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ABSTRACT

Vulnerability analysis has long been used to evaluate the security posture of a system. Different ap-
proaches, including vulnerability graphs and various vulnerability metrics, have been used to study the
vulnerability landscape and provide security analysts with cyber situational awareness. However, most
current solutions still lack a principled approach to quantifying various dimensions of known vulnerabil-
ities in a way that can easily adapt to different applicative domains and operating conditions. To address
this limitation, we introduce a vulnerability metrics framework that extends and generalizes our previ-
ous metrics for evaluating the exploitation likelihood of a vulnerability and the exposure factor of system
components to vulnerability exploits. We argue that the factors influencing these metrics and their rel-
ative weights depend on the specific applicative domain, defender’s priorities, and attacker’s knowledge.
Thus, instead of providing a static set of equations, we establish a framework for instantiating the equa-
tions that best model the scenario being considered. We combine likelihood and exposure factor metrics
into a severity score that allows us to rank vulnerabilities. In our evaluation, we demonstrate that rank-
ing vulnerabilities solely based on their CVSS scores is not sufficient for effective prioritization, due to
the limited number of possible distinct severity values compared to the sheer number of existing vul-
nerabilities. We define a ranking quality score and show that considering additional information about

vulnerabilities helps refine their ranking, providing more actionable intelligence to security analysts.

© 2023 Elsevier Ltd. All rights reserved.

1. Introduction

Vulnerability analysis has long been used to evaluate the secu-
rity posture of systems and their ability to respond to multi-step
attacks. Different approaches - including topological vulnerability
analysis and a vast array of scoring and ranking systems - have
been developed to study the properties of individual vulnerabilities
and the relationships among multiple vulnerabilities, with the ulti-
mate objective of providing security analysts with cyber situational
awareness about the current vulnerability landscape (Albanese and
Jajodia, 2018; Albanese et al., 2013; Ammann et al., 2002; Jajodia
et al., 2005).

More recently, vulnerability graphs have been adopted as part
of a multi-layer graph approach to configuration analysis and op-
timization, referred to as SCIBORG (Soroush et al., 2020). As cyber
systems are becoming more complex and interconnected, configu-
ration analytics and optimization are becoming increasingly critical
for their correct and secure operation. Attackers usually rely on un-
patched vulnerabilities and configuration errors to gain unautho-
rized access to system resources. Misconfiguration can occur at any
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level of a system’s software architecture, and correctly configuring
systems becomes more complex when many interconnected com-
ponents are involved. In 2017, Security Misconfiguration was listed
by OWASP amongst the ten most critical web application security
risks (van der Stock et al., 2017).

However, in the most recent OWASP ranking of software risk,
Misconfiguration moved higher in the ranking (van der Stock et al.,
2021). SCIBORG’s multi-faceted approach aims at modeling rela-
tionships between the components, configuration parameters, and
vulnerabilities of a complex system by ingesting data from a num-
ber of different data sources, including but not limited to system
documentation, operating procedures, and reports from vulnera-
bility scanners. The resulting graph model is then analyzed with
the goal of improving the security of the system while preserv-
ing its functionality. Correctly quantifying the risk represented by
unpatched vulnerabilities is critical for this process to effectively
improve a system’s security.

Most current solutions still lack a principled approach to quan-
tifying various dimensions of the problem in a way that can easily
adapt the scoring and ranking of known vulnerabilities to different
applicative domains and operating conditions. The Common Vul-
nerability Scoring System (CVSS) defines a Base score and allows
security administrators to augment the Base score by using Tem-
poral and Environmental metrics in order to yield a severity rat-
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ing that better aligns with their unique environment. Environmen-
tal metrics are specific to an organization and include attributes
related to business criticality of the exposed asset, mitigations or
compensating controls that are in place. However, administrators
would be required to score each vulnerability with respect to each
submetric based on their specific environment, which is time con-
suming and prone to errors and to the subjectivity of the admin-
istrators themselves. Additionally, as shown for the base metrics
in Sections 6.1 and 6.2, the small number of discrete values that
can be assigned to each submetric results in a limited number of
distinct severity score values. To address this limitation, we intro-
duce a vulnerability metrics framework that extends and general-
izes our previous metrics for evaluating the exploitation likelihood
of a vulnerability and the exposure factor of system components to
vulnerability exploits (Iganibo et al., 2021). We argue that the fac-
tors influencing these metrics and their relative weights depend on
the specific applicative domain, defender’s priorities, and attacker’s
knowledge. Thus, instead of providing a static set of equations, we
define a framework that allows its users to instantiate the equa-
tions that best model the scenario being considered. We combine
likelihood and exposure factor metrics into a severity score that al-
lows us to rank vulnerabilities. Our approach aims at allowing ad-
ministrators to improve their ability to discriminate between vul-
nerabilities with very similar severity levels and to isolate those
which pose the greatest risk to their organization. In our evalu-
ation, we demonstrate that ranking vulnerabilities based on their
CVSS scores alone is not sufficient to provide a high-quality rank-
ing, as there may be thousands of vulnerabilities being assigned
the same identical score. Instead, we show that considering more
information about vulnerabilities helps refine their ranking, provid-
ing more actionable intelligence to security analysts.

In summary, the key contributions of this paper are: (i) a gen-
eral framework for defining two key vulnerability metrics: ex-
ploitation likelihood and exposure factor; (ii) an inventory of vari-
ables that can potentially affect either of these two metrics; (iii)
general principles for selecting variables to be considered in the
computation of these two metrics, and (iv) a metric to evalu-
ate the quality of the resulting vulnerability ranking. Overall, our
framework aims at guiding security administrators in the defini-
tion of metrics that are suitable for the specific environment in
which they are being deployed by giving them control over the
data and corresponding variables that are used in the computa-
tion of the metrics and the relative weights of such variables. Dif-
ferently from CVSS Environmental scores, administrators are not
required to score each vulnerability with respect to a predefined
set of submetrics, although any environmental submetric could in
principle be used as a variable in our model, making it more gen-
eral, flexible, and usable.

The remainder of the paper is organized as follows.
Section 2 discusses related work, whereas Section 3 summa-
rizes current standards in vulnerability scoring and provides a
brief overview of IDS rules. Next, Section 4 gives an overview
of the SCIBORG model introduced in (Soroush et al., 2020).
Then, Section 5 introduces the proposed vulnerability metrics,
and Section 6 reports on the results of our evaluation. Finally,
Section 7 gives some concluding remarks and outlines possible
future research directions.

2. Related work

The goal of vulnerability management is to effectively and in-
telligently prioritize remediation efforts based on actionable rec-
ommendations that consider both external variables and intrinsic
features of existing vulnerabilities. It is important to understand
the threat landscape in order to reduce the attack surface and re-
mediate or mitigate the threats. Configuration analytics and opti-
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mization aim at reducing the attack surface, making it critical to
measure a system’s susceptibility to attacks. Over the years, re-
searchers and practitioners have proposed various attack surface
measurement techniques and metrics (Bopche et al., 2019; Man-
adhata and Wing, 2011; Stuckman and Purtilo, 2012; Yoon et al.,
2020). However, these techniques do not typically consider the re-
lationships between system components, vulnerabilities, configura-
tions, and attacker’s knowledge of the system. This limitation pre-
vents existing metrics from accurately measuring a system'’s attack
surface. More recently, research has been done to ascertain the im-
portance of the information an adversary has about the system
to enhance remediation and mitigation plans (Goohs et al., 2022).
Remediation and mitigation efforts are resource-intensive and are
subject to constraints in large networked systems. To adequately
adopt countermeasures to attacks, an accurate assessment of the
system’s susceptibility is necessary. Furthermore, to develop com-
prehensive cyber situational awareness [8], and in line with more
traditional risk analysis approaches, one has to distinguish between
the likelihood that a vulnerability might be exploited and the im-
pact a successful exploitation would cause. Current approaches to
scoring and ranking of vulnerabilities are coarse-grained and do
not consider the specific features of a system. A recent study ar-
gues that the severity score of a vulnerability as calculated by the
Common Vulnerability Scoring System (CVSS) (Spring et al., 2021)
does not directly reflect the risk represented by that vulnerability
and how quickly one should respond to it. Furthermore, CVSS does
not handle relationships between vulnerabilities. Different vulner-
ability metrics have varying levels of relevance depending on the
specific context and application, therefore it is important to con-
sider different attack models in defining metrics for guiding risk-
based decisions.

There have been other research efforts focused on prioritiza-
tion and remediation of vulnerabilities using data other than CVSS
scores. One such effort resulted in the Exploit Prediction Scoring
System (EPSS) (Jacobs et al., 2021), which is an open, data-driven
approach for estimating the likelihood that a software vulnerabil-
ity will be exploited in the wild, using current threat information
from CVE and real-world exploit data. However, this model does
not consider the impact of vulnerability exploits.

The approach we propose in this paper addresses these limita-
tions by creating a general and customizable framework for defin-
ing vulnerability metrics, building upon existing literature on vul-
nerability graphs and vulnerability scoring.

3. Technical background

The approach to designing vulnerability metrics that we present
in this article generalizes our previous work on vulnerability met-
rics (Iganibo et al., 2021), and relies on any vulnerability-specific
information that is available to the users of the metrics frame-
work, including data from the National Vulnerability Database
(NVD), vulnerability scores computed through CVSS, and reposi-
tories of Intrusion Detection System (IDS) rules. In our previous
work (Iganibo et al., 2021; 2022), we used vulnerability-level met-
rics to compute aggregate scores for weaknesses in the Common
Weakness Enumeration (CWE) maintained by MITRE, and com-
pared our CWE rankings against MITRE's CWE Top 25 Most Dan-
gerous Software Weaknesses. The following subsections provide a
brief overview of NVD, CVSS, CWSS, and IDS rules.

3.1. NVD

The National Vulnerability Database (NVD) is the U.S. gov-
ernment repository of standards based vulnerability management
data represented using the Security Content Automation Protocol
(SCAP), and is maintained by the National Institute of Standards
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and Technology (NIST). This data enables automation of vulnera-
bility management, security measurement, and compliance.

NVD! is built upon and fully synchronized with the Common
Vulnerabilities and Exposures (CVE) list of publicly known cyberse-
curity vulnerabilities. The CVE repository is maintained by MITRE
and includes various details about each vulnerability - identifica-
tion number, description, and public references. NVD augments it
with severity scores, and impact ratings based on the Common
Vulnerability Scoring System.

3.2. CVSS

As stated by the Forum of Incident Response and Security
Teams (FIRST) - which currently maintains it — the Common Vul-
nerability Scoring System (CVSS) provides a means to “capture the
principal characteristics of a vulnerability and produce a numerical
score reflecting its severity”. This score is calculated based on three
different metrics: (i) Base Score Metrics (required); (ii) Temporal
Score Metrics (optional); and (iii) Environmental Score Metrics (op-
tional).

CVSS is currently at version 3.1, but, in our studies, we nor-
mally use CVSS version 2.10, as base scores are available for a
larger number of vulnerabilities. Temporal and Environmental met-
rics are defined to allow administrators to customize CVSS scores
for their specific environment. Our model is not intended to re-
place CVSS but rather complement it. In fact, in our evaluation,
we used the CVSS Exploitability and Impact scores as two vari-
ables in our model, and mentioned that any environmental met-
ric, if defined, could be used as an additional variable. While the
objective of our approach is in principle similar to the objective
of the Environmental Metrics of CVSS, we achieve that objective
in a different way, which can indeed be considered complemen-
tary to CVSS. Our approach relies on including any publicly or
otherwise readily available data that can be mapped to individual
CVEs (e.g., IDS rules, exploits) with minimal user effort, and it al-
lows administrators to include new variables in the calculation of
likelihood and exposure factor in order to take this data into ac-
count, whereas the CVSS approach relies on administrators assess-
ing each vulnerability with respect to a predefined set of environ-
mental submetrics (e.g., Modified Attack Vector (MAV), Modified
Privileges Required (MPR)), which is a time-consuming and error-
prone process. A study on the impact of environmental metrics on
CVSS scores (Gallon, 2010) highlights the challenges posed by the
Adjusted Impact score formula in accurately reflecting the distribu-
tion of vulnerabilities and the potential limitations it introduces for
administrators seeking to discriminate vulnerabilities within their

systems.
CVSS Base Score is computed through Eq. 1 below.
BaseScore = (0.6 -1+ 0.4-E —1.5) - f(I) (1)

where [ and E are the Impact and Exploitability scores defined by
Egs. 2 and 3 respectively, and f(I) is defined by Eq. 4. The Impact
score quantifies the consequences of an exploit, whereas the Ex-
ploitability score captures how easy to exploit a vulnerability is.

1=1041-(1-(1-I)- (1=1) - (1—1y)) 2)

E=20-AC-A-AV (3)
0, ifI=0

fy= {1.176, otherwise )

The I, I}, and I4 scores in Eq. 2 are the confidentiality, integrity,
and availability impact respectively, as defined in Table 1.

1 https://nvd.nist.gov/
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Table 1
Impact metrics.
Confidentiality  Integrity Availability
Impact (Ic) Impact (I;))  Impact (I4)
None 0.000 0.000 0.000
Partial 0.275 0.275 0.275
Complete  0.660 0.660 0.660

Table 2
Exploitability metrics.

Access Compl. (AC)

High 0.35 Multiple  0.450  Local 0.395
Medium  0.61 Single 0.560  Adjacent  0.646
Low 0.71 None 0.704 Network 1.000

Authentication (A)  Access Vector (AV)

The AC, A, and AV scores in Eq. 3 are the exploitability metrics
Access Complexity, Authentication, and Access Vector, as defined in
Table 2.

It is important to note that, since all the submetrics involved
in their computation can assume one of only a few discrete val-
ues, the Impact and Exploitability scores will also have one of a
limited number of discrete values. Thus, ranking thousands of vul-
nerabilities based on their CVSS scores is unpractical, as we will
demonstrate later in Section 6.

3.3. CWE and CWSS

Common Weakness Enumeration (CWE) is a system that pro-
vides a structured list of clearly defined software and hardware
weaknesses?. A software weakness is not necessarily a vulnerabil-
ity, but weaknesses may become vulnerabilities. MITRE’s Common
Weakness Scoring System (CWSS) provides a mechanism for priori-
tizing software weaknesses that are present within software appli-
cations in a consistent and flexible manner>. It is a collaborative,
community-based effort that is addressing the needs of its stake-
holders across government, academia, and industry.

CWSS is organized into three metric groups: Base Finding, At-
tack Surface, and Environmental. Each group includes multiple
metrics - also known as factors - that are used to compute a
CWSS score for a weakness. While discussing the formulation of
these metrics goes beyond the scope of this paper and we refer
the reader to the documentation for further details, in the follow-
ing we describe the method MITRE used to rank the most danger-
ous weaknesses: in our previous work (Iganibo et al., 2021), we
relied on this approach to validate our metrics, as explained later
in Section 6.

Eq. 5 defines the set of CVEs mapped to a given CWE, and
Eq. 6 defines the number of times each CWE is mapped to CVE
entries*

C(CWE;) = {CVE; e NVD, CVE; — CWE;} (5)

Fregs = {|C(CWE;)|, CWE; e NVD} (6)

Then Eqs. 7 and 8 respectively compute the frequency and
severity of a CWE, where the severity is based on the average CVSS
score. Both the frequency and severity are normalized between 0
and 1.

|C(CWE;)| — min(Freq)

FrcWE) = max(Freq) — min(Freq)

(7)

2 https://cwe.mitre.org/

3 https://cwe.mitre.org/cwss/

4 We slightly abuse notation and use CWE; e NVD to denote a CWE that is
mapped to at least one CVE entry in NVD.
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Summary: 'CVE-2018-11776
Search refurned 7 results

1-29639 SERVER-APACHE Apache Struts wildcard matching OGNL remote code execution attempt
1-39190 SERVER-APACHE Apache Struts remote code execution attempt

1-39191 SERVER-APACHE Apache Siruts remote code execution attempt

1-47634 SERVER-APACHE Apache Struts OGNL getRuntime.exec static method access attempt
1-47689 SERVER-APACHE Apache Struts javanet.Socket class access attempt

1-47690 SERVER-APACHE Apache Struts javalangProcessBuilder class access attempt

1-47691 SERVER-APACHE Apache Struis ognl remote code execution attempt

Summary: ‘CVE-2018-12572
Search refurned 1 results

1-49325 FILE-OTHER Microsoft Windows Avast Anti-Virus local credentials disclosure attempt

Fig. 1. Snort rules associate with different CVEs.

avgewe, (CVSS) — min(CVSS)
max(CVSS) — min(CVSS)

Finally Eq. 9 defines the overall score of a CWE as the product
of its frequency and severity, normalized between 0 and 100.

Score(CWE;) = Fr(CWE;) - Sv(CWE;) - 100 (9)

SU(CWE;) = (8)

3.4. IDS rules

In our approach, we use Intrusion Detection System (IDS) rules
as one of the factors influencing the computation of both the likeli-
hood of a vulnerability exploit and the exposure factor of a system
component to a vulnerability. However, we distinguish between
known and deployed rules, and only consider rules that are explic-
itly mapped to CVE entries. We use the term known IDS rule to re-
fer to any IDS rule that is available to the community through pub-
licly accessible repositories. Our assumption is that the existence
of known IDS rules associated with a given vulnerability may de-
crease the likelihood of exploiting that vulnerability, as an attacker
may prefer to target vulnerabilities that can be exploited without
triggering IDS alerts. As an example, Fig. 1 shows the results of
searching the Snort rule repository for two different CVEs, that is
CVE-2018-11776 and CVE-2018-12572 respectively.

Instead, we use the term deployed IDS rule to refer to any IDS
rule that is being actively used by a deployed IDS. Deployed rules
may include a subset of known rules or ad hoc rules developed
by the system’s administrators. An attacker may not be aware of
what IDS rules are actually in use, but early detection of intrusions
may help mitigate the consequences of an exploit, therefore we
take deployed rules into account in the computation of exposure
factors.

While our approach is general and does not require the adop-
tion of a specific intrusion detection system, we have used Snort®
and Suricata®.

4. The SCIBORG model

This section gives a brief overview of the SCIBORG graph model
that was presented in (Soroush et al., 2020) and that has offered an
ideal case study for the vulnerability metrics we have developed.
The metrics framework we introduce in this paper is designed to
address current limitations of this model and similar models by in-
troducing the capability of quantifying two different dimensions of

5 https://www.snort.org/
6 https://suricata-ids.org/
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Web Server (h,)

Catalog Server (hg)

i | DBServer (hg)

Local DB Server (hg)

Mobile App Server (h¢)

Local DB Server (hp)

Fig. 2. Network diagram of a notional distributed system.
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enable_debug_mode [iREAT3

mysql.allow_persistent [RRERCAT

[ [proc/sys/fs/file-max }

Confguration Subgraph

[ mysql.max_links  [RSM mvsql.max»pers\s(en(

Fig. 3. The SCIBORG graph for the system of Fig. 2.

the vulnerabilities being considered, which in turn may be lever-
aged to define higher level metrics, such as attack surface metrics.
It is important to note that our approach is not limited to graphs
generated by SCIBORG. In fact, it is applicable to any graph model
that relies on vulnerability graphs.

SCIBORG’s approach is based on modeling a distributed sys-
tem as a three-layer directed graph encoding all the information
needed to reason upon the optimality of system configurations.
The three layers are (i) a dependency subgraph; (ii) a vulnera-
bility subgraph; and (iii) a configuration subgraph. For illustrative
purposes, a three-layer graph corresponding to the notional dis-
tributed system of Fig. 2 is depicted in Fig. 3. The following sub-
sections describe in detail the first two sub graphs, which are the
most relevant to the scope of this paper, and we refer the reader
to our previous work (Soroush et al., 2020) for details about the
third subgraph.

4.1. Dependency subgraph

Failures of one component can impact the security and func-
tionality of other components. Therefore, globally optimal secu-
rity decisions need to rely on dependency information. Several
approaches have been proposed to discover implicit or undocu-
mented dependencies (Bahl et al., 2006; Natrajan et al., 2012).

A node in the dependency subgraph represents a system com-
ponent (host, service, etc.), and a directed edge represents a de-
pendency between two components. When dependencies are accu-
rately captured, dependency graphs are expected to be acyclic. To
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X} ={X € X/ | (Yv1,v2 € V)((X(1) < X() A (VX € X\ (XD (X(n) = X(m)) = p(v1) < p(n))} (10)

Xy = (X € X/ | (Yv1,v2 € V) (X(v1) < X(m) A (VX" € X\ {XD) (X(v1) = X(1m)) = p(1) = p(1))} (11

X = (X € Xo | (Yv1,v2 € V) (X)) < X(0) A (VX € X\ (XD (X(n1) = X)) = ef(n) <ef(v))}  (12)

XL ={X € X, | (Yv1,v2 € V)((X(1) < X(m) A (VX € X\ (XD (X(n) = X(m))) = ef(vi) = ef ()} (13)

Fig. 4. Equations defining the set of variables XIT, Xﬁ, XET, and Xei introduced in Section 5.2.

capture a wide range of relationships between components, each
dependency is modeled as a function of the form f:[0,1]" —
[0, 1], with f(0,...,0)=0and f(1,...,1) =1.

Each component has an intrinsic utility for the owning organi-
zation and its dependency function defines its ability to provide its
expected utility, based on the status of the components it depends
on: the arguments of this function are the percentage residual util-
ities of those components and are in turn computed through each
component’s respective dependency function. A dependency func-
tion returns 1 when the component can provide 100% of its utility,
and 0 when it has been completely compromised. Three types of
dependency relationships are identified in (Soroush et al., 2020),
namely redundancy (f;), strict dependence (fs), and graceful degra-
dation (f4), but such classification is not intended to be exhaustive,
and other dependency relationships can be defined.

Fig. 3 includes the dependency subgraph for our notional sys-
tem. An edge from h, to hg denotes that hy depends on hg. Each
component node is labeled with the type of dependency and its
utility. Utility values can be assigned by a domain expert or au-
tomatically derived by computing graph-theoretic centrality met-
rics (Kourtellis et al., 2015). In the security field, ad-hoc central-
ity measures have been used for botnet detection and mitiga-
tion (Venkatesan et al., 2015).

4.2. Vulnerability subgraph

Vulnerability subgraphs are powerful conceptual tools to repre-
sent knowledge about vulnerabilities and their dependencies. SCI-
BORG adopts a broader definition of vulnerability, but for the pur-
pose of the analysis presented in this paper we refer to vulnerabil-
ity graphs as formalized in Albanese and Jajodia (2018). A node in
the vulnerability subgraph represents a known vulnerability, and
an edge between two vulnerabilities, referred to as an ENABLES
edge, indicates that exploiting the first vulnerability creates the
preconditions to exploit the second one. An edge from a node in
the vulnerability subgraph to a node in the dependency subgraph,
referred to as a DEGRADES edge, indicates that the exploitation of
a given vulnerability can impact a component to an extent quanti-
fied by the exposure factor labeling that edge.

The vulnerability subgraph for our notional system is also de-
picted in Figure. 3. This graph can be generated by combining in-
formation from network scanners (e.g., Nessus) and vulnerability
databases (e.g., CVE, NVD), as shown in Ammann et al. (2002);
Jajodia et al. (2005). The edges in the vulnerability subgraph of
Fig. 3 are labeled with probabilities, which can be used to infer
the most likely paths that an attacker might take in a multi-step
attack. Determining these probabilities is an open research prob-
lem that we address in this paper, though useful heuristics ex-
ist (Albanese and Jajodia, 2018; Albanese et al., 2013), based on the
assumption that vulnerabilities that require more resources, time,
and skill are less likely to be exploited.

5. Vulnerability metrics

In this section, we formally define the proposed vulnerability
metrics framework, which was designed to address the limitations
of current approaches we discussed earlier. We argue that each
vulnerability is defined by its exploitation likelihood and its exposure
factor and that each of these two metrics is influenced by a num-
ber of different variables. Furthermore, the specific set of variables
that influence these metrics and their relative weights may vary
across application domains. In the following, we first provide an
intuitive definition of the two metrics, then model the set of vari-
ables potentially affecting their values, and finally provide a formal
mathematical formulation of the two metrics.

5.1. Exploitation likelihood and exposure factor

A vulnerability’s susceptibility to becoming a target for ex-
ploitation by malicious users depends on a number of variables,
including features of the vulnerability itself and characteristics of
potential attackers. In our previous work, we only considered in-
trinsic features of vulnerabilities, as the problem of studying an
attacker’s skills and resources appeared to be an orthogonal prob-
lem. In fact, we were interested in scoring and comparing indi-
vidual vulnerabilities for a fixed attack model. Several approaches
have been proposed in the literature to study how the skills and
resources available to different types of attackers impact their abil-
ity to compromise a target system (Leversage and Byres, 2008). To
build upon our previous work and available literature, we argue
that, while we continue to use variables capturing intrinsic fea-
tures of the vulnerabilities, the choice of variables to consider and
their relative weights can be used to model different types of at-
tackers, ranging from adversaries who are only aware of a vulnera-
bility’s CVSS scores to adversaries that can perform reconnaissance
on the target systems and discover unpatched vulnerabilities.

We define the exploitation likelihood (or simply likelihood) p (V)
of a vulnerability v as the probability that an attacker will attempt
to exploit that vulnerability, if given the opportunity. An attacker
has the opportunity to exploit a vulnerability if certain precondi-
tions are met, most notably if they have access to the vulnera-
ble host. Specific preconditions may vary depending on the spe-
cific characteristics of each vulnerability, as certain configuration
settings may prevent access to vulnerable portions of the target
software.

We define the exposure factor as the relative loss of utility of
an asset due to a vulnerability exploit. The term is borrowed from
classic risk analysis terminology, where the exposure factor (EF)
represents the relative damage that an undesirable event - a cyber
attack in our case - would cause to the affected asset. The single
loss expectancy (SLE) of such an incident is then computed as the
product between its exposure factor and the asset value (AV), that
is SLE = EF x AV.
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5.2. Variables affecting the metrics

Let V denote the set of all known vulnerabilities, x; denote a
set of variables that influence the exploitation likelihood, and X,
denote a set of variables that influence the exposure factor. We
define XIT and XlL as the sets of variables that respectively con-
tribute to increasing and decreasing the likelihood as their values
increase. 2‘(,T and 2(1l are defined by Equations 10 and 11 respec-

tively. Similarly, we define XeT and Xel as the sets of variables that
respectively contribute to increasing and decreasing the exposure
as their values increase. XeT and Xj are defined by Equations (12)
and (13) respectively.

Examples of variables in XIT include, but are not limited to, a
vulnerability’s exploitability score as captured by CVSS, the time
since details about the vulnerability were published, and the set of
known exploits.

CVSS Exploitability score. The CVSS Exploitability score cap-
tures how easy it is to exploit a vulnerability, based on different
features captured by various sub-metrics, most notably Access Vec-
tor (AV) and Access Complexity (AC)’ The Access Vector metric
reflects the context in which a vulnerability can be exploited. Its
value is higher for vulnerabilities that can be exploited remotely,
and are therefore more likely to be exploited as the number of po-
tential attackers is larger than the number of potential attackers
that could exploit a vulnerability requiring physical access to the
vulnerable host. The Attack Complexity metric reflects the amount
of effort and resources required for a successful attack. Its value is
higher for exploits that require little or no effort, and are therefore
more likely to be exploited.

Time since publication. The time passed since details about
the vulnerability were made public also plays a role in determin-
ing the likelihood of exploitation. In fact, the longer a vulnera-
bility has been known, the more exploits may have been devel-
oped by the hacker community. While it is true that the likelihood
that patches have been developed also increases with time, it is
well-known that patches are not applied promptly and consistently
across systems, thus giving attackers a window of opportunity to
target known but unpatched vulnerabilities.

Vulnerability Exploits. The availability of exploits and Proofs
of Concept (PoCs) associated with a vulnerability - which can be
found in the Exploit-DB repository® or on MITRE's website, where
CVEs are mapped to their exploits’ — can provide an incentive for
attackers to exploit specific vulnerabilities.

Examples of variables in 2(,l include, but are not limited to,
the set of known Intrusion Detection System (IDS) rules associated
with a vulnerability and the set of vulnerability scanning plugins.

Known IDS rules. Known IDS rules may influence the attacker’s
choice of vulnerabilities to exploit. With systems typically expos-
ing multiple vulnerabilities, attackers may choose to avoid exploits
that are more easily detectable.

Vulnerability scanning plugins. Vulnerability scanning tools
can provide an inventory of existing system vulnerabilities. The
availability of plugins to confirm the existence of a given vulner-
ability may make such vulnerability less likely to be exploited be-
cause attackers my expect that defenders would use such detec-
tion capabilities to detect and mitigate that vulnerability. Tenable
Research designs plugins written in Nessus Attack Scripting Lan-
guage (NASL) to detect vulnerabilities as they are discovered and
released into the general public domain. These plugins contain in-

7 Access Vector (AV) and Access Complexity (AC) are common across CVSS 2 and
CVSS 3, whereas other exploitability metrics are specific to either version.

8 https://www.exploit-db.com/

9 https://cve.mitre.org/data/refs/refmap/source- EXPLOIT-DB.html
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formation about the vulnerability, set of remediation actions, and
the algorithm to test for the presence of the security issue'C.

Examples of variables in XJ include, but are not limited to, a
vulnerability’s impact score as captured by CVSS.

CVSS Impact score. The CVSS Impact score captures the impact
of a vulnerability exploit on confidentiality, integrity, and availabil-
ity.

Examples of variables in XQl include, but are not limited to, the
set of deployed Intrusion Detection System (IDS) rules associated
with a vulnerability.

Deployed IDS rules. IDS rules that are deployed on a system
and actively monitoring for intrusions, can mitigate the conse-
quences of an exploit through timely detection.

The list of variables presented here is not intended to be ex-
haustive and other variables could be identified and used in the
calculation of both the exploitation likelihood and the exposure
factor. For instance, it has been shown that the likelihood of ex-
ploiting a vulnerability also depends on the position of the vulner-
able system within an attack path (Albanese and Jajodia, 2018). In
fact, a vulnerability on a perimeter network may be more likely
to be exploited than the same vulnerability on an internal net-
work. Additionally, vulnerabilities that have similar characteristics
as those an attacker has already exploited might be more easily ex-
ploited compared to completely different vulnerabilities. However,
considering these situational variables would require to extend the
model in order to consider each instance of a vulnerability as a
separate entity for the purpose of scoring and ranking. Thus it is
beyond the scope of the work presented here, but part of our fu-
ture research plans.

5.3. Metrics definition

We formalize the exploitation likelihood as a function p : V —
[0, 1] defined by Equation 14.

[yt (1 — e—ax-fx(X(v)))
€4

HXEXL eBx-fx(X() (14)
1

p) =

Each variable contributes to the overall likelihood as a multi-
plicative factor between 0 and 1 that is formulated to account for
diminishing returns. Factors corresponding to variables in XIT are of
the form 1 — e~ fxX®) where X is the variable, ax is a tunable
parameter, X (v) is the value of X for v, and fx is a monotonically
increasing function used to convert values of X to scalar values, i.e.,
X1 <Xy = fx(x1) < fx(x2). Similarly, factors corresponding to vari-
ables in X]L are of the form ——lorm = e7PekX), We assume

ePX X
that each product evaluates to 1 when the corresponding set of
variables is empty, i.e., [Txcy (...) =1 when X =¢.

The definition of the function fyx implies that the domain of
each variable is a totally ordered set. While not every domain may
be a totally order set, it is possible to map elements of the domain
to elements of a totally ordered set. For instance, if the values of a
variable are sets of objects, their respective cardinalities are totally
ordered. If the function mapping the values of a variable X to val-
ues of a totally ordered set is a scalar function, then it can be used
as the function fy in Eq. 14. In most cases, when the values of X
are already scalar values, we can define fy as the identity function
fx(x) = x, but in the case of the time t since the vulnerability was
disclosed, we use fx(t) =/t to model a less-than-linear relation-
ship, as suggested by Tripwire!!.

Example 1 (Likelihood). Consider a scenario in which an attacker’s
primary goal is to avoid detection. In this case, the choice of

10 https://www.tenable.com/plugins/families/about
1 https://www.tripwire.com/solutions/vulnerability-and-risk-management
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Fig. 5. Effect of variable IDS, (v) on the likelihood.

vulnerabilities to exploit is driven by the scarcity or complete lack
of corresponding IDS rules. Thus, we can assume XIT =0, X,l =
{IDS,}, with fx(IDS;(v)) = |IDS,(v)|, and instantiate Equation 14 as
follows.

1
PW) = pips,w (15)

Fig. 5 shows the effect of variable IDS,(v) on the likelihood for
various values of the parameter 8. As an example, for § = 0.25,
the existence of 3 known IDS rules associated with a vulnerability
v cuts the likelihood of exploiting v approximately in half.

The likelihood metric can be used to compute the probabili-
ties associated with the edges of a vulnerability graph. When at-
tempting to penetrate a complex networked system, attackers usu-
ally engage in multi-step attacks, which can be modeled through
vulnerability graphs, as described in Section 4.2. At every step of
the attack, adversaries will typically be able to choose among sev-
eral vulnerabilities to exploit next in order to advance the attack.
Therefore, for each node in the vulnerability subgraph, we need
to compute a probability distribution over the outgoing ENABLES
edges. As all the variables that can influence the attacker’s choice
of vulnerabilities to exploit have been factored into each vulner-
ability’s likelihood, this probability distribution can be computed
by normalizing the likelihood values of the enabled vulnerabilities
and using the normalized values to label the corresponding EN-
ABLES edges. Therefore, given an ENABLES edge e = (u, v) (shown
in Fig. 6), the probability of exploiting v after u is given by

P V)
S, o) 16
Zv/s.t(u.v/)sE P ) (16)

We now formalize the exposure factor as a function ef : V —
[0, 1] defined by Eq. 17.

HX o (] — e*OlX‘fx(X(V)))
€ e
HX o eBx fx(X())
€te

Pr(e) =

ef(v) = (17)

Similar to the likelihood, each variable contributes to the ex-
posure factor as a multiplicative factor between 0 and 1 that ac-
counts for diminishing returns. Factors corresponding to variables
in &) are of the form 1 — e~ /xX®) and factors corresponding
to variables in X, are of the form m = e PxfxXW) Again,
we assume that each product evaluates to 1 when the correspond-
ing set of variables is empty, i.e,, [[xcy (-..) =1 when X = 0.

6. Experimental evaluation

This section describes the experiments we conducted to evalu-
ate the proposed framework. In our previous work (Iganibo et al.,
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Fig. 6. Example of edges in the SCIBORG graph model.

2021), we validated our approach by aggregating vulnerability-level
metrics into a Common Weakness Enumeration (CWE) score for
each CWE category and compared our ranking of CWEs against
MITRE’s CWE Top 25 Most Dangerous Software Weaknesses'?. The
results indicated that, when our framework is tuned to reproduce
MITRE’s experimental setting as closely as possible, the correlation
between our ranking and MITRE'’s ranking is between 80% and 90%.
Having already validated the general principles of our approach,
this section will focus on reporting the results of experiments in
various attack and defense scenarios. In each scenario, we make as-
sumptions about the information available to the attacker — which
results in the choice of variables to be included in X[T and Xﬁ -
and the information available to the defender - which results in
the choice of variables to be included in XJ and Xj. We assume
that any information that is available to the attacker is also avail-
able to the defender, but not all information that is available to the
defender is also available to the attacker. For instance, both the at-
tacker and the defender are aware of known IDS rules associated
with a vulnerability, but only the defender knows which rules are
actually deployed within their systems.

The goal of the experiments described here is to understand
how considering different combinations of variables leads to dif-
ferent rankings of vulnerabilities and how increasing the number
of variables considered leads to more fine-grained rankings and
an improved ability to discriminate between different vulnerabil-
ities while prioritizing mitigation and remediation. The goal is not
to directly compare our approach to CVSS, but rather to augment
rankings based on CVSS Base scores alone by factoring in more
variables, which may include, but are not limited to, CVSS Environ-
mental scores, thus making our approach more general and flexi-
ble.

In our evaluation, we considered CVEs from 2020 and 2021, for
a total of 33,741 vulnerabilities as of October 22, 2022, and ranked

12 https://cwe.mitre.org/top25/
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Table 3
Variables considered in each scenario.
X! Xt x)

Scenario 1 {CVSS_Exploitability} [ [
Scenario 2 ] [ {CVSS_Impact}
Scenario 3 {CVSS_Exploitability} (7] {CVSS_Impact}
Scenario 5 {CVSS_Exploitability},{Vuln_Exploit} {Known_IDS_Rules} {CVSS_Impact}
Scenario 6 {CVSS_Exploitability },{Vuln_Exploit} {Known_IDS_Rules}{Vuln_Plugins} {CVSS_Impact}
Scenario 7 {CVSS_Exploitability},{Age} {Known_IDS_Rules} {CVSS_Impact}

them based on the severity score defined by Eq. 18 below.
s)=p)-ef(v) (18)

We considered 7 different attack-defense scenarios, with each
scenario resulting in a different choice of variables for XIT, Xll, XeT

and Xj. Table 3 shows the variables considered in each scenario.
As a baseline, we considered only one variable in each of scenar-
ios 1 and 2, and more variables in the remaining scenarios. Note
that all the variables considered in the 7 scenarios of Table 3 cap-
ture publicly available scores and vulnerability data. To customize
the rankings for their specific environment, administrators can add
variables that capture environment-specific information, such as
the sets of IDS rules actually deployed across the system.

In the following, we use the term r-ranking to denote a rank-
ing comprising the top r distinct values of the severity score and
showing the number of CVEs that are assigned that particular
score. For each scenario, and for each rank r, we first compute how
much the r-ranking deviates from the ideal scenario. The ideal sce-
nario can be described as a ranking in which all the r most severe
vulnerabilities have different severity scores (i.e., there are no ties
between vulnerabilities).

> (ICVEm| -1)°

8(r) = .

(19)

Then, we compute a quality score Q(r) using the following
equation.

Q(r) = e 7%0 (20)

where y is a tunable parameter. This score is higher when the
ranking is closer to the ideal scenario, with Q(r) =1 when each
vulnerability has a different score. The score decreases when there
are more vulnerabilities with the same score or the number of vul-
nerabilities per rank is less uniform.

6.1. Scenario 1

In this scenario, we considered the CVSS Exploitability score as
the only variable in the set /\,’1T defined by Equation 10. No vari-

ables were considered for the other three sets, Xﬁ, XJ, and Xei.
Equation 14 and 17 can be rewritten as follows for scenario 1.

p) = l‘[ (1 — e—ax-fx<><(v>>)

Xe{CVSS_Exploitability}

ef(v) =1

Table 4 shows the results for Scenario 1. For each rank r, the
table shows the value of the severity score, the number of CVEs
with that severity score, the cumulative number of vulnerabilities
with that or higher severity score, the standard deviation, and the
quality score of the partial ranking ending at r. In an ideal scenario,
when vulnerabilities are ranked there should be no ties between
CVEs, i.e., each CVE should have its unique score. Instead, the table
shows that, for each of the top r distinct values of the severity

Table 4
Ranking of CVEs in Scenario 1.

Rank  Score # CVEs  Cumulative  Deviation Quality Score
1 091792 9308 9,308 9307.0000  0.00%
2 0.88352 9570 18,878 9438.9091  0.00%
3 0.86466 4683 23,561 8167.1524  0.00%
4 0.81732 3098 26,659 7240.4859  0.00%
5 0.80309 550 27,209 6480.7398  0.00%
6 0.74716 99 27,308 5916.2143  0.00%
7 0.72057 181 27,489 5477.7726  0.00%
8 0.70624 255 27,744 5124.7739  0.00%
9 0.66713 25 27,769 4831.6898  0.00%
10 0.62281 5027 32,796 4851.4711  0.00%

score, there are multiple vulnerabilities (even thousands) with the
same score. As shown in the table, the cumulative number of CVEs
with one of the top 10 values of the severity score is 32,796 out of
the 33,741 we considered, which makes this ranking not useful in
practice.

The quality score defined by Eq. 20 helps determine how much
the ranking deviates from the ideal scenario. This score is an ex-
ponential function of the standard deviation between the numbers
of vulnerabilities for each rank and a vector of 1/s corresponding
to the ideal scenario (see Eq. 19). The quality score goes asymp-
totically to O as the standard deviation increases. Scenario 1 shows
a high number of CVEs having the same severity score. This re-
sults in a high standard deviation and consequently in a virtually
0 quality score. Intuitively this ranking does not provide significant
help for security administrators to make informed decisions when
it comes to prioritizing vulnerability remediation. These results can
be explained by examining Eq. 3, which defines the exploitability
as a function of three variables, each of which can have only 3 pos-
sible values, resulting in a maximum of 27 possible values.

6.2. Scenario 2

In this scenario, we considered the CVSS Impact score as the
only variable in the set XeT defined by Equation 10. No variables

were considered for the other three sets, XIT, Xli, and Xel. Equa-
tion 14 and 17 can be rewritten as follows for scenario 2.

p) =1

efn)= ]

Xe{CVSS_Impact}

(‘l _e~oxfx (X(U)))

As shown in Table 5, the quality of the resulting ranking is
again practically 0, due to the high number of vulnerabilities with
the same score. These results can be explained by examining Eq. 2,
which defines the impact as a function of three variables, each of
which can have only the same 3 possible values, resulting in a
maximum of 10 possible values (number of combination with rep-
etition). Thus, the ability of a metric based solely on the CVSS im-
pact score to discriminate among different vulnerabilities is even
less than the metric used in the previous scenario, as confirmed
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Table 5
Ranking of CVEs in Scenario 2.

Rank  Score # CVEs  Cumulative  Deviation Quality Score

1 091792 4150 4150 4149.0000  0.00%
2 0.90699 7 4157 2933.7891 0.00%
3 0.89974 112 4269 2396.2859  0.00%
4 0.88057 46 4315 2075.3664  0.00%
5 0.85773 38 4353 1856.3379  0.00%
6 0.82183 885 5238 1732.5996  0.00%
7 0.79810 10,596 15,834 4313.8553  0.00%
8 0.70624 2034 17,868 4098.7578  0.00%
9 0.51568 15,873 33,741 6551.6657  0.00%
Table 6

Ranking of CVEs in Scenario 3.

Rank  Score # CVEs  Cumulative  Deviation  Quality Score
1 0.84257 867 867 866.0000  0.02%
2 0.82589 35 902 612.8262  0.22%
3 0.81099 717 1619 649.0424  0.15%
4 0.80829 10 1629 562.1052  0.36%
5 0.79494 7 1636 502.7693  0.66%
6 0.79369 745 2381 550.3667  0.41%
7 0.78732 10 2391 509.5519  0.61%
8 0.78424 2 2393 476.6423  0.85%
9 0.77799 11 2404 4493950  1.12%
10 0.77797 26 2430 426.4068  1.41%

by the fact that all 33,741 vulnerabilities considered are assigned
one of only 9 different scores.

6.3. Scenario 3

In this scenario, we considered the CVSS Exploitability score as
the only variable in the set Xﬁ defined by Equation 10 and the

CVSS Impact score as the only variable in the set XeT defined by
Equation 10. No variables were considered for the other two sets,
Xﬁ and Xei. Equation 14 and 17 can be rewritten as follows for
scenario 3.

p) = I1

Xe{CVSS_Exploitability}

efmy= I

Xe{CVSS_Impact}

(] _ e_aX'fX(X(V)))
(‘l _ e—a)(‘fx(x('/)))

As shown in Table 6, the quality of the resulting ranking starts
to improve as the combined effect of multiple variables allows to
better discriminate between different vulnerabilities, although the
ranking is still far from the ideal case. The top 10 values of the
severity score now involve “only” 2430 CVEs, an order of magni-
tude less than the previous 2 scenarios.

This scenario is directly comparable to a scenario in which CVSS
Base Score is used to rank vulnerabilities. Although our severity
score formula is different from the CVSS Base Score formula, both
are ultimately functions of two variables that can assume only a
limited number of discrete values, 27 and 10 respectively, thus
limiting their ability to provide a useful ranking of vulnerabilities.
With subsequent scenarios, we show how considering more vari-
ables improves the quality of the ranking.

6.4. Scenario 4

In this scenario, in addition to the CVSS Exploitability score and
the CVSS Impact score, we considered the set of known IDS rules
as a variable in Xﬁ, with fx defined as the cardinality of the set
of rules. Equation 14 and 17 can be rewritten similarly to what we
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Table 7
Ranking of CVEs in Scenario 4.

Rank  Score # CVEs  Cumulative  Deviation  Quality Score
1 0.50156 821 821 820.0000  0.03%
2 0.49163 35 856 580.3258  0.30%
3 048115 10 866 473.8625  0.88%
4 0.47695 712 1578 542.9452  0.44%
5 0.46867 10 1588 485.6416  0.78%
6 0.46751 7 1595 4433349  1.19%
7 0.46532 730 2325 4943561  0.71%
8 0.45978 2 2327 462.4280  0.98%
9 0.45755 11 2338 4359940  1.28%
10 045611 26 2364 413.6958  1.60%
Table 8
Ranking of CVEs in Scenario 5.
Rank  Score # CVEs  Cumulative  Deviation  Quality Score
1 033152 1 1 0.0000 100.00%
2 031910 1 2 0.0000 100.00%
3 031229 3 5 1.1547 98.85%
4 029519 2 7 1.1180 98.89%
5 0.28825 8 15 3.2863 96.77%
6 0.27745 2 17 3.0277 97.02%
7 027153 4 21 3.0237 97.02%
8 025819 1 22 2.8284 97.21%
9 0.24028 2 24 2.6874 97.35%
10 0.19558 1 25 2.5495 97.48%

have shown for previous scenarios.

[Txefcvss_Exploitability} (1 —e ol (X(U)))

[ IxeiKknown_iDS_Rules} ePx S (X))

efny=" ]

Xe{CVSS_Impact}

p) =

(‘l _e~oxfx (X(U)))

As shown in Table 7, the quality of the resulting ranking im-
proves slightly compared to scenario 3. The relatively small in-
crease is due to the fact that most CVEs have either no or only
one associated IDS rule. However, new rules can be defined over
time.

6.5. Scenario 5

In this scenario, in addition to the variables considered in Sce-
nario 4, we considered the set of vulnerability exploits potentially
available to the attacker as a variable in X,T, with fy defined as the
cardinality of the set of exploit. Equation 14 and 17 can be rewrit-
ten similarly to what we have shown for previous scenarios.

HXe{CVSS,EproitabiIity,VuIn,Eproit} (1 - efaX'fX(x(v)))
) PR

p) =

HXG{Known,IDS,RuIe

ef(v) = I

Xe{CVSS_Impact}

(] _ e*OlX‘fx(X(U)))

As shown in Table 8, the quality score of the ranking improves
significantly, reaching 97% for r = 10. For r =2 the quality score
is 100% as there is exactly one CVE for each of the top 2 sever-
ity scores. This can be explained by considering that vulnerability
exploits are publicly available for a relatively small number of vul-
nerabilities, thus favoring these vulnerabilities over many others. It
is also worth nothing that, as more variables are considered, the
highest severity score becomes smaller. This is expected, as we are
multiplying more factors between 0 and 1, but this does not affect
our results, as we are interested in the relative ranking of vulnera-
bilities rather than in their absolute scores.



M. Albanese, 1. Iganibo and O. Adebiyi

Table 9
Ranking of CVEs in Scenario 6.

Rank  Score # CVEs  Cumulative  Deviation  Quality Score
1 033152 1 1 0.0000 100.00%
2 031910 1 2 0.0000 100.00%
3 031229 2 4 0.5774 99.42%
4 029519 2 6 0.7071 99.30%
5 0.28825 8 14 3.1937 96.86%
6 027745 2 16 2.9439 97.10%
7 0.27153 4 20 2.9520 97.09%
8 0.25819 1 21 2.7613 97.28%
9 0.24321 1 22 2.6034 97.43%
10 0.24028 2 24 2.4900 97.54%
Table 10
Ranking of CVEs in Scenario 7.

Rank  Score # CVEs  Cumulative  Deviation  Quality Score
1 0.84228 1 1 0.0000 100.00%
2 0.84227 1 2 0.0000 100.00%
3 0.84226 4 6 1.7321 98.28%
4 0.84226 1 7 1.5000 98.51%
5 0.84226 1 8 1.3416 98.67%
6 0.84226 3 11 1.4720 98.54%
7 0.84225 3 14 1.5584 98.45%
8 0.84225 1 15 1.4577 98.55%
9 0.84224 1 16 1.3744 98.64%
10 0.84224 2 18 1.3416 98.67%

6.6. Scenario 6

In this scenario, in addition to the variables considered in Sce-
nario 5, we considered the set of vulnerability scanning plugins as
a variable in Xll, with fy defined as the cardinality of the set of
plugins. Eqs. 14 and 17 can be rewritten similarly to what we have
shown for previous scenarios.

(‘l _ e*ax-fx(x(")))
eBx-fx(X)

l_[Xe{CVSS_Eproita bility,Vuln_Exploit}
p) =

HXE[Known_lDS_RuIes.VuIn_PIugins}

ef(v) = 1‘[ (1 — efaxfx(xw)))

Xe{CVSS_Impact}

As shown in Table 9, the quality score of the ranking improves
slightly compared to Scenario 5. The almost negligible improve-
ment may be explained with these two arguments: (i) once the
quality score has reached over 95%, additional improvements can-
not be expected to be significant due to a diminishing returns ef-
fect; and (ii) the vulnerabilities for which the hacker community
has developed exploits may be those that vulnerability scanning
vendors prioritize in the development of plugins. In other words,
if two variables are highly correlated, including both of them in
the computation of vulnerability metrics may produce only a slight
improvement over scenarios in which only one of them is used.

6.7. Scenario 7

In this scenario, we consider the variables considered in Sce-
nario 4 and the age of a vulnerability. Equation 14 and 17 can be
rewritten as follows.

1 — e~uxfx (X(V)))
eBx-xX)

HXE{CVSS_Eproita bility,Age} (

p) =

HXE{KHOWH_|DS_RU|SS}
ef(v) = 1_[ (1 _ e—ax-fx<X(v>))
Xe{CVSS_Impact}

As shown in Table 7, the quality score of the resulting rank-
ing is comparable to that obtained in the previous two scenarios.
Once again, this can be explained by considering that the age of a
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vulnerability is correlated with the availability of both exploits and
plugins. In fact, as the vulnerability ages, more plugins and exploits
are developed.

7. Conclusions

In this paper, to address the lack of principled approaches to
quantify various dimensions of vulnerabilities and provide scoring
capabilities that can adapt to different domains, we introduced a
vulnerability metrics framework that extends and generalizes our
previous metrics for evaluating the exploitation likelihood of a vul-
nerability and the exposure factor of system components to vulner-
ability exploits. We showed how the choice of variables to consider
in the calculation of either metric can influence the quality of the
resulting ranking. As part of our future work, we plan to further
investigate the idea that attacker and defender models can inform
the selection of variables to consider, and we will also study the
correlation between different variables in order to avoid unneces-
sary calculation that do not help refine the ranking.
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