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Abstract— Current free and subscription-based trip planners
have heavily focused on providing available transit options to
improve the first- and last-mile connectivity to the destination.
However, those trip planners may not truly be multimodal to
vulnerable road users (VRU)s since those selected sidewalk
routes may not be accessible or feasible for people with
disability. Depending on the level of availability of digital twin
of travelers behaviors and sidewalk inventory, providing the
personalized suggestion about the sidewalk with route features
coupled with transit service reliability could be useful and
happier transit riders may boost public transit demand/funding
and reduce rush hour congestion. In this paper, the adaptive
trip planner considers the real-time impact of environment
changes on pedestrian route choice preferences (e.g., fatigue,
weather conditions, unexpected construction, road congestion)
and tolerance level in response to transit service uncertainty.
Sidewalk inventory is integrated in directed hypergraph on the
General Transit Feed Specification to specify traveler utilities
as weights on the hyperedge. A realistic assessment of the
effect of the user-defined preferences on a traveler’s path
choice is presented for a section of the Boston transit network,
with schedule data from the Massachusetts Bay Transportation
Authority. Different maximum utility values are presented as a
function of varying travelers risk-tolerance levels. In response
to unprecedented climate change, poverty, and inflation, this
new trip planner can be adopted by state agencies to boost
their existing public transit demand without extra efforts.

I. INTRODUCTION

89 percent of the U.S. population is projected to live
in urban areas by 2050 and more than 300 urban areas
having populations above 100,000 spark greater demand
for multimodal transit. Recent widespread food insecurity
and housing instability have magnified the already extreme
income inequities and accessibilities. Vulnerable road users
(VRUs) walk and bike to reach transit, food, jobs, and
medical services while temperatures dive from record highs
to freezing. While one in five North Carolinians will be
at least 65 years old needing other accessible alternatives
to driving, current free and subscription solutions such as
Google Maps and GoTriangle fail to incorporate detailed
access information for people with personal preference and
mobility limitations. In response to unprecedented climate
change, poverty, and inflation, we need a multimodal trip
planner more than ever. Happy transit riders play an im-
portant role in boosting public transit demand/funding and
reducing rush hour congestion.
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North Carolina’s GoTriangle planner provides travel op-
tions to commuters by referencing Google Transit routes.
However, GoTriangle does not provide integrated mobility
and accessibility options for NC travelers. The trip planner
does not connect transit options to other modal options
(bikes, e-scooter, etc.). Each trip option only provides esti-
mated walking time to/from transit stops without considering
the accessibility. The Massachusetts Bay Trip planner is the
only successful tool to integrate mobility information about
sidewalk slope, surface, width, and shade. It takes great
effort and time to develop a trip planner tool that reflects
local community needs and deliver multimodal transportation
safely and equitably. In this paper, unlike other trip planners,
Multi-Modal Optimal Dynamic pErsonalized (M2ODE) trip
planner recommends the transit options including accessible
and feasible sidewalk routes for travelers in the pedestrian
modes.

Recent work done by authors of this study developed VRU
Personalized Optimized Dynamic (VRUPOD) [1] trip plan-
ner to provide personalized sidewalk route guidance for users
who save personal information relevant to transportation
needs (e.g., stamina and ability to traverse uneven terrain)
and publicly-available information about route nodes, eleva-
tion changes, weather, and traffic etc. This paper integrates
utilities of transit route choices with sidewalk route choices
associated with individual needs and capabilities (Figure 1).
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Fig. 1: M2ODE trip planning with best path recommenda-
tion:To go from origin O to destination D, the traveler’s
multimodal options, including sidewalk (e.g., walk, bike)
or transit (bus), depends on availability and anticipated
conditions on these modes.

This paper addresses the limitations of existing linear
shortest cost algorithms in multimodal trip planning due
to dynamic interactions between environmental parameters
and user preferences. It introduces an adaptable model that



considers various modes of transportation, changing envi-
ronmental conditions, and user preferences over time. By
incorporating travel time uncertainties and travelers’ toler-
ance levels, the proposed multimodal trip planner provides
personalized path recommendations. The model combines
pedestrian and transit mode decisions using a heuristic
approach and utility maximization. The paper utilizes the
hypergraph framework [2], [3], [4], [6] to model the transit
schedule network and presents a numerical example to es-
timate anticipated travel-time variability. In conclusion, the
paper offers a novel approach for personalized path acces-
sibility considering multimodal transportation and traveler
preferences.

II. LITERATURE REVIEW

While there is a rich history of trip planner for the transit
mode, the pedestrian mode with preference has received less
attention, thus there is an absence of full integration of both
pedestrian and transit modes. This is critical since individuals
with mobility issues such as elderly persons or wheelchair
users are more sensitive to uncertainties in services.

A. Trip Planner for Pedestrian Mode
Undoubtedly, navigation systems that integrate user pref-
erences find routes that are more suitable for VRUs than
the shortest routes [5], [8], [9]. VRUs encounter a range of
obstacles impeding easy navigation in the sidewalk network
[10]. Existing designs of public transportation systems do
not entirely fulfill the needs of people with disabilities in
terms of mobility and accessibility though they are user
centered [7], [9], [11]. Though exisiting desgin may offer
personalized routing, it lacks in multimodality [12]. Identify-
ing and avoiding inaccessible places in the current pavement
network as a short-term solution instead of redesigning urban
transportation and sidewalk networks as a long-term solution
can accelerate helping VRUs [13]. Applications such as the
OpenRouteService provides a single American Disability
Association (ADA)-compliant path for a baselinelevel of
accessibility. Such ”one-size-fits-all” approaches to different
pedestrian mobility needonly ensurethat pedestrians fulfilling
a particular description (e.g., wheelchair user) can use the
path specified. However, the path for many mobility-impaired
people requires consideration of their specific needs and
capabilities.

This paper develops the pedestrian model with the follow-
ing contributions. First, the pedestrian model accommodates
the various sidewalk factors: width, slope, surface type, and
length, identified to influence users’ path choice signifi-
cantly [8], [14], [15], to improve the safety and mobility
for people with mobility impairments who walk and use
transit in urban and suburban environments. Second, the
pedestrian model accommodates changing preferences and
the interaction effect between sidewalk variables and weather
conditions contributing to a path choice.

B. Trip Planner for Transit Mode
The majority of studies on transit accessibility and route
choice decisions for flexible/fixed transit have focused on

travel time as the only measure for planning route choice,
though some have accounted for attributes such as monetary
fare [16], [17]. Consequently, minimizing the expected travel
time has been widely developed for evaluating transit route
choice [18]. For transit trip planning purposes, the most
common method of estimating the expected travel time
is to use the schedule-based data in a standard format
known as the General Transit Feed Specification (GTFS)
[19].OpenTripPlanner utilizes GTFS data and pedestrian
networks (e.g., OpenStreetMap) for route planning. How-
ever, relying solely on schedules has limitations, such as
under/overestimating travel time and disregarding congestion
and variability. Traditional route choices prioritize minimiz-
ing schedule travel time, neglecting real-time delays and
urban peak-hour variations.

The availability of automatic vehicle location (AVL) data
allows transit system managers to measure day-to-day travel-
time variability on transit links. This data can be used to
improve traveler’s accessibility and route choice decisions
by considering anticipated variability. Previous studies have
shown the impact of travel-time variability on transit route
choices [20], [21], but integrating traveler’s perception of this
variability is lacking. This research contributes to person-
alized path accessibility models by incorporating traveler’s
perception of variability, even if it doesn’t result in the lowest
expected schedule travel time.

The widespread collection and availability of AVL data
can support characterizing the reliability of transit networks.
AVL data can estimate the anticipated travel-time variability
on transit links for a given period and day before mak-
ing route choice decisions. Anticipating and integrating the
travel-time variability as a measure of reliability for planning
route choice can provide more rational routes according to
the traveler’s perception of the anticipated variability, even
if such route is not one with the minimum schedule travel
time. Even for driving, the inclusion of reliability in route
choice and accessibility modeling is still at an exploratory
stage [22].

C. Integrated Multimodal Networks

Studies on integrating first/last mile connections with
flexible/fixed transit in multimodal networks are popular in
literature [23]. The emphasis has been on integrating modes
such as electric scooters, bike-sharing, and car-sharing with
fixed transit in a decentralized problem with less atten-
tion on pedestrian modes (e.g., sidewalk) [24], [25], [26],
[27]. Still, those considering pedestrian modes are limited
to recommending the shortest sidewalk path to users in
getting to/from transit stops and other destinations in the
pedestrian network. In addition, the existing framework for
integrating pedestrian connections is based on each mode’s
local routing [24], [25]. However, there are several concerns
on the benefit of the current multimodal framework. First,
rather than the shortest path, considering the accessibility of
VRUs in the path model will improve the mobility of VRUs.
Second, building pedestrian connections to the fixed transit



in multimodal networks needs to guarantee a smooth transfer
between the modes.

Our approach calculates the most accessible sidewalk path
for pedestrians based on an ADA [28] standard measure.
We narrow down the sidewalk network to a spatial region
centered around the traveler’s location, using the shortest
distance between relevant points. This reduces the search
space and avoids impractical solutions. The personalized path
recommendation considers schedule travel time, anticipated
travel-time variability, and pedestrian accessibility in a utility
maximization model. We also account for the inconvenience
that travelers may tolerate due to variability in transit travel
times and waiting times. This is done by incorporating risk-
tolerance to anticipated variability. Our model considers per-
sonalized sidewalk preferences, sidewalk factors interacting
with weather conditions, and the traveler’s perception of
reliability and variability in route choices [29].

• Incorporate the travelers’ personalized-preference to
sidewalk accessibility to/from transit stops and to other
destinations

• Accommodate the interaction between sidewalk factors
and weather conditions for each sidewalk segment con-
tributing to a path choice.

• In addition to expected schedule travel time, the trav-
elers’ perception of reliability on the schedule is incor-
porated as the risk-tolerance on the anticipated travel-
time variability, modeled as a function of the mean and
variance of link/route travel time.

III. METHODOLOGY

The travelers’ preferences on the transit and pedestrian
mode decisions are evaluated and combined in a heuristic for
the personalized path search. We describe the transit network
through nodes representing the origin stop, destination stop,
and transit stops along a route, and edges representing the
travel time conditions of the road between the nodes (Figure
2)

A. Transit Network Description

This study characterizes the anticipated day-to-day travel-
time variability for a vehicle run on each link/route in the
transit network using historical time at each location from
archived AVL data, also known as retrospective GTFS data.
Vehicle run refers to the daily assignments for an individual
bus. i ∈ I is the set of transit stops along the route and the
set of vehicle runs r ∈ R allocated to the route. AAT r

i is the
actual arrival time of vehicle run r ∈ R at stop i ∈ I. The in-
vehicle travel time (IV T T ) and the number of days/periods
N is given by:

IV T T r
i,i+1 = AAT r

i+1 −AAT r
i . (1)

The anticipated mean (µ) and variance (σ2) for IV T T is
estimated as:

µ
(r)
(i,i+1) =

∑
N
n=1 IV T T r

(i,i+1),n

N
, (2)

i i+1 i+5…….

r

n

Physical link

Transit stop

     Vehicle run r ∈ R
     Observation day/periodn ∈ N Transit vehicle direction

Fig. 2: A transit route with multiple stops showing how the
experienced travel time for vehicle run r is aggregated over
several observation periods or days N and used to estimate
link and route level travel-time variability. Different times of
the day are associated with different degrees of variability in
link travel time.

and the variance for IV T T is estimated as:

σ
2(r)
(i,i+1) =

∑
N
n=1

(
IV T T r

(i,i+1),n −µr
(i,i+1)

)2

N
. (3)

For cases of a normally distributed IV T T for link l,
v(µl ,σ

2
l ), this study assumes link travel-time variability

can be treated as normally distributed random variables.
Therefore, the total anticipated IV T T of path P is defined
as the sum of each links anticipated mean and variances of
travel time as µP=∑Pµ

and σP=∑Pσ
. In selecting a transit

route, our goal is to evaluate and incorporate the anticipated
mean and variance of travel time for feasible alternative
routes that satisfy a traveler’s PAT at the destination.

1) Transit schedule network: A route service graph for
the transit network is expanded to a node-based time graph
to capture the temporal information provided through the
schedule data (Figure 3). The links connect these nodes
to indicate the vehicle run trajectory between consecutive
stops. In-vehicle travel time and walking time links are
used to indicate movement from one node/stop to another
node/stop. The anticipated in-vehicle travel-time variability
for each link/route is represented through the mean and
variance of travel time for the link/route. Given the traveler’s
origin-destination pair (O−D), a PAT, the first of our two-
phase solution search procedure, utilizes the node-based
time expanded graph in the personalized path accessibility
framework.

2) Weighting functions on hyperedge: The directed hy-
pergraph on the transit schedule network associates each
hyperedge ω with a real weight vector w(ω). Without loss of
generality, the component of the weight vector is expected
schedule travel time (including walking and waiting time)
on the hyperedge. For each feasible path Π that satisfies
the travelers PAT at the destination, the weighting function
defines a node function WΠ which assigns weights to all its
nodes (time expanded stops) depending on the weights of its
hyperedges. Given the destination D, WΠ(D) is the weight
of the path Π under the chosen weighting function. In this
study, we define an additive weight function on each time
expanded stop Sn as a function of both the weights of the
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Fig. 3: A Node-based representation of a transit network
showing the time expanded transit stops. The nodes have
space-time coordinates representing the different times of
transit vehicle availability according to the schedule. Specifi-
cally, every stop is (a) expanded based on points in time when
a vehicle from a route will visit, and (b) the time points are
connected and expanded spatially by each vehicle run (or
route).

hyperedges entering into Sn and that of the nodes in their
tail (for simplicity, let y = Sn ):

WΠ(y) = min
{

w(ω)+FΠ(T(ω)) : ω ∈ EΠ ∩BS(y)
}
,

y ∈VΠ \{s},
(4)

where FΠ(T(ω)) is a function of the weights of the nodes
in T(ω), and BS(y) = {ω ∈ E : y ∈ H(ω)} is the backward
star of node y representing the incoming edge at node y. F
is a nondecreasing function of WΠ(x) for each x ∈ T (ω)

FΠ(T(ω)) = F({WΠ(x) : x ∈ T(y)}) ,ω ∈ EΠ. (5)

3) Cost of anticipated travel-time variability: We inte-
grate the travelers’ risk-tolerance level concerning the antic-
ipated variability for the best route recommendation, even if
such a route is not with the lowest expected schedule travel
time. We propose the exponential utility function u(Π) =
−(sgn(λ ))e−λΠ, to characterize the traveler’s preference to
the anticipated travel-time variability for transit links on
feasible path Π. The local measure of risk-tolerance, known
as the Arrow-pratt measure of absolute risk-aversion at Π,
is −u′′(Π)

u′(Π) = λ . The representations u′(Π) and u′′(Π) are the
first and second derivative of u(Π). The values of λ ̸= 0

represents the risk-tolerance coefficient with the sign of λ

(sgn). The mean-variance approximation is the sum of the
anticipated mean travel time (µ) and the risk ( σ2

2 ) multiplied
by the risk-tolerance coefficient (λ ), representing MVΠ =

µΠ +
λσ2

Π

2 as the balance between mean and variance of
IV T T on feasible path Π. The generalized cost function in
the transit route choice is defined to find the strategy that
minimizes the sum of traveler’s cost on (1) expected schedule
travel time and (2) the anticipated travel-time variability
adjusted for the traveler’s risk tolerance.

B. Sidewalk Accessibility Measure

Relating to previously established research [30], [31],
we develop five parameters: width, length, slope, sidewalk
surface type, and weather condition to characterize the ac-
cessibility of each sidewalk segment. The sidewalk network
is represented as a graph G = (N ,E ), where n ∈ N is the
set of nodes and e ∈ E is the set of edges. By assuming
a spatial region (Radius (R) equal to the shortest distance
between two locations) we reduce the search space and also
prevent finding infeasible solutions due to long distances.
A traveler can move from node n to node n′ if an edge
connects the two nodes. The cost of each edge is based on
parameters that define sidewalk accessibility for that edge
for the traveler [1]. The interaction effect between sidewalk
variables can limit the accessibility of sidewalk segments.

This paper considers five surface types based on field
survey: concrete (best), asphalt, brick, cobblestone, and
gravel (worst). Three levels of weather conditions are consid-
ered:sunny (best), rainy, snowy (worst)[1]. With appropriate
adjustments to Eq. (4), the sidewalk path considering the
travelers sidewalk accessibility preferences is found. Specif-
ically, if we consider the arrival time at a destination nd (e.g.,
final destination D satisfying the PAT), the optimal sidewalk
path minimizes the total cost for a given origin-destination
pair (no,nd):

SΠ(n) = min
{

s(e)+SΠ(T(e)) : e ∈ E∩BS(n)
}
,

n ∈ N \{}.
(6)

IV. EVALUATION

A. Estimation of in-vehicle travel-time variability

Using retrospective GTFS data, a temporal aggregation of
link-level travel time is used to estimate the anticipated
IV T T variability. Retrospective GTFS data capture signif-
icant travel-time variations for each vehicle run, providing
a more realistic representation of the anticipated travel-time
variability. A statistical measure of each link-level variability
defined by the mean and standard deviation of travel time is
constructed for each day in the weekday as shown in Figure
4.

B. Impact of risk-tolerance on travelers route selection

Considering the anticipated travel-time variability for the
links/routes, the mean-variance approximation with travelers’
risk-tolerance evaluates the inconvenience travelers are will-
ing to experience due to these variability. Figure 5 shows the
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Fig. 4: Estimated day-to-day IVTT variability for routes 43, 55, and 10 for the period between 5:00 and 8:00 am from
historical AVL data. The estimates show significant travel-time variability for most links. Specifically, we see that several
links on routes 43, 55, and 10 have high values of anticipated standard deviations for the period between 5:00 and 8:00 a.m.
For example, looking at the link (1, 2) on route 43 (Figure 4a and Figure 4d), the variability profile shows a significantly high
standard deviation (≈ 220 s) compared to the mean travel time (≈ 170 s) for Friday. This implies high volatility concerning
the anticipated travel time on the link. The link-level travel-time variability is easily extended to multiple consecutive
links/routes as described in Section III-A.

impact of the anticipated travel-time variability on the route
choice given the traveler’s risk-tolerance coefficient.

The indifference curves shown in Figure 6 provide a 2-D
contour representation of the travelers’ perceived cost to the
anticipated travel-time variability.

C. Accessible sidewalk path compared to shortest path

To evaluate the proposed pedestrian accessibility model inde-
pendently, we conduct two experiments for different origin-
destination pairs in an 8 × 8 sidewalk grid network (data
from Boston sidewalk inventory) and then compute the total
score for sidewalk surface type and slope.

The preferences of two users utilized in the experiment is
summarized as: User1: High rating for surface type compared
to slope, width, and distance (the lower the sidewalk surface
type score, the better the sidewalk path), and User2: High
rating for slope compared to width, surface type, and distance
(the lower the sidewalk slope score, the better the sidewalk
path).

Figure 7 shows the comparison bar graphs for surface type
and slope scenarios. While we have presented an elementary

evaluation, the pedestrian accessibility model is adaptable to
a wide range of sidewalk and weather conditions [1].

D. Results of path recommendations considering degree of
risk-tolerance

The simulation-based evaluation for a typical day of the week
(i.e., Tuesday) shows the best path recommendation with the
normalized cost of each feasible path alternative, and the
weights β on the cost (β1 =−2,β2 =−1,β3 =−2). In effect,
our simulation assumes the expected schedule travel time and
the cost of the pedestrian accessibility model are twice as
important as the cost of anticipated travel-time variability. As
described above, the following components are considered
for each feasible path; (1) sidewalk cost estimated from
the pedestrian accessibility model, (2) transit cost estimated
from the mean-variance function due to anticipated travel-
time variability, and (3) total expected schedule travel time
(including waiting and walking time). The users preference
concerning the sidewalk factors is set as: High rating for
slope compared to width, length, and surface type.

Figure 8 shows the results for trips from all stops (origins)
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The traveler’s cost decreases with decreasing uncertainty
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traveler will prefer a route with less volatility. We also
see that the higher the risk-tolerance coefficient, the higher
the traveler’s sensitivity to anticipated travel-time variability.
Therefore, travelers with high risk-tolerance coefficient are
less likely to select options with high standard deviations.
For example, for the same variability profile (e.g., µ = 2,
σ = 50), the traveler with a risk-tolerance coefficient of 0.2
has a lower travel cost (≈ 250) than the traveler with a risk-
tolerance coefficient of 0.4 (cost ≈ 500). This implies that
the traveler (λ = 0.4) perceives this route option as too costly
compared to the other traveler (λ = 0.2)
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For routes whose variability profiles result in the same cost,
the traveler is indifferent to choosing among the routes. Such
alternatives present the same level of inconvenience willing
to be experienced by the traveler. For example, looking at
the points (representing link/route options) with variability
profiles µ = 25,σ = 4 and µ = 19,σ = 6, the traveler will
be indifferent to selecting among these options since both
result in the same cost.
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Fig. 7: Surface type and slope score comparison between
VRUPOD and Shortest Path (SP). 85.71 percent of sidewalk
paths recommended by the VRUPOD method have the lowest
average sidewalk surface type score. In the second test, as
shown in Figure 7, 71.42 percent of sidewalk paths rec-
ommended by VRUPOD have the lowest average sidewalk
slope score. This implies that VRUPOD path suggestions
are affected by the users’ preferences. This interaction effect
allows VRUPOD to select the appropriate sidewalk segments
for the optimal path.

to one designated destination (All-to-one). We assume a
destination stop 10, PAT = 6:30 a.m, and PAT time window
dt = 15 min. Each route has a total of 4 trips that contribute
to sub-paths satisfying the PAT with two transfer points
(4 and 6). Walking from locations 7 to 6 is based on the
optimal sidewalk path. The waiting time at a stop in each
feasible path is calculated as the difference between schedule
departure time and the expected arrival time.

In special cases, the static waiting time estimation can be
extended to a more generalized waiting time as a function of
bus punctuality. For example, when vehicles are instructed to
wait at stops when vehicle arrival time is less than scheduled
departure time, we can assume that the normal distributed
IV T T between two consecutive stops will mostly lead to a
log-normal distributed waiting time at the successive stops.
In other words, the distribution for departure time delay for
the vehicle runs at the stops is potentially right-skewed. The
anticipated travel-time variability defined by the mean and
variance for IV T T for each physical path in a feasible path
are computed from the results of the retrospective GTFS data,
equal to the sum of mean and variances of travel time of
links forming the path. As seen in Figure 8, the best path
(vehicle run) at each stop considering the traveler’s risk-
tolerance coefficient of 0.2 is the path with the maximum
utility. For example, traveling from origin location one to
destination ten has a recommended departure time of 6:12
a.m using vehicle run 5502, same as location five to ten.
However, due to the optimal sidewalk path required to get
to stop four to board bus 5502, the recommended departure
time is 6:07 a.m.
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Fig. 8: Modified physical representation of route 10, 43 and 55 from MBTA showing common points. The results of path
with utility Uλ for selecting minimum risk path based on the traveler’s risk-tolerance at any given stop. SID: Stop ID,
SS: Successor Stop, AR: Attractive Run, DT: Departure Time, LDT: Latest Departure Time to ensure arrival within PAT,
t f :Transfer. Blue text in the figure shows run (strategy) that will be recommended for a traveler with risk-tolerance coefficient
λ = 0.2.
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55

43

10

Fig. 9: Paths are evaluated for risk-tolerance coefficients λ =
0.2 and 1.0, with pedestrian mode preferences favoring slope
and surface type. Using the MBTA trip planner (PAT: 6:30
a.m), suggested departure time is 6:08 a.m. Optimal path
includes a 0.3 mi sidewalk route to stop 6, boarding route
43 outbound to final stop ten. Estimated utilities: λ = 0.2
(-3.010) and 1.0 (-3.033).

For example, looking at the path option from location eight

to ten and risk-tolerance coefficients 0.2 and 0.4, we see
that the estimated utility for the two path options are simply
scaled and so the path recommendation remain the same.

Finally, we compare the path suggestions using the pro-
posed utility function and the trip planner from MBTA for a
typical Tuesday (Figure 9).

No definite conclusion can be made about the benefits
of using our developed framework over the existing trip
planners (e.g., MBTA), mainly because the MBTA trip
planner option had a lower estimated schedule travel time of
14 min compared to our models’ estimated schedule travel
time of 20 min. However, we acknowledge that integrating
the personalized sidewalk path option that considers the
travelers’ PAT at the final destination will serve vulnerable
road users who are mostly limited in their social activities
due to mobility concerns. In addition, integrating the incon-
venience, the travelers are willing to experience will provide
a more rational route/path to a traveler’s tolerance to on-
transit variability.

V. CONCLUSIONS

This study develops a multimodal trip planner for VRUs
on the pedestrian mode and on-transit travel time, which has
been neglected in commercial trip planners. The anticipated
variability profile of the links and routes is computed from



retrospective GTFS data. The exponential utility approxi-
mated by a function of mean-variance of travel time is used
to evaluate travelers’ risk-tolerance choice to the anticipated
in-vehicle travel-time variability. A case study is carried out
on a simulated test network constructed on a section of the
Boston transit network. Depending on the travelers’ prefer-
ences, including their risk-tolerance to anticipated travel-time
variability, we find the best path recommendation through a
utility maximization approach
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