
Future Generation Computer Systems 160 (2024) 120–130

A
0

p
a
D
i

h
R

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Resilience and performance quantification of dynamic reconfiguration
Sarah Alhozaimy a,∗, Daniel A. Menascé b, Massimiliano Albanese b
a Software Engineering Department, College of Computer and Information Sciences, King Saud University, 11495, Riyadh, KSA
b School of Computing, George Mason University, 4400 University Dr, Fairfax, 22030, VA, USA

A R T I C L E I N F O

Keywords:
Resilience quantification
Performance analysis
System reconfiguration
Dynamic reconfiguration
Resilience-performance tradeoff
Optimal reconfiguration frequency

A B S T R A C T

Dynamic reconfiguration is an adaptive resilience mechanism that can help address several system design
problems. Adaptation through dynamic reconfiguration can improve quality of service, increase fault-tolerance,
help recover from failures, and prevent and recover from cyber attacks. This mechanism acts primarily by
reconfiguring one or more of a system’s resources. While system reconfiguration is advantageous, it may bring
disadvantages such as performance and availability degradation during reconfiguration intervals. In this work,
we quantify the effectiveness of dynamic reconfiguration as a system resilience mechanism and its impact on
performance. We define a failure function that captures the effect of dynamic reconfigurations on a system’s
resilience to failures and develop metrics that capture the impact of reconfigurations on a system’s execution
time and probability of failure. We also derive analytic models that predict the effectiveness of dynamic
reconfigurations on execution time and resilience to failures. Several theorems regarding the tradeoff between
resilience to failures and performance and availability are presented. Finally, we define an optimization
problem, formalized with the help of these theorems, to determine the optimal reconfiguration frequency
to meet performance-resilience tradeoffs.
1. Introduction

When a computer system runs for a long period of time, the process
corresponding to the software in execution starts to age or degrade in
performance and in system resource utilization. System failures may be
caused by the accumulation of internal error states during a system’s
execution. For example, a failure may result from the accumulation of
incorrect values in the random access memory or leaks resulting in poor
use of existing memory resources. The failure rate may increase with
the complexity of the software and with the duration of its execution
time. In real-world systems, even the best engineered systems will
eventually be disrupted by residual defects in the software or hardware.
This may cause the system to fail to perform its functions or to meet its
quality requirements. It is important that a system continues to carry
out its mission and be resilient to failures.

This work uses dynamic reconfiguration as a proactive mechanism
to increase a system’s resilience to failures. Dynamic reconfiguration is
an adaptive resilience mechanism that holds a great promise to solve
several problems. This technique can be used to improve Quality of Ser-
vice (QoS) [1], increase fault-tolerance [2,3], recover from failures [4],
revent cyber attacks through Moving Target Defenses (MTDs) [5–7],
nd facilitate the detection of and recovery from cyber attacks [8].
ynamic reconfiguration has several important benefits, but it can also
ntroduce some drawbacks such as degradation of a system’s transient

∗ Corresponding author.
E-mail addresses: salhozaimy@ksu.edu.sa (S. Alhozaimy), menasce@gmu.edu (D.A. Menascé), malbanes@gmu.edu (M. Albanese).

performance. To address this problem, this paper focuses on analyzing
the impact of using dynamic reconfigurations on system performance
and resilience tradeoffs.

Dynamic reconfiguration acts primarily by reconfiguring one or
more of a system’s resources. Despite the large number of proposed
reconfiguration techniques in the literature [3,9], most of them are
designed for and evaluated with respect to specific reconfiguration
mechanisms. Gaps still exist with respect to understanding the impact
of dynamic reconfiguration mechanisms on system performance in gen-
eral and in analyzing the tradeoffs between system resilience to failures
and performance of any computer system. This paper analyzes the
impact of using dynamic reconfigurations as a mechanism for reducing
the impact of failures on a system, regardless of the reconfiguration
technique used.

While dynamic reconfiguration is generally desired, its practical
implementation is currently limited, in part due to the difficulty of
balancing consistency and disruption of system service. Our approach
is based on the use of the version consistency mechanism as a criterion
for safe dynamic reconfigurations of component-based distributed sys-
tems [10]. A similar approach used in the design and implementation
of resilient distributed component-based software systems is described
in [4].
vailable online 24 May 2024
167-739X/© 2024 Elsevier B.V. All rights are reserved, including those for text and

ttps://doi.org/10.1016/j.future.2024.05.040
eceived 20 July 2023; Received in revised form 11 March 2024; Accepted 17 May
data mining, AI training, and similar technologies.

2024

https://www.elsevier.com/locate/fgcs
https://www.elsevier.com/locate/fgcs
mailto:salhozaimy@ksu.edu.sa
mailto:menasce@gmu.edu
mailto:malbanes@gmu.edu
https://doi.org/10.1016/j.future.2024.05.040
https://doi.org/10.1016/j.future.2024.05.040
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2024.05.040&domain=pdf

Future Generation Computer Systems 160 (2024) 120–130S. Alhozaimy et al.

(
f
b
(
f

d
r
p
i
s
r
t
p
o
c
b
f
o
p

2

r
s
u
T
t
d

u
f
t
s
i

t
i
a
r
l

r
r
e
f
r
a

a
r
i
a
t

w
a
f

i
w
w
t
r
f
b

Previous work [11] by two of the authors of this paper dealt with a
similar approach but very different problem. In [11], the authors were
preoccupied with proactively protecting a system from cyberattacks
by using dynamic reconfigurations aimed at disrupting an attacker’s
reconnaissance effort. In the current paper, we are concerned with
proactively increasing the resilience of a system against failures by using
dynamic reconfigurations.

Failures and cyberattacks are disruptive to a computer system and
its users. However, they are different in the sense that cyberattacks
attempt to breach one or more of the following properties: confidential-
ity, integrity, and availability. Failures interrupt the operation of part
or of an entire system. Thus, it is possible for a system to continue to
operate while suffering a cyberattack. It is also possible for a system to
fail without suffering a cyberattack.

The main contributions of this paper are: (1) a closed-form analytic
model that can be used to compute (a) the probability that a system
fails during execution and (b) the system’s execution time when dy-
namic reconfiguration is used (see Eqs. (3) and (4), and Theorem 1);
2) an optimization model for determining the optimal system recon-
iguration frequency in a way that takes into account given tradeoffs
etween performance and resilience (see Theorem 2 and Eq. (17)); and
3) the derivation of the maximum probability that a system does not
ail under non-uniform reconfiguration intervals (see Theorem 3).
The remainder of the paper is organized as follows. Section 2 intro-

uces a reconfiguration taxonomy and discusses related work. Section 3
efines the problem statement using an experimental example and
resents the notation, assumptions, and basic system model considered
n the paper. Section 4 presents our resilience analytic model used to
tudy the tradeoffs between performance and resilience under dynamic
econfigurations. Then, Section 5 presents several numerical examples
hat illustrate the applicability of the proposed models. Section 6
resents an optimization model that can be used to determine the
ptimal system reconfiguration frequency subject to given performance
onstraints. The next section discusses in more detail the differences
etween the current paper, which is focused on tradeoffs between
ailures and performance, and the paper in [11] from two of the authors
f this paper, that deals with tradeoffs between cybersecurity and
erformance. Finally, Section 8 presents concluding remarks.

. Background and related work

This paper focuses on the use of reconfiguration to increase system
esilience while a system is in execution. As indicated in Fig. 1, we
hould consider four aspects of system reconfiguration: why to reconfig-
re, when to reconfigure, what to reconfigure, and how to reconfigure.
he red boxes in Fig. 1 illustrate that the main focus of this paper is
he improvement of fault tolerance considering QoS tradeoffs through
ynamic reconfiguration.
Why to reconfigure. As Fig. 1 depicts, reconfiguration can be

sed to improve QoS [1], increase fault-tolerance [3], recover from
ailures [4], prevent cyber attacks [5,6], and recover from cyber at-
acks [8]. In many circumstances, reconfiguration can help achieve
everal of these objectives at the same time. But, the focus of the work
n this paper is on fault tolerance improvement and failure recovery.
When to reconfigure. It is important to determine the best time

o reconfigure a system as well as the reconfiguration frequency. This
s a critical problem that can affect a system’s performance and its
vailability. A higher reconfiguration frequency increases a system’s
esilience but it may also decrease its performance and availability. A
ower reconfiguration frequency increases the probability of failures.
The literature has commonly referred to three types of reconfigu-

ation: proactive, reactive, and hybrid [6]. Proactive reconfiguration
egularly changes configurations through adaptations executed at an
stablished or random interval. Proactive adaptations help mitigate
ailure occurrence. Reactive adaptation takes place when a failure-
elated event generates the need to reconfigure. Reactive and proactive
121

daptation may be combined in a hybrid reconfiguration scheme [5].
Fig. 1. A reconfiguration taxonomy as in [11] with the difference that the focus of
this paper (see red boxes) is different from that of [11].

What to reconfigure refers to which part of a system should be
ltered, tuned, and reshaped to suit its purposes. It is possible to
econfigure various layers of a system: hardware and software which
ncludes operating system, middleware, application, and task. For ex-
mple, reconfigurations could be applied at the hardware layer to
olerate faults such as machine crashes and network connectivity errors.
At the software layer, as indicated in [12], 84% of all causes of soft-

are failures are related to memory addressing, lack of responsiveness,
nd exception handling, which also correlate to the duration of time a
lawed piece of code runs.
How to reconfigure refers to determining the best way for chang-

ng a system’s configuration. This change can happen at run time, in
hich case it is called dynamic reconfiguration, or can be static, in
hich case reconfiguration takes place before the execution of a sys-
em [13]. Static reconfiguration requires the knowledge of reconfigured
esource characteristics beforehand. On the contrary, dynamic recon-
iguration requires fewer assumptions about resource characteristics
efore execution starts.
Related approaches. Table 1 considers approaches that tackle a

problem similar to the one dealt with in this paper. The columns of
the table include the domain addressed by each approach, the strategy
(proactive or reactive) used for reconfiguration, the type of model used
for the analysis, the metrics involved in the analysis, whether and how
QoS tradeoffs are analyzed, and finally, which validation method is
used.

We refer the reader to Table 1 of [14] for a list of related work for
2011 and earlier. That reference does a very good job in terms of cate-
gorizing QoS management and optimization of dynamic service-based
systems. The study in [15] uses models to distinguish tradeoffs between
resilience and different system designs (e.g., default design, design with
a GPU removed, design with a camera added, design with a new node)
to determine the most resilient version of the system . Differently, from
our work, these tradeoffs are not computed through closed-form expres-
sions. As Table 1 demonstrates, the work described in our paper differs
from other work in the area of dynamic reconfigurable systems mainly
in the sense that (a) it can be applied to any generic architecture; and
(b) it provides theorems and closed-form expressions to compute the
tradeoff between resilience to failures, defined as the probability of
failures, and execution time and availability.

Multiple dynamic reconfiguration techniques have been proposed in
the literature to mitigate failures. One of the earliest such techniques
is proactive software rejuvenation that counteracts software aging by
stopping the execution of a software system, clearing its internal state,
and restarting it [2,3].

The work in [21] presents a comparative experimental study of the
main software rejuvenation techniques developed to mitigate software

aging effects, where the overhead of rejuvenation techniques is related

Future Generation Computer Systems 160 (2024) 120–130S. Alhozaimy et al.
Table 1
Overview of related approaches.
Ref.
No.

Problem domain Architecture Reconfiguration
strategy

Model Metrics QoS tradeoffs Validation

[16] Resilience quantification
method for large scale systems

Generic Proactive Stochastic analytic
state space models
(monolithic
models or
interacting
sub-models)

Performance (i.e.,
job rejection rate)
and Resilience (i.e.,
settling time and
peak time)

– Case study for a
IaaS cloud

[17] Prediction of the QoS of
dynamic reconfiguration of a
single-core CPU and multi-core
CPU model with stable and
varying workload

Components Proactive Analytical model Throughput and
elapsed real time

– Simulations

[18] Architecture-level self-adaptive
framework that can activate
alternative patterns at runtime
to cope with increasing
demands or recover from
failures

Client/server-
concurrency
architecture patterns
(dynamic-thread-
creation,
half-sync/half-async,
and leader/followers)

Reactive Queuing network Arrival rate,
response time,
request drop ratio,
system throughput,
thread pool
utilization and CPU
utilization

– Experiments

[14] Adaptive service-based systems
that integrate several tools into
a complete tool suite to model
QoS requirements through
dynamic adaptation to changes
in system state, environment,
and workload

Service-based Proactive Markov models Performance and
reliability

– Simulation and
experiments
based on an
adaptive
service-based
system

[15] Runtime self-reconfiguration
infrastructure mainly focused
on failure mitigation in mobile
platforms of Cyber–Physical
Systems

Layered architecture Reactive Colored Petri
Net-based (CPN)

Computation time
for different
variations of system
model and
reliability

Tradeoff
between system
resilience and
system designs

Case study
deployed on a
cluster of
fractionated
satellite

[19] Coordination support for
distributed adaptations in
aspect-oriented middleware
that support reconfiguration of
multiple aspects; and
coordination of changes
between different nodes

Layered architecture Proactive – Service disruption,
total reconfiguration
time, and overhead
during normal
operation

– Experiment
based general
example

[20] Self-architecting software
system framework that adjusts
an architecture automatically in
response to changes in the QoS
characteristics of the
underlying environment

Layered architecture Reactive Analytical model Availability,
execution time, and
throughput

– Experiments

This
work

Analysis of the tradeoffs
between resilience to failures
and the performance of systems
that use dynamic
reconfiguration

Generic Proactive Closed-form
analytical models

Execution time,
availability, and
reliability (i.e.,
probability of
failure)

Tradeoff
between
execution time
and probability
of failure

Theorems and
experimental
proof of concept
to their granularity. The work in [22] analyzes the optimal rejuvena-
tion scheduling to maximize a system’s availability and minimize its
loss probability. The work in [23] derives analytically the software
rejuvenation timing that maximizes the limiting interval reliability or
the interval reliability with exponentially distributed operation time.
However, the model presented in our work is not limited to software re-
juvenation techniques; other dynamic reconfiguration techniques could
be used to improve system resilience to failures such as diversification
and randomization using MTDs.

The reader is also referred to a survey [9] on dynamically recon-
figurable systems that classified 77 papers based on different factors
including the hardware and software platforms, methodologies and
techniques involved, the domains of application and the result achieved
by the studies. The work in [24] proposes Flex-MPI that enables MPI
applications to dynamically reconfigure the number of processes to
allow the application to complete within a specified time interval under
a performance constraint. A computational prediction model also takes
into account an efficiency constraint by minimizing the number of
dynamically reconfigured processes and a cost constraint by minimizing
122
the operational cost. The work in [25] proposes a taxonomy that
clarifies existing concepts for modeling a change and quantifying the
change impact on QoS of reconfigurable systems. Most of the papers
cited by [25] consider metrics such as performance and cost while our
work considers a quantitative analytical approach to model the impact
of dynamic reconfiguration and performance predictions to analyze the
tradeoff between performance and resilience to failures. Our approach
can be applied to any generic system architecture.

3. Refined problem statement

This section refines the problem statement through the use of an
experiment to motivate the need for the work. We then provide the
notation and assumptions of our proposed analytical model. Finally, we
give an overview of the basic reconfiguration system model considered
in this paper.

Future Generation Computer Systems 160 (2024) 120–130S. Alhozaimy et al.

i

Fig. 2. Flowchart of the motivation experiment.

Fig. 3. Client server experiment results. 𝑋-axis in sec. 𝐸 = 1050 s; MTBF = 4000 s;
𝐹 (𝑡) = 1 − 𝑒−𝑡∕MTBF; reconfiguration time 𝜌 = 2 s; reboot time = 4 s.

3.1. Experimental motivation

To motivate this study, we designed an experiment including a
client and a server running on two separate machines communicating
over TCP as illustrated in Fig. 2. The client goes through several
iterations of sending requests to the server, which can be in one of two
possible states, On or Failed, according to some probability distribution.
If the server is determined to be in a Failed state, a recovery process
(a reboot in our case) is started. At the end of the recovery process,
the server status is checked again. If the server is On, the server
accumulates the number of responses and sends a response to the client.
The client then generates another request to the server and a new
client–server iteration is started. The time during which the client is
in the On state is called 𝜏

Fig. 3 shows the results of these experiments. The top (green) curve
shows that the number of failures increases with the duration of the ex-
ecution segment (𝜏). The bottom (red) curve shows that the number of
reconfigurations decreases with the duration of the execution segment.
So, a higher reconfiguration rate (i.e., a lower value of 𝜏) leads to less
failures.

3.2. Notation
123

We use the following notation throughout the paper.
• 𝑛: number of execution segments between two consecutive re-
newal events.

• 𝜏𝑗 : duration of the 𝑗th execution segment.
• 𝜌𝑗 : duration of the reconfiguration interval that follows the 𝑗th
execution segment.

• 𝐹 (𝑡): failure function defined as the probability that a system fails
at time 𝑡𝑓 ≤ 𝑡.

• 𝑃 𝑟
𝑛𝑓 : probability that a failure does not occur while executing a
system when reconfiguration is used.

• 𝑃 𝑛𝑟
𝑛𝑓 probability that a failure does not occur while executing a
system when reconfiguration is not used.

• 𝐸: system execution time without reconfiguration.
• 𝐸𝑟: system execution time under reconfiguration.
• 𝐴: system availability, i.e., percentage of time the system is
executing, which does not include the time it is reconfiguring.
Formally, 𝐴 = 𝐸∕𝐸𝑟.

• 𝑋: expansion factor, i.e., the factor by which the system execution
time increases due to reconfiguration. Formally, 𝑋 = 𝐸𝑟∕𝐸 = 1∕𝐴.

• 𝐸𝑚𝑎𝑥
𝑟 : constraint on the maximum value of 𝐸𝑟.

3.3. Assumptions

We make the following assumptions:

• A1: A system saves its state, before a reconfiguration starts, so that
it does not need to restart after the reconfiguration is complete.

• A2: Failures only occur during execution segments and not during
reconfigurations, which can be hardened using mechanisms such
as the one presented in [4].

• A3: Failures during execution segment 𝑗 are assumed to be in-
dependent from failures during execution segment 𝑖 for 𝑖 ≠ 𝑗.
The rationale for this assumption stems from the fact that, when
a system is reconfigured, the reconfigured system has different
properties (e.g., different software modules, resulting in different
potential opportunities for failures).

• A4: The value of the failure function does not change after the
system has completed execution. This assumption follows from
the fact that failures can only take place while the system is in
execution.

• A5: When a system reconfigures, the value of its failure function
resets to zero after the reconfiguration is complete.

3.4. Basic reconfiguration system model

The basics of the reconfiguration model considered here are illus-
trated in Fig. 4. We consider a 24/7 system subject to renewal events
that typically last for a few hours (e.g., to install security patches and/or
new versions of a system for maintenance).

Fig. 4 shows that the time between two consecutive renewal events
s when the system execution takes place. This time is called system exe-
cution time. In Fig. 4(a), the system execution time, 𝐸, is not interrupted
by reconfigurations. However, in Fig. 4(b), the system execution time is
broken into a sequence of execution segments of duration 𝜏𝑗 (𝑗 = 1,… , 𝑛)
interleaved with reconfiguration intervals of duration 𝜌𝑗 (𝑗 = 1,… , 𝑛 −
1). Examples of reconfiguration include reboots or any moving target
defense [5–7] technique. As discussed before, the purpose of these
reconfigurations is to improve fault tolerance. After a reconfiguration
is complete, the system’s execution resumes from where it was paused.
(see Assumption 1 in Section 3.3).

4. Resilience and performance quantification

In this section, we provide our definition of failure function that
we use to measure system resilience through dynamic reconfigurations.
We then derive closed-form expressions for the metrics defined in Sec-
tion 3.2. The approach proposed in this paper uses analytic models that

Future Generation Computer Systems 160 (2024) 120–130S. Alhozaimy et al.

e

w

o
r
w
s

f
S

Fig. 4. (a) System execution time 𝐸 when no reconfiguration is used, and (b) System
xecution time 𝐸𝑟 with 𝑛 − 1 reconfigurations and 𝑛 execution segments. The 𝑗th
execution segment lasts for 𝜏𝑗 time units and the 𝑗th reconfiguration interval lasts
for 𝜌𝑗 time units.

Fig. 5. Blue line: a linear example of the 𝐹 (𝑡) function without reconfiguration:
𝐹 (𝑡) = 𝑡∕5 for 𝑡 ≤ 5 and 𝐹 (𝑡) = 1 for 𝑡 > 5. Gray line: a modified linear failure function
ith reconfiguration for 𝜏𝑗 time units and reconfiguration duration 𝜌 = 0.5.

quantify the effectiveness of dynamic reconfigurations on execution
time and system resilience to failures.

Let 𝐹 (𝑡) ↦ [0, 1], called the failure function, be the probability that a
system fails at time 𝑡𝑓 ≤ 𝑡.

This function is similar to a cumulative distribution function and by
definition is monotonically increasing.

That means that as a system ages, its reliability decreases or stays
constant (see e.g., software aging). This is reasonable because failures
tend to be cumulative over time.

Let 𝑡∗ denote the system maximum lifetime, i.e., the smallest value
of 𝑡 such that 𝐹 (𝑡) = 1. In other words, 𝑡∗ is the time elapsed between
the completion of a reconfiguration and the next system failure. Note
that when a system starts to be reconfigured, the failure function 𝐹 (𝑡)
is reset to zero. We will come back to this at the end of Section 8.

Figs. 5 and 6 show examples of two failure functions: a linear
ne (in blue) and an exponential one (in red). The linear function
epresents the case in which the system resilience decreases linearly
ith time. The exponential function represents a case in which the
ystem resilience decreases exponentially with time.
In both cases, the system fails at time equal to 5 units (i.e., 𝑡∗ = 5).
A larger value of 𝑡∗ translates into a more resilient system.
According to assumption A4 in Section 3.3, the value of the failure

unction does not change after the system has completed execution.
o, assume that the failure functions shown in Figs. 5 and 6 are for
systems that complete execution at time 𝑡 = 2. The maximum value of
the probability that the system fails while executing is 0.4 for the linear
function and 0.865 for the exponential function. Thus, 𝐹 (𝑡) ≤ 𝐹 (𝐸) for
𝑡 ≤ 𝐸.

Consider now the effect of dynamic reconfiguration on the failure
function for different values of 𝜏 as shown in Figs. 5 and 6 in gray for
124

𝑗

Fig. 6. Exponential examples of the 𝐹 (𝑡) function: Red line: an exponential function
without reconfiguration: 𝐹 (𝑡) = 1 − 𝑒−𝑡 for 𝑡 ≤ 5 and 𝐹 (𝑡) = 1 for 𝑡 > 5. Green
line: modified exponential failure functions with reconfiguration for 𝜏𝑗 time units and
reconfiguration duration 𝜌 = 0.5.

Table 2
Failure probability 𝑝fail without reconfiguration.
Case No. Condition 𝑝fail
I 𝐸 ≤ 𝑡∗ 𝐹 (𝐸)
II 𝐸 > 𝑡∗ 1

Table 3
Failure probability 𝑝fail under reconfiguration.
Case No. Condition 𝑝fail
I 𝐸 ≤ min (𝑡∗ , 𝜏𝑗) 𝐹 (𝐸)
II 𝜏𝑗 ≤ min (𝑡∗ , 𝐸) 𝐹 (𝜏𝑗)
III 𝑡∗ ≤ min (𝐸, 𝜏𝑗) 1

the linear one and in green for the exponential one. If the reconfigu-
ration period 𝜏𝑗 is less than the execution time 𝐸 of the system, then
the maximum value of the failure function is 𝐹 (𝜏𝑗). Thus, 𝐹 (𝑡) ≤ 𝐹 (𝜏𝑗)
for 𝑡 ≤ 𝜏𝑗 . For example, if 𝜏1 = 1 for the exponential failure function of
Fig. 6 and if the reconfiguration time is 𝜌1 = 0.5, then the maximum
value of the failure function at 𝑡 = 1, is 𝐹 (1) = 0.63.

We can then compute the probability 𝑝fail that the system fails when
there are no reconfigurations as summarized in Table 2. In case I, the
system completes execution before a failure occurs. So, 𝑝fail is the value
of the failure function when the system completes execution. If the
system completes execution after the failure threshold 𝑡∗ (case II in
Table 2), the system would have failed before the system completes
and 𝑝fail = 1.

As summarized in Table 3, there are other cases to address under
reconfiguration. In case I, the system completes execution before the
first reconfiguration and before the system fails. So, 𝑝fail is the value
of the failure function when the system completes. In case II, the
reconfiguration occurs before the system ends (𝜏𝑗 ≤ 𝐸) and before the
failure function reaches its threshold (𝜏𝑗 ≤ 𝑡∗). So, 𝑝fail is the value
of the failure function at time 𝜏𝑗 , because due to assumption A5; the
value of failure function associated with the component restarts after
the reconfiguration is complete. In case III, the failure function reaches
the value 1 before the system completes and before reconfiguration
occurs. So, 𝑝fail = 1.

4.1. Dynamic reconfiguration analytic model

The analytic model presented in this paper is captured in three
theorems, whose proofs are presented in the Appendix. Note that the
model presented in Fig. 4 allows the duration of each reconfiguration
to be different. This is useful when one needs to model situations in
which the reconfiguration process is not deterministic and it cannot

Future Generation Computer Systems 160 (2024) 120–130S. Alhozaimy et al.

m
f

I
i
i
d
w

c
e
t
p
u
p

c
a
m

i
𝐴
𝜌

start at fixed points in time due to dependencies with other processes.
Additionally, the model allows the duration of each execution segment
to be different. This is useful when one needs to model situations
in which it is necessary to consider additional uncertainty into the
reconfiguration process to avoid failures.

We now derive closed-form expressions for the metrics defined in
Section 3.2. The execution time without reconfiguration is given by

𝐸 =
𝑛
∑

𝑗=1
𝜏𝑗 . (1)

The expression for the execution time with reconfiguration, 𝐸𝑟, can
be easily computed by adding the summation of the reconfiguration
times 𝜌𝑗 to the execution time 𝐸.

𝐸𝑟 = 𝐸 +
𝑛−1
∑

𝑗=1
𝜌𝑗 . (2)

We now compute the probability, 𝑃 𝑟
𝑛𝑓 , that a system does not fail

under reconfiguration. In order for a failure not to occur under the
system reconfiguration scenario, failures cannot occur in any of the
execution segments.

The probability that the system does not fail during an execution
segment of duration 𝜏𝑗 is equal to one minus the probability that the
system fails during that interval, i.e., 1 −𝐹 (𝜏𝑗). So, the probability that
the system does not fail during system execution is the probability
that it does not fail during any execution segment. This probability
can be computed as the product of the non-failure probabilities for
all execution segments assuming independence across all execution
segments.

𝑃 𝑟
𝑛𝑓 =

𝑛
∏

𝑗=1
[1 − 𝐹 (𝜏𝑗)]. (3)

The independence assumption is reasonable because the system is
assumed to reconfigure after each execution segment.

When the system does not reconfigure, the probability 𝑃 𝑛𝑟
𝑛𝑓 that the

system does not fail is

𝑃 𝑛𝑟
𝑛𝑓 = 1 − 𝐹 (𝐸). (4)

Theorem 1, stated below and proved in the Appendix, shows that
the probability that a system does not fail when reconfiguration is used
is higher than that probability when reconfiguration is not used.

Theorem 1. Let 𝑃 𝑟
𝑛𝑓 be given by Eq. (3), 𝑃

𝑛𝑟
𝑛𝑓 be given by Eq. (4), and the

failure function 𝐹 (.) ↦ [0, 1] be a monotonically increasing function. Then,
𝑃 𝑟
𝑛𝑓 ≥ 𝑃 𝑛𝑟

𝑛𝑓 for 𝑗 = 1,… , 𝑛.

It is worth noting that Theorem 1 does not depend on the ex-
act shape of the failure function 𝐹 (.), but only on its monotonically
increasing nature.

5. Numerical results

Tables 4–6 provide several numerical results obtained using our
odel with eight different sets of model parameters and two types of
ailure functions (linear and quadratic).
Tables 4 and 5 present the input parameters for the experiments

and Table 6 shows the corresponding results. For convenience, row
numbers in column 1 of each table indicate how rows from Tables 4 and
5 correspond to a row in Table 6. Table 4 contains the values of input
parameters 𝜏1∕𝐸 to 𝜏7∕𝐸, 𝑡∗, and the computed value of 𝐸. Table 5
shows the values of (𝜌1∕𝐸) × 100 through (𝜌6∕𝐸) × 100. We divide the
values of 𝜌’s by 𝐸 to normalize the units and multiply by 100 in order
to obtain a number with a larger absolute value. Note that this is done
for display purposes only. The model computations are done with the
values of 𝜌 without any normalization.

Consider for example row 3 that indicates that 𝐸 = 840. According
125

to Eq. (2), the execution time of the system under reconfiguration is
Table 4
Input parameters for several numerical examples for non-uniform intervals.
𝜏1∕𝐸 𝜏2∕𝐸 𝜏3∕𝐸 𝜏4∕𝐸 𝜏5∕𝐸 𝜏6∕𝐸 𝜏7∕𝐸 𝑡∗ 𝐸

1 0.0168 0.0588 0.1008 0.1429 0.1849 0.2269 0.2689 600 595
2 0.0357 0.0714 0.1071 0.1429 0.1786 0.2143 0.25 800 700
3 0.0357 0.0714 0.1071 0.1429 0.1786 0.2143 0.25 900 840
4 0.0241 0.0723 0.1205 0.1506 0.1807 0.2108 0.241 910 830
5 0.0497 0.0807 0.1118 0.1429 0.1739 0.205 0.236 1000 805
6 0.0681 0.1021 0.1234 0.1447 0.166 0.1872 0.2085 1200 1175
7 0.051 0.1156 0.1327 0.1497 0.1667 0.1837 0.2007 1500 1470
8 0.0408 0.0748 0.1088 0.1429 0.1769 0.2109 0.2449 2300 2205

Table 5
Continuation of input parameters for several numerical examples for non-uniform
intervals.
(𝜌1∕𝐸)

× 100
(𝜌2∕𝐸)
× 100

(𝜌3∕𝐸)
× 100

(𝜌4∕𝐸)
× 100

(𝜌5∕𝐸)
× 100

(𝜌6∕𝐸)
× 100

1 0.3361 0.3361 0.3361 0.3361 0.3361 0.3361
2 0.5714 0.5714 0.5714 0.5714 0.5714 0.5714
3 0.3571 0.4762 0.5952 0.5952 0.7143 0.7143
4 0.3614 0.7229 1.0843 1.2048 1.2048 1.3253
5 1.8634 1.8634 1.8634 1.8634 1.8634 1.8634
6 0.8511 1.1064 1.5319 1.8723 2.1277 2.5532
7 1.3605 1.6327 1.7687 1.9048 2.0408 2.1769
8 1.3605 1.4059 1.4512 1.5873 1.5873 1.6327

𝐸𝑟 = 869, i.e., a 3.5% overhead compared with the no-reconfiguration
scenario.

Table 6 shows that the probability that a system does not fail when
reconfiguration is used is greater than or equal to the probability that
a system does not fail when reconfiguration is not used as indicated by
Theorem 1 (𝑃 𝑟

𝑛𝑓 ≥ 𝑃 𝑛𝑟
𝑛𝑓) for both linear and quadratic failure functions.

n fact, the non-failure probability is much larger when reconfiguration
s used than when reconfiguration is not used. For example, for the case
n row 3 and a linear failure function, the probability that the system
oes not fail in any of the 7 execution segments is 𝑃 𝑟

𝑛𝑓 = 0.3597, while
ithout reconfiguration that probability is 𝑃 𝑛𝑟

𝑛𝑓 = 0.0667.
Table 6 also reports the availability and the expansion factor. One

an see that the availability ranges from 89.94% to 98.02% as the
xpansion factor 𝑋 decreases from 1.1118 to 1.0202. So, it is important
o determine an optimal value of 𝜏𝑗 that maximizes the non-failure
robability while keeping the execution time penalty due to reconfig-
rations below a certain limit (see Section 6 for a discussion of this
roblem).
It is important to note that our model presents closed-form analyti-

al expressions to calculate the non-failure probability, the availability,
nd the expansion factor for any values of the parameters and for any
onotonically increasing failure function.
This section presents several charts to illustrate the metrics derived

n the previous section. Fig. 7 shows the variation of the availability
(= 𝐸∕𝐸𝑟) vs. the ratio 𝜏∕𝐸 for 𝐸 = 100, 𝑡∗ = 120, and 𝜌 = 2 (top),
= 6 (middle), and 𝜌 = 15 (bottom). As 𝜏∕𝐸 approaches 1, meaning

no reconfiguration, 𝐸𝑟 tends to 𝐸 and therefore the availability 𝐴 tends
to 1. The figure also illustrates that the availability 𝐴 decreases as the
reconfiguration time 𝜌 increases because 𝐸𝑟 grows with 𝜌.

Fig. 8 is another view of Fig. 7 in which the 𝑦-axis is the expansion
factor 𝑋 = 𝐸𝑟∕𝐸 instead of 𝐴 = 𝐸∕𝐸𝑟. The figure shows that as 𝜏 tends
to 𝐸, 𝐸𝑟 tends to 𝐸. Both figures illustrate a fast variation in 𝐸𝑟 when
𝜏 is less than 20% of 𝐸.

We now show in Fig. 9 how the non-failure probabilities 𝑃 𝑟
𝑛𝑓 and

𝑃 𝑛𝑟
𝑛𝑓 , with and without reconfiguration, respectively, vary as a function
of 𝜏∕𝐸. The figure depicts two pairs of lines: one for a linear failure
function 𝐹 (𝑡) function and another for a quadratic failure function 𝐹 (𝑡).
The linear 𝐹 (𝑡) function is

𝐹 (𝑡) =

{

𝑡∕𝑡∗ 𝑡 ≤ 𝑡∗
∗

(5)

1 𝑡 > 𝑡

Future Generation Computer Systems 160 (2024) 120–130S. Alhozaimy et al.

a

𝐹

Table 6
Results for the numerical examples of Tables 4 and 5.
𝑃 𝑛𝑟

𝑛𝑓 𝑃 𝑟
𝑛𝑓 𝑃 𝑛𝑟

𝑛𝑓 𝑃 𝑟
𝑛𝑓 Availability ×100 Expansion factor

linear 𝐹 (.) linear 𝐹 (.) quadratic 𝐹 (.) quadratic 𝐹 (.) 𝐴 = 𝐸∕𝐸𝑟 × 100 (𝑋 = 𝐸𝑟∕𝐸)

1 0.0083 0.3320 0.0166 0.8237 98.02 1.0202
2 0.1250 0.3857 0.2344 0.8702 96.69 1.0343
3 0.0667 0.3597 0.1289 0.8534 96.66 1.0345
4 0.0879 0.3692 0.1681 0.8600 94.43 1.0590
5 0.195 0.4205 0.3520 0.8945 89.94 1.1118
6 0.0208 0.3450 0.0412 0.8581 90.87 1.1004
7 0.020 0.3447 0.0396 0.8576 90.18 1.1088
8 0.0413 0.3495 0.0809 0.8486 91.76 1.0898
𝐹

f
t

Fig. 7. Availability (𝐴 = 𝐸∕𝐸𝑟) vs. 𝜏∕𝐸 for 𝐸 = 100, 𝑡∗ = 120, and (𝜌 = 2∕𝐸) ∗ 100
(top), (𝜌 = 6∕𝐸) ∗ 100 (middle), and (𝜌 = 15∕𝐸) ∗ 100 (bottom).

Fig. 8. Expansion factor (𝑋 = 𝐸𝑟∕𝐸) vs. 𝜏∕𝐸 for 𝐸 = 100, 𝑡∗ = 120, and 𝜌 = (2∕𝐸) × 100
(top), 𝜌 = (6∕𝐸) × 100 (middle), and 𝜌 = (15∕𝐸) × 100 (bottom).

nd the quadratic 𝐹 (𝑡) function is

(𝑡) =

{

(𝑡∕𝑡∗)2 𝑡 ≤ 𝑡∗

1 𝑡 > 𝑡∗.
(6)

Fig. 9 shows the following:

• 𝑃 𝑟
𝑛𝑓 ≥ 𝑃 𝑛𝑟

𝑛𝑓
for both linear and quadratic failure functions. These results are
consistent with Theorem 1. This can be seen by (i) comparing the
top decreasing curve (𝑃 𝑟

𝑛𝑓 for the quadratic 𝐹 (𝑡) function) with
the top horizontal line (𝑃 𝑛𝑟

𝑛𝑓 for the quadratic 𝐹 (𝑡)) and by (ii)
comparing the other decreasing curve (𝑃 𝑟

𝑛𝑓 for the linear 𝐹 (𝑡))
with the bottom horizontal line (𝑃 𝑟

𝑛𝑓 for the linear 𝐹 (𝑡)).
• The probability that the system does not fail while executing is
higher for the quadratic failure function 𝐹 (𝑡).

• 𝑃 𝑟
𝑛𝑓 is a monotonically decreasing function of 𝜏. This is in fact
demonstrated in Theorem 2 in Section 6 for any monotonically
increasing 𝐹 (𝑡) function.
126
Fig. 9. 𝑃 𝑟
𝑛𝑓 and 𝑃 𝑛𝑟

𝑛𝑓 vs. 𝜏∕𝐸 for 𝐸 = 100, 𝑡∗ = 120, 𝜌 = 2 for 𝐹 (𝑡) = 𝑡∕𝑡∗ (linear) and
(𝑡) = (𝑡∕𝑡∗)2 (quadratic) for 𝑡 ≤ 𝑡∗ and 𝐹 (𝑡) = 1 for 𝑡 > 𝑡∗.

While reconfigurations increase the resilience of a system against
ailures, these reconfigurations increase a system’s execution time due
o the overhead of reconfigurations. Fig. 10 illustrates the tradeoff
between resilience to failures (indicated by a higher probability 𝑃 𝑟

𝑛𝑓
that the system does not fail while executing) and a maximum accept-
able performance degradation. As the figure illustrates, as 𝑃 𝑟

𝑛𝑓 tends
to 1 (i.e., the system does not fail while executing) the performance
degradation, given by 𝐸𝑟∕𝜏, grows very fast because reconfigurations
need to occur at a high rate. For example, 𝐸𝑟∕𝜏 goes from 1 to 2.8 to
22 to 298 as 𝑃 𝑟

𝑛𝑓 goes from 0.3 to 0.9 to 0.9975 to 0.9999 (see Fig. 10).
That means that the 𝑦-axis indicates the overhead measured in

number of execution segments. The next section formally describes the
solution of the optimization problem that handles this tradeoff.

6. Optimal reconfiguration frequency

We study in this section the optimal reconfiguration frequency
and start with the uniform case, i.e., the case in which all execution
segments have the same duration (i.e., 𝜏𝑗 = 𝜏, 𝑗 = 1,… , 𝑛) and all
reconfiguration intervals have the same duration (i.e., 𝜌𝑗 = 𝜌, 𝑗 =
1,… , 𝑛 − 1) and the system execution time 𝐸 is fixed.

As we observed in previous sections, as 𝜏 increases, there are
fewer reconfigurations, which in turn decreases the probability 𝑃 𝑟

𝑛𝑓
that the system does not fail while executing. Thus, a decrease in 𝜏
is detrimental to users of the system in terms of performance but is
beneficial in terms of reliability. On the other hand, as 𝜏 decreases,
the system’s execution time of a system increases due to additional

reconfigurations.

Future Generation Computer Systems 160 (2024) 120–130S. Alhozaimy et al.

M

𝑠

m
i
w

T

𝑃

𝜏
𝑃

o
n
o
v
t
v

T
b
[

o
a
w

T
n
s
i

Fig. 10. 𝐸𝑟∕𝜏 vs. 𝑃 𝑟
𝑛𝑓 for 𝐸 = 100, 𝑡∗ = 120, 𝜌 = 2 and 𝐹 (𝑡) = (𝑡∕𝑡∗)2 for 𝑡 ≤ 1 and

𝐹 (𝑡) = 1 for 𝑡 > 1.

Therefore, one can determine an optimal value of 𝜏 that maximizes
the probability 𝑃 𝑟

𝑛𝑓 that the system does not fail during the execu-
tion of the system while keeping the execution time penalty due to
reconfigurations below a limit provided by the system’s stakeholders.

The expression for 𝑃 𝑟
𝑛𝑓 was given in Eq. (3) and is repeated below

for convenience.

𝑃 𝑟
𝑛𝑓 =

𝑛
∏

𝑗=1
[1 − 𝐹 (𝜏𝑗)]. (7)

For the uniform case, Eq. (7) becomes

𝑃 𝑟
𝑛𝑓 = [1 − 𝐹 (𝜏)]𝑛. (8)

The number of execution segments 𝑛 is given as

𝑛 = ⌈𝐸∕𝜏⌉. (9)

The total execution time 𝐸𝑟 is equal to the execution time 𝐸 plus the
number of reconfiguration intervals, 𝑛 − 1, multiplied by the duration
of a reconfiguration interval (𝜌). Thus,

𝐸𝑟 = 𝐸 +
(⌈𝐸

𝜏

⌉

− 1
)

× 𝜌. (10)

We can then rewrite the optimization problem as follows:
aximize 𝑃 𝑟

𝑛𝑓 = [1 − 𝐹 (𝜏)]⌈𝐸∕𝜏⌉ 𝜏 ∈ [𝜌, 𝐸]

.𝑡. 𝐸𝑟 = 𝐸 +
(⌈𝐸

𝜏

⌉

− 1
)

× 𝜌 ≤ 𝐸max
𝑟 (11)

It is worth observing that this optimization problem is non-linear
and that the function 𝐹 (.) has to be known in order to be able to solve
the problem. The solution can be simplified by observing that (i) 𝑃 𝑟

𝑛𝑓 is
onotonically decreasing with 𝜏 as demonstrated by Theorem 2, which
s proved in the Appendix; and that (ii) 𝐸𝑟 is monotonically decreasing
ith 𝜏 as can be readily inferred from Eq. (10).

heorem 2. Let 𝑃 𝑟
𝑛𝑓 be given by

𝑟
𝑛𝑓 = [1 − 𝐹 (𝜏)]⌈𝐸∕𝜏⌉, (12)

∈ [𝜌, 𝐸] and 𝐹 (.) ↦ [0, 1] be a monotonically increasing function. Then,
𝑟
𝑛𝑓 is a monotonically decreasing function of 𝜏 ∈ [𝜌, 𝐸].

Similar to Theorems 1, 2 does not depend on the exact shape
f the failure function 𝐹 (.), but only on its monotonically increasing
ature. Thus, in order to maximize 𝑃 𝑟

𝑛𝑓 , which is the objective of the
ptimization problem above, one should select the smallest possible
alue of 𝜏 according to Theorem 2. But as 𝜏 decreases, the execution
ime 𝐸𝑟 under reconfiguration, given by Eq. (10), increases and may
iolate the constraint that 𝐸𝑟 ≤ 𝐸𝑚𝑎𝑥

𝑟 . Thus, in order to solve the
optimization problem we should select the smallest possible value of
127

s

Fig. 11. 𝜏𝑜𝑝𝑡∕𝐸 vs. 𝐸max
𝑟 ∕𝐸 for 𝐸 = 500 and 𝜌 = 10.

𝜏 such that 𝐸𝑟 = 𝐸𝑚𝑎𝑥
𝑟 . Using Eq. (10), we have to find the value 𝜏 that

satisfies the equation

⌈𝐸∕𝜏⌉ = 1 +
𝐸𝑚𝑎𝑥
𝑟 − 𝐸

𝜌
. (13)

Let

𝜅 = 1 +
𝐸𝑚𝑎𝑥
𝑟 − 𝐸

𝜌
. (14)

Thus,

⌈𝐸∕𝜏⌉ = 𝜅 (15)

and it follows that

𝜅 − 1 < 𝐸∕𝜏 ≤ 𝜅. (16)

So, any value of 𝜏 such that 𝐸∕𝜏 ∈ (𝜅 − 1, 𝜅] satisfies the 𝐸𝑟 ≤ 𝐸𝑚𝑎𝑥
𝑟

constraint. However, we need to use the smallest possible value 𝜏 to
maximize the probability of no failure 𝑃 𝑟

𝑛𝑓 . Thus, according to Eq. (16)
we need to use 𝐸∕𝜏 = 𝜅. Then, it follows that the optimal value of 𝜏 is

𝜏𝑜𝑝𝑡 = 𝐸∕𝜅 = 𝐸

1 + 𝐸𝑚𝑎𝑥
𝑟 −𝐸
𝜌

. (17)

Eq. (17) shows that 𝜏𝑜𝑝𝑡 decreases in an inversely proportional way
to the slack 𝐸𝑚𝑎𝑥

𝑟 − 𝐸. That means that reconfigurations can become
more frequent as the maximum value of 𝐸𝑟 increases. Eq. (17) also
indicates that 𝜏𝑜𝑝𝑡 = 𝐸 when 𝐸𝑚𝑎𝑥

𝑟 = 𝐸, which means that no
reconfigurations should happen when the system execution time with
reconfigurations, 𝐸𝑟, should not exceed its original value 𝐸.

Fig. 11 shows the variation of 𝜏𝑜𝑝𝑡∕𝐸 as 𝐸max
𝑟 ∕𝐸 varies from 1.1

(i.e., 10% above 𝐸) to 1.6 (i.e., 60% above 𝐸) for 𝐸 = 500 and 𝜌 = 10.
The ratio 𝜏𝑜𝑝𝑡∕𝐸 decreases from a little above 0.16 to about 0.02.

An interesting problem is to identify the values of 𝜏𝑗 , 𝑗 = 1,… , 𝑛
that maximize 𝑃 𝑟

𝑛𝑓 . We address this problem in the following theorem,
which is proved in the Appendix.

heorem 3. Let 𝑃 𝑟
𝑛𝑓 be given by Eq. (3), 𝐸 =

∑𝑛
𝑗=1 𝜏𝑗 , and 𝐹 (.) ↦ [0, 1]

e a monotonically increasing function. Then the maximum value of 𝑃 𝑟
𝑛𝑓 is

1 − 𝐹 (𝐸∕𝑛)]𝑛 and 𝜏𝑗 = 𝜏 = 𝐸∕𝑛 for 𝑗 = 1,… , 𝑛.

Note that, as we will show below, the maximum value of 𝑃 𝑟
𝑛𝑓 can be

btained in some cases when the values of 𝜏𝑗 are not all equal to 𝐸∕𝑛
s long as their sum is equal to 𝐸. Consider the following examples in
hich 𝐸 = 50, 𝑡∗ = 120, and 𝑛 = 5.
Consider first the case of a linear 𝐹 (𝑡) = 𝑡∕𝑡∗ function. According to

heorem 3, the maximum value of the probability that the system does
ot fail is (1 − 10∕120)5 = 0.65. While this value can be obtained by
etting 𝜏𝑗 = 10 for all five execution segments, it can also be obtained
n the case of a linear failure function by setting the values of 𝜏𝑗 in
uch a way that their sum is equal to 𝐸. For example, the values

Future Generation Computer Systems 160 (2024) 120–130S. Alhozaimy et al.

W
f
i
f
𝑗

7

a
t
f
d
g
a
b

w
f
e
p
u
r
f
w
p
c
i
f
i
o
a

8

a
i
f
T
t
s
t
t
d
f
T
d
r
i
1

d
r

Table 7
Comparison between [11] and this model.
[11] This work

Aim Prevent cyberattacks Increase fault tolerance
Function Reconnaissance function Failure function
Metrics Execution time, availability, and probability of cyberattack Execution time, availability, and probability of failure
QoS tradeoffs Security and performance Reliability and performance
s
t
r

𝜏1 = 8, 𝜏2 = 10, 𝜏3 = 12, 𝜏4 = 13, 𝜏5 = 7 also provide a value of 𝑃 𝑟
𝑛𝑓

equal to 0.65.
Consider now the case of a quadratic failure function 𝐹 (𝑡) = (𝑡∕𝑡∗)2.
e can use a Generalized Reduced Gradient (GRG) nonlinear solver to
ind the values of 𝜏𝑗 that maximize 𝑃 𝑟

𝑛𝑓 . The maximum value of 𝑃 𝑟
𝑛𝑓

n this case is 0.97. However, contrary to the case of a linear failure
unction, the maximum value of 𝑃 𝑟

𝑛𝑓 only occurs when 𝜏𝑗 = 𝐸∕𝑛 for
= 1,… , 𝑛 and not when ∑𝑛

𝑗=1 𝜏𝑗 = 𝐸∕𝑛.

. Discussion

Modern computer systems have become more complex over time
nd traditional resilience mechanisms built around static configura-
ions may no longer adequately protect them against cyberattacks and
ailures. Failures and cyberattacks are very different events and are
isruptive to computer systems and their users. The former typically
enerate from inside the system and interrupt the operation of part or
n entire system while the latter are generated from outside the system
eing attacked.
Table 7 shows the differences between our previous work [11] –

hich used dynamic reconfiguration to proactively protect a system
rom cyberattacks aimed at disrupting an attacker’s reconnaissance
ffort – and the current work. In this paper, we are concerned with
roactively increasing the resilience of a system against failures by
sing dynamic reconfigurations. The analytical model presented in [11]
elies on the reconnaissance function and this work relies on a different
unction, the failure function. Each work could be extended in different
ays, investigating how reconnaissance functions can be learned in
ractice and failure functions from system execution logs. This model
ould be extended to analyze the tradeoff between the loss of availabil-
ty due to reconfigurations and the loss of availability due to system
ailures or re-configured services. The aim of this work and the work
n [11] is to provide comprehensive models that analyze the impact
f dynamic reconfiguration on system resilience to failures and cyber
ttacks.

. Conclusions and future work

We considered dynamic reconfiguration as a mechanism to improve
system’s resilience by proactively reconfiguring it so that the probabil-
ty that it fails is reduced. As an example, Fig. 12 depicts a framework
or self-reconfiguration based on the results of the previous sections.
he failure function 𝐹 (𝑡) could be learned from observations and moni-
oring of the computer system behavior or from the history of a similar
ystem. This function, along with the maximum execution time 𝐸max

𝑟 of
he system and its execution time 𝐸 without reconfiguration is used
o select a reconfiguration policy 𝛱 from a reconfiguration policy
atabase. A reconfiguration policy includes: (a) the reconfiguration
requency 1∕𝜏𝑜𝑝𝑡 and (b) the mechanism used to reconfigure a system.
here may be many different possible reconfiguration mechanisms as
escribed in Section 2. The selected policy 𝛱 is passed along to the
econfiguration engine that reconfigures the computer system accord-
ng to the reconfiguration mechanism and with the optimal frequency
∕𝜏𝑜𝑝𝑡 (see Eq. (17)).
This paper demonstrated several theorems regarding the use of

ynamic reconfiguration to reduce the incidence of failures. All the
esults presented rely on the fact that the failure function 𝐹 (.) ↦ [0, 1]
128
Fig. 12. Self-reconfiguration approach.

is monotonically increasing. The specific shape of 𝐹 (.) is not relevant
for the results we presented.

We derived closed form expressions for the probability 𝑃 𝑟
𝑛𝑓 that the

ystem does not fail while executing if reconfiguration is used and for
he probability 𝑃 𝑛𝑟

𝑛𝑓 that the system does not fail while executing if
econfiguration is not used. Theorem 1 proved that the probability 𝑃 𝑟

𝑛𝑓
that the system does not fail with reconfiguration is greater than or
equal to the probability when no reconfiguration is done.

According to Theorem 2, the probability 𝑃 𝑟
𝑛𝑓 that the system does

not fail when reconfiguration is used is a monotonically decreasing
function of the duration of the execution segment. Based on Theorems 1
and 2, we derived a model for optimizing the system reconfiguration
frequency that takes into account given resilience-performance trade-
offs. We also derived an expression to characterize the duration of an
execution segment that maximizes the probability that the system does
not fail when reconfiguration is used subject to a given execution time
constraint (Theorem 3).

As future work, one could consider that the failure function 𝐹 (𝑡)
is not reset to zero when a reconfiguration occurs. A partial recon-
figuration could be modeled by 𝐹 (𝑡) being reset to some value above
zero.

CRediT authorship contribution statement

Sarah Alhozaimy: Conceptualization, Formal analysis, Methodol-
ogy, Project administration, Software, Validation, Writing – original
draft. Daniel A. Menascé: Conceptualization, Formal analysis, Method-
ology, Supervision, Validation, Writing – original draft. Massimil-
iano Albanese: Conceptualization, Supervision, Visualization, Writing
– review & editing.

Future Generation Computer Systems 160 (2024) 120–130S. Alhozaimy et al.

a
f

𝑃

0
𝑃

𝐹

1

𝐸

H
𝐹

[

l

F

l

F
i
w

l

T

𝑃

𝜏
𝑃

P
𝛥

⌈

B

l

C

l

w

𝑃

I
d

T
[
o

P
i
i
f
c
a

R

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Appendix. Proof of Theorems

Theorem A.1. Let 𝑃 𝑟
𝑛𝑓 be given by Eq. (A.1), 𝑃

𝑛𝑟
𝑛𝑓 be given by Eq. (A.2),

nd the failure function 𝐹 (.) ↦ [0, 1] be a monotonically increasing
unction. Then, 𝑃 𝑟

𝑛𝑓 ≥ 𝑃 𝑛𝑟
𝑛𝑓 for 𝑗 = 1,… , 𝑛.

𝑟
𝑛𝑓 =

𝑛
∏

𝑗=1
[1 − 𝐹 (𝜏𝑗)]. (A.1)

𝑃 𝑛𝑟
𝑛𝑓 = 1 − 𝐹 (𝐸). (A.2)

Proof. Let us compare 𝑃 𝑟
𝑛𝑓 with 𝑃 𝑛𝑟

𝑛𝑓 , in order to establish the conditions
under which reconfiguration increases the probability that the system
does not fail while executing. Because both 𝑃 𝑟

𝑛𝑓 and 𝑃 𝑛𝑟
𝑛𝑓 ∈ [0.1], ln𝑃 𝑛𝑟

𝑛𝑓 ≤
and ln𝑃 𝑟

𝑛𝑓 ≤ 0. Since ln(.) is a monotonically increasing function,
𝑟
𝑛𝑓 ≥ 𝑃 𝑛𝑟

𝑛𝑓 ⟺ ln𝑃 𝑟
𝑛𝑓 ≥ ln𝑃 𝑛𝑟

𝑛𝑓 .
According to our previous discussion, we know that 𝜏𝑗 ≤ 𝐸 and

(𝜏𝑗) ≤ 𝐹 (𝐸). Thus,

− 𝐹 (𝜏𝑗) ≥ 1 − 𝐹 (𝐸). (A.3)

From Eq. (1) in Section 4.1, we know that

=
𝑛
∑

𝑗=1
𝜏𝑗 . (A.4)

ence, 𝜏𝑗 ≤ 𝐸. Because 𝐹 (.) is a monotonically increasing function,
(𝜏𝑗) ≤ 𝐹 (𝐸) for 𝑗 = 1,… , 𝑛. Therefore,

1 − 𝐹 (𝜏𝑗)] ≥ [1 − 𝐹 (𝐸)] ∀ 𝑗 = 1,… , 𝑛 (A.5)

Because ln(.) is a monotonically increasing function, it follows that

n[1 − 𝐹 (𝜏𝑗)] ≥ ln[1 − 𝐹 (𝐸)]. for 𝑗 = 1,… , 𝑛 (A.6)

rom Eq. (A.1), it follows that

n𝑃 𝑟
𝑛𝑓 =

𝑛
∑

𝑗=1
ln[1 − 𝐹 (𝜏𝑗)]. (A.7)

rom Eq. (A.6), it follows that each term of the summation in Eq. (A.7)
s ≥ ln[1 − 𝐹 (𝐸)]. Hence, the summation in Eq. (A.7) is ≥ ln[1 − 𝐹 (𝐸)],
hich is equal to ln𝑃 𝑛𝑟

𝑛𝑓 . Thus, it follows that

n𝑃 𝑟
𝑛𝑓 ≥ ln𝑃 𝑛𝑟

𝑛𝑓 ⟺ 𝑃 𝑟
𝑛𝑓 ≥ 𝑃 𝑛𝑟

𝑛𝑓 □ (A.8)

heorem A.2. Let 𝑃 𝑟
𝑛𝑓 be given by

𝑟
𝑛𝑓 = [1 − 𝐹 (𝜏)]⌈𝐸∕𝜏⌉, (A.9)

∈ [𝜌, 𝐸] and 𝐹 (.) ↦ [0, 1] be a monotonically increasing function. Then,
𝑟
𝑛𝑓 is a monotonically decreasing function of 𝜏 ∈ [𝜌, 𝐸].

roof. Consider 𝑃 𝑟
𝑛𝑓 (𝜏) = [1 − 𝐹 (𝜏)]⌈𝐸∕𝜏⌉ and 𝑃 𝑟

𝑛𝑓 (𝜏 + 𝛥𝜏) = [1 − 𝐹 (𝜏 +
𝜏)]⌈𝐸∕(𝜏+𝛥𝜏)⌉ where 0 < 𝛥𝜏 ≪ 𝜏. Then,

ln𝑃 𝑟
𝑛𝑓 (𝜏) = ⌈𝐸∕𝜏⌉ ln[1 − 𝐹 (𝜏)] (A.10)

and

ln𝑃 𝑟 (𝜏 + 𝛥𝜏) = ⌈𝐸∕(𝜏 + 𝛥𝜏)⌉
129

𝑛𝑓
× ln[1 − 𝐹 (𝜏 + 𝛥𝜏)] (A.11)

But,

𝐸∕𝜏⌉ ≥ ⌈𝐸∕(𝜏 + 𝛥𝜏)⌉. (A.12)

ecause 𝐹 (.) and ln(.) are monotonically increasing functions,

n[1 − 𝐹 (𝜏)] ≥ ln[1 − 𝐹 (𝜏 + 𝛥𝜏)]. (A.13)

ombining Eqs. (A.11), (A.12), and (A.13) we get that

n𝑃 𝑟
𝑛𝑓 (𝜏) ≥ ln𝑃 𝑟

𝑛𝑓 (𝜏 + 𝛥𝜏) (A.14)

hich implies that
𝑟
𝑛𝑓 (𝜏) ≥ 𝑃 𝑟

𝑛𝑓 (𝜏 + 𝛥𝜏). (A.15)

n other words, as 𝜏 increases, 𝑃 𝑟
𝑛𝑓 decreases or stays constant. This

emonstrates that 𝑃 𝑟
𝑛𝑓 (.) is monotonically decreasing with 𝜏. □

heorem A.3. Let 𝑃 𝑟
𝑛𝑓 be given by Eq. (A.1), 𝐸 =

∑𝑛
𝑗=1 𝜏𝑗 , and 𝐹 (.) ↦

0, 1] be a monotonically increasing function. Therefore, the maximum value
f 𝑃 𝑟

𝑛𝑓 is [1 − 𝐹 (𝐸∕𝑛)]𝑛 and 𝜏𝑗 = 𝜏 = 𝐸∕𝑛 for 𝑗 = 1,… , 𝑛.

roof. As 𝜏𝑗 decreases, 𝐹 (𝜏𝑗) decreases because 𝐹 (.) is a monotonically
ncreasing function. Then, [1−𝐹 (𝜏𝑗)] increases and 𝑃 𝑟

𝑛𝑓 , given by Eq. (3),
ncreases. Therefore, the maximum value of 𝑃 𝑟

𝑛𝑓 would be obtained by
urther decreasing all the values of 𝜏𝑗 . However, since 𝐸 =

∑𝑛
𝑗=1 𝜏𝑗 , we

an obtain the maximum value of 𝑃 𝑟
𝑛𝑓 by setting the values of all 𝜏𝑗 ’s

s 𝐸∕𝑛. Therefore, the maximum value of 𝑃 𝑟
𝑛𝑓 is [1 − 𝐹 (𝐸∕𝑛)]𝑛. □

eferences

[1] D.A. Menascé, H. Gomaa, S. Malek, J. Sousa, SASSY: A framework for
self-architecting service-oriented systems, IEEE Softw. 28 (6) (2011) 78–85.

[2] D. Cotroneo, R. Natella, R. Pietrantuono, S. Russo, A survey of software aging
and rejuvenation studies, J. Emerg. Technol. Comput. Syst. 10 (1) (2014) http:
//dx.doi.org/10.1145/2539117.

[3] T. Dohi, A. Avritzer, K. Trivedi, Handbook of Software Aging and Rejuvenation:
Fundamentals, Methods, Applications, and Future Directions, World Scientific
Publishing Company Pte Limited, 2020.

[4] E. Albassam, J. Porter, H. Gomaa, D.A. Menascé, DARE: A distributed adaptation
and failure recovery framework for software systems, in: IEEE (Ed.), 2017 IEEE
Intl. Conf. Autonomic Computing, ICAC, 2017, pp. 203–208.

[5] B.C. Ward, S.R. Gomez, R.W. Skowyra, J.N. Martin, J.W. Landry, Survey of Cyber
Moving Targets Second Edition, Tech. Rep. January, MIT, 2018.

[6] J.-H. Cho, D.P. Sharma, H. Alavizadeh, S. Yoon, N. Ben-Asher, T.J. Moore,
D.S. Kim, H. Lim, F.F. Nelson, Toward proactive, adaptive defense: A survey
on moving target defense, Commun. Surv. Tutor. 22 (1) (2020) 709–745, http:
//dx.doi.org/10.1109/COMST.2019.2963791.

[7] W. Connell, D.A. Menascé, M. Albanese, Performance modeling of moving target
defenses with reconfiguration limits, IEEE Trans. Dependable Secure Comput. 18
(01) (2021) 205–219.

[8] J. Giraldo, D. Urbina, A. Cardenas, J. Valente, M. Faisal, J. Ruths, N.O.
Tippenhauer, H. Sandberg, R. Candell, A survey of physics-based attack detection
in cyber-physical systems, ACM Comput. Surv. 51 (4) (2018) http://dx.doi.org/
10.1145/3203245.

[9] G. Fornari, V.A. Santiago Junior, Dynamically reconfigurable systems: A sys-
tematic literature review, J. Intell. Robot. Syst. 95 (3–4) (2019) 829–849,
Springer.

[10] X. Ma, L. Baresi, C. Ghezzi, V. Panzica La Manna, J. Lu, Version-consistent
dynamic reconfiguration of component-based distributed systems, in: ACM (Ed.),
Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European
Conference on Foundations of Software Engineering, New York, NY, USA, 2011,
pp. 245–255, http://dx.doi.org/10.1145/2025113.2025148.

[11] S. Alhozaimy, D.A. Menascé, A formal analysis of performance-security tradeoffs
under frequent task reconfigurations, Future Gener. Comput. Syst. 127 (2022)
252–262, http://dx.doi.org/10.1016/j.future.2021.09.005.

[12] C.A.R. Dos Santos, R. Matias, K.S. Trivedi, A multisite characterization study
on failure causes in system and applications software, in: IEEE (Ed.), 2021 XI
Brazilian Symposium on Computing Systems Engineering, SBESC, 2021, pp. 1–8,
http://dx.doi.org/10.1109/SBESC53686.2021.9628276.

[13] J.C. Lyke, C.G. Christodoulou, G.A. Vera, A.H. Edwards, An introduction to
reconfigurable systems, Proc. IEEE 103 (3) (2015) 291–317, http://dx.doi.org/
10.1109/JPROC.2015.2397832.

http://refhub.elsevier.com/S0167-739X(24)00271-1/sb1
http://refhub.elsevier.com/S0167-739X(24)00271-1/sb1
http://refhub.elsevier.com/S0167-739X(24)00271-1/sb1
http://dx.doi.org/10.1145/2539117
http://dx.doi.org/10.1145/2539117
http://dx.doi.org/10.1145/2539117
http://refhub.elsevier.com/S0167-739X(24)00271-1/sb3
http://refhub.elsevier.com/S0167-739X(24)00271-1/sb3
http://refhub.elsevier.com/S0167-739X(24)00271-1/sb3
http://refhub.elsevier.com/S0167-739X(24)00271-1/sb3
http://refhub.elsevier.com/S0167-739X(24)00271-1/sb3
http://refhub.elsevier.com/S0167-739X(24)00271-1/sb4
http://refhub.elsevier.com/S0167-739X(24)00271-1/sb4
http://refhub.elsevier.com/S0167-739X(24)00271-1/sb4
http://refhub.elsevier.com/S0167-739X(24)00271-1/sb4
http://refhub.elsevier.com/S0167-739X(24)00271-1/sb4
http://refhub.elsevier.com/S0167-739X(24)00271-1/sb5
http://refhub.elsevier.com/S0167-739X(24)00271-1/sb5
http://refhub.elsevier.com/S0167-739X(24)00271-1/sb5
http://dx.doi.org/10.1109/COMST.2019.2963791
http://dx.doi.org/10.1109/COMST.2019.2963791
http://dx.doi.org/10.1109/COMST.2019.2963791
http://refhub.elsevier.com/S0167-739X(24)00271-1/sb7
http://refhub.elsevier.com/S0167-739X(24)00271-1/sb7
http://refhub.elsevier.com/S0167-739X(24)00271-1/sb7
http://refhub.elsevier.com/S0167-739X(24)00271-1/sb7
http://refhub.elsevier.com/S0167-739X(24)00271-1/sb7
http://dx.doi.org/10.1145/3203245
http://dx.doi.org/10.1145/3203245
http://dx.doi.org/10.1145/3203245
http://refhub.elsevier.com/S0167-739X(24)00271-1/sb9
http://refhub.elsevier.com/S0167-739X(24)00271-1/sb9
http://refhub.elsevier.com/S0167-739X(24)00271-1/sb9
http://refhub.elsevier.com/S0167-739X(24)00271-1/sb9
http://refhub.elsevier.com/S0167-739X(24)00271-1/sb9
http://dx.doi.org/10.1145/2025113.2025148
http://dx.doi.org/10.1016/j.future.2021.09.005
http://dx.doi.org/10.1109/SBESC53686.2021.9628276
http://dx.doi.org/10.1109/JPROC.2015.2397832
http://dx.doi.org/10.1109/JPROC.2015.2397832
http://dx.doi.org/10.1109/JPROC.2015.2397832

Future Generation Computer Systems 160 (2024) 120–130S. Alhozaimy et al.
[14] R. Calinescu, L. Grunske, M. Kwiatkowska, R. Mirandola, G. Tamburrelli, Dy-
namic QoS management and optimization in service-based systems, IEEE Trans.
Softw. Eng. 37 (3) (2011) 387–409, http://dx.doi.org/10.1109/TSE.2010.92.

[15] S. Pradhan, A. Dubey, T. Levendovszky, P.S. Kumar, W.A. Emfinger, D. Bala-
subramanian, W. Otte, G. Karsai, Achieving resilience in distributed software
systems via self-reconfiguration, J. Syst. Softw. 122 (2016) 344–363, http://dx.
doi.org/10.1016/j.jss.2016.05.038.

[16] F. Longo, R. Ghosh, V.K. Naik, A.J. Rindos, K.S. Trivedi, An approach for
resiliency quantification of large scale systems, SIGMETRICS Perform. Eval. Rev.
44 (4) (2017) 37–48, http://dx.doi.org/10.1145/3092819.3092825.

[17] W. Li, W. Guo, QoS prediction for dynamic reconfiguration of component based
software systems, J. Syst. Softw. 102 (2015) 12–34, http://dx.doi.org/10.1016/
j.jss.2014.12.001.

[18] C.-H. Lung, X. Zhang, P. Rajeswaran, Improving software performance and
reliability in a distributed and concurrent environment with an architecture-
based self-adaptive framework, J. Syst. Softw. 121 (2016) 311–328, http://dx.
doi.org/10.1016/j.jss.2016.06.102.

[19] E. Truyen, N. Janssens, F. Sanen, W. Joosen, Support for distributed adapta-
tions in aspect-oriented middleware, in: Proceedings of the 7th International
Conference on Aspect-Oriented Software Development, AOSD ’08, Association
for Computing Machinery, New York, NY, USA, 2008, pp. 12–131, http://dx.
doi.org/10.1145/1353482.1353497.

[20] D.A. Menascé, J.M. Ewing, H. Gomaa, S. Malek, J.P. Sousa, A framework for
utility-based service oriented design in SASSY, in: Proc. First Joint WOSP/SIPEW
Intl. Conf. Performance Engineering, in: WOSP/SIPEW ’10, ACM, 2010, pp.
27–36.

[21] J. Alonso, R. Matias, E. Vicente, A. Maria, K. Trivedi, A comparative experimental
study of software rejuvenation overhead, Perform. Eval. 70 (3) (2013) 231–250,
http://dx.doi.org/10.1016/j.peva.2012.09.002, Special Issue on Software Aging
and Rejuvenation.

[22] G. Ning, J. Zhao, Y. Lou, J. Alonso, R. Matias, K.S. Trivedi, B.-B. Yin, K.-Y.
Cai, Optimization of two-granularity software rejuvenation policy based on the
Markov regenerative process, IEEE Trans. Reliab. 65 (4) (2016) 1630–1646,
http://dx.doi.org/10.1109/TR.2016.2570539.

[23] T. Dohi, J. Zheng, H. Okamura, K.S. Trivedi, Optimal periodic software rejuve-
nation policies based on interval reliability criteria, Reliab. Eng. Syst. Saf. 180
(2018) 463–475, http://dx.doi.org/10.1016/j.ress.2018.08.009.

[24] G. Martin, D.E. Singh, M.-C. Marinescu, J. Carretero, Enhancing the performance
of malleable MPI applications by using performance-aware dynamic reconfigura-
tion, Parallel Comput. 46 (2015) 60–77, http://dx.doi.org/10.1016/j.parco.2015.
04.003.
130
[25] A. Hakamian, F. Klinaku, A. van Hoorn, S. Becker, Resilience, survivability,
and elasticity: A taxonomy for change impact quantification of reconfigurable
systems, in: 2020 IEEE International Symposium on Software Reliability En-
gineering Workshops, ISSREW, 2020, pp. 267–274, http://dx.doi.org/10.1109/
ISSREW51248.2020.00084.

Sarah Alhozaimy is an Assistant Professor at King Saud University’s Department of
Software Engineering. She received a Ph.D. degree in Computer Science from George
Mason University. She received her M.Sc. in Advanced Computer Science from the
University of Manchester. Her research interests include autonomic computing, moving
target defense, security performance tradeoffs, and software engineering.

Daniel A. Menascé is a University Professor Emeritus of
Computer Science at George Mason University. He received
a Ph.D. degree in Computer Science from UCLA in 1978 and
is a Fellow of the IEEE and the ACM. Menascé received
the prestigious 2021 David J. King Teaching Award from
Mason and the 2017 statewide Outstanding Faculty Award
by the State Council of Higher Education for Virginia.
The Computer Measurement Group awarded him the 2001
lifetime A.A. Michelson Award. Menascé authored over 280
technical papers and seven books dealing with web tech-
nologies, secure e-commerce, computer networks, queuing
models, and capacity planning.

Massimiliano Albanese is an Associate Professor at George
Mason University’s Department of Information Sciences and
Technology, and the Department’s Associate Chair for Re-
search. He is an Associate Director of the Center for Secure
Information Systems. Dr. Albanese obtained his Ph.D. in
Computer Science and Engineering from the University of
Naples Federico II in 2005 and worked as a Postdoctoral
Researcher at the University of Maryland before joining
George Mason University in 2011. His research focuses on
Information and Network Security, with particular interest
in Cyber Attack Modeling and Detection, Cyber Situa-
tional Awareness, Moving Target Defense, and Vulnerability
Metrics.

http://dx.doi.org/10.1109/TSE.2010.92
http://dx.doi.org/10.1016/j.jss.2016.05.038
http://dx.doi.org/10.1016/j.jss.2016.05.038
http://dx.doi.org/10.1016/j.jss.2016.05.038
http://dx.doi.org/10.1145/3092819.3092825
http://dx.doi.org/10.1016/j.jss.2014.12.001
http://dx.doi.org/10.1016/j.jss.2014.12.001
http://dx.doi.org/10.1016/j.jss.2014.12.001
http://dx.doi.org/10.1016/j.jss.2016.06.102
http://dx.doi.org/10.1016/j.jss.2016.06.102
http://dx.doi.org/10.1016/j.jss.2016.06.102
http://dx.doi.org/10.1145/1353482.1353497
http://dx.doi.org/10.1145/1353482.1353497
http://dx.doi.org/10.1145/1353482.1353497
http://refhub.elsevier.com/S0167-739X(24)00271-1/sb20
http://refhub.elsevier.com/S0167-739X(24)00271-1/sb20
http://refhub.elsevier.com/S0167-739X(24)00271-1/sb20
http://refhub.elsevier.com/S0167-739X(24)00271-1/sb20
http://refhub.elsevier.com/S0167-739X(24)00271-1/sb20
http://refhub.elsevier.com/S0167-739X(24)00271-1/sb20
http://refhub.elsevier.com/S0167-739X(24)00271-1/sb20
http://dx.doi.org/10.1016/j.peva.2012.09.002
http://dx.doi.org/10.1109/TR.2016.2570539
http://dx.doi.org/10.1016/j.ress.2018.08.009
http://dx.doi.org/10.1016/j.parco.2015.04.003
http://dx.doi.org/10.1016/j.parco.2015.04.003
http://dx.doi.org/10.1016/j.parco.2015.04.003
http://dx.doi.org/10.1109/ISSREW51248.2020.00084
http://dx.doi.org/10.1109/ISSREW51248.2020.00084
http://dx.doi.org/10.1109/ISSREW51248.2020.00084

	Resilience and performance quantification of dynamic reconfiguration
	Introduction
	Background and Related Work
	Refined Problem Statement
	Experimental Motivation
	Notation
	Assumptions
	Basic Reconfiguration System Model

	Resilience and Performance Quantification
	Dynamic Reconfiguration Analytic Model

	Numerical Results
	Optimal Reconfiguration Frequency
	Discussion
	Conclusions and Future Work
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Appendix. Proof of Theorems
	References

