing attacks that trigger alerts that are less likely to be investigated be the security personnel. Tong et al. [40]
presented an innovative approach to computing a policy for alert prioritization using adversarial reinforcement
learning, addressing the challenge of adversaries exploiting prioritization rules. Laszka et al. [24] modeled
alert prioritization with adaptive adversaries using a Stackelberg game, offering an approach to compute the
optimal prioritization of alert types, considering the potential for adversaries to exploit prioritization rules for
evading detection. Yen et al. [43] developed the Beehive framework that automatically extracted features from
security log data in large enterprises. They identified 15 features to characterize outbound communications and
employed clustering techniques to detect infected hosts.

In a recent study by Shah et al. [33], they introduced a quantitative value function hierarchy (QVFH)
method to calculate the risk score of alerts. Their method incorporates alert characteristics and organization-
specific factors to compute this score. Thereafter, a mathematical model is employed to select alerts for investi-
gation, taking into account the total amount of resources that are available. To quantify and monitor the level of
operational effectiveness (LOE) of a CSOC, Shah et al. [31] presented an average total time for alert investiga-
tion metric. To dynamically optimize the LOE of a CSOC under uncertainty during the 14-day work cycles, the
authors in Reference [30] proposed a dynamic decision-making model using RL. The results demonstrated that a
ML and optimization model can assist CSOC managers in making better decisions compared to current practices
in determining when and how many resources to allocate for alert investigation under adverse conditions. It
is worth noting that the alert selection process in these literature studies does not take into consideration the
specific skill sets or attributes of the analysts.

Researchers have also directed their attention towards improving the efficiency of cybersecurity analysts [12,
38, 39], recognizing its impact on the alert-management process. Recent literature has explored the setup of the se-
curity personnel workforce, taking into account their unique characteristics such as experience levels and salary
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costs, within the context of IDS alert management [3, 14, 33]. Effective cybersecurity requires precise intrusion
analysis, but the pervasive issue of false alerts poses a significant challenge. Various studies [4, 13, 25, 26, 37]
aim to address distinct aspects of false alerts generated by IDS. Ndichu et al. [26] introduced a bidirectional
methodology to combat severe class imbalance in security alert data analysis. Leveraging an ensemble of three
oversampling techniques, this approach generates high-quality synthetic positive samples while efficiently re-
moving noisy negative samples through a data subsampling algorithm. Experimental results showcase notable
improvements in recall and false positive rates, signaling potential for enhanced Al-assisted security operations.
Aminanto et al. [4] proposed an unsupervised alert screening scheme, utilizing the isolation forest method to
manage overwhelming alert logs. This scheme leverages temporal information to identify distinct characteristics
for each period, reducing the number of vast threat alerts and laying the groundwork for combating alert fatigue,
thereby elevating the overall quality of service in cybersecurity operations.

McElwee et al. [25] conducted a case study introducing the federated analysis security triage tool prototype,
applying ML to streamline the initial triage of security alerts within the Department of Defense. This tool in-
tegrates TensorFlow, Elasticsearch, and Kibana, providing an alternative approach for cyber defense analysts
by efficiently categorizing and summarizing tens of thousands of daily alerts. Su et al. [37] proposed a scheme
leveraging kernel density estimation to automate false positive alert filtering, demonstrating a significant per-
formance improvement of 34% to 62% compared to other algorithms. Feng et al. [13] developed a user-centric
machine learning framework for real enterprise cybersecurity operation centers, addressing typical data sources,
workflow, and strategies for leveraging and processing data sets to construct an effective machine learning sys-
tem. Together, these studies contribute diverse methodologies to reduce manual burdens, enhance accuracy, and
improve overall efficiency in cybersecurity operations.

In summary, existing literature has focused on establishing the cybersecurity workforce, forming optimal
teams of analysts, and scheduling them efficiently to meet the requirements of covering certain characteristics,
such as tools and experience levels across work shifts. Analysts are assigned to specific sensors for alert investiga-
tions, considering their experience, tooling proficiency, and credential levels. The specific skill sets or attributes
of analysts, such as their expertise in alert types, OS, machines, or assets are not considered when assigning
them to the alerts. Also, these studies do not cluster alerts with similar attributes and assign them directly to
matching analyst attributes for efficient investigations. Similarly, alert prioritization and selection schemes have
been explored, but without considering resource attributes. In this study, our research focus is on improving the
alert-management process, which involves better managing the alert queue of investigation with an efficient
utilization of analysts available during the work shifts. We propose a novel ML and optimization framework that
addresses the aforementioned gaps in the CSOC alert-management process. Our approach involves grouping
similar alerts to clusters using unsupervised learning techniques and optimally assigning them to analysts with
matching attributes using mathematical programming, reducing cognitive overload of the analysts and enhanc-
ing the overall efficiency of the alert-management process.

3 ALERT-MANAGEMENT FRAMEWORK

Our proposed machine learning and optimization (ML+OPT) framework for alert management comprises
two main components: (i) the ML component that forms clusters of alerts based on similar features by developing
unsupervised learning models and (ii) the optimization component for analysts to alert clusters assignment by
developing a mathematical program that matches their respective attributes for investigation. Figure 2 shows the
ML+OPT framework for an efficient alert management in CSOCs. Next, we describe each component in detail.

3.1 Machine Learning Component for Alert Cluster Formation
The ML component receives input in the form of alert data, typically presented in structured and machine-

readable formats, such as the common event format (in the case of a SIEM system) used for logging
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Fig. 2. Machine learning and optimization (ML+OPT) framework for alert management.

security-related issues. Alternatively, it may arrive in the form of plain text e-mails originating from an external
information-sharing center responsible for monitoring the organization’s network traffic. To facilitate analysis,
the alert data undergoes preprocessing and feature engineering steps to generate clusters of related alerts.

3.1.1 Preprocessing. The preprocessing step helps transform the alert data into a standardized form, especially
in the case of receiving alert data in a text-based (e.g., an e-mail) format. In this step, the relevant information is
extracted from the alert data using a parser. This parser interprets the incoming alert data, typically in the form
of text data that contains information about the alert, and then converts this data into structured alert data. By
converting the raw data into a structured format, the parser ensures that the alert data is standardized and ready
for further analysis and investigation by the analysts. Various techniques are applied during the preprocessing
stage, including data cleaning, the removal of irrelevant or duplicate information, and information extraction.
Information extraction involves identifying and extracting relevant pieces of information that can be utilized in
the next step for generating meaningful features.

This step also takes into account the information obtained from recent alert analysis. Notably, we prioritize
human-centric knowledge using a rule-based approach and do not use another ML/DL-based classifier that might
override decisions made by an ML/DL-based IDS. The feedback process within the alert-management framework
incorporates analyst-centric information about the alerts to automate the identification and discarding of redun-
dant alert data. As part of this process, relevant information, such as the affected host IP and machine type, is
stored in a database each time an alert is investigated. This information is used in the preprocessing step, which
employs techniques like regex to extract host IP information from incoming alerts. These IP addresses are then
cross-referenced with those from completed analyst investigations. If there is a match, indicating that the current
alert pertains to a host IP that has already been addressed, then our automated process discards the redundant
(benign) alert. Furthermore, our automated process considers indicators like the machine patching status. For
example, if the historical investigation data shows that a particular host IP has already been patched or is cur-
rently undergoing remediation by analysts, then it serves as an indicator that alerts related to that host IP can be
safely discarded as redundant. It is essential to emphasize that the feedback information is specifically applied
in the work shifts immediately following the one that has just concluded. For instance, an alert might be gener-
ated while a machine is undergoing the patching process and the incident is in the midst of remediation. In this
context, the feedback from each work shift is used only in the subsequent work shifts and not for extended time
periods. This approach with a an upper bound for feedback time also helps address the potential issues that may
arise if the patching fails. This data-driven approach streamlines the alert-management workflow and reduces
the analysts’ workload by eliminating benign alerts associated with previously addressed issues, enabling them
to focus on new alerts.

3.1.2  Feature Engineering. Feature engineering involves creating new features from the information extracted
in the previous step that can be passed to the unsupervised ML model in the next step. The creation of relevant
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and informative features is a crucial step that requires domain knowledge and feedback from the subject matter
experts (SMEs) at the CSOC. Based on our discussions with a large collaborating organization that maintains
an internal CSOC and a recent study from literature [33], we identified three main types of features that can be
constructed from the extracted features, which are described as follows:

— Alert-based feature engineering involves the creation of features from alerts that can provide valuable
information about the threats or the machines. Examples of such features include types of attacks (malware,
DDoS, phishing, and others) and OS of the affected machines (Windows, Mac, or Linux).

— Time-based feature engineering involves determining if there exists a recent history of alerts issued for
the affected machine in the alert data. In some cases, it may be more important to investigate newly affected
machines to prevent the spread of an attack to other parts of the organization’s network. In other cases,
it may be more important to investigate machines that have frequently showed up in alerts to identify
potential vulnerabilities in them.

— Location-based feature engineering involves creating features that identify the location of the affected
machines in the network. Using network location as a feature may assist the SRT in identifying alerts from
certain zones, in which their critical assets are placed.

3.1.3  Unsupervised Learning. Unsupervised learning is a ML approach that involves analyzing data without
any predefined labels or target variables to uncover patterns and insights from the data points. Clustering is a
widely used unsupervised learning technique that involves grouping similar data points into clusters based on
certain similarity metrics. Some of the most commonly used clustering methods are listed below:

— Hierarchical clustering: It is a method that involves creating a hierarchy of clusters by iterative merging
or splitting of clusters based on their similarity. This method can be agglomerative, where each data point
starts as its own cluster and clusters are then iteratively merged, or divisive, where all data points start in
one cluster and are then iteratively split.

— Centroid-based clustering: It organizes the data into non-hierarchical clusters, in contrast to hierarchi-
cal clustering defined above. The most widely-used centroid-based clustering algorithm is k-means that
involves partitioning the data points into k number of clusters based on their proximity to each other.

— Density-based clustering: It is a method that involves identifying areas of high density in a data set and
partitioning the data based on these identified areas. The most popular density-based clustering algorithm
is DBSCAN [28], which groups data points into clusters based on their density and connectivity.

— Model-based (Distribution-based) clustering: It involves fitting a statistical model to the data and using this
model to partition the data into clusters. The most popular model-based clustering algorithm is Gaussian
mixture models, which assumes that the data points are drawn from a mixture of Gaussian distributions.

The selection of clustering method to group alerts depends upon the properties of the data set. Experimenting
with different clustering methods and using appropriate metrics, such as elbow method, silhouette score, or
coherence, is important to determine the best approach for an organization-specific use case. We will develop
and compare algorithms from each of the above-mentioned categories. These algorithms are Fuzzy C-Means
(Centroid-based clustering), K-Modes (Model-based clustering), Hierarchical clustering, and DBSCAN (Density-
based clustering). A cost metric, known as the within-cluster sum of squares (WCSS) will be used to compare
their performances. WCSS represents the cumulative sum of squared distances between data points and their

respective cluster centers. Consider C = [Cy, Cy, . . ., Ci] be the clusters of the data set X = [x1,x2, ..., x,], with
C(x;) denoting the cluster assignment for x;. The WCSS value will be computed using Equation (1):
WCSS = Z llx: — mean(Cx)|1% . 1)
Vxi

The cost values are used as a measure of the quality of the clustering algorithm, with lower costs indicating
more compact and well-defined clusters. Based on their performances using the WCSS metric, the respective
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clustering algorithm will be chosen. To identify the important alert attributes that distinguish the properties of
the alert data within each cluster, cluster profiling techniques, such as visualization and rule mining, are used.

3.2 Optimization Component for Assignment of Analysts to Alert Clusters

For efficient alert handling in a CSOC, it is important to ensure that the alerts are investigated by security analysts
with appropriate skills. However, the skill sets of analysts in a CSOC can vary significantly across different analyst
experience levels (types) that have been scheduled for the work shifts. Hence, the objective of the optimization
component is to match the skill requirements of alert clusters, obtained from the ML component, to the skill sets
of the available security analyst types in the shift.

A CSOC hires a mix of analyst types, including junior, intermediate, and senior experience levels, to maintain
the quality of analysis [3, 14, 15]. In this work, we assume that the mix of analysts is maintained during each
shift. The time required to thoroughly investigate an alert depends on the attributes of the alert cluster and
the skill set of the assigned analyst. This means that if there is a complete match between the attributes of
the alert cluster and the assigned analyst, the expected investigation time is optimal. However, in the case of
a partial or no match, the investigation time proportionally increases. The objective is to pair analyst types
and alert clusters such that the skills required for alert investigation in the cluster and the skill types of the
analysts are maximally matched. Next, we present the mathematical formulation of this problem, including
input parameters, decision variables, objective function, constraints, and the outputs of the optimization model.

— Sets:
C: Set of alert clusters
A: Set of analyst types
S: Set of skills
— Indices:
c: Cluster identity (¢ € C)
a: Analyst type identity (a € A)
s: Skill identity (s € S)
— Input parameters:
Y, s: Indicates if the analyst type a has skill s,

Y = 1 ifae Ahasskills € S;
%5710 otherwise.

Z., s Indicates if the cluster c requires skill s,

7 o 1 if ¢ € C requires skill s € S;
“S 710 otherwise.

E.: Total expected time required for investigating alerts in cluster ¢ € C.
T,: Total time available by analyst type a € A. For example, if there are two analysts of type I (“Senior”)
and the shifts are scheduled for 8 h, then the total time available for analyst type I is 2 X 8 X 60 = 960 min.
P: Discount factor for computing the lower bound for total time required for each cluster. The factor value
is organization-specific and is determined by the CSOC.

— Decision variables:
Xq,c: Indicates if analyst type a is assigned to cluster c,

F— 1 ifais assigned to cluster c,
%€ 710 otherwise.

d.: Number of unmatched skills (deviations) for cluster c.
rq.c: Time allocated by analyst type a to cluster c.
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— Objective function:
The objective is to maximize meeting the skill requirements of each cluster, thereby minimizing the number
of deviations in these requirements across all the clusters:

€]

w = Minch. (2)
c=1

— Constraints:
The constraint for calculating the number of deviations for each cluster is given by
|A] 15|
Z ZlYa,s - Zc,s| * Xg e < de, Ve e C. (3)
a=1 s=1
The constraints for ensuring that the analyst assignment satisfies the time requirement for alert investiga-
tion in each cluster are given by

1A

PEe < ) rac < Ee Ve e, @)
a=1

Fa,c < Xa,c * Ta, Vae€ A, ceC. (5)

The constraint for ensuring that the total time assigned by each analyst type across all cluster assignments
does not exceed its available time is given by

IC]
Dirac<T,  YacA (6)
c=1
— Output:
The output of the optimization model is the assignment of the security analysts to clusters of alerts for
mitigation.

The research problem of matching analyst types to alert clusters for investigation is formulated as a mixed
integer programming problem. Such problems fall under the NP complexity class [22, 27]. The complexity of
this problem is 2/4*I°I and the mathematical model can be solved using specialized solvers like Gurobi [20] or
CPLEX [10]. Algorithm 1 outlines the implementable steps of the optimization model.

4 EXPERIMENTS AND RESULTS

This section presents the numerical setup employed for conducting the experiments and the results obtained for
each framework component. First, we describe the alert data that we used for the experiments, followed by the
experiment details and the results of the ML and optimization models.

4.1 Alert Data

We investigated the alert data of a large collaborating organization that maintains an internal CSOC. The SRT
of the CSOC receives security alert data generated by a single IDS security appliance using the Albert network
monitoring and management system in the form of an e-mail report. Albert is a renowned IDS specifically tailored
for U.S. State, Local, Tribal, and Territorial government organizations. This is a common format of receiving
alert data using an information sharing and analysis center such as MS-ISAC [1]. The received e-mails also
include threat intelligence information about emerging cybersecurity threats, vulnerabilities, and indicators of
compromise that could impact the organization’s network in the future. Advisory security updates are also part of
the receiving e-mails at the CSOC. These e-mails are updates on cybersecurity news, trends, and events that may
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ALGORITHM 1: Optimization algorithm for assignment of analysts to alert clusters.

Input :Alert clusters, C; analyst types, A; skills, S; analyst type skill set, Y, sVa € A, s € S; alert cluster required skill
set, Z¢, sVe € C, s € S; total expected time required for investigating alerts in cluster ¢, E.; total time available
by each analyst type a, T,; discount factor, P.
Output: Assignment of the security analysts to clusters of alerts for mitigation, x4 ¢ and rg ¢ Va,c.
1 /*Initiate a solution search using an integer programming solver”/ repeat

2 for a set of xq,c = 1 and rq, ¢, /"Potential solution in a search™/ check for feasibility: do
3 Li|1 ZLS:UYa,s —Zesl*xqc<d. VYceC

4 P*Ecﬁzlf;‘lra,csEc YeeC

5 ra,c < Xqc*Tq VYa€A ceC

6 Z'Ci‘l rac <Ta VYa€A

7 end

8 if Feasible then

9 ‘ w = Min Zlcill de

10 end

1 until Stopping criteria /*Optimal value for w is found™/;

-

12 return xq ¢ andrq . Va,c.

impact the organization. Our preprocessing steps, including data cleaning and information extraction, identifies
these e-mails and removes them from the queue of alerts that need investigation.

The security analysts conduct alert investigations on a shift basis, with reported alerts assigned for investi-
gation at the start of an 8-h shift. We were provided with personal storage table (.pst) files containing alerts
for each 8-h period. For each 8-h shift, we received the alert data in a single .pst file. In the first experiment
(indicating an 8-h work shift), the .pst file contained 1,561 e-mails. Additionally, for the scalability experiment
in Section 5.1, we received 21 more .pst files containing 29,789 e-mails in total. The total number of alert data
we obtained amounted to 931 (for the first experiment) and 16,002 (for the scalability experiment), summing up
to 16,933 security alerts. This number represents the actual alert e-mails following the preprocessing of the .pst
files, which involved the removal of redundant and irrelevant e-mails. We first present the numerical setup of
one .pst file (indicating an 8-h work shift). The other 21 .pst files were setup similarly for further experiments in
Section 5.1 Figure 3 illustrates a sample of the alert data.

4.2 Experiments and Results for the ML Component

Next, we describe the experimental details and the results obtained for the ML component of the framework,
which is divided into three steps.

4.2.1  Preprocessing. We parse the .pst file to extract e-mail data. Various techniques are applied in the pre-
processing stage, including data cleaning and information extraction. Data cleaning involves the removal of
irrelevant or duplicate information from the investigation queue, which is used to form clusters of alerts. Irrele-
vant information, from the cluster formation perspective, includes threat intelligence and advisory e-mails, and
the duplicate information are e-mails regarding the same affected IPs that trigger the same incident repeatedly
(e.g., a denial-of-service incident). We extract key fields of each e-mail, highlighted in red boxes in Figure 3, in-
cluding the e-mail title, e-mail date and time, description, analysis, recommendations, and supporting details.
The textual data in the e-mail fields contain important information about the alerts. We apply information ex-
traction techniques to extract relevant information for each alert. In this study, we employ a rule-based method,
given the template-like structure of the e-mails. This approach relies on predefined patterns or rules, such as reg-
ular expressions [2], to identify and extract specific information. We used the regex module, which has an API
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Fig. 3. Sample of the reported alert data.

Table 1. Complete List of Extracted Features from the Alert E-mails

Feature Extraction Field Description
Incident ID Description The unique identifier for the incident.
- . The IP address identified as the destination of the alert, indicating the
Destination IP Analysis . .
affected device (machine).
. The IP address identified as the source of the alert, indicating the origin
Source IP Analysis . ..
of the suspicious network activity.
Source Port Analysis Source port number associated with the incident.
Destination Port Analysis Destination port number associated with the incident.
Protocol Type Analysis Type of protocol used (TCP or UDP).
Alert Name Description Name or description of the incident.
Observing Devices Supporting Details The security appliance or system involved in detection of the incident.
Website Visited (if applicable) Description Website visited as part of the incident.
User/Account Involved Analysis User or account associated with the incident.
Host/Device Involved Analysis Host or device related to the incident.
Related References Analysis References or additional context related to the incident.
Device History Supporting Details A history or timeline of the incident within the security appliance system.
Host Intrusion Prevention (HIP) Info ~ Supporting Details Information related to the host’s HIP status.
First Seen Supporting Details Additional information about the incident, including the first observed date and time.

compatible with the standard library re package in Python. Table 1 shows the complete list of the extracted fea-
tures and their source in the alert e-mail data. During this process, we also identify and remove alerts, including
duplicates, completed investigations, and ones with mitigated machine vulnerabilities. Note that we considered
an upper bound of two days for this feedback, a parameter that could be customized by the CSOC based on
their investigation and patching schedules. This step is performed using historical alert analysis information,
as shown in the feedback loop in Figure 2. At the end of this preprocessing step, there were 931 alerts in the
investigation queue.
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Table 2. Description of the Engineered Features

Feature Feature Value Description
Type
oS Windows, Mac, Indicates the OS associated with the machine in the alert.
Linux
Alert-based Alert Type DDoS, Malware, Represents the specific threat type associated with the alert.
Botnet, ...
Location-based Network Zone-1, Zone-2, Indicates organization-specific network zone, in which the threat
Location Zone-3 is found based on the destination IP address.
Time-based Machine 0,1 Indicates whether there is a history of alerts generated for the
History affected machine (1) or not (0).

Table 3. Clustering Results of Different Algorithms Using the Cost (WCSS) Metric

Number of Clusters Fuzzy C-Means K-Modes Hierarchical Clustering DBSCAN

1 2,073 1,569 2,354 2,621
2 1,836 1,157 2,125 2,304
3 1,654 875 1,976 2,232
4 1,298 725 1,647 2,121
5 1,287 624 1,567 2,003
6 1,160 568 1,530 2,010
7 980 552 1,310 1,768
8 957 426 1,150 1,532
9 856 412 1,067 1,479

4.2.2  Feature Engineering. This step involves extracting features from the structured data obtained from the
previous step for the alerts. We obtained other computer- and network-related information from the SMEs at
the CSOC for feature engineering. Table 2 provides a summary of the key engineered features. Alert-based
features included the OS and alert type, location-based feature included the location of the affected machine in
the network as indicated by zones 1, 2, and 3, and time-based feature included a binary value of 1 or 0, indicating
whether the affected machine had any alert history or not, respectively.

4.2.3 Unsupervised Learning. The objective of this step is to create clusters of alert data in an unsupervised
manner using the feature set values from the previous step. We developed various clustering techniques, includ-
ing Fuzzy C-Means, K-Modes, Hierarchical Clustering, and DBSCAN. The outcomes of these diverse clustering
algorithms, employed to categorize alert data, are summarized in Table 3. The numbers within the table represent
the associated costs for different cluster counts using the respective clustering techniques. Notably, the K-Modes
algorithm exhibited superior cluster separation performance across all cluster counts, from cluster 1 to cluster
9, consistently demonstrating the lowest cost. The cluster profiling is explained after describing the approach to
determining the optimal number of clusters to form.

To select the optimal number of clusters, we applied the elbow method. In this method, the optimal number
of clusters is the number of clusters before the addition of another cluster that does not significantly reduce the
cost. Figure 4 displays the elbow method results for selecting the optimal number of clusters. We found eight
clusters to be an ideal choice (as shown in a red circle in Figure 4 from the K-Modes algorithm).

Next, we performed a visual profiling of the clusters to identify the characteristics of each cluster and their
corresponding skills required from the analysts. We use a stacked bar chart, which displays the percentage of
alerts of each feature value within each cluster. Figure 5 presents the profiling outcomes for each cluster based on
different features. The clusters showed better segregation compared to other approaches based on the different

Digit. Threat. Res. Pract., Vol. 5, No. 2, Article 19. Publication date: June 2024.



Machine Learning and Optimization Framework for Efficient Alert Management in a CSOC « 19:13

2800

2400

2000

1600

Cost

1200

800

400

1 2 3 4 5 6 7 8 9

Number of cluster k

==@==Fuzzy C-Means ==@==K-Modes «=0==Hierarchical Clustering DBSCAN

Fig. 4. Determining the optimal number of clusters using the elbow method.

categorical values of the features. For instance, cluster numbers 4 and 7 only contained the Malware attack type,
while cluster numbers 3 and 6 contained the Botnet and DDoS attack types, respectively. Similar segregation
among the clusters can be observed from the perspective of the other two features, OS and network location,
in Figure 5. The time-based feature did not play a prominent role in segregating the clusters. Moreover, the
time-based feature does not have a corresponding skill requirement from the analysts. Next, we present the
experimental details and the results obtained for the optimization component of the framework.

4.3 Experiments and Results for the Optimization Component

The cluster information from the ML component and the analyst information from the CSOC are presented to
the optimization component as inputs. We transform the input information to a format that can be used for
mathematical programming. Table 4 shows the skill requirements for the eight clusters (|C| = 8) based on the
profiling results (see Figure 5) in a one-hot encoding format. The goal of the ML-based clustering process was to
group alerts such that they are optimally segregated. However, achieving a perfect separation of feature values in
clusters is not always possible. In cases where the perfect distinction between clusters for certain feature values
does not exist, we use the feature with the largest proportion of alerts to indicate the respective skill required by
that cluster.

From our discussions with the CSOC and based on the literature studies [14, 15, 29], we consider three types
of analysts: senior, intermediate, and junior. Within the context of this study, each of these groups possesses
varying skill sets. It is essential to note that the categorization of analysts into these groups is primarily based
on their expertise level and not based on their years of service. The attributes (skill sets) of the analyst types are
given in Table 5, which can be obtained by the CSOC. As illustrated in Table 5, senior analysts demonstrate a
broad and advanced skill set, enabling them to effectively handle a diverse range of alerts optimally. However,
junior analysts exhibit more limited expertise.
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Fig. 5. Cluster profiling for clusters based on various features.
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Table 4. Skills Required in Each Cluster (Z¢,s)

Skill(s) Required
Cluster (c) Alert Type (0} Network Location
Botnet DDoS Malware Linux Mac Windows Zone-1 Zone-2 Zone-3
0 0 0 1 0 0 1 0 1 0
1 1 0 0 0 1 0 1 0 0
2 0 1 0 1 0 0 0 1 0
3 1 0 0 0 1 0 0 1 0
4 0 0 1 1 0 0 0 1 0
5 0 1 0 0 0 0 0 0 1
6 0 1 0 0 0 1 0 1 0
7 0 0 1 0 1 0 0 1 0
Table 5. Attributes for Each Analyst Type (Yq,s)
Skill(s)
Analyst Type (a) Alert Type oS Network Location

Botnet DDoS Malware Linux Mac Windows Zone-1 Zone-2 Zone-3

Senior 0 1 1 1 1 1 1 0 0
Intermediate 0 1 0 1 0 1 0 1 1
Junior 0 0 1 1 0 0 0 0 1

The representation of analysts attributes in Table 5 might seem rigid with binary skillset values (1 and 0).
However, in this study, an attribute value of 1 in Table 5 indicates that the analyst is highly skilled in a specific
skill s and can investigate alerts requiring skill s optimally. Conversely, an attribute value of 0 does not imply an
inability of an analyst to investigate the alerts requiring skill s but rather reflects the need for more time due to
the analyst’s lower level of expertise. In Section 5, we address the nuances of analyst skill by using what we refer
to as “matching score” metric defined in Equation (7) during the investigation process, which accommodates
varying levels of analyst skill (more or less experienced in each skill) in practice. The use of matching score
mechanism within our framework allows us to establish investigation times based on the degree of alignment
between an analyst’s skills and the alert’s skill requirements. Through our experiments conducted on the SRT
personnel, we found out that the alert investigation time associated with the primary level of investigation is
approximately 3 min, with a perfect match between the skills possessed by an analyst and the attribute of an alert.
Other studies in the literature [3, 9] use a similar estimate of a few minutes for alert investigation, which we use
as a baseline value in the experiments. The value of the input parameter E. is calculated by multiplying the alert
count in the cluster ¢ with the estimated investigation time. Table 6 shows the expected time required for alert
investigation for each cluster. In our experiments, we considered specific numbers of analysts for each analyst
type per 8-h shift: two senior analysts, one intermediate analyst, and two junior analysts. The input variable
T, represents the total time available for each analyst type a, which is calculated by multiplying the number of
analysts available for that type with the duration of the shift in minutes. Table 7 shows the total time available
for alert investigation by each analyst type.

The discount factor, P, is an algorithmic hyperparameter used to tighten the lower bound on finding the
optimal time allocated by the analysts to clusters for alert investigation, thereby assisting the solver in finding
the optimal solution faster. It can be observed from Equations (5) and (6) that variable r, . is not constrained
by lower bounds. Without the inclusion of P, the model would fail to assign any analyst to any cluster, yielding
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Table 6. Expected Time Required for Alert Investigation for
Each Cluster (E;)

Cluster Number of Alerts Time Required (min)

0 195 585
1 156 468
2 189 567
3 49 147
4 99 297
5 107 321
6 86 258
7 50 150
Total 931 2,793

Table 7. Total Time Available for Each Analyst Type (Tg)

Analyst Type Number of Analysts Time Available (min)

Senior 2 960
Intermediate 1 480

Junior 2 960

Total 5 2,400

an objective value of the number of deviations to zero, which is theoretically optimal. The value of P could vary
based on the number of alerts, the number of analysts available in the shift, and analyst utilization required for
the alert-management task. In practice, it must be set to a value greater than 0. The higher it is, without rendering
Equation (4) infeasible, the faster the algorithm will find the solution. Based on the input parameters obtained
from the CSOC (see Tables 6 and 7), the expected time required for investigating all clusters is equal to 2,793
min (total time required in Table 6), and the total time available for all analysts in an 8-h shift is 2,400 min (total
time available in Table 7), indicating a shortage of manpower to investigate all alerts in an 8-h shift. Through
a sensitivity analysis involving different values ranging from 0.50 to 0.90 in increments of 0.05, we identified
P = 0.85 as the best value for solving the problem. For instance, when P > 0.90, the optimization model becomes
infeasible, because the lower bound in Equation (4) would be 0.9 (585 +468 + 567 + 147 + 297 + 321 + 258 + 150) =
2,513 min, exceeding the total time available of 2,400 min (as indicated in Table 7). Table 8 shows the assignment
summary obtained upon executing the mathematical program (Algorithm 1). Note that one of the skills required
by the clusters (1 and 3) was not present across the skill sets of the available analysts. Hence, the optimization
model assigned an analyst type to those clusters based on the time availability. This information can be used by
the CSOC to upgrade the skill set of the SRT through periodic training or hiring. To show the effectiveness of our
approach, we compare the performance of the CSOC using the assignment results obtained from our framework
with that of another alert-management method from recent literature.

5 PERFORMANCE COMPARISON AND ANALYSIS OF RESULTS

In this section, we compare the performance of our methodology with the quantitative value function hierar-
chy (QVFH) approach presented in Reference [33], which first triages alerts and then assigns them to analysts
in a round-robin manner. Note that such an assignment scheme is primarily used in CSOCs, ensuring a fair distri-
bution of workload among the available analysts. This triaging process involves a preprocessing step to calculate
the composite risk scores of the alerts based on organizational factors. We use the information obtained from
the alert data, including alert type, OS, criticality of the asset zones, and alert history to compute this score with
the following weights assigned to these factors: W; = 0.2, W, = 0.35, W3 = 0.2, and W, = 0.25, respectively
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Table 8. Assignment Summary of Analysts to Alert Clusters (xg,¢,7a,¢)

Analyst Type Assigned Cluster(s) Time Allocated (min)
478
482
253
227
36
398
125
273
128
Total Allocated Time 2,400

Senior

Intermediate

Junior

N U W R ol | O

Table 9. Average Investigation Time Per Alert for Different
Matching Scores

Matching Score Average Investigation Time (min)

0 6
1/3 4.5
2/3 3.5

1 3

(as used in Reference [33]). To make a fair comparison among these two approaches, we use the same data set,
containing 931 alerts, obtained after the preprocessing step in the ML component of the framework.

To quantitatively compare our approach to the QVFH approach, we established a matching score metric in
discussions with the CSOC. This matching score is defined in Equation (7), in which the denominator represents
the number of skills required by an alert, and the numerator represents the degree of match between the skills
of assigned analyst type and the skill requirements of the alert. As discussed in Section 3, a perfect match (i.e.,
a matching score of 1) between the analyst type’s skill set and the alert’s skill requirements is estimated to take
an average of 3 min for investigation. However, if the matching score is less than 1, then the investigation time
proportionally increases:

|Analyst skill set N Alert skill set|
|Alert skill set|

Table 9 presents the average investigation time (in minutes) per alert based on various matching scores. The
average investigation times were derived from prior investigations conducted. To illustrate, during investigation
rounds where analysts with partial or no matching of skills (2/3, 1/3, and 0) were assigned to handle alerts,
the corresponding times for alert investigation were recorded, and an average time for each matching score
was computed. These average alert investigation times were primarily utilized to quantify the advantages of
aligning the skills of analysts with the attributes of alerts within CSOCs in our experiments. Table 10 shows
the performance comparison of our approach with the QVFH method for the 8-h shift. The number of alerts
investigated and the average time taken for investigation per alert are reported in this table for both these
methods. Note that since QVFH method uses a random order of analysts for assigning alerts for investigation
at the start, we simulated 100 runs of the experiment by assigning alerts to a different order of the analysts in
each run. We used the average investigation times, as outlined in Table 9, to calculate the time expended in
investigating alerts in the simulation. We report the best results obtained from these runs in Table 10 for the
QVFH method. On an average, 28% more alerts were investigated using the ML+OPT method compared to the

Matching score =

™)
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Table 10. Performance Comparison between ML+OPT and QVFH Methods for the 8-h Shift

Hour
Method 1 2 3 4 5 6 7 8
QVFH Number of alerts investigated 65 69 71 57 66 63 78 60
Average investigation time per alert 4.61 4.34 4.22 526 454 476 384 5
ML+OPT Number of alerts investigated 8 8 8 87 81 90 8 82

Average investigation time per alert 3.57 3.41 3.61 3.44 3.7 333 3.52 3.65

Table 11. Number of Alerts Collected for Each Day and the Number of Irrelevant/Duplicate and Redundant Alert Data
Obtained Using the Preprocessing Step and the Feedback Loop

Day Total E-mails Irrelevant/Duplicate Irrelevant/Duplicate (%) Redundant Redundant (%) Actual Alerts

1 4,481 434 9.6 1,563 34.8 2,484
2 4,226 403 9.5 1,458 34.5 2,365
3 4,129 375 9 1,609 38.9 2,145
4 4,801 425 8.8 1,833 38.1 2,543
5 3,892 325 8.3 1,536 39.4 2,031
6 4,013 381 9.4 1,454 36.2 2,178
7 4,247 397 9.3 1,594 37.5 2,256

Table 12. Performance Comparison between ML+OPT and QVFH Methods for the One-week Period

Day
1 2 3 4 5 6 7

Method Number of new alerts assigned 2,484 2365 2,145 2,543 2,031 2,178 2,256
Total number of alerts for investigation 2,484 3,216 3,801 4,599 5,045 5,725 6,401

QVFH Number of alerts investigated 1,633 1,560 1,745 1,585 1,498 1,580 1,644
Average investigation time per alert 441 461 412 454 48 456 437

Backlog 851 1656 2056 3014 3,547 4,145 4,757

Total number of alerts for investigation 2,484 2,852 2,970 3,540 3,322 3,607 3,876

ML+OPT Number of alerts investigated 1,997 2,027 1,979 2,249 1,893 1,987 2,005
Average investigation time per alert 3.6 3.55  3.63 3.2 3.8 3.62  3.59

Backlog 487 825 997 1,291 1,429 1,620 1,871

QVFH method. Our method also took, on an average, 23% less time to investigate an alert over the 8-h shift
when compared to the QVFH method. Figures 6(a)-6(c) show the total number of alerts investigated by each
analyst type for every hour of the shift using the two methods. It can be seen that all analyst types are able
to investigate more alerts using the ML+OPT method compared to the QVFH method. By leveraging ML and
optimization techniques, our approach streamlines the investigation process by maximizing the assignment of
analysts to alerts with matching attributes.

5.1 Scalability Experiment for One-week Period

We conducted a numerical experiment by scaling it with multiple analysts, totaling 10 analysts, who worked in
shifts throughout the week. Each day of the week, alert data was collected, clusters were formed, and analysts
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Fig. 6. Total number of alerts investigated by each analyst type in the 8-h shift using ML+OPT and QVFH methods.
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Fig. 7. Total number of alerts investigated and backlog size during the one-week period using ML+OPT and QVFH methods.

were assigned to clusters based on their skill requirements for each shift. The proportion of analysts per type
remained consistent across the daily shifts. As described earlier in Section 4, the preprocessing step encompasses
data cleaning, removal of irrelevant or duplicate information, information extraction, and a feedback mechanism
that incorporates information from recently completed alert investigations. Table 11 displays the total number of
actual alerts assigned to analysts after applying the preprocessing techniques and the feedback loop. This feed-
back system effectively identified and removed approximately 30-40% of benign alerts on a daily basis. Table 12
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presents the performance comparison between the ML+OPT and QVFH methods. The results displayed in the
table demonstrate a significant improvement when using the ML+OPT method. At the end of the week, the back-
log of alerts was reduced from 4,757 alerts (using the QVFH method) to 1,871 alerts (using the ML+OPT method),
indicating a 60% decrease in the backlog size. Furthermore, the average time taken to investigate an alert each
day of the week was lower for the ML+OPT method compared to the QVFH method. This resulted in a higher
alert investigation rate using our approach. Figures 7(a)-7(b) illustrate the trend lines representing the backlog
of alerts for the QVFH and ML+OPT methods over the course of the seven days. It can be observed that our
methodology with the optimal matching mechanism helps to prevent the backlog from growing exponentially,
leading to improved response times and enhanced network protection against cyber threats.

6 CONCLUSIONS AND FUTURE DIRECTIONS

In summary, we proposed a novel framework that integrates ML and optimization to enhance the efficiency of the
alert-management process in CSOCs. We demonstrated the effectiveness of our approach using real-world CSOC
alert-management data. Our methodological framework involves preprocessing the alert data and engineering
features to develop an unsupervised learning model. The ML model then forms clusters of alerts based on feature
similarities. Next, we match the skills required to investigate the alerts in these clusters with the respective skills
of the analysts using a mathematical program. We develop an optimization model to maximize the matching pairs
of analysts and alert clusters, thereby facilitating efficient alert investigations. The experiment results indicate
that our approach, which groups similar alerts and assigns them to analysts based on their skill sets, significantly
increases the alert investigation rate of the SRT in a CSOC. Additionally, through feature engineering and cluster
formation, we can identify missing analyst skills. This information can be utilized to enhance the skill set of the
analyst workforce by providing targeted training or improving the hiring and staffing processes.

Future research efforts could focus on utilizing false positive decisions from analyst investigations (feedback
component) to refine the training data for customizing the IDS for the CSOC, thereby reducing false alerts.
Exploring optimal training strategies to enhance analyst skill sets in alignment with evolving CSOC needs rep-
resents another promising avenue. Additionally, a valuable study would involve developing a methodology that
automates the remediation of alerts in the investigation queue using historical data. Such an approach has the
potential to significantly improve the alert-management process within a CSOC, benefiting both researchers and
practitioners in the cybersecurity community.
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