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Fusing regression coefficients into homogeneous groups can unveil those
coefficients that share a common value within each group. Such groupwise
homogeneity reduces the intrinsic dimension of the parameter space and un-
leashes sharper statistical accuracy. We propose and investigate a new combi-
natorial grouping approach called L0-Fusion that is amenable to mixed inte-
ger optimization (MIO). On the statistical aspect, we identify a fundamental
quantity called MSE grouping sensitivity that underpins the difficulty of re-
covering the true groups. We show that L0-Fusion achieves grouping consis-
tency under the weakest possible requirement of the grouping sensitivity: if
this requirement is violated, then the minimax risk of group misspecification
will fail to converge to zero. Moreover, we show that in the high-dimensional
regime, one can apply L0-Fusion with a sure screening set of features without
any essential loss of statistical efficiency, while reducing the computational
cost substantially. On the algorithmic aspect, we provide an MIO formula-
tion for L0-Fusion along with a warm start strategy. Simulation and real data
analysis demonstrate that L0-Fusion exhibits superiority over its competitors
in terms of grouping accuracy.

1. Introduction. Identifying homogeneous groups of regression coefficients has re-
ceived increasing attention, because the resulting regression model provides better scien-
tific interpretations and enhances predictive performance in many applications. In some oc-
casions, features or covariates naturally act in groups to influence outcomes, so knowing
group structures of the features help scientists gain new knowledge about a physical system
of interest. From a modeling perspective, aggregating covariates with similar effects along
with the response reduces model complexity and improves interpretability, especially in the
high-dimensional regime. There have been a flurry of works under this direction; see, for
example, Bondell and Reich (2008), Jeon, Kwon and Choi (2017), Ke, Fan and Wu (2015),
Shen and Huang (2010), Zhou et al. (2022), Zhu, Shen and Pan (2013), among others. There
is a vast literature in discovering homogeneous groups of observations or individuals in an
overly heterogeneous population. However, these existing methods cannot be applied to our
problem that aims to group regression parameters. Identifying group structures of regression
parameters is crucial to learn the underlying heterogeneous covariates’ effects, which is then
leveraged to reach a more appropriate model for data analyses. A partial list of the literature
includes Ke, Li and Zhang (2016), Lian, Qiao and Zhang (2021), Ma and Huang (2017), Shen
and He (2015), just name a few. The focus of this paper is on pursuing homogeneous groups
of regression coefficients in which we do not have any prior knowledge about their true group
structures.

Homogeneity fusion is carried out routinely in environmental health sciences in a man-
ual and subjective manner to evaluate the effect of a given set of toxicants on certain health
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outcomes. Consider p toxicants, whose concentrations are denoted by X1, . . . ,Xp , respec-
tively, q other covariates {Zk}qk=1 and a outcome variable Y . Scientists typically consider
a linear regression model Y ∼ ∑p

j=1 βjXj + ∑q
k=1 αkZk to evaluate effect of a mixture

A := ∑p
j=1 βjXj on outcome Y . One common practice to reduce model complexity and

facilitate scientific interpretation is aggregating the exposure of similar toxicants to yield a
sum-mixture (e.g.,

∑
j Xj ). For example, SumDEHP is a sum of four phthalates, MECPP,

MEOHP, MEHHP and MEHP, which quantifies total DEHP exposure from products such
as PVC plastics used in food processing/packaging materials, building materials and medi-
cal devices (Schettler (2006), Kobrosly et al. (2012), Braun et al. (2012)). See also Marie,
Vendittelli and Sauvant-Rochat (2015), Marsee et al. (2006) for another sum-mixture called
SumAA that adds three extra phthalates MBP, MiBP and MBzP to SumDEHP. Learning such
a sum-mixture requires the toxicants within the same mixture to share the same regression
coefficients in the linear model. Unfortunately, in practice the formation of a sum-mixture is
done manually by scientists in an ad hoc fashion. There has been long of interest to develop
a data-driven homogeneity fusion methodology that provides a needed statistical toolbox for
scientists to identify and include important toxicants, while excluding unimportant ones, in
the formation of a toxic mixture. This new approach can greatly reduce subjectivity in data
processing and yield robust scientific conclusions and insights on the relationship between
toxicants and outcome. This motivates us to pursue parsimony by regularizing coefficients
βj in addition to homogeneity pursuit of those nonzero coefficients in our methodology.

Suppose that the true linear model with K0 groups of nonzero coefficients takes the form

(1.1) Y =
p∑

j=1

β∗
j Xj +

q∑
k=1

α∗
kZk + ε, β∗

j ∈ {
0, γ ∗

1 , γ ∗
2 , . . . , γ ∗

K0

}
, j = 1, . . . , p,

where random error ε is mean zero and sub-Gaussian with ψ2-norm bounded by σ , namely
‖ε‖ψ2 := inf{t > 0 : E exp(ε2/t2) ≤ 2} ≤ σ (Vershynin (2018)), and the coefficients {β∗

j }pj=1

belong to a set including 0 and K0 unknown different nonzero values {γ ∗
k }K0

k=1. Note that
the group membership of each nonzero βj is not observed in data collection. Write α∗ =
(α∗

1 , . . . , α∗
q)� ∈ R

q , β∗ = (β∗
1 , . . . , β∗

p)� ∈ R
p and γ ∗ = (γ ∗

1 , . . . , γ ∗
K0

)� ∈ R
K0 . Our main

goal in this paper is to estimate γ ∗, β∗ and α∗ simultaneously based on an independent and
identically distributed (i.i.d .) sample {(xi , zi , yi)}ni=1 of size n. In the case of high dimension,
β is often assumed sparse so that we perform feature selection and grouping simultaneously
to ensure statistical consistency.

We now review and discuss some important works related to model (1.1). Shen and
Huang (2010) considered model (1.1) without covariates {Zk}qk=1 and proposed to mini-
mize the following objective with respect to β: S1(β) = n−1 ∑n

i=1(yi − ∑p
j=1 xijβj )

2 +
λ1

∑
j<j ′ Jτ (|βj − βj ′ |), where λ1 is a tuning parameter that is associated with fusion

strength, and Jτ (z) = min(zτ−1,1) is a surrogate of the indicator function 1z 	=0(z), with
τ > 0 representing the approximation error of Jτ (z) to the L0 penalty 1z 	=0(z). Such penalty
on the pairwise difference can lead to redundant comparisons and extra computational com-
plexity. Note that there is no sparsity regularization in S1(β). As an extension, Zhu, Shen and
Pan (2013) considered simultaneous grouping pursuit and feature selection by further pe-
nalizing individual coefficients, that is, minimizing S2(β) = n−1 ∑n

i=1(yi − ∑p
j=1 xijβj )

2 +
λ1

∑
(j,j ′)∈E Jτ (||βj | − |βj ′ ||) + λ2

∑p
j=1 Jτ (|βj |). Here, E is the edge set of an undirected

graph with p nodes representing {Xj }pj=1. If Xi and Xj can be grouped, then there is an edge
between nodes i and j ; otherwise, there is no edge. Available prior knowledge of E reduces
computational burden and improves estimation efficiency. However, it is always challenging
in practice to obtain a plausible estimate of E, which makes the method less appealing. Ke,
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Fan and Wu (2015) proposed a different method named as clustering algorithm in regression
via data-driven segmentation (CARDS). They use a preliminary estimate to determine “ad-
jacent” coefficient pairs for fusion and only penalize distances between the two coefficients
in each adjacent pairs by folded concave penalty function. Therefore, the CARDS estimator
depends on the initial ordering of the coefficients, which could be unstable especially when
the effect sizes are small (e.g., weak signals).

We propose to pursue homogeneity and sparsity simultaneously through a combinatorial
approach called L0-Fusion. Specifically, we estimate β∗ by the least squares with an exact
group constraint (the estimated βj ’s can only take at most K distinct nonzero values) and an
L0 sparsity constraint. To obtain this estimator, we formulate the corresponding optimization
problem as a mixed integer optimization (MIO) problem. Bertsimas, King and Mazumder
(2016) demonstrated that MIO provides a computationally tractable approach to solve the
classical best subset selection (BSS) problem of a practical scale: With the sample size in
thousands and the dimension in hundreds, a MIO algorithm can achieve provable optimality
in minutes. Such success of MIO and the similar combinatorial nature of the BSS problem
inspire us to seek for a MIO formulation of the L0-Fusion problem. Our main contributions
are summarized as follows: (a) To the best of our knowledge, it is the first time that we
formulate the group pursuing as a MIO problem; (b) we show that the estimator derived from
the L0-Fusion problem achieves grouping consistency once the loss function is reasonably
sensitive to a certain degree of grouping error; (c) we discover that the grouping sensitivity
requirement in (b) turns out to be necessary (up to a universal constant) for any approach to
achieve selection and grouping consistency; and (d) we provide a warm start algorithm with
convergence guarantee for the L0-Fusion problem, in order to accelerate the MIO solver.

The rest of the article is organized as follows. Section 2 introduces the L0-Fusion method
and a “screen then group” strategy to tackle high dimension. Section 3 presents the statistical
theory on the selection and grouping consistency of the L0-Fusion method and a necessary
condition to achieve such consistency, and some other related theoretical analyses. Section 4
studies the estimation and prediction error of the estimator obtained by L0-Fusion. Section 5
introduces our MIO formulation for the L0-Fusion problem together with a warm up algo-
rithm. Section 6 demonstrates significant superiority of the L0-Fusion approach over existing
ones in terms of grouping accuracy in both low-dimensional and high-dimensional regimes.
We also apply L0-Fusion to a metabolomics data set to aggregate concentration of simi-
lar lipids to predict the body mass index (BMI). The Supplementary Material (Wang et al.
(2024)) includes all technical details, including the proofs of major theoretical results.

2. Methodology: L0-fusion.

2.1. Notation. We use regular letters, bold regular letters and bold capital letters to de-
note scalars, vectors and matrices, respectively. For a positive integer n, denote {1, . . . , n} by
[n]. Let Z be the collection of all integer numbers. For any x ∈ R, denote 
x� := max{m ∈
Z : m ≤ x} and �x
 := min{n ∈ Z : n > x}. For any two sets A and B, let A\B := A ∩ Bc.
For any two subsets A and B of Rn, define A − B = {a − b | a ∈ A, b ∈ B}. For any ma-
trix A, A� denotes the transpose of A and A+ denotes its Moore–Penrose inverse. Given
B = {i1, . . . , i|B|} ⊂ [p], XB denotes the submatrix of X with columns indexed in B, and βB
denotes (βi1, . . . , βi|B|)

�. Given any a, b ∈ R, we say a � b if there exists a universal con-
stant C > 0 such that a ≤ Cb; we say a � b if there exists a universal constant c > 0 such
that a ≥ cb; we say a � b if a � b and a � b. For any two positive sequences {an} and {bn},
we write an � bn if an/bn → ∞ as n → ∞. For any event A, we use I (A) to denote the
indicator function associated with A, that is, I (A) = 1 if A occurs, and I (A) = 0 otherwise.
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2.2. L0-fusion with feature screening. Consider a random sample of n independent ob-
servations (xi , zi , yi)i∈[n] from model (1.1). Our paper concerns the following combinatorial
optimization problem to perform feature selection and homogeneity fusion simultaneously:

(2.1)

min
α∈Rq ,β∈Rp,γ∈RK

n∑
i=1

(
yi − x�

i β − z�
i α

)2
,

subject to: βj ∈ {0, γ1, γ2, . . . , γK} ∀j ∈ [p],

‖β‖0 :=
p∑

j=1

I (βj 	= 0) ≤ s.

The first constraint in (2.1) requires the nonzero group number to be bounded by K , and
the second constraint requires the sparsity of β to be bounded by s. Clearly, the problem in
(2.1) not only restricts the 
0-norm of β by K but also fuses similar components of β . Thus,
we refer to (2.1) as the L0-Fusion problem in this paper. Without the grouping constraint,
problem in (2.1) boils down to the well-known best subset selection (BSS) problem (Garside
(1965), Hocking and Leslie (1967), Beale, Kendall and Mann (1967)) with subset size s. Of
note, problem (2.1) is NP-hard in the presence of both cardinality and grouping constraints.
Despite such computational challenge, in Section 5.1 we provide a MIO formulation of (2.1)
that is amenable to modern integer optimization solvers such as GUROBI and MOSEK. As
shown in our numerical examples in this paper, when the dimension p ≤ 100, GUROBI can
solve the L0-Fusion problem within seconds.

In many practical occasions, the number of features, p, is often in thousands or even mil-
lions. In such cases, directly solving the above L0-Fusion problem is computationally bur-
densome or even prohibitive. To tackle this challenge, we propose a “screen then group”
strategy. In the screening stage, we obtain a screening set, denoted by S̃ , which is generated
by a certain preliminary feature screening procedure. Examples of popular screening tech-
niques include, but are not limited to, penalized least squares methods (Tibshirani (1996),
Fan and Li (2001), Zhang (2010)), sure independence screening (Fan and Lv (2008)) and
sparsity constraint method (Needell and Tropp (2009), Guo, Zhu and Fan (2020)). We hope
to choose a screening method so that the resulting set S̃ enjoys the sure screening property
in the sense that the true support set S0 ⊆ S̃ with high probability. Then in the next grouping
stage, we solve the L0-Fusion problem in (2.1) on the reduced design XS̃ to estimate nonzero
coefficients and obtain their groups.

In this paper, we choose CoSaMP (Compressive Sampling Matching Pursuit), a two-stage
iterative hard thresholding (IHT) algorithm proposed by Needell and Tropp (2009), as our
choice of screener for dimension reduction. Algorithm 1 presents its pseudocode of CoSaMP
that performs two rounds of hard thresholding in each iteration. First, it expands the model
by recruiting the largest coordinates of the gradient (lines 3–4); second, it contracts the model
by discarding the smallest components of the refitted signal on the expanded model (lines 5–
7). Guo, Zhu and Fan (2020) showed that under a high-dimensional sparse regression setup,
CoSaMP through the IHT procedure can achieve sure screening properties within few itera-
tions under highly correlated designs. In addition, Zhu and Wu (2021) showed numerically
that CoSaMP yields much fewer false discoveries than LASSO, SCAD and MCP on early
solution paths, particularly in the presence of high correlations among predictors. These re-
sults signify CoSaMP as an efficient and reliable screener to help substantially reduce the
dimension while retaining the true signals. We emphasize that the low false discovery rate
(FDR) in our two-stage analysis strategy is crucial to reasonably controlling the dimension
of the reduced design on which the L0-Fusion procedure becomes computationally tractable.
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Algorithm 1: CoSaMP(X, y, β̂0, π , l, τ )

Input: Design matrix X, response y, initial value β̂0, projection size π , expansion size
l, convergence threshold τ > 0

1: t ← 0
2: repeat
3: Gt ← Tabs(∇L(β̂ t ), l)

4: S�
t ← supp(β̂ t ) ∪ Gt

5: β̂
�

t ← (X�
S�

t
XS�

t
)+X�

S�
t
y

6: St ← Tabs(β̂
�

t , π)

7: β̂ t+1 ← (X�
St
XSt )

+X�
St
y

8: t ← t + 1
9: until ‖β̂ t − β̂ t−1‖2 < τ

10: β̂
cs ← β̂ t

Output: β̂
cs

3. Group recovery theory. In this section, we show that the global minimizers of
problem (2.1) reconstruct the ideal “oracle estimator,” provided that the MSE objective
in (2.1) is reasonably sensitive to grouping error. By oracle estimator, we mean the esti-
mator obtained under the prior knowledge of the true grouping, We establish both suffi-
cient and necessary conditions to achieve grouping consistency as well as selection con-
sistency. Define the parameter space �(K, s) := {θ = (β�,α�)� ∈ R

p+q | γ ∈ R
K,βj ∈

{0, γ1, . . . , γK},∀j ∈ [p],‖β‖0 ≤ s}. Let G(β; r) := {j ∈ [p] | βj = r} be the set contain-
ing all indices of the components of β equal to r ; denote the collection of groups of β
by G(β) = {G(β; r) | r 	= 0,G(β; r) 	= ∅}. Let |G(β; r)| and |G(β)| be the cardinality of
G(β; r) and G(β), respectively. We write the n × p design matrix X = (X1, . . . ,Xp) and the
n × q matrix Z = (Z1, . . . ,Zq), where Xj and Zk are the j th and kth columns of X and Z,
respectively. We consider the fixed design X and Z throughout this paper.

3.1. MSE grouping sensitivity. We first define a incongruity measure d(β,β ′) between
two groupings that correspond to β and β ′, respectively.

DEFINITION 3.1 (Degree of grouping incongruity). For any β , β ′ such that |G(β)| ≤
|G(β ′)|, define

(3.1) d
(
β,β ′) := min

f ∈F(β,β ′)

∣∣∣∣( ⋃
G2∈G(β ′)

G2

)∖( ⋃
G1∈G(β)

{
G1 ∩ f (G1)

})∣∣∣∣,
where F(β,β ′) := {f is injective : G(β) →G(β ′)}.

Definition 3.1 may be explained as follows. Note that
⋃

G1∈G(β){G1 ∩ f (G1)} collects
all the variables that are consistently labeled by G(β) and G(β ′) under mapping f , while⋃

G2∈G(β ′) G2 collects the support variables of β ′. Therefore, {⋃G2∈G(β ′) G2}\{⋃G1∈G(β) G1 ∩
f (G1)}} gives rise to a collection of all the variables with inconsistent group labels in G(β)

and G(β ′) under mapping f . Moreover, d(β,β ′) measures the minimum number of un-
matched variables in the support of β ′ among all mappings f ∈ F(β,β ′). Figure 1 illus-
trates a specific setup with two mappings of possible group labels, f (1) and f (2) in F(β,β ′).
Clearly, f (1) gives three inconsistent group labels (three crosses) between G(β) and G(β ′),
while f (2) gives four. Therefore, f (1) minimizes the objective in (3.1), and thus d(β,β ′) = 3.
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FIG. 1. Illustration of the grouping maps and grouping incongruity. Here, β,β ′ ∈ R
7, |G(β)| = |G(β ′)| = 2

and |F(β,β ′)| = 2. We write F(β,β ′) = {f (1), f (2)} and illustrate these two maps on the left and right panels,
respectively. For clarity, we let G and f (G) share the same color for any G ∈ G(β). On the right border of each
panel, for each feature, we use a check (cross) to indicate the consistency (inconsistency) between G(β) and
G(β ′) according to the given grouping map. Then d(β,β ′) = 3.

Next, we define a sensitivity measure via mean squared error (MSE) with respect to degree
of grouping incongruity, which plays a key role in quantifying the difficulty of identifying the
true grouping in the theoretical analysis.

DEFINITION 3.2 (MSE grouping sensitivity). Under model (1.1) with the true parameter
θ∗ = (β∗�,α∗�)� ∈ R

p+q , define

cmin ≡ cmin
(
θ∗,X,Z

) := min
θ∈�(|G(β∗)|,‖β∗‖0)

G(β) 	=G(β∗)

‖X(β − β∗) +Z(α − α∗)‖2
2

nmax(d(β,β∗),1)
,(3.2)

where θ = (β�,α�)� ∈R
p+q is a parameter.

In words, cmin is the resulting minimal increase of MSE from a false grouping result.
A small cmin suggests low sensitivity of MSE to false grouping, and consequently, it is diffi-
cult to restore the true grouping in the analysis. Given a grouping structure G(β), define

XG(β) :=
( ∑

k∈G(β;γ1)

Xk, . . . ,
∑

k∈G(β;γ|G(β)|)
Xk

)
,

where we collapse matrix X groupwise by summing up its columns in the same group ac-
cording to G(β). Let D(β) ∈ R

|G(β)|×|G(β)| denote the diagonal matrix with the ith diagonal
element {D(β)}ii = |G(β;γi)|, which is the size of the group of parameters equal to γi . For
a given β , let

(3.3) X̃(β) := (
XG(β)

{
D(β)

}−1/2
,Z

) ∈R
n×(|G(β)|+q),

and the projection operator takes the form P(β) := X̃(β){X̃(β)�X̃(β)}+X̃(β)�. For conve-
nience, we denote the true signal by μ∗ = (X, Z )

( β∗
α∗

)
. To further interpret the term cmin,

we now introduce an equivalent definition of cmin through the sum of squares of residuals
incurred by incorrect grouping as follows:

(3.4) cmin
(
θ∗,X,Z

) := min
θ∈�(|G(β∗)|,‖β∗‖0)

G(β) 	=G(β∗)

‖{I− P(β)}μ∗‖2
2

nmax(d(β,β∗),1)
.
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Definition (3.4) will be extended in Section 3.5 to another MSE type of grouping sensitivity
in the case of overestimated group number and sparsity. The equivalency between (3.2) and
(3.4) can be easily verified. Note the fact that P(β) and d(β,β∗) depend only on the group
structure G(β). Thus, the equivalency naturally holds by the following operations: first, fix
a group structure under which the MSE is minimized by the least squares method; then take
the minimum over all possible group structures in Definition (3.2).

3.2. Sufficient condition. Here, we present the sufficient conditions for L0-Fusion to
achieve grouping consistency. We first define the oracle least squares estimator.

DEFINITION 3.3 (Oracle least squares estimator). Given the true coefficient β∗, the ora-

cle least squares estimator θ̂
ol = (β̂

ol�
, α̂ol�

)� is defined as

θ̂
ol := argmin

θ :G(β)=G(β∗)
‖Y−Xβ −Zα‖2

2.

More specifically, define(
γ̂ ol�

, α̂ol�)� := (
γ̂ ol

1 , . . . , γ̂ ol
K0

, α̂ol�)� = argmin
(γ �,α�)�∈RK0+q

‖Y−XG(β∗)γ −Zα‖2
2.

In the oracle solution β̂
ol = (β̂ol

1 , . . . , β̂ol
p )�, β̂ol

j is equal to either γ̂ ol
k if j ∈G(β∗;γ ∗

k ), or β̂ol
j

is 0 if j ∈ G(β∗;0), and K0 = |G(β∗)|.

For any estimator θ̂ = (β̂
�
, α̂�

)� of θ∗, define the 0-1 grouping risk Lg(θ̂; θ∗) :=
P(G(β̂) 	=G(β∗)). Denote the solution to the L0-Fusion problem (2.1) by θ̂

g = (β̂
g�

, α̂g�
)�.

Denote ‖β∗‖0 by s0 for convenience. Theorem 3.4 below says that the MIO solution θ̂
g

con-

sistently recovers the oracle solution θ̂
ol

if the MSE grouping sensitivity satisfies the condi-
tion, cmin � log(pK0)/n, and the following Condition 3.1 holds.

CONDITION 3.1 (Sub-Gaussian random error). For model (1.1), the random errors ε’s
are independent sub-Gaussian with mean zero and ψ2-norm bounded by σ .

THEOREM 3.4. If Condition 3.1 holds, under K = K0 and s = s0 in (2.1), we have

Lg

(
θ̂

g; θ∗) ≤ 4 exp
[
− 3n

200σ 2

{
cmin − σ 2

n

(
134 log(pK0) + 220

)}]
.

This implies that when cmin ≥ σ 2

n
{d1 log(pK0) + 220} for some universal constant d1 > 134,

θ̂
g
consistently reconstructs θ̂

ol
, namely Lg(θ̂

g; θ∗) → 0 as n,p → ∞.

The proof of Theorem 3.4 is inspired by the proofs of Theorem 2 in Zhu, Shen and Pan
(2013) and Theorem 2 in Shen et al. (2013). Note that in Section 3.3 we show that a lower
bound of the same order for cmin is necessary to achieve the grouping consistency. In addition,
the upper bound in the above theoretical guarantee is obtained for the L0-Fusion estimator
under the true values K0 and s0. Although they are unknown in practice, we may employ
effective tuning parameter selection methods to learn their values satisfactorily. As illustrated
by our simulation experiments in Section 6, optimizing the Bayesian Information Criterion
(BIC) with respect to K and s in (2.1) enables us to select the model with the true K0 and
s0, with high probability. Moreover, in Section 3.5, we relax this ideal setting to a commonly
encountered “over-identification” scenario in that tuned values K and s are overestimated
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and satisfy K ≥ K0 and s ≥ s0. Consequently, we propose a new concept of sure partition to
extend Theorem 3.4 in order to establish theoretical guarantees for the L0-Fusion estimator.

For the sake of computational feasibility and efficiency, we suggest performing a prelimi-
nary dimension reduction step to speed up solving (2.1) numerically. This step is not required
in the theoretical analysis. In this paper, we adopt the so-called “screen then group (StG)”
strategy. To elucidate, we define a sure screening event E as {S0 ⊆ S̃} with S̃ being the re-
sulting parameter set from the screening operation. Let θ̂

sg ∈ R
p+q denote an StG solution

that consists of the solution to the L0-Fusion problem in (2.1) on the reduced design matrix
XS̃ and a set of zeros corresponding to the screened out features. Corollary 3.1 states that as
long as E holds with high probability and groups are reasonably separable, θ̂

sg
can recover

θ̂
ol

with high probability. Note that screening is a separate operation from grouping, which
aims to reduce p, the dimension of features Xj ’s, so that the reduced design matrix contains
still the true signals (i.e., K0 and s0) prior to the subsequent operation of grouping. Many
variable screening techniques provably yield a sure screening set under reasonable assump-
tions on both signal and design, including Sure Independence Screening (Fan and Lv (2008),
Theorem 1), LASSO (Wainwright (2019), Theorem 7.21) and CoSaMP (Guo, Zhu and Fan
(2020), Theorem 3.1). In this paper, we choose CoSaMP as the screening technique given its
robustness against design collinearity (Guo, Zhu and Fan (2020)).

COROLLARY 3.1. Under K = K0, s = s0 and cmin > σ 2

n
(134 log(pK0) + 220), for any

sure screening event E , we have

Lg

(
θ̂

sg; θ∗) ≤ 4 exp
[
− 3n

200σ 2

{
cmin − σ 2

n

(
134 log(pK0) + 220

)}]
+ P

(
Ec).

PROOF. First, we claim that

(3.5)
{
θ̂

g = θ̂
ol} ∩ E ⊆ {

θ̂
sg = θ̂

ol}
,

where event {θ̂g = θ̂
ol} means that the L0-Fusion obtains the oracle solution under a design

matrix X, and when this event occurs, supp(θ̂
g
) = supp(θ̂

ol
) = S0. Likewise event {θ̂ sg =

θ̂
ol} means that the StG-based L0-Fusion obtains the oracle solution under a reduced design

matrix XS̃ . Note that the sure screening E only removes some of the null signals, and the
resulting reduced design matrix XS̃ contains all the true signals, namely {S0 ⊆ S̃}. Thus, the

occurrence of event {θ̂g = θ̂
ol} implies that θ̂

g
is one of possible solutions within the scope of

the StG operation. Thus, when both events {θ̂g = θ̂
ol} and {S0 ⊆ S̃} occur, event {θ̂ sg = θ̂

ol}
will occur with θ̂

sg = θ̂
g = θ̂

ol
. It follows from the Bonferroni inequality that

P
(
θ̂

sg = θ̂
ol) ≥ P

({
θ̂

g = θ̂
ol} ∩ E

) = 1 − P
({

θ̂
g 	= θ̂

ol} ∪ Ec)
≥ 1 − P

(
θ̂

g 	= θ̂
ol) − P

(
Ec).

The conclusion immediately follows by combining this inequality with Theorem 3.4. �

Corollary 3.1 suggests that applying the screening operation prior to grouping can reduce
the complexity of L0-fusion in the case when we correctly identify K = K0, s = s0. There
is a small price of P(Ec) owing to the screening operation in StG leads to a slight loss in
statistical accuracy guarantee as a trade-off for the gain of computational benefits.
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3.3. Necessary condition. For a constant c∗ > 0, consider the following parameter sub-
space of �(K0, s0):

�c(K0, s0, c∗) := {
θ : θ ∈ �(K0, s0), cmin(θ,X,Z) ≥ c∗

}
.

In Theorem 3.5 below, we aim to establish a lower bound for the minimax 0-1 grouping risk
Lg(·) over �c(K0, s0, c∗). As a result, the lower bound of cmin in Theorem 3.4 becomes
necessary to simultaneously achieve selection and grouping consistency. To proceed, we pos-
tulate the following two conditions on the design matrix, both of which are indeed routinely
assumed in the high-dimensional statistics literature.

CONDITION 3.2. There exists a constant κu > 0 such that maxj∈[p] ‖Xj‖2/
√

n ≤ κu.

CONDITION 3.3 (Weak sparse Riesz condition). There exists a constant κl > 0 such that

1√
n

∥∥∥∥(X,Z)

(
β
α

)∥∥∥∥
2
≥ κl

∥∥∥∥(
β
α

)∥∥∥∥
2
,

for any (β�,α�)� ∈ R
p+q\{0} satisfying ‖β‖0 ≤ 2K0.

THEOREM 3.5. For model (1.1), suppose that errors {εi}i∈[n] are i.i.d. N (0, σ 2) and
that Conditions 3.2 and 3.3 hold. Under K0 ≥ 1, p ≥ s0 ≥ K0, for any c∗ > 0, we have the
minmax lower bound given by

inf
θ̂

sup
θ∗∈�c(K0,s0,c∗)

Lg

(
θ̂; θ∗) ≥ 1 − 20nκ2

uκ−2
l c∗ + σ 2 log(2)

σ 2 log(
K0+3
4 �p)

.

Consequently, if there exists a universal constant ρ ∈ (0,1) such that

c∗ ≤ σ 2κ2
l {ρ log(
K0+3

4 �p) − log(2)}
20nκ2

u

,

then we have inf
θ̂

supθ∗∈�c(K0,s0,c∗)Lg(θ̂; θ∗) ≥ 1 − ρ > 0.

3.4. Characterizing cmin by the homogeneous coefficient group separation. So far, the
MSE grouping sensitivity cmin reflects an intrinsic difficulty of the L0-Fusion problem in
terms of achieving the grouping consistency. To further interpret and illustrate cmin intuitively,
we now introduce a quantity, denoted by γmin, to depict the separation between homogeneous
coefficient groups. This metric of separability is given by the minimum distance between
different groups of model parameters.

DEFINITION 3.6 (Minimum group gap). γmin = min{minj,j ′∈[p]
β∗

j 	=β∗
j ′

|β∗
j −β∗

j ′ |,minj∈[p]
β∗

j 	=0
|β∗

j |}.

We show that cmin and γmin are closely related in various cases; thus, theoretical guaran-
tees for grouping consistency may be intuitively presented and interpreted through the cor-
responding conditions of γmin in the rest of this paper. Clearly, the larger γmin, the easier to
distinguish different groups of parameters and identify the true group structure. Arguably, the
relationship between γmin and cmin help to better understand conditions required to achieve
grouping consistency. For this investigation, we actually need a stronger condition than Con-
dition 3.3 on the design matrix, given as follows.
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CONDITION 3.4 (Strong sparse Reisz condition). There exists a constant κ ′
l ∈ (0,∞)

such that
1√
n

∥∥∥∥(X,Z)

(
β
α

)∥∥∥∥
2
≥ κ ′

l

∥∥∥∥(
β
α

)∥∥∥∥
2
,

for any (β�,α�)� ∈ R
p+q\{0} such that ‖β‖0 ≤ 2s0.

Of note, Condition 3.4 has been routinely assumed in the high-dimensional statistics lit-
erature. Also, it is easy to see that Condition 3.4 implies Condition 3.3. Below we study the
two examples with two groups of coefficients to gain some primary insights.

EXAMPLE 3.7 (Balanced groups). Consider K0 = 2, p = s0 and an arbitrary q . Assume
that c∗ := |G(β∗;γ ∗

1 )|/s0 ∈ (0,1). Under Condition 3.4, we have

cmin ≥ min
{
c∗,1 − c∗, 2

c∗ + 2
,

2

3 − c∗ ,
2(1 − c∗)
3 − 2c∗ ,

2c∗

1 + 2c∗
}
κ ′
l
2
γ 2

min.

Example 3.7 implies that when there are two disjoint groups of relatively balanced sizes, if
γmin � σ {log(pK0)/n}1/2, where the lower bound accords with the rate of the signal strength
in the β-min condition (Wainwright (2009)), then cmin � σ 2 log(pK0)/n. Moreover, apply-
ing Theorem 3.4 leads to grouping consistency of θ̂

g
in this balanced case. In the next ex-

ample with the group sizes being very unbalanced, a more stringent lower bound for γmin is
required to achieve grouping consistency.

EXAMPLE 3.8 (Unbalanced groups). Suppose p = s0, q = 0, K0 = 2, |G(β∗, γ ∗
1 )| = 1,

|G(β∗, γ ∗
2 )| = s0 − 1, γ ∗

1 = γ and γ ∗
2 = 2γ . It follows that γmin = γ . Assume that there

exists a universal constant κ ′
u ∈ (0,∞) such that the square-root of the maximum eigen-

value of the sample covariance is bounded above, λ
1/2
max(X�X/n) ≤ κ ′

u. Then we have
cmin ≤ κ ′

u
2
γ 2

min/�s0/2
.

In Example 3.8, to yield cmin � σ 2 log(pK0)/n we need at least γmin � σ {s0 log(pK0)/

n}1/2, which includes an extra s
1/2
0 factor in comparison to that in Example 3.7. Proofs of

Examples 3.7 and 3.8 are in Sections 2.3 and 2.4 of the Supplementary Material (Wang et al.
(2024)). Theorem 3.9 below presents a general result for the connection between cmin and
γmin.

THEOREM 3.9. Suppose Condition 3.4 holds for some κ ′
l ∈ (0,∞). Then cmin ≥

κ ′
l
2
γ 2

min/(4s0). Moreover, if γmin � σ {s0 log(pK0)/n}1/2, then cmin � σ 2 log(pK0)/n.

It is interesting to note that Ke, Fan and Wu (2015) introduced a similar group gap quantity
(referred to as bn therein), where to achieve group consistency in Ke, Fan and Wu (2015)
the γmin term needs to satisfy γ 2

min � maxk{|G(β∗;γ ∗
k )|}σ 2 log(n ∨ p)/n. Under a highly

challenging setup as in Example 3.8, Theorem 3.9 agrees with their result in Ke, Fan and Wu
(2015) where maxk{|G(β∗;γ ∗

k )|} = s0 − 1 holds.

3.5. Sufficient conditions with overestimated group number and sparsity. In practice,
both K0 and s0 are unknown and need to be determined. Here, we investigate the L0-Fusion
estimation with overestimated group number and sparisity, denoted by K† and s† that are
obtained by a tuning step that typically results in K = K† ≥ K0 and s = s† ≥ s0. In this case
of overidentification, we change our analytic goal from a full restoring of the true grouping
structure to a realistically achievable optimality in terms of sure partition.
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DEFINITION 3.10 (Sure partition estimator). An statistic β̂ is called a sure partition es-
timator of β∗ if (i) the null signals given by β̂ form a subset of the true null signals, namely
G(β̂;0) ⊆ G(β∗;0), and (ii) sure partition G(β̂) ∪ {G(β̂;0)} is a finer partition of [p] than
the true grouping G(β∗) ∪ {G(β∗;0)}.

In words, a sure partition corresponds to a situation where the groups given by estimator β̂

are resulted from further partitioning of the true groups. For any sure partition estimator β̂ , the
true signal μ∗ is in the column space spanned by X̃(β̂) (see (3.3)), or equivalently, P(β̂)μ∗ =
μ∗. This implies no shrinkage of the feature space with respect to the design matrix of an
overientified group structure. Thus, the least squares estimator based on a resulting design
matrix from sure partition G(β̂) enjoys both unbiasedness and parsimony. These properties
make the sure partition estimator a desirable choice to deal with the L0-Fusion problem
along with tuning on group size and sparsity. We denote the collection of all sure partition
estimators of (β∗�

,α∗)� with a group size K† ≥ K0 and sparsity s† ≥ s0 by

�
(
β∗,K†, s†) := {(

β�,α�)� | β is a sure partition estimate of β∗,(
β�,α�)� ∈ �

(
K†, s†)

,α ∈ R
q}

.

Below we provide a toy example to facilitate understanding of sure partition estimator.

EXAMPLE 3.11. Consider β∗ ∈ R
20 and G(β∗) = {{1,2}, {3,4}}. Obviously, K0 = 2

and s0 = 4. At K† = 4, {G(β) : θ = (β�,α�)� ∈ �(β∗,4, s†) for some s† ≥ 6} includes{{1,2}, {3,4},G1,G2
}
,

{{1,2}, {3}, {4},G}
and

{{1}, {2}, {3,4},G}
for any nonempty subset G ⊂ {5,6, . . . ,20} such that |G| ≤ s† − 4 and for any nonempty
sets G1,G2 ⊂ {5,6, . . . ,20} such that G1 ∩ G2 = ∅ and |G1| + |G2| ≤ s† − 4. Of note,
G(β) only collects the groups of nonzero coefficients. For example, when G(β) =
{{1,2}, {3,4},G1,G2}, we obtain its support as supp(β) = {1,2,3,4} ∪ G1 ∪ G2.

Next, to discuss optimality under sure partition, we introduce a new measure d†(β;β∗,
K†, s†) that characterizes the incongruity of β over the set of sure partition estimators of β∗.
This leads to a modified version of the MSE sensitivity to grouping incongruity, denoted by
c

†
min.

DEFINITION 3.12 (Degree of grouping incongruity with sure partition). Given any K† ≥
K0 and s† ≥ s0, for any θ = (β�,α�)� ∈ �(K†, s†), define

d†(
β;β∗,K†, s†) := min

θ†∈{θ†∈�(β∗,K†,s†):|G(β†)|≥|G(β)|}
d
(
β,β†)

.

DEFINITION 3.13 (MSE sensitivity to incongruity with sure partition). Given θ∗, for any
K† ≥ K0 and s† ≥ s0, define

c
†
min

(
θ∗,X,Z,K†, s†) := min

θ=(β�,α�)�∈�(K†,s†)

θ /∈�(β∗,K†,s†)

‖X(β − β∗) +Z(α − α∗)‖2
2

nmax(d†(β;β∗,K†, s†),1)

= min
θ=(β�,α�)�∈�(K†,s†)

θ /∈�(β∗,K†,s†)

‖{I− P(β)}μ∗‖2
2

nmax(d†(β;β∗,K†, s†),1)
.
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Note that when K† = K0 and s† = s0, we have c
†
min(θ

∗,X,Z,K0, s0) = cmin(θ
∗,X,Z).

We use L†
g(θ̂

g; θ∗,K†, s†) to denote the 0-1 sure partition risk P(θ̂
g

/∈ �(β∗,K†, s†)). The-

orem 3.14 affirms that the L0-Fusion solution θ̂
g

under the overestimated group size and
sparsity can achieve sure partition with high probability when the group incongruity satisfies
c

†
min(θ

∗,X,Z,K†, s†)� log(pK†)/n.

THEOREM 3.14. Let K = K† ≥ K0 and s = s† ≥ s0 in the L0-Fusion problem where a
solution θ̂

g
is obtained. Under Condition 3.1, we have

L†
g

(
θ̂

g; θ∗,K†, s†) ≤ 4 exp
[
− 3n

200σ 2

{
c

†
min

(
θ∗,X,Z,K†, s†) − σ 2

n

(
134 log

(
pK†) + 220

)}]
.

Moreover, when c
†
min(θ

∗,X,Z,K†, s†) ≥ σ 2

n
{d1 log(pK†)+220} for some universal constant

d1 > 134, θ̂
g
achieves sure partition with probability going to one as n,p → ∞.

In the setting of sure partition with estimates K† and s†, when screening is applied prior to
grouping, similar to Corollary 3.1, a certain small loss appears to slightly weaken the upper
bound given in Theorem 3.14. Below Corollary 3.2 presents an extension of Corollary 3.1.

COROLLARY 3.2. Let K = K† ≥ K0 and s = s† ≥ s0 for an StG solution θ̂
sg

. Under
Condition 3.1, if c

†
min(θ

∗,X,Z,K†, s†) ≥ σ 2

n
{d1 log(pK†) + 220} holds for some universal

constant d1 > 134, we have

L†
g

(
θ̂

sg; θ∗,K†, s†)
≤ 4 exp

[
− 3n

200σ 2

{
c

†
min

(
θ∗,X,Z,K†, s†) − σ 2

n

(
134 log

(
pK†) + 220

)}]
+ P

(
Ec

1
)
,

where E1 = {supp(θ̂
g
) ⊆ S̃} with S̃ being the resulting parameter set from screening.

PROOF. Using the similar arguments in the proof of Corollary 3.1, we have{
θ̂

g ∈ �
(
β∗,K†, s†)} ∩ E1 ⊆ {

θ̂
sg ∈ �

(
β∗,K†, s†)}

.

The remaining proof follows the exact steps in the proof of Corollary 3.1 with little effort.
�

4. Estimation and prediction error. This section focuses on the L2 estimation and pre-

diction error bounds for the oracle estimator θ̂
ol

. The same bounds apply to the L0-Fusion
estimator if it recovers the true groups. Our analysis requires a regularity condition on the
collapsed design matrix X̃(β∗) based on the true groups. Similar oracle error bounds are
obtained by Ke, Fan and Wu (2015).

CONDITION 4.1. There exist universal constants κ∗
l , κ∗

u > 0 such that the square-roots
of the maximum and minimum eigenvalues of the sample covariance are bounded above and
below, respectively,

κ∗
l ≤ λ

1/2
min

(
X̃(β∗)�X̃(β∗)

n

)
≤ λ1/2

max

(
X̃(β∗)�X̃(β∗)

n

)
≤ κ∗

u

where X̃(β∗) is the collapsed design matrix given in (3.3).
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PROPOSITION 4.1 (Oracle estimation and prediction error). For model (1.1), an oracle

solution to the L0-Fusion problem (2.1) is found as β̂
ol

.

(i) (Estimation error) Under Condition 4.1, we have for any ξ > 1,∥∥∥∥∥
(
β̂

ol

α̂ol

)
−

(
β∗
α∗

)∥∥∥∥∥
2

≤ σκ∗
u

(κ∗
l )2

√
2ξ(K0 + q) logp

n
,

with probability at least 1 − 2p−cξ , where c > 0 is a universal constant.
(ii) (Prediction error) For any ξ > 0, we have∥∥∥∥∥(

X,Z
)(

β̂
ol

α̂ol

)
− (

X,Z
)(

β∗
α∗

)∥∥∥∥∥
2

n1/2 ≤ σ

√
2ξ(K0 + q) logp

n
,

with probability at least 1 − 2p−cξ , where c is a universal constant.

In Appendix 3, we study the L2 estimation error and prediction error of L0-Fusion in the
case of overidentification with K† ≥ K0 and s† ≥ s0. When the true grouping structure is
misspecified, which is a common case in practice, we wish to have L0-Fusion maintain rea-
sonable estimation and prediction accuracy. It turns out that the resulting statistical rates lose
the blessing of the original group structure due to the model misspecification: the rates reduce
to those obtained in the standard high-dimensional sparse regression with no homogeneous
groups of coefficients (see, e.g., Wainwright (2009)).

5. Mixed integer optimization formulation. Given the strong statistical guarantee es-
tablished for the L0-Fusion in the previous sections, we now switch our focus to the com-
putational aspect of the problem. In this paper, we leverage mixed integer optimization tech-
niques to solve the combinatorial problem (2.1). Recently, Bertsimas, King and Mazumder
(2016) proposed a MIO approach to solve the best subset selection problem of a remarkably
enhanced scale. This inspires us to formulate L0-Fusion as a MIO problem, for which we
can resort to modern MIO solvers. In Section 5.1, we introduce the MIO formulation of L0-
Fusion. Then we present a warm start algorithm in Section 5.2 to further accelerate the MIO
solver.

5.1. MIO formulations for homogeneity fusion. Generally speaking, a MIO problem is
formulated as follows:

(5.1)

min
α∈Rm

α�Qα + α�a

s.t. Aα ≤ b,

αj ∈ {0,1}, j ∈ I,

αj ≥ 0, j /∈ I,

where a ∈ R
m, A ∈ R

h×m, b ∈ R
h and Q ∈ R

m×m is positive semidefinite. The symbol “≤”
represents elementwise inequalities. I , an index subset of [m], identifies the binary com-
ponents of α. The mixture of discrete and continuous components of α justifies the name of
mixed integer programming. For more comprehensive background of MIO, we refer the read-
ers to Bertsimas and Weismantel (2005) and Jünger and Reinelt (2013). Some popular MIO
solvers include CPLEX, GLPK, MOSEK and GUROBI. Thanks to the branch-and-bound
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techniques (Cook, Lovász and Seymour (1995)), these solvers can provide both feasible so-
lutions and lower bounds of the optimal objective value, from which we can learn how far a
current solution is from the global optimum.

Now we introduce the MIO formulation for problem (2.1):

(5.2)

min
α∈Rq ,β∈Rp,

γ∈RK,�∈{0,1}p×(K+1)

n∑
i=1

(
yi − x�

i β − z�
i α

)2
,

subject to: ωjk ∈ {0,1} ∀k ∈ {0} ∪ [K], j ∈ [p]
ωjk(βj − γk) = 0 ∀k ∈ [K], j ∈ [p]
ωj0βj = 0 ∀j ∈ [p]
γk < γk+1 ∀k ∈ [K − 1]
K∑

k=0

ωjk = 1 ∀j ∈ [p]

p∑
j=1

ωj0 ≥ p − s.

Here, the number of groups K and the sparsity s are prespecified, which will be tuned by,
for example, cross-validation. For any j ∈ [p] and k ∈ {0} ∪ [K], we use ωjk to denote the
(j, k + 1)th entry of �. For any j ∈ [p] and k ∈ [K], ωjk = 1 (ωjk = 0) means that the j th
covariate is present (absent) in the kth group. To see why this is true, note that ωjk(βj −γk) =
0 enforces βj = γk when ωjk = 1. Similarly, ωj0 = 1 implies that βj = 0, given the constraint
that ωj0βj = 0. These types of constraints correspond to Specially Ordered Sets of type 1
(SOS-1) in Beale and Tomlin (1970) and can be replaced by linear constraints (Vielma and
Nemhauser (2011), Markowitz and Manne (1957), Dantzig (1960)). The constraint γk < γk+1
resolves the identifiability issue so that {γk}k∈[K] can be uniquely determined. Constraint∑K

k=1 ωjk = 1 implies that each covariate belongs to exactly one group. Finally,
∑p

j=1 ωj0 ≥
p − s ensures the size of the zero-valued group to be bigger than p − s, thereby constraining
the sparsity of β below s. It is noteworthy that the solution of problem (5.2) can have fewer
than K groups.

Formulation (5.2) can be easily extended to accommodate prior knowledge regarding
group structures. For instance, some covariates are known in advance to be in the same group,
say, βj∈J are equal for a set J ⊂ [p]. Then we can incorporate this information into (5.2)
by adding the constraint that ωj1k = ωj2k,∀j1, j2 ∈ J , j1 	= j2, k ∈ {0} ∪ [K]. In another
example with the absence of pair covariates among {Xj }j∈J belonging to the same group,
we can add the constraint

∑
j∈J ωjk ≤ 1, k = {0} ∪ [K].

5.2. Warm start algorithm. This section introduces a discrete first-order algorithm to
provide a warm start for the MIO problem (5.2). Our algorithm is inspired by Bertsimas,
King and Mazumder (2016), who proposed a similar algorithm to initialize a MIO solver to
solve the BSS problem. Since this algorithm is not limited to the square loss objective in the
L0-Fusion problem, we extend the original L0-Fusion problem to embrace a wider range of
objective functions.

Suppose we are interested in a convex objective function g(θ) satisfying:

(i) g(θ) ≥ C2 > −∞ for some universal constant C2;
(ii) g(θ) has Lipschitz continuous gradient, that is, ‖∇g(θ) − ∇g(̃θ)‖2 ≤ l‖θ − θ̃‖2 for

some positive l and any θ , θ̃ ∈ �(K, s), which is defined in the beginning of Section 3.
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FIG. 2. An illustration of g(θ) and hL(θ, θm) in Proposition 5.1. The solid curve is g(θ) and the dashed curve
is hL(θ, θm).

Consider the following generalized L0-Fusion problem:

(5.3) min
θ∈�(K,s)

g(θ).

We propose an algorithm to attain a feasible point close to the solution of problem (5.3),
based on ideas from projected gradient descent methods (Nesterov (2004), Nesterov (2013)).
Note that this point can serve as a starting point for MIO solvers and the objective function
value at this point is an upper bound of the global minimum. To do so, we construct a curve
hL(θ , θ ′) defined in the following proposition, which lies above g(θ) and is tangent to g(θ)

at θ ′.

PROPOSITION 5.1 (Nesterov (2004), Nesterov (2013)). For a convex function g(θ) sat-
isfying (ii), and for any L ≥ l, we have

(5.4) g(θ) ≤ hL

(
θ , θ ′) := g

(
θ ′) + (

θ − θ ′)�∇g
(
θ ′) + L

2

∥∥θ − θ ′∥∥2
2,

for all θ , θ ′ with equality holding at θ = θ ′.

As illustrated in Figure 2, given a point θm, we can always improve the current objective
value g(θm) through the descending route:

(5.5) g(θm+1) ≤ hL(θm+1, θm) ≤ hL(θm, θm) = g(θm),

where

θm+1 ∈ argmin
θ∈�(K,s)

hL(θ , θm) = argmin
θ∈�(K,s)

∥∥∥∥θ −
(
θm − 1

L
∇g(θm)

)∥∥∥∥2

2
.

For convenience, for any constant vector c = (c1, . . . , cp+q)
�, define

HK,s(c) := argmin
θ∈�(K,s)

‖θ − c‖2
2.

Then θm+1 ∈ HK,s(θm − 1
L
∇g(θm)). By carrying out this improvement iteratively, we im-

plement Algorithm 2 below that supplies decent warm starts to solve problem (5.3).
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Algorithm 2: Warm Start
Input: Loss function g(θ), number of groups K , sparsity constraint s, step size

parameter L and convergence tolerance ε.
1: Initialize with θ1 ∈R

p+q .
2: For m ≥ 1, θm+1 ∈ HK,s(θm − 1

L
∇g(θm)).

3: Repeat Step 2 until g(θm) − g(θm+1) ≤ ε.
Output: θm+1.

Algorithm 2 is essentially a projected gradient descent algorithm: In each iteration, we
perform a gradient descent step followed by projection onto HK,s . To obtain an element
in HK,s(c) for any c ∈ R

p+q , we can exploit the subroutine Algorithm 1 in Section 1 of
the Supplementary Material (Wang et al. (2024)), which is a generalization of the segment
neighbourhood method (Auger and Lawrence (1989)) with sparsity constraint. To investigate
the algorithmic convergence of Algorithm 2, we first define the first-order stationary points
of problem (5.3) as follows.

DEFINITION 5.1 (First-order stationary point). We say a vector θ ∈ �(K, s) is a first-
order stationary point for problem (5.3) if θ ∈HK,s(θ − 1

L
∇g(θ)) for some positive constant

L ≥ l.

The following proposition establishes two important properties of the first-order stationary
points that underpin the effectiveness and stability of our warm start Algorithm 2.

PROPOSITION 5.2. Suppose a positive constant L > l.

(i) If θ is a solution to problem (5.3), then it is a first-order stationary point; and
(ii) If θ is a first-order stationary point, then the set HK,s(θ − 1

L
∇g(θ)) has exactly one

element θ .

Now we present the convergence property and convergence rate of Algorithm 2 through
Proposition 5.3 and Theorem 5.2, respectively.

PROPOSITION 5.3. For problem (5.3) and some positive constant L > l, let θm,m ≥ 1
be the sequence generated by Algorithm 2. We have:

(i) g(θm) − g(θm+1) ≥ L−l
2 ‖θm − θm+1‖2

2; and
(ii) ‖θm+1 − θm‖2 → 0 as m → ∞.

THEOREM 5.2. For the sequence {θm}∞m=1 generated by Algorithm 2, if L > l, then there
exists c ∈ R, such that for any M ∈ Z

+ we have

min
m=1,...,M

‖θm+1 − θm‖2
2 ≤ 2(g(θ1) − c)

M(L − l)
,

where g(θm) ↓ c as m → ∞.

Finally, we show that Algorithm 2 gives a feasible solution whose objective value is the
same as some first-order stationary point under mild conditions.

PROPOSITION 5.4. Consider problem (5.3) and some constant L > l, let θm,m ≥ 1 be
the sequence generated by Algorithm 2. Suppose g satisfies the following conditions:
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(i) g has second-order derivative;
(ii) there exists l′ > 0 such that l′‖θ − θ̃‖2 ≤ ‖∇g(θ) − ∇g(̃θ)‖2 for any θ, θ̃ ∈ �(K, s)

satisfying G(β) = G(β̃);
(iii) {θ ∈ �(K, s) | g(θ) ≤ C} is bounded for any C ∈ R.

Then g(θm) converges to g(θ) where θ is a first-order stationary point.

The detailed proof of Proposition 5.4 is given in Proposition 2.1 and Remark 2.1 in Sec-
tion 2.11 of the Supplementary Material (Wang et al. (2024)).

6. Numerical studies. We conduct a variety of numerical experiments to assess the
performance of the proposed L0-Fusion methodology. We use the normalized mutual in-
formation (NMI, Ana and Jain (2003)) to evaluate grouping accuracy. Specifically, given
G1 = {G(1)

1 ,G
(2)
1 , . . .} and G2 = {G(1)

2 ,G
(2)
2 , . . .} as two sets of disjoint clusters of [p], the

mutual information I (G1;G2) between G1 and G2 takes the form

I (G1;G2) := ∑
i∈[|G1|],j∈[|G2|]

|G(i)
1 ∩ G

(j)
2 |

p
log

(
p|G(i)

1 ∩ G
(j)
2 |

|G(i)
1 ||G(j)

2 |
)
,

and the entropy of G1 is

H(G1) := I (G1;G1) = − ∑
i∈[|G1|]

|G(i)
1 |
p

log
( |G(i)

1 |
p

)
.

Now we are ready to define the NMI between G1 and G2 as

NMI(G1,G2) := I (G1;G2)

{H(G1) + H(G2)}/2
.

Note that if G1 and G2 share the identical group structure, then NMI(G1,G2) = 1.
The rest of the section is organized as follows. Section 6.1 compares L0-Fusion with its

competitors in terms of grouping accuracy and investigates the effectiveness of the warm start
Algorithm 2 under low-dimensional regimes. Section 6.2 implements the “screening then
grouping” strategy discussed in Section 2.2 to perform homogeneity fusion under ultrahigh-
dimensional sparse setups. Finally, Section 6.3 applies L0-Fusion to group lipids in a study
of metabolomic effects on body mass index (BMI).

6.1. Low-dimensional regime. We consider a collection of low-dimensional setups where
the design vectors {xi}ni=1 are independent realizations from a p-dimensional multivariate
normal distribution N (0,�) with mean zero and covariance matrix � := (�ij ). We adopt
the autoregressive design in the sense that �ij = ρ|i−j | with ρ ∈ {0,0.5}. In particular, ρ = 0
gives the independent measures design. For each fixed X, we generate the responses y =
Xβ∗ + ε with ε ∼ N (0, I). Throughout this section, we always set the group number K0 = 4,
while n, p and β∗ are specified in given settings under investigation.

In Sections 6.1.1 and 6.1.2, we compare six methods when group sizes are equal and
unequal respectively: L0-Fusion, ordinary least squares (OLS), fused LASSO (fLASSO,
Tibshirani et al. (2005)), pairwise fusion (pairReg, Ma and Huang (2017)), feature group-
ing and selection over an undirected graph (FGSG, Zhu, Shen and Pan (2013)) and clustering
algorithm in regression via data-driven segmentation (CARDS, Ke, Li and Zhang (2016)). To
compare L0-Fusion with CARDS and fLASSO, tuning parameters are chosen via Bayesian
information criterion (BIC). For OLS, FGSG and pairReg, we first tune the parameters (if
any) in these methods via 10-fold cross-validation in terms of mean squared error (MSE).
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Note that these methods encourage coefficients within the same group to be close but not ex-
actly the same. To derive grouping structures and gauge their accuracy, we perform k-means
clustering on the solutions given respectively by OLS, FGSG and pairReg under the oracle
cluster number K = 4. We use OLS+, FGSG+ and pairReg+ to represent the corresponding
post-clustering results. In Section 6.1.3, we present the NMI of the warm-start solution in
Section 5.2 with varying n and p, and illustrate how warm starts help the convergence of
L0-Fusion especially in the early search stage. All the results are based on 200 rounds of
independent Monte Carlo experiments.

6.1.1. Equal group sizes. We start with the case where all the coefficient groups have
equal sizes. Specifically, set n = 120, p = 80 and K0 = 4 coefficient groups of size 20, which
take values −2r , −r , r , 2r , respectively, with r ∈ {0.5,0.8}. Figure 3 displays the boxplots of
NMI for correlation coefficients ρ ∈ {0,0.5} and signal strengths r ∈ {0.5,0.8}. Our findings
are summarized as follows:

(i) L0-Fusion exhibits significantly higher NMI than the other methods in all the cases,
even though OLS+, pairReg+ and FGSG+ used the oracle knowledge of the true number of
groups in the analyses.

(ii) In the cases where r = 0.8, the lower quartile of NMI of L0-Fusion is 1. This means
that in more than 75 % repetitions, L0-Fusion achieved grouping consistency, and BIC cor-
rectly chose the true group size K = K0 and the true number of signals s = s0.

FIG. 3. Grouping accuracy with equal group sizes under different covariance designs and signal strengths. We
set the correlation coefficient ρ ∈ {0,0.5} and signal strength r ∈ {0.5,0.8}.
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FIG. 4. Grouping accuracies with unequal group sizes under different covariance designs and signal strengths.
We set the correlation coefficient ρ ∈ {0,0.5} and signal strength r ∈ {0.5,0.8}.

(iii) Almost all the methods yield higher grouping accuracy when r is larger by comparing
the left red boxplox to the right blue boxplot, or ρ is smaller by comparing panel (a) to
panel (b).

6.1.2. Unequal group sizes. When groups have different sizes, presumably challenges
arise from identifying small groups. To assess the capability of detecting small groups, set
n = 120, p = 80 and divide the true predictors into K0 = 4 groups of sizes 1, 20, 20, 39,
whose coefficient values are set at −4r , −r , r , 2r , respectively. Figure 4 shows the boxplots
of NMI obtained by all the aforementioned approaches under ρ ∈ {0,0.5} and r ∈ {0.5,0.8}.
The results are summarized as follows:

(i) Similar to Section 6.1.1, L0-Fusion outperforms the competing methods in terms of
NMI uniformly in all the cases.

(ii) Once again, all the methods enjoy better grouping accuracy when r is larger through
a comparison of the red boxplot with the blue boxplot or ρ is smaller through a comparison
of panel (a) and panel (b).

(iii) The performance gap on NMI between L0-Fusion and fLASSO is further enlarged
here compared with the case of equal group sizes. This suggests the robustness of L0-Fusion
with respect to group size heterogeneity.

6.1.3. Warm-start algorithm. We begin with a simulation experiment to assess the group-
ing detection accuracy for the solution obtained by the discrete first-order algorithm, which is
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FIG. 5. Error bands for NMIs of the discrete first-order algorithm with respect to different sample size and
dimensionality. Here, s0 = p, q = 0 and K0 = 4. Rows of design matrix X are i.i.d. from N (0, Ip). The
true predictors are divided into 4 groups of size (p/4,p/4,p/4,p/4). True coefficients within each group are
(−1,−0.5,0.5,1), respectively.

introduced in Section 5.2 with initial value θ0 = 0p+q . Figure 5 presents the results of NMI
produced by this algorithm with varying oracle K0 as n and p. With no surprise, this figure
shows a deteriorating trend of the performance as p grows or n decreases. However, clearly
this warm-start algorithm is capable of recovering the group structure with a sufficiently large
sample.

Next, we exploit the discrete first-order algorithm to provide a warm start for L0-Fusion.
The MIO solver in Gurobi (Gurobi Optimization, LLC (2021)) terminates when the gap be-
tween the lower and upper objective bounds is less than the Mixed-Integer Programming
(MIP) Gap (a user-determined parameter between 0 and 1) times the absolute value of the
incumbent objective value. More precisely, let zP be the incumbent primal objective value,
which is an upper bound for the global minimum, and zD be the dual objective value, which
is a lower bound for the global minimum. Then the MIP Gap is defined as |zP − zD|/|zP |.
Figure 6 tracks the MIP Gap and the NMI of L0-Fusion against its running time on the
University of Michigan High Performance Linux cluster. Each job uses 4 CPUs and 16 GB
memory, which is satisfied on most personal computers. Below is a summary of our findings:

(i) The warm-start solution yields NMI = 0.6, which is plausible but far from optimal.
(ii) L0-Fusion with a warm start yields significantly higher NMI than that with a cold

start within the first 50 seconds.

FIG. 6. Error bands for comparing warm start and cold start after 200 Monte Carlo repetitions. Here, we set
n = 250, p = 120, s0 = 120 and K0 = 4. Rows of design matrix X are i.i.d. from N (0, Ip). The true predictors
are divided into 4 groups of size (30,30,30,30). True coefficients within each group are (−1,−0.5,0.5,1).
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(iii) Even when the MIP Gap is not exactly 0, L0-Fusion can achieve near perfect group
recovery. Therefore, one can still expect decent grouping results even if the algorithm has to
halt before the MIP Gap vanishes.

6.2. Ultrahigh-dimensional regime. For ultrahigh-dimensional cases, we let p = 20,000,
s0 = 60, n = 
2s0 logp� and K0 = 4. All the entries of the design matrix X ∈ R

n×p are in-
dependent standard Gaussian random variables. The true predictors are set as the first 60
predictors and divided into 4 groups of size 15 with coefficient values −2r , −r , r , 2r , re-
spectively, where r ∈ {0.15,0.2,0.25,0.3}. All the results in this section are based on 100
independent Monte Carlo repetitions.

In the screening step, we first estimate the true sparsity s0 using the model size obtained
from MCP (Zhang (2010)) under the lowest 10-fold cross-validation (CV) MSE. To speed
up the computation in this simulation study, we set a prior upper limit of sparsity at 100 or
lower. Denote the resulting sparsity estimator by ŝ. Then we use CoSaMP with projection
size π = ŝ and expansion size l = �̂s/2
 to generate a screening set Ŝ of size ŝ. To evaluate
the quality of the screened set Ŝ , in Figure 7 we investigate the cardinality and true positive
proportion (TPP) of Ŝ , the latter of which is defined as

(6.1) TPP(Ŝ) := |Ŝ ∩ S0|
|S0| ,

where S0 denotes the true support set.
We then perform grouping on the reduced design. The implementations for all the grouping

methods are similar as those in Section 6.1. All the zero coefficients are considered as forming
one group when we calculate the NMI. Figure 8 reports the NMI of L0-Fusion, CARDS,
fLASSO, OLS+, pairReg+ and FGSG+. We summarize key results as follows:

(i) Figure 7 shows that as signal strength grows, CoSaMP yields higher TPP and smaller
screening sizes, meaning that both accuracy and efficiency of CoSaMP improve.

FIG. 7. Screening results for ultrahigh-dimensional problems. Here, p = 20,000, s0 = 60, n = 
2s0 logp�.
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FIG. 8. Grouping results for ultrahigh-dimensional problems after 100 Monte Carlo repetitions.

(ii) Combining Figures 7 and 8, we observe that when r ∈ {0.2,0.25,0.3}, CoSaMP
achieves sure screening while the grouping can be far from the truth. This suggests that the
grouping error is due to the grouping stage rather than the screening stage.

(iii) L0-Fusion still outperforms all the competing methods on the reduced designs.

6.3. Real data analysis. We further illustrate the proposed method by an empirical study
of metabolomics data collected from n = 397 adolescents consisting of 197 boys and 200
girls aged 8 to 18 years during a critical period of growth and sexuality maturation. Early on-
set of obesity in the adolescent years has been found to be associated with an increased risk of
many diseases (e.g., hypertension, diabetics and cancer) during adulthood. Thus, it is of great
scientific interest to detect key groups of lipids (largest metabolites among metabolomics)
that predict body mass index (BMI), adjusted by age and sex (1 for boy and 0 for girl). We
investigate a total of p = 234 lipids to determine the number of lipid groups, group member-
ships and associated average contribution of a group predictor to BMI. We fit the following
linear model with a group homogeneity pursuit on the outcome of BMI:

(6.2) BMI = α0 + α1 age+α2 sex+
234∑
j=1

βj lipj +ε, βj ∈ {0, γ1, γ2, . . . , γK},∀j ∈ [p],

where the number of signal groups (K) as well as the group of null lipids with γ0 = 0 is
determined by 10-fold CV. Each group represents a subset of lipids with a shared nonzero
effect size γk, k = 1, . . . ,K . We normalize the design matrix to ensure mean 0 and variance 1
except intercept and sex. To calibrate the effect sizes with respect to different group sizes, for
each group of lipids, we use their average measurement as the group’s overall measurement;
therefore, the corresponding group-level effect size is γk multiplied by the group size.

We adopt the aforementioned “screen then group” strategy. Similar to Section 6.2, we
first estimate the true sparsity s by MCP with 10-fold cross-validation (CV) based on MSE
and apply CoSaMP to identify promising individual lipids from the pool of 234 lipids.
This screening step selects 18 potential lipids together with intercept, age and gender. In
the second phase, we perform L0-Fusion on these selected lipids. Through 10-fold CV
over K = {1, . . . ,10}, we detect six groups with nonzero effect sizes. It is noteworthy that
GUROBI solves the L0-Fusion problem within few seconds. The results are summarized in
Table 1. For group 1 consisting of 7 similar lipids, the group-level average lipid measurement
has a 4.0 effect size on BMI.

We also conduct a confirmatory semisimulation using the metabolomics design matrix of
this real data set. Assume that a variable of interest y relates to the metabolomics as follows:

(6.3) y = α1 age+α2 sex+
234∑
j=1

βj lipj +ε, βj ∈ {0, γ1, γ2, . . . , γK},∀j ∈ [p].
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TABLE 1
The data analysis results of lipid groups and effect sizes among 18
promising metabolites from preliminary screening by CoSaMP

Group (size) Features Group-level
effect size

Intercept 21.88
Boys versus girls −1.05
Age 0.62

Group 1 (7) “cholesterol biosynthesis” 4.00
Group 2 (6) “nutritional energy support and regulation” −3.13
Group 3 (2) “energy transport” 4.44
Group 4 (1) “diet signaling” −2.00
Group 5 (1) “energy production” −1.28
Group 6 (1) “peptide hormones on food consumption” 0.99

We set α1 = 0.5, α2 = 1 and randomly assign the coefficients β with a sparse (20 nonzero val-
ues) and grouped (4 groups of size 5) structure, where the true coefficients within individual
groups are equal to −2r , −r , r , 2r , respectively, with r ∈ {0.5,1}. Then we generate n = 397
responses from the metabolomics design according to (6.3), where ε’s are i.i.d. N (0,1). We
assess the prediction performance with/without group structure along with the grouping ac-
curacy by randomly splitting the observations into a training set and a testing set at each
repetition. We then implement both the screening procedure alone and the StG procedure on
the training set and compare their prediction accuracy in terms of MSE on the testing set.
Table 2 reports the testing MSE with standard error as well as the quantiles of NMI based
on 100 independent Monte Carlo repetitions. This table clearly suggests that leveraging the
existing group structure by L0-Fusion improves the prediction accuracy.

7. Discussion. This paper studies a combinatorial approach called L0-Fusion that en-
ables simultaneous operation of clustering and estimation for regression coefficients in a lin-
ear model. This analytic task addresses a practical need for learning homogeneous groups of
nonzero regression coefficients in the regression analysis to assess the relationship between
outcomes and clustered signal features. We propose to formulate the L0-Fusion problem as a
mixed integer optimization (MIO) problem and then leverage modern MIO solvers to com-
pute the corresponding parameter estimates. When the dimension is too high for the MIO
solver to handle, we invoke CoSaMP as a preliminary variable screening procedure to reduce
dimension prior to the L0-Fusion. As shown theoretically and numerically in in this paper,
such a “screen then group” strategy dramatically broadens the applicability of the homogene-
ity fusion technique, which can scale L0-Fusion up to the ambient dimension p = 20,000
with high accuracy of recovering the true group structure of regression coefficients. This
level of methodological capacity allows to handle a large number of modern biomedical data

TABLE 2
Results of grouping and prediction accuracy for the semisimulation

Signal
strength

Prediction error
(with grouping)

Prediction error
(without grouping)

NMI (quartiles)

r = 1 1.092 (0.031) 1.186 (0.029) Max: 1.00; Q3: 1.00; Median: 1.00; Q1:1.00; Min: 0.75
r = 0.5 1.120 (0.023) 1.223 (0.001) Max: 1.00; Q3: 1.00; Median: 0.91; Q1: 0.85; Min: 0.58
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sets. Thus, this two-stage approach as well as its variants provide efficient toolboxes to solve
many homogeneity fusion problems on large-scale data sets.

Theoretically, we establish grouping consistency of the L0-Fusion estimator, for which
the sample size n only needs to grow at the same rate as the sum of logarithms of the true
sparsity and true group number, that is, log(pK). This sample size requirement is also shown
to be necessary for any procedure to achieve grouping consistency. These technical results
are not only of theoretical interest, but also useful to guide practical work such as sample size
determination in a study design.

An important future work concerns statistical inference after the operation of L0-Fusion.
A thorough investigation on the influence of selection errors on statistical inference, in both
aspects of finite-sample and large-sample properties, is of great interest. This L0-Fusion may
be extended to other regression problems with the framework of generalized linear models
where iterative procedures used in the parameter estimation rely on weighted least squares
objective functions. Thus, this extension is technically manageable but may require substan-
tial computational effort. Also, we would consider an extension of this method to the setting
of estimating equations, which could cover a broad range of important statistical models,
such as GEE regression, Cox regression and quantile regression.
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