
Computers & Security 132 (2023) 103382

Contents lists available at ScienceDirect

Computers & Security

journal homepage: www.elsevier.com/locate/cose

A framework for designing vulnerability metrics

Massimiliano Albanese
∗, Ibifubara Iganibo , Olutola Adebiyi

George Mason University, 4400 University Blvd, Fairfax, 22030, Virginia, USA

a r t i c l e i n f o

Article history:

Received 5 December 2022

Revised 23 June 2023

Accepted 4 July 2023

Available online 8 July 2023

Keywords:

Vulnerability analysis

Vulnerability graphs

Vulnerability metrics

Vulnerability scoring systems

a b s t r a c t

Vulnerability analysis has long been used to evaluate the security posture of a system. Different ap-

proaches, including vulnerability graphs and various vulnerability metrics, have been used to study the

vulnerability landscape and provide security analysts with cyber situational awareness. However, most

current solutions still lack a principled approach to quantifying various dimensions of known vulnerabil-

ities in a way that can easily adapt to different applicative domains and operating conditions. To address

this limitation, we introduce a vulnerability metrics framework that extends and generalizes our previ-

ous metrics for evaluating the exploitation likelihood of a vulnerability and the exposure factor of system

components to vulnerability exploits. We argue that the factors influencing these metrics and their rel-

ative weights depend on the specific applicative domain, defender’s priorities, and attacker’s knowledge.

Thus, instead of providing a static set of equations, we establish a framework for instantiating the equa-

tions that best model the scenario being considered. We combine likelihood and exposure factor metrics

into a severity score that allows us to rank vulnerabilities. In our evaluation, we demonstrate that rank-

ing vulnerabilities solely based on their CVSS scores is not sufficient for effective prioritization, due to

the limited number of possible distinct severity values compared to the sheer number of existing vul-

nerabilities. We define a ranking quality score and show that considering additional information about

vulnerabilities helps refine their ranking, providing more actionable intelligence to security analysts.

© 2023 Elsevier Ltd. All rights reserved.

1

r

a

a

b

a

m

a

J

e

o

t

s

r

f

p

r

l

s

p

b

r

M

2

t

v

b

d

b

t

i

u

i

t

a

h

0

. Introduction

Vulnerability analysis has long been used to evaluate the secu-

ity posture of systems and their ability to respond to multi-step

ttacks. Different approaches – including topological vulnerability

nalysis and a vast array of scoring and ranking systems – have

een developed to study the properties of individual vulnerabilities

nd the relationships among multiple vulnerabilities, with the ulti-

ate objective of providing security analysts with cyber situational

wareness about the current vulnerability landscape (Albanese and

ajodia, 2018; Albanese et al., 2013; Ammann et al., 2002; Jajodia

t al., 2005).

More recently, vulnerability graphs have been adopted as part

f a multi-layer graph approach to configuration analysis and op-

imization, referred to as SCIBORG (Soroush et al., 2020). As cyber

ystems are becoming more complex and interconnected, configu-

ation analytics and optimization are becoming increasingly critical

or their correct and secure operation. Attackers usually rely on un-

atched vulnerabilities and configuration errors to gain unautho-

ized access to system resources. Misconfiguration can occur at any
∗ Corresponding author.

E-mail address: malbanes@gmu.edu (M. Albanese) .

a

n

s

p

ttps://doi.org/10.1016/j.cose.2023.103382

167-4048/© 2023 Elsevier Ltd. All rights reserved.
evel of a system’s software architecture, and correctly configuring

ystems becomes more complex when many interconnected com-

onents are involved. In 2017, Security Misconfiguration was listed

y OWASP amongst the ten most critical web application security

isks (van der Stock et al., 2017).

However, in the most recent OWASP ranking of software risk,

isconfiguration moved higher in the ranking (van der Stock et al.,

021). SCIBORG’s multi-faceted approach aims at modeling rela-

ionships between the components, configuration parameters, and

ulnerabilities of a complex system by ingesting data from a num-

er of different data sources, including but not limited to system

ocumentation, operating procedures, and reports from vulnera-

ility scanners. The resulting graph model is then analyzed with

he goal of improving the security of the system while preserv-

ng its functionality. Correctly quantifying the risk represented by

npatched vulnerabilities is critical for this process to effectively

mprove a system’s security.

Most current solutions still lack a principled approach to quan-

ifying various dimensions of the problem in a way that can easily

dapt the scoring and ranking of known vulnerabilities to different

pplicative domains and operating conditions. The Common Vul-

erability Scoring System (CVSS) defines a Base score and allows

ecurity administrators to augment the Base score by using Tem-

oral and Environmental metrics in order to yield a severity rat-

https://doi.org/10.1016/j.cose.2023.103382
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2023.103382&domain=pdf
mailto:malbanes@gmu.edu
https://doi.org/10.1016/j.cose.2023.103382

M. Albanese, I. Iganibo and O. Adebiyi Computers & Security 132 (2023) 103382

i

t

r

c

w

s

s

i

i

c

d

d

i

o

v

t

t

k

d

t

l

l

m

n

w

a

C

i

t

i

i

e

p

a

g

c

a

f

t

w

d

t

f

r

s

p

e

S

r

b

o

T

a

S

f

2

t

o

f

t

m

m

m

s

m

a

2

l

t

v

s

p

t

R

s

a

s

p

t

t

p

s

n

g

C

d

a

n

a

s

s

b

t

s

S

a

i

f

n

t

i

n

3

i

r

i

w

(

t

w

r

W

p

g

b

3

e

d

(

ng that better aligns with their unique environment. Environmen-

al metrics are specific to an organization and include attributes

elated to business criticality of the exposed asset, mitigations or

ompensating controls that are in place. However, administrators

ould be required to score each vulnerability with respect to each

ubmetric based on their specific environment, which is time con-

uming and prone to errors and to the subjectivity of the admin-

strators themselves. Additionally, as shown for the base metrics

n Sections 6.1 and 6.2 , the small number of discrete values that

an be assigned to each submetric results in a limited number of

istinct severity score values. To address this limitation, we intro-

uce a vulnerability metrics framework that extends and general-

zes our previous metrics for evaluating the exploitation likelihood

f a vulnerability and the exposure factor of system components to

ulnerability exploits (Iganibo et al., 2021). We argue that the fac-

ors influencing these metrics and their relative weights depend on

he specific applicative domain, defender’s priorities, and attacker’s

nowledge. Thus, instead of providing a static set of equations, we

efine a framework that allows its users to instantiate the equa-

ions that best model the scenario being considered. We combine

ikelihood and exposure factor metrics into a severity score that al-

ows us to rank vulnerabilities. Our approach aims at allowing ad-

inistrators to improve their ability to discriminate between vul-

erabilities with very similar severity levels and to isolate those

hich pose the greatest risk to their organization. In our evalu-

tion, we demonstrate that ranking vulnerabilities based on their

VSS scores alone is not sufficient to provide a high-quality rank-

ng, as there may be thousands of vulnerabilities being assigned

he same identical score. Instead, we show that considering more

nformation about vulnerabilities helps refine their ranking, provid-

ng more actionable intelligence to security analysts.

In summary, the key contributions of this paper are: (i) a gen-

ral framework for defining two key vulnerability metrics: ex-

loitation likelihood and exposure factor; (ii) an inventory of vari-

bles that can potentially affect either of these two metrics; (iii)

eneral principles for selecting variables to be considered in the

omputation of these two metrics, and (iv) a metric to evalu-

te the quality of the resulting vulnerability ranking. Overall, our

ramework aims at guiding security administrators in the defini-

ion of metrics that are suitable for the specific environment in

hich they are being deployed by giving them control over the

ata and corresponding variables that are used in the computa-

ion of the metrics and the relative weights of such variables. Dif-

erently from CVSS Environmental scores, administrators are not

equired to score each vulnerability with respect to a predefined

et of submetrics, although any environmental submetric could in

rinciple be used as a variable in our model, making it more gen-

ral, flexible, and usable.

The remainder of the paper is organized as follows.

ection 2 discusses related work, whereas Section 3 summa-

izes current standards in vulnerability scoring and provides a

rief overview of IDS rules. Next, Section 4 gives an overview

f the SCIBORG model introduced in (Soroush et al., 2020).

hen, Section 5 introduces the proposed vulnerability metrics,

nd Section 6 reports on the results of our evaluation. Finally,

ection 7 gives some concluding remarks and outlines possible

uture research directions.

. Related work

The goal of vulnerability management is to effectively and in-

elligently prioritize remediation effort s based on actionable rec-

mmendations that consider both external variables and intrinsic

eatures of existing vulnerabilities. It is important to understand

he threat landscape in order to reduce the attack surface and re-

ediate or mitigate the threats. Configuration analytics and opti-
2
ization aim at reducing the attack surface, making it critical to

easure a system’s susceptibility to attacks. Over the years, re-

earchers and practitioners have proposed various attack surface

easurement techniques and metrics (Bopche et al., 2019; Man-

dhata and Wing, 2011; Stuckman and Purtilo, 2012; Yoon et al.,

020). However, these techniques do not typically consider the re-

ationships between system components, vulnerabilities, configura-

ions, and attacker’s knowledge of the system. This limitation pre-

ents existing metrics from accurately measuring a system’s attack

urface. More recently, research has been done to ascertain the im-

ortance of the information an adversary has about the system

o enhance remediation and mitigation plans (Goohs et al., 2022).

emediation and mitigation effort s are resource-intensive and are

ubject to constraints in large networked systems. To adequately

dopt countermeasures to attacks, an accurate assessment of the

ystem’s susceptibility is necessary. Furthermore, to develop com-

rehensive cyber situational awareness [8], and in line with more

raditional risk analysis approaches, one has to distinguish between

he likelihood that a vulnerability might be exploited and the im-

act a successful exploitation would cause. Current approaches to

coring and ranking of vulnerabilities are coarse-grained and do

ot consider the specific features of a system. A recent study ar-

ues that the severity score of a vulnerability as calculated by the

ommon Vulnerability Scoring System (CVSS) (Spring et al., 2021)

oes not directly reflect the risk represented by that vulnerability

nd how quickly one should respond to it. Furthermore, CVSS does

ot handle relationships between vulnerabilities. Different vulner-

bility metrics have varying levels of relevance depending on the

pecific context and application, therefore it is important to con-

ider different attack models in defining metrics for guiding risk-

ased decisions.

There have been other research efforts focused on prioritiza-

ion and remediation of vulnerabilities using data other than CVSS

cores. One such effort resulted in the Exploit Prediction Scoring

ystem (EPSS) (Jacobs et al., 2021), which is an open, data-driven

pproach for estimating the likelihood that a software vulnerabil-

ty will be exploited in the wild, using current threat information

rom CVE and real-world exploit data. However, this model does

ot consider the impact of vulnerability exploits.

The approach we propose in this paper addresses these limita-

ions by creating a general and customizable framework for defin-

ng vulnerability metrics, building upon existing literature on vul-

erability graphs and vulnerability scoring.

. Technical background

The approach to designing vulnerability metrics that we present

n this article generalizes our previous work on vulnerability met-

ics (Iganibo et al., 2021), and relies on any vulnerability-specific

nformation that is available to the users of the metrics frame-

ork, including data from the National Vulnerability Database

NVD), vulnerability scores computed through CVSS, and reposi-

ories of Intrusion Detection System (IDS) rules. In our previous

ork (Iganibo et al., 2021; 2022), we used vulnerability-level met-

ics to compute aggregate scores for weaknesses in the Common

eakness Enumeration (CWE) maintained by MITRE, and com-

ared our CWE rankings against MITRE’s CWE Top 25 Most Dan-

erous Software Weaknesses. The following subsections provide a

rief overview of NVD, CVSS, CWSS, and IDS rules.

.1. NVD

The National Vulnerability Database (NVD) is the U.S. gov-

rnment repository of standards based vulnerability management

ata represented using the Security Content Automation Protocol

SCAP), and is maintained by the National Institute of Standards

M. Albanese, I. Iganibo and O. Adebiyi Computers & Security 132 (2023) 103382

a

b

V

c

a

t

w

V

3

T

n

p

s

d

S

t

m

l

r

f

p

w

a

r

o

o

i

t

o

C

l

l

c

i

m

P

p

C

A

t

a

s

B

w

E

s

p

I

E

a

Table 1

Impact metrics.

Confidentiality Integrity Availability

Impact (I C) Impact (I I) Impact (I A)

None 0.000 0.000 0.000

Partial 0.275 0.275 0.275

Complete 0.660 0.660 0.660

Table 2

Exploitability metrics.

Access Compl. (AC) Authentication (A) Access Vector (AV)

High 0.35 Multiple 0.450 Local 0.395

Medium 0.61 Single 0.560 Adjacent 0.646

Low 0.71 None 0.704 Network 1.000

A

T

i

u

l

n

d

3

v

w

i

W

t

c

c

h

t

m

C

t

t

i

o

r

i

E

e

C

F

s

s

a

F

2 https://cwe.mitre.org/
nd Technology (NIST). This data enables automation of vulnera-

ility management, security measurement, and compliance.

NVD
1 is built upon and fully synchronized with the Common

ulnerabilities and Exposures (CVE) list of publicly known cyberse-

urity vulnerabilities. The CVE repository is maintained by MITRE

nd includes various details about each vulnerability – identifica-

ion number, description, and public references. NVD augments it

ith severity scores, and impact ratings based on the Common

ulnerability Scoring System.

.2. CVSS

As stated by the Forum of Incident Response and Security

eams (FIRST) – which currently maintains it – the Common Vul-

erability Scoring System (CVSS) provides a means to “capture the

rincipal characteristics of a vulnerability and produce a numerical

core reflecting its severity”. This score is calculated based on three

ifferent metrics: (i) Base Score Metrics (required); (ii) Temporal

core Metrics (optional); and (iii) Environmental Score Metrics (op-

ional).

CVSS is currently at version 3.1, but, in our studies, we nor-

ally use CVSS version 2.10, as base scores are available for a

arger number of vulnerabilities. Temporal and Environmental met-

ics are defined to allow administrators to customize CVSS scores

or their specific environment. Our model is not intended to re-

lace CVSS but rather complement it. In fact, in our evaluation,

e used the CVSS Exploitability and Impact scores as two vari-

bles in our model, and mentioned that any environmental met-

ic, if defined, could be used as an additional variable. While the

bjective of our approach is in principle similar to the objective

f the Environmental Metrics of CVSS, we achieve that objective

n a different way, which can indeed be considered complemen-

ary to CVSS. Our approach relies on including any publicly or

therwise readily available data that can be mapped to individual

VEs (e.g., IDS rules, exploits) with minimal user effort, and it al-

ows administrators to include new variables in the calculation of

ikelihood and exposure factor in order to take this data into ac-

ount, whereas the CVSS approach relies on administrators assess-

ng each vulnerability with respect to a predefined set of environ-

ental submetrics (e.g., Modified Attack Vector (MAV), Modified

rivileges Required (MPR)), which is a time-consuming and error-

rone process. A study on the impact of environmental metrics on

VSS scores (Gallon, 2010) highlights the challenges posed by the

djusted Impact score formula in accurately reflecting the distribu-

ion of vulnerabilities and the potential limitations it introduces for

dministrators seeking to discriminate vulnerabilities within their

ystems.

CVSS Base Score is computed through Eq. 1 below.

aseScore = (0 . 6 · I + 0 . 4 · E − 1 . 5) · f (I) (1)

here I and E are the Impact and Exploitability scores defined by

qs. 2 and 3 respectively, and f (I) is defined by Eq. 4 . The Impact

core quantifies the consequences of an exploit, whereas the Ex-

loitability score captures how easy to exploit a vulnerability is.

 = 10 . 41 ·
(
1 − (1 − I C) · (1 − I I) · (1 − I A)

)
(2)

 = 20 · AC · A · AV (3)

f (I) =

{
0 , if I = 0
1 . 176 , otherwise

(4)

The I C , I I , and I A scores in Eq. 2 are the confidentiality, integrity,

nd availability impact respectively, as defined in Table 1 .
1 https://nvd.nist.gov/ m

3
The AC, A , and AV scores in Eq. 3 are the exploitability metrics

ccess Complexity, Authentication, and Access Vector, as defined in

able 2 .

It is important to note that, since all the submetrics involved

n their computation can assume one of only a few discrete val-

es, the Impact and Exploitability scores will also have one of a

imited number of discrete values. Thus, ranking thousands of vul-

erabilities based on their CVSS scores is unpractical, as we will

emonstrate later in Section 6 .

.3. CWE and CWSS

Common Weakness Enumeration (CWE) is a system that pro-

ides a structured list of clearly defined software and hardware

eaknesses 2 . A software weakness is not necessarily a vulnerabil-

ty, but weaknesses may become vulnerabilities. MITRE’s Common

eakness Scoring System (CWSS) provides a mechanism for priori-

izing software weaknesses that are present within software appli-

ations in a consistent and flexible manner 3 . It is a collaborative,

ommunity-based effort that is addressing the needs of its stake-

olders across government, academia, and industry.

CWSS is organized into three metric groups: Base Finding, At-

ack Surface, and Environmental. Each group includes multiple

etrics – also known as factors – that are used to compute a

WSS score for a weakness. While discussing the formulation of

hese metrics goes beyond the scope of this paper and we refer

he reader to the documentation for further details, in the follow-

ng we describe the method MITRE used to rank the most danger-

us weaknesses: in our previous work (Iganibo et al., 2021), we

elied on this approach to validate our metrics, as explained later

n Section 6 .

Eq. 5 defines the set of CVEs mapped to a given CWE, and

q. 6 defines the number of times each CWE is mapped to CVE

ntries 4

 (C W E i) = { CV E j ∈ NV D, CV E j → CW E j } (5)

 reqs = {| C (C W E i) | , C W E i ∈ NV D } (6)

Then Eqs. 7 and 8 respectively compute the frequency and

everity of a CWE, where the severity is based on the average CVSS

core. Both the frequency and severity are normalized between 0

nd 1.

 r (C W E i) =

| C (C W E i) | − min (F req)

max (F req) − min (F req)
(7)
3 https://cwe.mitre.org/cwss/
4 We slightly abuse notation and use CW E i ∈ NV D to denote a CWE that is

apped to at least one CVE entry in NVD.

https://nvd.nist.gov/
https://cwe.mitre.org/
https://cwe.mitre.org/cwss/

M. Albanese, I. Iganibo and O. Adebiyi Computers & Security 132 (2023) 103382

Fig. 1. Snort rules associate with different CVEs.

S

o

S

3

a

h

c

k

i

f

l

o

c

m

t

s

C

r

m

b

w

m

t

f

t

a

4

t

i

T

a

t

Fig. 2. Network diagram of a notional distributed system.

Fig. 3. The SCIBORG graph for the system of Fig. 2 .

t

a

I

g

t

t

n

T

b

p

t

s

m

t

t

4

t

r

a

m

v (CW E i) =

a v g CW E i (CV SS) − min (CV SS)

max (CV SS) − min (CV SS)
(8)

Finally Eq. 9 defines the overall score of a CWE as the product

f its frequency and severity, normalized between 0 and 100.

core (CW E i) = F r (CW E i) · Sv (CW E i) · 100 (9)

.4. IDS rules

In our approach, we use Intrusion Detection System (IDS) rules

s one of the factors influencing the computation of both the likeli-

ood of a vulnerability exploit and the exposure factor of a system

omponent to a vulnerability. However, we distinguish between

nown and deployed rules, and only consider rules that are explic-

tly mapped to CVE entries. We use the term known IDS rule to re-

er to any IDS rule that is available to the community through pub-

icly accessible repositories. Our assumption is that the existence

f known IDS rules associated with a given vulnerability may de-

rease the likelihood of exploiting that vulnerability, as an attacker

ay prefer to target vulnerabilities that can be exploited without

riggering IDS alerts. As an example, Fig. 1 shows the results of

earching the Snort rule repository for two different CVEs, that is

VE-2018-11776 and CVE-2018-12572 respectively.

Instead, we use the term deployed IDS rule to refer to any IDS

ule that is being actively used by a deployed IDS. Deployed rules

ay include a subset of known rules or ad hoc rules developed

y the system’s administrators. An attacker may not be aware of

hat IDS rules are actually in use, but early detection of intrusions

ay help mitigate the consequences of an exploit, therefore we

ake deployed rules into account in the computation of exposure

actors.

While our approach is general and does not require the adop-

ion of a specific intrusion detection system, we have used Snort 5

nd Suricata 6 .

. The SCIBORG model

This section gives a brief overview of the SCIBORG graph model

hat was presented in (Soroush et al., 2020) and that has offered an

deal case study for the vulnerability metrics we have developed.

he metrics framework we introduce in this paper is designed to

ddress current limitations of this model and similar models by in-

roducing the capability of quantifying two different dimensions of
5 https://www.snort.org/
6 https://suricata-ids.org/

p

p

r

4

he vulnerabilities being considered, which in turn may be lever-

ged to define higher level metrics, such as attack surface metrics.

t is important to note that our approach is not limited to graphs

enerated by SCIBORG. In fact, it is applicable to any graph model

hat relies on vulnerability graphs.

SCIBORG’s approach is based on modeling a distributed sys-

em as a three-layer directed graph encoding all the information

eeded to reason upon the optimality of system configurations.

he three layers are (i) a dependency subgraph; (ii) a vulnera-

ility subgraph; and (iii) a configuration subgraph. For illustrative

urposes, a three-layer graph corresponding to the notional dis-

ributed system of Fig. 2 is depicted in Fig. 3 . The following sub-

ections describe in detail the first two sub graphs, which are the

ost relevant to the scope of this paper, and we refer the reader

o our previous work (Soroush et al., 2020) for details about the

hird subgraph.

.1. Dependency subgraph

Failures of one component can impact the security and func-

ionality of other components. Therefore, globally optimal secu-

ity decisions need to rely on dependency information. Several

pproaches have been proposed to discover implicit or undocu-

ented dependencies (Bahl et al., 2006; Natrajan et al., 2012).

A node in the dependency subgraph represents a system com-

onent (host, service, etc.), and a directed edge represents a de-

endency between two components. When dependencies are accu-

ately captured, dependency graphs are expected to be acyclic. To

https://www.snort.org/
https://suricata-ids.org/

M. Albanese, I. Iganibo and O. Adebiyi Computers & Security 132 (2023) 103382

Fig. 4. Equations defining the set of variables X ↑
l
, X ↓

l
, X ↑ e , and X

↓
e introduced in Section 5.2 .

c

d

[

z

e

o

i

c

t

a

d

n

d

a

t

c

u

t

r

i

t

4

s

B

p

i

t

a

e

p

t

r

a

fi

p

f

d

J

F

t

a

l

i

a

a

5

m

o

v

f

b

t

a

i

a

m

5

p

i

p

t

a

l

v

h

r

i

b

t

t

t

t

b

o

o

t

h

t

b

c

s

s

a

c

r

a

l

p

i

apture a wide range of relationships between components, each

ependency is modeled as a function of the form f : [0 , 1] n →
0 , 1] , with f (0 , . . . , 0) = 0 and f (1 , . . . , 1) = 1 .

Each component has an intrinsic utility for the owning organi-

ation and its dependency function defines its ability to provide its

xpected utility, based on the status of the components it depends

n: the arguments of this function are the percentage residual util-

ties of those components and are in turn computed through each

omponent’s respective dependency function. A dependency func-

ion returns 1 when the component can provide 100% of its utility,

nd 0 when it has been completely compromised. Three types of

ependency relationships are identified in (Soroush et al., 2020),

amely redundancy (f r), strict dependence (f s), and graceful degra-

ation (f d), but such classification is not intended to be exhaustive,

nd other dependency relationships can be defined.

Fig. 3 includes the dependency subgraph for our notional sys-

em. An edge from h A to h B denotes that h A depends on h B . Each

omponent node is labeled with the type of dependency and its

tility. Utility values can be assigned by a domain expert or au-

omatically derived by computing graph-theoretic centrality met-

ics (Kourtellis et al., 2015). In the security field, ad-hoc central-

ty measures have been used for botnet detection and mitiga-

ion (Venkatesan et al., 2015).

.2. Vulnerability subgraph

Vulnerability subgraphs are powerful conceptual tools to repre-

ent knowledge about vulnerabilities and their dependencies. SCI-

ORG adopts a broader definition of vulnerability , but for the pur-

ose of the analysis presented in this paper we refer to vulnerabil-

ty graphs as formalized in Albanese and Jajodia (2018) . A node in

he vulnerability subgraph represents a known vulnerability, and

n edge between two vulnerabilities, referred to as an ENABLES

dge, indicates that exploiting the first vulnerability creates the

reconditions to exploit the second one. An edge from a node in

he vulnerability subgraph to a node in the dependency subgraph,

eferred to as a DEGRADES edge, indicates that the exploitation of

 given vulnerability can impact a component to an extent quanti-

ed by the exposure factor labeling that edge.

The vulnerability subgraph for our notional system is also de-

icted in Figure. 3 . This graph can be generated by combining in-

ormation from network scanners (e.g., Nessus) and vulnerability

atabases (e.g., CVE, NVD), as shown in Ammann et al. (2002) ;

ajodia et al. (2005) . The edges in the vulnerability subgraph of

ig. 3 are labeled with probabilities, which can be used to infer

he most likely paths that an attacker might take in a multi-step

ttack. Determining these probabilities is an open research prob-

em that we address in this paper, though useful heuristics ex-

st (Albanese and Jajodia, 2018; Albanese et al., 2013), based on the

ssumption that vulnerabilities that require more resources, time,

nd skill are less likely to be exploited.
5
. Vulnerability metrics

In this section, we formally define the proposed vulnerability

etrics framework, which was designed to address the limitations

f current approaches we discussed earlier. We argue that each

ulnerability is defined by its exploitation likelihood and its exposure

actor and that each of these two metrics is influenced by a num-

er of different variables. Furthermore, the specific set of variables

hat influence these metrics and their relative weights may vary

cross application domains. In the following, we first provide an

ntuitive definition of the two metrics, then model the set of vari-

bles potentially affecting their values, and finally provide a formal

athematical formulation of the two metrics.

.1. Exploitation likelihood and exposure factor

A vulnerability’s susceptibility to becoming a target for ex-

loitation by malicious users depends on a number of variables,

ncluding features of the vulnerability itself and characteristics of

otential attackers. In our previous work, we only considered in-

rinsic features of vulnerabilities, as the problem of studying an

ttacker’s skills and resources appeared to be an orthogonal prob-

em. In fact, we were interested in scoring and comparing indi-

idual vulnerabilities for a fixed attack model. Several approaches

ave been proposed in the literature to study how the skills and

esources available to different types of attackers impact their abil-

ty to compromise a target system (Leversage and Byres, 2008). To

uild upon our previous work and available literature, we argue

hat, while we continue to use variables capturing intrinsic fea-

ures of the vulnerabilities, the choice of variables to consider and

heir relative weights can be used to model different types of at-

ackers, ranging from adversaries who are only aware of a vulnera-

ility’s CVSS scores to adversaries that can perform reconnaissance

n the target systems and discover unpatched vulnerabilities.

We define the exploitation likelihood (or simply likelihood) ρ(v)
f a vulnerability v as the probability that an attacker will attempt

o exploit that vulnerability, if given the opportunity. An attacker

as the opportunity to exploit a vulnerability if certain precondi-

ions are met, most notably if they have access to the vulnera-

le host. Specific preconditions may vary depending on the spe-

ific characteristics of each vulnerability, as certain configuration

ettings may prevent access to vulnerable portions of the target

oftware.

We define the exposure factor as the relative loss of utility of

n asset due to a vulnerability exploit. The term is borrowed from

lassic risk analysis terminology, where the exposure factor (EF)

epresents the relative damage that an undesirable event – a cyber

ttack in our case – would cause to the affected asset. The single

oss expectancy (SLE) of such an incident is then computed as the

roduct between its exposure factor and the asset value (AV), that

s SLE = EF × AV .

M. Albanese, I. Iganibo and O. Adebiyi Computers & Security 132 (2023) 103382

5

s

d

d

t

i

t

r

a

a

v

s

k

t

f

t

r

v

a

t

t

v

o

h

m

t

i

b

o

t

w

a

t

o

f

C

a

t

w

c

i

t

c

a

a

c

t

R

g

r

C

f

t

v

o

i

s

w

a

q

h

c

f

p

a

f

t

w

a

p

c

m

s

b

t

5

[

ρ

p

d

t

p

i

x

a

t

v

e

b

t

v

o

u

a

a

d

.2. Variables affecting the metrics

Let V denote the set of all known vulnerabilities, X l denote a

et of variables that influence the exploitation likelihood, and X e

enote a set of variables that influence the exposure factor. We

efine X

↑
l

and X

↓
l

as the sets of variables that respectively con-

ribute to increasing and decreasing the likelihood as their values

ncrease. X

↑
l

and X

↓
l

are defined by Equations 10 and 11 respec-

ively. Similarly, we define X

↑
e and X

↓
e as the sets of variables that

espectively contribute to increasing and decreasing the exposure

s their values increase. X

↑
e and X

↓
e are defined by Equations (12)

nd (13) respectively.

Examples of variables in X

↑
l

include, but are not limited to, a

ulnerability’s exploitability score as captured by CVSS, the time

ince details about the vulnerability were published, and the set of

nown exploits.

CVSS Exploitability score . The CVSS Exploitability score cap-

ures how easy it is to exploit a vulnerability, based on different

eatures captured by various sub-metrics, most notably Access Vec-

or (AV) and Access Complexity (AC) 7 The Access Vector metric

eflects the context in which a vulnerability can be exploited. Its

alue is higher for vulnerabilities that can be exploited remotely,

nd are therefore more likely to be exploited as the number of po-

ential attackers is larger than the number of potential attackers

hat could exploit a vulnerability requiring physical access to the

ulnerable host. The Attack Complexity metric reflects the amount

f effort and resources required for a successful attack. Its value is

igher for exploits that require little or no effort, and are therefore

ore likely to be exploited.

Time since publication . The time passed since details about

he vulnerability were made public also plays a role in determin-

ng the likelihood of exploitation. In fact, the longer a vulnera-

ility has been known, the more exploits may have been devel-

ped by the hacker community. While it is true that the likelihood

hat patches have been developed also increases with time, it is

ell-known that patches are not applied promptly and consistently

cross systems, thus giving attackers a window of opportunity to

arget known but unpatched vulnerabilities.

Vulnerability Exploits . The availability of exploits and Proofs

f Concept (PoCs) associated with a vulnerability – which can be

ound in the Exploit-DB repository 8 or on MITRE’s website, where

VEs are mapped to their exploits 9 – can provide an incentive for

ttackers to exploit specific vulnerabilities.

Examples of variables in X

↓
l

include, but are not limited to,

he set of known Intrusion Detection System (IDS) rules associated

ith a vulnerability and the set of vulnerability scanning plugins.

Known IDS rules . Known IDS rules may influence the attacker’s

hoice of vulnerabilities to exploit. With systems typically expos-

ng multiple vulnerabilities, attackers may choose to avoid exploits

hat are more easily detectable.

Vulnerability scanning plugins . Vulnerability scanning tools

an provide an inventory of existing system vulnerabilities. The

vailability of plugins to confirm the existence of a given vulner-

bility may make such vulnerability less likely to be exploited be-

ause attackers my expect that defenders would use such detec-

ion capabilities to detect and mitigate that vulnerability. Tenable

esearch designs plugins written in Nessus Attack Scripting Lan-

uage (NASL) to detect vulnerabilities as they are discovered and

eleased into the general public domain. These plugins contain in-
7 Access Vector (AV) and Access Complexity (AC) are common across CVSS 2 and

VSS 3, whereas other exploitability metrics are specific to either version.
8 https://www.exploit-db.com/
9 https://cve.mitre.org/data/refs/refmap/source- EXPLOIT- DB.html

s

E

p

6
ormation about the vulnerability, set of remediation actions, and

he algorithm to test for the presence of the security issue 10 .

Examples of variables in X

↑
e include, but are not limited to, a

ulnerability’s impact score as captured by CVSS.

CVSS Impact score . The CVSS Impact score captures the impact

f a vulnerability exploit on confidentiality, integrity, and availabil-

ty.

Examples of variables in X

↓
e include, but are not limited to, the

et of deployed Intrusion Detection System (IDS) rules associated

ith a vulnerability.

Deployed IDS rules . IDS rules that are deployed on a system

nd actively monitoring for intrusions, can mitigate the conse-

uences of an exploit through timely detection.

The list of variables presented here is not intended to be ex-

austive and other variables could be identified and used in the

alculation of both the exploitation likelihood and the exposure

actor. For instance, it has been shown that the likelihood of ex-

loiting a vulnerability also depends on the position of the vulner-

ble system within an attack path (Albanese and Jajodia, 2018). In

act, a vulnerability on a perimeter network may be more likely

o be exploited than the same vulnerability on an internal net-

ork. Additionally, vulnerabilities that have similar characteristics

s those an attacker has already exploited might be more easily ex-

loited compared to completely different vulnerabilities. However,

onsidering these situational variables would require to extend the

odel in order to consider each instance of a vulnerability as a

eparate entity for the purpose of scoring and ranking. Thus it is

eyond the scope of the work presented here, but part of our fu-

ure research plans.

.3. Metrics definition

We formalize the exploitation likelihood as a function ρ : V →

0 , 1] defined by Equation 14.

(v) =

∏

X∈X ↑
l

(
1 − e −αX · f X (X(v))

)
∏

X∈X ↓
l

e βX · f X (X(v)) (14)

Each variable contributes to the overall likelihood as a multi-

licative factor between 0 and 1 that is formulated to account for

iminishing returns . Factors corresponding to variables in X

↑
l

are of

he form 1 − e −αX · f X (X(v)) , where X is the variable, αX is a tunable

arameter, X(v) is the value of X for v , and f X is a monotonically

ncreasing function used to convert values of X to scalar values, i.e.,

 1 < x 2 ⇒ f X (x 1) ≤ f X (x 2) . Similarly, factors corresponding to vari-

bles in X

↓
l

are of the form
1

e βX · f X (X(v)) = e −βX · f X (X(v)) . We assume

hat each product evaluates to 1 when the corresponding set of

ariables is empty, i.e.,
∏

X∈X (. . .) = 1 when X = ∅ .
The definition of the function f X implies that the domain of

ach variable is a totally ordered set. While not every domain may

e a totally order set, it is possible to map elements of the domain

o elements of a totally ordered set. For instance, if the values of a

ariable are sets of objects, their respective cardinalities are totally

rdered. If the function mapping the values of a variable X to val-

es of a totally ordered set is a scalar function, then it can be used

s the function f X in Eq. 14. In most cases, when the values of X

re already scalar values, we can define f X as the identity function

f X (x) = x , but in the case of the time t since the vulnerability was

isclosed, we use f X (t) =

√

t to model a less-than-linear relation-

hip, as suggested by Tripwire 11 .

xample 1 (Likelihood) . Consider a scenario in which an attacker’s

rimary goal is to avoid detection. In this case, the choice of
10 https://www.tenable.com/plugins/families/about
11 https://www.tripwire.com/solutions/vulnerability- and- risk- management

https://www.exploit-db.com/
https://cve.mitre.org/data/refs/refmap/source-EXPLOIT-DB.html
https://www.tenable.com/plugins/families/about
https://www.tripwire.com/solutions/vulnerability-and-risk-management

M. Albanese, I. Iganibo and O. Adebiyi Computers & Security 132 (2023) 103382

Fig. 5. Effect of variable IDS k (v) on the likelihood.

v

o

{

f

ρ

v

t

v

t

t

a

v

t

e

T

t

e

o

a

b

a

A

i

P

[

e

p

c

i

t

w

i

6

a

Fig. 6. Example of edges in the SCIBORG graph model.

2

m

e

M

r

M

b

H

t

v

s

r

a

t

t

a

d

t

w

a

h

f

o

a

i

t

r

v

m

b

a

12 https://cwe.mitre.org/top25/
ulnerabilities to exploit is driven by the scarcity or complete lack

f corresponding IDS rules. Thus, we can assume X

↑
l

= ∅ , X

↓
l

=
 IDS k } , with f X (IDS k (v)) = | IDS k (v) | , and instantiate Equation 14 as
ollows.

(v) =

1

e β ·| IDS k (v) | (15)

Fig. 5 shows the effect of variable IDS k (v) on the likelihood for
arious values of the parameter β . As an example, for β = 0 . 25 ,

he existence of 3 known IDS rules associated with a vulnerability

 cuts the likelihood of exploiting v approximately in half.

The likelihood metric can be used to compute the probabili-

ies associated with the edges of a vulnerability graph. When at-

empting to penetrate a complex networked system, attackers usu-

lly engage in multi-step attacks, which can be modeled through

ulnerability graphs, as described in Section 4.2 . At every step of

he attack, adversaries will typically be able to choose among sev-

ral vulnerabilities to exploit next in order to advance the attack.

herefore, for each node in the vulnerability subgraph, we need

o compute a probability distribution over the outgoing ENABLES

dges. As all the variables that can influence the attacker’s choice

f vulnerabilities to exploit have been factored into each vulner-

bility’s likelihood, this probability distribution can be computed

y normalizing the likelihood values of the enabled vulnerabilities

nd using the normalized values to label the corresponding EN-

BLES edges. Therefore, given an ENABLES edge e = (u, v) (shown

n Fig. 6), the probability of exploiting v after u is given by

r (e) =

ρ(v) ∑

v ′ s.t. (u, v ′) ∈ E ρ(v ′)
(16)

We now formalize the exposure factor as a function e f : V →

0 , 1] defined by Eq. 17 .

f (v) =

∏

X∈X ↑ e

(
1 − e −αX · f X (X(v))

)
∏

X∈X ↓ e
e βX · f X (X(v)) (17)

Similar to the likelihood, each variable contributes to the ex-

osure factor as a multiplicative factor between 0 and 1 that ac-

ounts for diminishing returns. Factors corresponding to variables

n X

↑
e are of the form 1 − e −αX · f X (X(v)) , and factors corresponding

o variables in X

↓
e are of the form

1

e βX · f X (X(v)) = e −βX · f X (X(v)) . Again,

e assume that each product evaluates to 1 when the correspond-

ng set of variables is empty, i.e.,
∏

X∈X (. . .) = 1 when X = ∅ .

. Experimental evaluation

This section describes the experiments we conducted to evalu-

te the proposed framework. In our previous work (Iganibo et al.,
7

021), we validated our approach by aggregating vulnerability-level

etrics into a Common Weakness Enumeration (CWE) score for

ach CWE category and compared our ranking of CWEs against

ITRE’s CWE Top 25 Most Dangerous Software Weaknesses 12 . The

esults indicated that, when our framework is tuned to reproduce

ITRE’s experimental setting as closely as possible, the correlation

etween our ranking and MITRE’s ranking is between 80% and 90%.

aving already validated the general principles of our approach,

his section will focus on reporting the results of experiments in

arious attack and defense scenarios. In each scenario, we make as-

umptions about the information available to the attacker – which

esults in the choice of variables to be included in X

↑
l

and X

↓
l

–

nd the information available to the defender – which results in

he choice of variables to be included in X

↑
e and X

↓
e . We assume

hat any information that is available to the attacker is also avail-

ble to the defender, but not all information that is available to the

efender is also available to the attacker. For instance, both the at-

acker and the defender are aware of known IDS rules associated

ith a vulnerability, but only the defender knows which rules are

ctually deployed within their systems.

The goal of the experiments described here is to understand

ow considering different combinations of variables leads to dif-

erent rankings of vulnerabilities and how increasing the number

f variables considered leads to more fine-grained rankings and

n improved ability to discriminate between different vulnerabil-

ties while prioritizing mitigation and remediation. The goal is not

o directly compare our approach to CVSS, but rather to augment

ankings based on CVSS Base scores alone by factoring in more

ariables, which may include, but are not limited to, CVSS Environ-

ental scores, thus making our approach more general and flexi-

le.

In our evaluation, we considered CVEs from 2020 and 2021, for

 total of 33,741 vulnerabilities as of October 22, 2022, and ranked

https://cwe.mitre.org/top25/

M. Albanese, I. Iganibo and O. Adebiyi Computers & Security 132 (2023) 103382

Table 3

Variables considered in each scenario.

X ↑
l

X ↓
l

X ↑ e

Scenario 1 { CVSS_Exploitability } ∅ ∅
Scenario 2 ∅ ∅ { CVSS_Impact }

Scenario 3 { CVSS_Exploitability } ∅ { CVSS_Impact }

Scenario 5 { CVSS_Exploitability },{ Vuln_Exploit } { Known_IDS_Rules} { CVSS_Impact }

Scenario 6 { CVSS_Exploitability },{ Vuln_Exploit } { Known_IDS_Rules},{Vuln_Plugins} { CVSS_Impact }

Scenario 7 { CVSS_Exploitability },{ Age } { Known_IDS_Rules} { CVSS_Impact }

t

s

s

a

A

i

t

t

t

v

t

i

s

s

m

n

v

b

δ

e

Q

w

r

v

a

n

6

t

a

E

ρ

e

t

w

w

q

w

C

s

Table 4

Ranking of CVEs in Scenario 1.

Rank Score # CVEs Cumulative Deviation Quality Score

1 0.91792 9308 9,308 9307.0000 0.00%

2 0.88352 9570 18,878 9438.9091 0.00%

3 0.86466 4683 23,561 8167.1524 0.00%

4 0.81732 3098 26,659 7240.4859 0.00%

5 0.80309 550 27,209 6480.7398 0.00%

6 0.74716 99 27,308 5916.2143 0.00%

7 0.72057 181 27,489 5477.7726 0.00%

8 0.70624 255 27,744 5124.7739 0.00%

9 0.66713 25 27,769 4831.6898 0.00%

10 0.62281 5027 32,796 4851.4711 0.00%

s

s

w

t

p

t

p

o

t

t

a

s

0

h

i

b

a

s

6

o

w

t

ρ

e

a

t

w

w

m

e

p

l

hem based on the severity score defined by Eq. 18 below.

 (v) = ρ(v) · e f (v) (18)

We considered 7 different attack-def ense scenarios, with each

cenario resulting in a different choice of variables for X

↑
l
, X

↓
l
, X

↑
e ,

nd X

↓
e . Table 3 shows the variables considered in each scenario.

s a baseline, we considered only one variable in each of scenar-

os 1 and 2, and more variables in the remaining scenarios. Note

hat all the variables considered in the 7 scenarios of Table 3 cap-

ure publicly available scores and vulnerability data. To customize

he rankings for their specific environment, administrators can add

ariables that capture environment-specific information, such as

he sets of IDS rules actually deployed across the system.

In the following, we use the term r-ranking to denote a rank-

ng comprising the top r distinct values of the severity score and

howing the number of CVEs that are assigned that particular

core. For each scenario, and for each rank r, we first compute how

uch the r-ranking deviates from the ideal scenario. The ideal sce-

ario can be described as a ranking in which all the r most severe

ulnerabilities have different severity scores (i.e., there are no ties

etween vulnerabilities).

(r) =

√ ∑ r
i =1

(| CV E(r) | − 1
)2

r
(19)

Then, we compute a quality score Q(r) using the following

quation.

(r) = e −γ ·δ(r) (20)

here γ is a tunable parameter. This score is higher when the

anking is closer to the ideal scenario, with Q(r) = 1 when each

ulnerability has a different score. The score decreases when there

re more vulnerabilities with the same score or the number of vul-

erabilities per rank is less uniform.

.1. Scenario 1

In this scenario, we considered the CVSS Exploitability score as

he only variable in the set X

↑
l

defined by Equation 10. No vari-

bles were considered for the other three sets, X

↓
l
, X

↑
e , and X

↓
e .

quation 14 and 17 can be rewritten as follows for scenario 1.

(v) =

∏

X∈{ CVSS _ Exploitability}

(
1 − e −αX · f X (X(v))

)
f (v) = 1

Table 4 shows the results for Scenario 1. For each rank r, the

able shows the value of the severity score, the number of CVEs

ith that severity score, the cumulative number of vulnerabilities

ith that or higher severity score, the standard deviation, and the

uality score of the partial ranking ending at r. In an ideal scenario,

hen vulnerabilities are ranked there should be no ties between

VEs, i.e., each CVE should have its unique score. Instead, the table

hows that, for each of the top r distinct values of the severity
8
core, there are multiple vulnerabilities (even thousands) with the

ame score. As shown in the table, the cumulative number of CVEs

ith one of the top 10 values of the severity score is 32,796 out of

he 33,741 we considered, which makes this ranking not useful in

ractice.

The quality score defined by Eq. 20 helps determine how much

he ranking deviates from the ideal scenario. This score is an ex-

onential function of the standard deviation between the numbers

f vulnerabilities for each rank and a vector of 1 ′ s corresponding
o the ideal scenario (see Eq. 19). The quality score goes asymp-

otically to 0 as the standard deviation increases. Scenario 1 shows

 high number of CVEs having the same severity score. This re-

ults in a high standard deviation and consequently in a virtually

 quality score. Intuitively this ranking does not provide significant

elp for security administrators to make informed decisions when

t comes to prioritizing vulnerability remediation. These results can

e explained by examining Eq. 3 , which defines the exploitability

s a function of three variables, each of which can have only 3 pos-

ible values, resulting in a maximum of 27 possible values.

.2. Scenario 2

In this scenario, we considered the CVSS Impact score as the

nly variable in the set X

↑
e defined by Equation 10. No variables

ere considered for the other three sets, X

↑
l

, X

↓
l
, and X

↓
e . Equa-

ion 14 and 17 can be rewritten as follows for scenario 2.

(v) = 1

f (v) =

∏

X∈{ CVSS _ Impact }

(
1 − e −αX · f X (X(v))

)
As shown in Table 5 , the quality of the resulting ranking is

gain practically 0, due to the high number of vulnerabilities with

he same score. These results can be explained by examining Eq. 2 ,

hich defines the impact as a function of three variables, each of

hich can have only the same 3 possible values, resulting in a

aximum of 10 possible values (number of combination with rep-

tition). Thus, the ability of a metric based solely on the CVSS im-

act score to discriminate among different vulnerabilities is even

ess than the metric used in the previous scenario, as confirmed

M. Albanese, I. Iganibo and O. Adebiyi Computers & Security 132 (2023) 103382

Table 5

Ranking of CVEs in Scenario 2.

Rank Score # CVEs Cumulative Deviation Quality Score

1 0.91792 4150 4150 4149.0000 0.00%

2 0.90699 7 4157 2933.7891 0.00%

3 0.89974 112 4269 2396.2859 0.00%

4 0.88057 46 4315 2075.3664 0.00%

5 0.85773 38 4353 1856.3379 0.00%

6 0.82183 885 5238 1732.5996 0.00%

7 0.79810 10,596 15,834 4313.8553 0.00%

8 0.70624 2034 17,868 4098.7578 0.00%

9 0.51568 15,873 33,741 6551.6657 0.00%

Table 6

Ranking of CVEs in Scenario 3.

Rank Score # CVEs Cumulative Deviation Quality Score

1 0.84257 867 867 866.0000 0.02%

2 0.82589 35 902 612.8262 0.22%

3 0.81099 717 1619 649.0424 0.15%

4 0.80829 10 1629 562.1052 0.36%

5 0.79494 7 1636 502.7693 0.66%

6 0.79369 745 2381 550.3667 0.41%

7 0.78732 10 2391 509.5519 0.61%

8 0.78424 2 2393 476.6423 0.85%

9 0.77799 11 2404 449.3950 1.12%

10 0.77797 26 2430 426.4068 1.41%

b

o

6

t

C

E

X

s

ρ

e

t

b

r

s

t

B

s

a

l

l

W

a

6

t

a

o

Table 7

Ranking of CVEs in Scenario 4.

Rank Score # CVEs Cumulative Deviation Quality Score

1 0.50156 821 821 820.0000 0.03%

2 0.49163 35 856 580.3258 0.30%

3 0.48115 10 866 473.8625 0.88%

4 0.47695 712 1578 542.9452 0.44%

5 0.46867 10 1588 485.6416 0.78%

6 0.46751 7 1595 443.3349 1.19%

7 0.46532 730 2325 494.3561 0.71%

8 0.45978 2 2327 462.4280 0.98%

9 0.45755 11 2338 435.9940 1.28%

10 0.45611 26 2364 413.6958 1.60%

Table 8

Ranking of CVEs in Scenario 5.

Rank Score # CVEs Cumulative Deviation Quality Score

1 0.33152 1 1 0.0000 100.00%

2 0.31910 1 2 0.0000 100.00%

3 0.31229 3 5 1.1547 98.85%

4 0.29519 2 7 1.1180 98.89%

5 0.28825 8 15 3.2863 96.77%

6 0.27745 2 17 3.0277 97.02%

7 0.27153 4 21 3.0237 97.02%

8 0.25819 1 22 2.8284 97.21%

9 0.24028 2 24 2.6874 97.35%

10 0.19558 1 25 2.5495 97.48%

h

ρ

e

p

c

o

t

6

n

a

c

t

ρ

e

s

i

i

e

n

i

h

m

o

b

y the fact that all 33,741 vulnerabilities considered are assigned

ne of only 9 different scores.

.3. Scenario 3

In this scenario, we considered the CVSS Exploitability score as

he only variable in the set X

↑
l

defined by Equation 10 and the

VSS Impact score as the only variable in the set X

↑
e defined by

quation 10. No variables were considered for the other two sets,

↓
l

and X

↓
e . Equation 14 and 17 can be rewritten as follows for

cenario 3.

(v) =

∏

X∈{ CVSS _ Exploitability}

(
1 − e −αX · f X (X(v))

)

f (v) =

∏

X∈{ CVSS _ Impact }

(
1 − e −αX · f X (X(v))

)
As shown in Table 6 , the quality of the resulting ranking starts

o improve as the combined effect of multiple variables allows to

etter discriminate between different vulnerabilities, although the

anking is still far from the ideal case. The top 10 values of the

everity score now involve “only” 2430 CVEs, an order of magni-

ude less than the previous 2 scenarios.

This scenario is directly comparable to a scenario in which CVSS

ase Score is used to rank vulnerabilities. Although our severity

core formula is different from the CVSS Base Score formula, both

re ultimately functions of two variables that can assume only a

imited number of discrete values, 27 and 10 respectively, thus

imiting their ability to provide a useful ranking of vulnerabilities.

ith subsequent scenarios, we show how considering more vari-

bles improves the quality of the ranking.

.4. Scenario 4

In this scenario, in addition to the CVSS Exploitability score and

he CVSS Impact score, we considered the set of known IDS rules

s a variable in X

↓
l
, with f X defined as the cardinality of the set

f rules. Equation 14 and 17 can be rewritten similarly to what we
9
ave shown for previous scenarios.

(v) =

∏

X∈{ CVSS _ Exploitability}
(
1 − e −αX · f X (X(v))

)
∏

X∈{ Known _ IDS _ Rules } e βX · f X (X(v))

f (v) =

∏

X∈{ CVSS _ Impact }

(
1 − e −αX · f X (X(v))

)
As shown in Table 7 , the quality of the resulting ranking im-

roves slightly compared to scenario 3. The relatively small in-

rease is due to the fact that most CVEs have either no or only

ne associated IDS rule. However, new rules can be defined over

ime.

.5. Scenario 5

In this scenario, in addition to the variables considered in Sce-

ario 4, we considered the set of vulnerability exploits potentially

vailable to the attacker as a variable in X

↑
l
, with f X defined as the

ardinality of the set of exploit. Equation 14 and 17 can be rewrit-

en similarly to what we have shown for previous scenarios.

(v) =

∏

X∈{ CVSS _ Exploitability , Vuln _ Exploit }
(
1 − e −αX · f X (X(v))

)
∏

X∈{ Known _ IDS _ Rules } e βX · f X (X(v))

f (v) =

∏

X∈{ CVSS _ Impact }

(
1 − e −αX · f X (X(v))

)
As shown in Table 8 , the quality score of the ranking improves

ignificantly, reaching 97% for r = 10 . For r = 2 the quality score

s 100% as there is exactly one CVE for each of the top 2 sever-

ty scores. This can be explained by considering that vulnerability

xploits are publicly available for a relatively small number of vul-

erabilities, thus favoring these vulnerabilities over many others. It

s also worth nothing that, as more variables are considered, the

ighest severity score becomes smaller. This is expected, as we are

ultiplying more factors between 0 and 1, but this does not affect

ur results, as we are interested in the relative ranking of vulnera-

ilities rather than in their absolute scores.

M. Albanese, I. Iganibo and O. Adebiyi Computers & Security 132 (2023) 103382

Table 9

Ranking of CVEs in Scenario 6.

Rank Score # CVEs Cumulative Deviation Quality Score

1 0.33152 1 1 0.0000 100.00%

2 0.31910 1 2 0.0000 100.00%

3 0.31229 2 4 0.5774 99.42%

4 0.29519 2 6 0.7071 99.30%

5 0.28825 8 14 3.1937 96.86%

6 0.27745 2 16 2.9439 97.10%

7 0.27153 4 20 2.9520 97.09%

8 0.25819 1 21 2.7613 97.28%

9 0.24321 1 22 2.6034 97.43%

10 0.24028 2 24 2.4900 97.54%

Table 10

Ranking of CVEs in Scenario 7.

Rank Score # CVEs Cumulative Deviation Quality Score

1 0.84228 1 1 0.0000 100.00%

2 0.84227 1 2 0.0000 100.00%

3 0.84226 4 6 1.7321 98.28%

4 0.84226 1 7 1.5000 98.51%

5 0.84226 1 8 1.3416 98.67%

6 0.84226 3 11 1.4720 98.54%

7 0.84225 3 14 1.5584 98.45%

8 0.84225 1 15 1.4577 98.55%

9 0.84224 1 16 1.3744 98.64%

10 0.84224 2 18 1.3416 98.67%

6

n

a

p

s

ρ

e

s

m

q

n

f

h

v

i

t

i

6

n

r

ρ

e

i

O

v

p

a

7

q

c

v

p

n

a

i

r

i

t

c

s

D

c

i

C

i

W

t

M

W

S

o

A

t

R

A

A

A

B

B

G

G

.6. Scenario 6

In this scenario, in addition to the variables considered in Sce-

ario 5, we considered the set of vulnerability scanning plugins as

 variable in X

↓
l
, with f X defined as the cardinality of the set of

lugins. Eqs. 14 and 17 can be rewritten similarly to what we have

hown for previous scenarios.

(v) =

∏

X∈{ CVSS _ Exploitability , Vuln _ Exploit }
(
1 − e −αX · f X (X(v))

)
∏

X∈{ Known _ IDS _ Rules , Vuln _ Plugins } e βX · f X (X(v))

f (v) =

∏

X∈{ CVSS _ Impact }

(
1 − e −αX · f X (X(v))

)
As shown in Table 9 , the quality score of the ranking improves

lightly compared to Scenario 5. The almost negligible improve-

ent may be explained with these two arguments: (i) once the

uality score has reached over 95%, additional improvements can-

ot be expected to be significant due to a diminishing returns ef-

ect; and (ii) the vulnerabilities for which the hacker community

as developed exploits may be those that vulnerability scanning

endors prioritize in the development of plugins. In other words,

f two variables are highly correlated, including both of them in

he computation of vulnerability metrics may produce only a slight

mprovement over scenarios in which only one of them is used.

.7. Scenario 7

In this scenario, we consider the variables considered in Sce-

ario 4 and the age of a vulnerability. Equation 14 and 17 can be

ewritten as follows.

(v) =

∏

X∈{ CVSS _ Exploitability , Age }
(
1 − e −αX · f X (X(v))

)
∏

X∈{ Known _ IDS _ Rules } e βX · f X (X(v))

f (v) =

∏

X∈{ CVSS _ Impact }

(
1 − e −αX · f X (X(v))

)
As shown in Table 7 , the quality score of the resulting rank-

ng is comparable to that obtained in the previous two scenarios.

nce again, this can be explained by considering that the age of a
10
ulnerability is correlated with the availability of both exploits and

lugins. In fact, as the vulnerability ages, more plugins and exploits

re developed.

. Conclusions

In this paper, to address the lack of principled approaches to

uantify various dimensions of vulnerabilities and provide scoring

apabilities that can adapt to different domains, we introduced a

ulnerability metrics framework that extends and generalizes our

revious metrics for evaluating the exploitation likelihood of a vul-

erability and the exposure factor of system components to vulner-

bility exploits. We showed how the choice of variables to consider

n the calculation of either metric can influence the quality of the

esulting ranking. As part of our future work, we plan to further

nvestigate the idea that attacker and defender models can inform

he selection of variables to consider, and we will also study the

orrelation between different variables in order to avoid unneces-

ary calculation that do not help refine the ranking.

eclaration of Competing Interest

The authors declare that they have no known competing finan-

ial interests or personal relationships that could have appeared to

nfluence the work reported in this paper.

RediT authorship contribution statement

Massimiliano Albanese: Conceptualization, Methodology, Val-

dation, Formal analysis, Investigation, Writing – original draft,

riting – review & editing, Supervision, Project administra-

ion, Funding acquisition. Ibifubara Iganibo: Conceptualization,

ethodology, Validation, Formal analysis, Investigation, Software,

riting – original draft. Olutola Adebiyi: Methodology, Validation,

oftware, Formal analysis, Investigation, Data curation, Writing –

riginal draft, Writing – review & editing.

cknowledgements

This work was funded in part by the National Science Founda-

ion under award CNS-1822094.

eferences

lbanese, M., Jajodia, S., 2018. A graphical model to assess the impact of multi-step

attacks. Journal of Defense Modeling and Simulation 15 (1), 79–93. doi: 10.1177/
1548512917706043 .

lbanese, M., Pugliese, A., Subrahmanian, V., 2013. Fast activity detection: index-
ing for temporal stochastic automaton-based activity models. IEEE Trans Knowl

Data Eng 25 (2), 360–373. doi: 10.1109/TKDE.2011.246 .

mmann, P., Wijesekera, D., Kaushik, S., 2002. Scalable, graph-based network vul-
nerability analysis. In: Proceedings of the 9th ACM Conference on Computer and

Communications Security (CCS 2002). ACM, Washington, DC, USA, pp. 217–224.
doi: 10.1145/586110.586140 .

ahl, P., Barham, P., Black, R., Chandra, R., Goldszmidt, M., Isaacs, R., Kandula, S.,
Li, L., MacCormick, J., Maltz, D., Mortier, R., Wawrzoniak, M., Zhang, M., 2006.

Discovering dependencies for network management. In: Proceedings of the 5th

ACM Workshop on Hot Topics in Networking (HotNets-V). ACM, Irvine, CA, USA,
pp. 97–102 .

opche, G.S., Rai, G.N., Denslin Brabin, D.R., Mehtre, B.M., 2019. A proximity-based
measure for quantifying the risk of vulnerabilities. In: Thampi, S.M., Perez, G.M.,

Ko, R., Rawat, D.B. (Eds.), Proceedings of the 7th International Symposium on
Security in Computing and Communication (SSCC 2019). Springer, pp. 41–59.

doi: 10.1007/978- 981- 15- 4825- 3 _ 4 .
allon, L., 2010. On the impact of environmental metrics on CVSS scores. In: Pro-

ceedings of the 2010 IEEE International Conference on Social Computing (Social-

Com 2010). IEEE, Minneapolis, MN, USA, pp. 987–992. doi: 10.1109/SocialCom.
2010.146 .

oohs, J., Mier, R., Deist, P., Casey, W., 2022. Reducing attack surface by learning ad-
versarial bag of tricks. In: Proceedings of the 21st Workshop on the Economics

of Information Security (WEIS 2022). Tulsa, OK, USA .

https://doi.org/10.1177/1548512917706043
https://doi.org/10.1109/TKDE.2011.246
https://doi.org/10.1145/586110.586140
http://refhub.elsevier.com/S0167-4048(23)00292-4/sbref0004
https://doi.org/10.1007/978-981-15-4825-3_4
https://doi.org/10.1109/SocialCom.2010.146
http://refhub.elsevier.com/S0167-4048(23)00292-4/sbref0007

M. Albanese, I. Iganibo and O. Adebiyi Computers & Security 132 (2023) 103382

I

I

J

J

K

L

M

N

S

S

S

v

v

V

Y
ganibo, I., Albanese, M., Mosko, M., Bier, E., Brito, A.E., 2021. Vulnerability metrics
for graph-based configuration security. In: Proceedings of the 18th International

Conference on Security and Cryptography (SECRYPT 2021). SciTePress, pp. 259–
270. doi: 10.5220/0010559402590270 .

ganibo, I., Albanese, M., Turkmen, K., Campbell, T., Mosko, M., 2022. Mason Vul-
nerability Scoring Framework: a customizable framework for scoring common

vulnerabilities and weaknesses. In: Proceedings of the 19th International Con-
ference on Security and Cryptography (SECRYPT 2022). SciTePress, Lisbon, Por-

tugal, pp. 215–225. doi: 10.5220/0 01127740 0 0 03283 .

acobs, J., Romanosky, S., Edwards, B., Adjerid, I., Roytman, M., 2021. Exploit Pre-
diction Scoring System (EPSS). Digital Threats: Research and Practice 2 (3).

doi: 10.1145/3436242 .
ajodia, S., Noel, S., O’Berry, B., 2005. Managing Cyber Threats: Issues, Approaches,

and Challenges. In: Massive Computing, Vol. 5. Springer, pp. 247–266 .
ourtellis, N., De Francisci Morales, G., Bonchi, F., 2015. Scalable online betweenness

centrality in evolving graphs. IEEE Trans Knowl Data Eng 27 (9), 2494–2506.

doi: 10.1109/TKDE.2015.2419666 .
eversage, D.J., Byres, E.J., 2008. Estimating a system’s mean time-to-compromise.

IEEE Security & Privacy 6 (1), 52–60. doi: 10.1109/MSP.2008.9 .
anadhata, P.K., Wing, J.M., 2011. An attack surface metric. IEEE Trans. Software

Eng. 37 (3), 371–386. doi: 10.1109/TSE.2010.60 .
atrajan, A., Ning, P., Liu, Y., Jajodia, S., Hutchinson, S.E., 2012. NSDMiner: Auto-

mated discovery of network service dependencies. In: Proceedings of the 31st

Annual IEEE International Conference on Computer Communications (IEEE IN-
FOCOM 2012). IEEE, Orlando, FL, USA, pp. 2507–2515. doi: 10.1109/INFCOM.2012.

6195642 .
11
oroush, H., Albanese, M., Asgari Mehrabadi, M., Iganibo, I., Mosko, M., Gao, J.H.,
Fritz, D.J., Rane, S., Bier, E., 2020. SCIBORG: Secure configurations for the IoT

based on optimization and reasoning on graphs. In: Proceedings of the 8th IEEE
Conference on Communications and Network Security (CNS 2020). IEEE doi: 10.

1109/CNS48642.2020.9162256 .
pring, J., Hatleback, E., Householder, A., Manion, A., Shick, D., 2021. Time to

change the CVSS? IEEE Security & Privacy 19 (2), 74–78. doi: 10.1109/MSEC.2020.
304 4 475 .

tuckman, J., Purtilo, J., 2012. Comparing and applying attack surface metrics. In:

Proceedings of the 4th International Workshop on Security Measurements and
Metrics (MetriSec 2012). ACM, Lund, Sweden, pp. 3–6. doi: 10.1145/2372225.

2372229 .
an der Stock, A., Glas, B., Smithline, N., Gigler, T., 2017. OWASP Top 10 - 2017: The

Ten Most Critical Web Application Security Risks. Technical Report. The OWASP
Foundation .

an der Stock, A., Glas, B., Smithline, N., Gigler, T., 2021. OWASP Top 10 for 2021: The

Ten Most Critical Web Application Security Risks. Technical Report. The OWASP
Foundation .

enkatesan, S., Albanese, M., Jajodia, S., 2015. Disrupting stealthy botnets through
strategic placement of detectors. In: Proceedings of the 3rd IEEE Conference on

Communications and Network Security (IEEE CNS 2015). IEEE, Florence, Italy,
pp. 55–63. doi: 10.1109/CNS.2015.7346816 .

oon, S., Cho, J.-H., Kim, D.S., Moore, T.J., Free-Nelson, F., Lim, H., 2020. Attack graph-

based moving target defense in software-defined networks. IEEE Trans. Netw.
Serv. Manage. 17 (3), 1653–1668. doi: 10.1109/TNSM.2020.2987085 .

https://doi.org/10.5220/0010559402590270
https://doi.org/10.5220/0011277400003283
https://doi.org/10.1145/3436242
http://refhub.elsevier.com/S0167-4048(23)00292-4/sbref0011
https://doi.org/10.1109/TKDE.2015.2419666
https://doi.org/10.1109/MSP.2008.9
https://doi.org/10.1109/TSE.2010.60
https://doi.org/10.1109/INFCOM.2012.6195642
https://doi.org/10.1109/CNS48642.2020.9162256
https://doi.org/10.1109/MSEC.2020.3044475
https://doi.org/10.1145/2372225.2372229
http://refhub.elsevier.com/S0167-4048(23)00292-4/sbref0019
http://refhub.elsevier.com/S0167-4048(23)00292-4/sbref0020
https://doi.org/10.1109/CNS.2015.7346816
https://doi.org/10.1109/TNSM.2020.2987085

	A framework for designing vulnerability metrics
	1 Introduction
	2 Related work
	3 Technical background
	3.1 NVD
	3.2 CVSS
	3.3 CWE and CWSS
	3.4 IDS rules

	4 The SCIBORG model
	4.1 Dependency subgraph
	4.2 Vulnerability subgraph

	5 Vulnerability metrics
	5.1 Exploitation likelihood and exposure factor
	5.2 Variables affecting the metrics
	5.3 Metrics definition

	6 Experimental evaluation
	6.1 Scenario 1
	6.2 Scenario 2
	6.3 Scenario 3
	6.4 Scenario 4
	6.5 Scenario 5
	6.6 Scenario 6
	6.7 Scenario 7

	7 Conclusions
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgements
	References

