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Automated Evaluation and Rating
of Product Repairability Using
Artificial Intelligence-Based
Approaches
Despite the importance of product repairability, current methods for assessing and grading
repairability are limited, which hampers the efforts of designers, remanufacturers, original
equipment manufacturers (OEMs), and repair shops. To improve the efficiency of assess-
ing product repairability, this study introduces two artificial intelligence (AI) based
approaches. The first approach is a supervised learning framework that utilizes object
detection on product teardown images to measure repairability. Transfer learning is
employed with machine learning architectures such as ConvNeXt, GoogLeNet, ResNet50,
and VGG16 to evaluate repairability scores. The second approach is an unsupervised
learning framework that combines feature extraction and cluster learning to identify
product design features and group devices with similar designs. It utilizes an oriented
FAST and rotated BRIEF feature extractor (ORB) along with k-means clustering to
extract features from teardown images and categorize products with similar designs. To
demonstrate the application of these assessment approaches, smartphones are used as a
case study. The results highlight the potential of artificial intelligence in developing an auto-
mated system for assessing and rating product repairability. [DOI: 10.1115/1.4063561]
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1 Introduction
Extending the product lifecycle through repair and reuse is

regarded as a sustainability cornerstone. This is particularly impor-
tant for resource-intensive products such as consumer electronics
that require a wide range of rare earth elements in their production.
As initiatives such as right-to-repair, promotion of last-longing
devices, and consumers’ expectation of green products take
momentum, it becomes essential to equip designers, manufacturers,
and consumers with proper tools to evaluate the degree and extent
of product repairability.
In addition, enhancing product repair and reuse is essential for

addressing the digital divide problem. The digital divide is one of
the country’s most pressing, deeply rooted, and often neglected
problems [1]. It is estimated that 27% of Americans are on the
wrong side of the digital divide due to no internet connectivity or
limited access to computer devices. In Fall 2020, at the start of
the COVID-19 pandemic, when most Americans began working
remotely, 5 million students did not have access to electronic
devices for completing schoolwork. Enabling the repair industry
is a promising approach to addressing the digital inequalities for
students and the 45% of senior citizens who do not own a laptop
or PC, or anyone who needs an affordable device [2]. Recently,

28 states filed right-to-repair bills and other repair-related initiatives
and demanded set minimum design requirements for manufacturers.
The purpose is to develop a legal framework that forces manufactur-
ers to give access to repair manuals and make spare parts available
or even at the time of purchase provide customers with information
about how long the spare parts will be available in the market [3–5].
However, there is a lack of consistent methods to help manufac-

turers assess and rate the repairability of their products. Repair is a
complex multivariable problem influenced by design, workforce,
and market factors. Designers do not have the required tools to eval-
uate the ease of repair by the workforce and the degree of repairabil-
ity. Designers have started incorporating design-for-X strategies
such as design for disassembly and repair into consideration
when evaluating design alternatives. Product design affects the dif-
ficulty of repair [6] and influences the steps of disassembling [7],
and the efficiency of the entire waste management process [8].
Besides designers, repair shops and remanufacturers also require
tools to help them sort recoverable devices and deal with a wide
range of end-of-use (EoU) products received in their plants. Also,
in many cases, original equipment manufacturers (OEMs) do not
share the product repair instructions and it is quite challenging for
repair shops to handle different brands of products when dealing
with different designs. Many factors such as reliability [9], disas-
sembly [10], and even the choice of business models [11] influence
repairability.
The proposed project aims to overcome the gaps in the lack of

proper assessment techniques and develop an intelligent scoring
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framework by offering a unique way of using machine learning and
deep learning techniques. The availability of tools to measure the
repairability of devices is crucial for promoting sustainable con-
sumption, reducing waste, and empowering consumers. By accu-
rately assessing the repairability of devices, we can encourage
manufacturers to design products that are easier to fix, maintain,
and upgrade. These tools enable informed decision-making and
empower consumers to choose products that can be repaired with
less need for frequent replacements. Further, such scoring systems
foster a culture of DIY (Do it Yourself) repairs and skill develop-
ment and help local repair industries contribute to economic
growth and job creation.
The remainder of the paper is organized as follows. Section 2

reviews the related literature. Section 3 describes the proposed
frameworks and Sec. 4 discusses the results for the case of smart-
phone repairability. Finally, Sec. 5 concludes the paper.

2 Background
2.1 Product Durability, Longevity, and Repairability.

Repair is often acknowledged as a strategy for enhancing environ-
mental sustainability [12]. However, besides environmental bene-
fits, repairable devices reduce the after-sales service cost [13] and
are considered among marketing and sales strategies [14], where
new service-based business models that are based on sharing and
peer economy such as renting, sharing, and exchange would be pos-
sible [15]. In addition, repairability is important to future devices’
reusability [16] and is a strategy to maintain the source of critical
materials and rare earth elements and enhance countries’ national
security [17]. Recently, independent repair businesses and initia-
tives have been forming worldwide campaigns to urge manufactur-
ers to produce repairable devices, share repair guides, and supply
spare parts to the market [18].
Scientific research on the economic aspects of repair is very

limited—further, the integration of durability concepts into reman-
ufacturing and design literature is insufficient. The shortcomings of
sustainability policies adopted by manufacturers are especially
acute in the repairability domain [19]. While different design for
X concepts ranging from design for disassembly [20], reliability
[21], reuse [22], and recycling [23] have been a part of design
efforts, the concept of repairability is one important avenue that is
frequently overlooked [24].

2.2 Need for a Repairability Rating System. The lack of
repair expertise [25], design guidelines [26], unavailability of
spare parts [27], and cost of repair [11] are identified as problematic
factors in facilitating repairability. As the recent supply chain dis-
ruptions hit the production systems around the globe, the fight for
repairable devices gained momentum in Europe, where 38 NGOs
across Europe launched the “Right to Repair” campaign to
promote repairable design by supporting design practices toward
ease of disassembly [28]. The repair campaign emphasizes three ini-
tiatives, including the establishment of legislation that sets a
minimum requirement for design, forcing OEMs to give access to
repair manuals and spare parts, and finally introducing a scoring
system for product repairability [29]. Recently the European
Commission submitted a standardization request to three European
Standardization Organizations, including CEN, CENELEC, and
ESTI to support the needs of designing durable products [30]. A
joint technical committee was established to develop a series of
new standards, including EN 45554:2020 “General methods for
the assessment of the ability to repair, reuse and upgrade
energy-related products” [31].
Prior studies have discussed key factors for evaluating repairabil-

ity. To name several studies, Sabbaghi et al. evaluated repairability
by surveying consumers’ experiences on ease of repair [11]. The
ease of disassembly, necessary tools, type of fasteners, availability
of spare parts, and documentation were discussed as criteria in the
French repair index [32,33]. De Fazio et al. created a disassembly

map and assessed the ease of disassembly by considering factors
such as disassembly sequence, type of tools, fastener, and disassem-
bly time to analyze the repairability of vacuum cleaners [10].
Bracquene et al. discussed scores such as Benelux scores and Aus-
trian durability labels for the repairability of energy-related products
[34]. Cordella et al. suggested three levels of assessments including
qualitative, semi-quantitative, and quantitative for the assessment of
reparability and upgradability [35].
Currently, the repairability assessment methods can be catego-

rized into three groups (Table 1): qualitative, semi-quantitative,
and quantitative methods.
The repairability score provided by expert opinions such as the

iFixit score is an example of a qualitative scoring system [36].
The semi-quantitative methods are built upon elements such as sub-
jective evaluation criteria and parameter weighting. Examples of
semi-quantitative methods include the assessment matrix for ease
of repair (AsMeR) [37,38], the repair scoring system (RSS) [5,7],
and the priority replacement index (PRI) [40–44]. The quantitative
methods on the other hand are based on numerical analysis and
mathematical metrics [37]. For instance, the ease of disassembly
metric (eDiM) [2,13,14] evaluates the difficulty of disassembly
through data measurements.
Although previous literature highlights different criteria and the

importance of developing repairability assessment tools, the capa-
bilities of artificial intelligence (AI) models to evaluate repairability
have not been explored. The existing evaluation models are
resource-intensive and require costly practices.
To comprehensively evaluate the degree of device repairability

and better understand the performance of a design in addressing
the needs of a workforce with varying repair skills, we will
develop a decision-making framework for testing, evaluating, and
enhancing repairability using product images. Product teardown
data can provide important insights that can help designers and
the repair workforce better comprehend and capture the evolving
nature of product repairability. Yet our knowledge about the
degree of product repairability is limited, and the repair and main-
tenance workforce cannot comprehend the complexity of the
repair process without spending a significant amount of time inves-
tigating the device. Very little is currently known about how to
identify meaningful patterns in device teardown data and identify
how repairable a device is by a medium-skilled workforce. Most
importantly, designers do not have the required tools to evaluate
the ease of repair by the workforce and the degree of repairability.
To address this gap, this study aims to employ the capabilities of

AI technology in assessing product repairability scores. Two frame-
works including supervised learning and unsupervised learning are
developed. In the supervised learning, deep transfer learning models
including ConvNeXt, GoogLeNet, ResNet50, and VGG16 have
been applied on a teardown dataset from the iFixit website [36] to
link product teardown images to the repairability scores provided
by experts’ opinions. In the second framework, an unsupervised
learning approach that combines oriented FAST and rotated
BRIEF (ORB) and k-means clustering is used to conduct similarity
analysis among products and assess the repairability score of a
device based on its similarity to other existing designs.
To the best of our knowledge, this study is the first one to inves-

tigate the ability of AI to develop automatic scoring systems to
assess repairability and consequently product maintenance. This

Table 1 The current repairability scoring mechanisms

Type Methods References

Qualitative methods iFixit score [36]

Semi-quantitative methods AsMeR [37,38]
RSS [37,39]
PRI [40–44]

Quantitative methods eDiM [7,10,45,46]
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is particularly important for industries such as repair shops and
e-waste remanufacturing where refurbishing facilities often
receive products with various types, models, and conditions and it
is challenging to efficiently separate products based on their
future reusability. The proposed AI frameworks trained by
experts and teardown images can be employed to evaluate the
device condition and finally the decision on whether to repair or
not (Fig. 1).

3 The Proposed Repairability Assessment Methods
To investigate the capabilities of AI for repairability assessment,

two separate approaches have been investigated. First, a supervised
learning framework in which a set of deep learning models are
trained by the available repairability scores from repair industry
experts. Second, to extend the approach to other designs, an unsu-
pervised learning framework consisting of feature extractor and
cluster learning is developed to conduct design similarity analysis.

3.1 The Supervised Learning Framework Based on Object
Detection. The proposed automatic repairability system consists of
a deep learning model (e.g., ConvNeXt, GoogLeNet, ResNet50,
and VGG16) that gets the product teardown image as input and
determines the repairability score. The models are trained by
labels provided by repair experts. Once the models are trained,
they can be used to evaluate the repairability scores for unknown
designs. Figure 2 shows an overview of the process.
ConvNeXt, GoogLeNet, ResNet50, and VGG16 are widely rec-

ognized deep-learning models renowned for their capabilities in
image identification. Among these models, ConvNeXt is a rela-
tively recent addition to the field as it was published in 2022 [47].
ConvNeXt incorporates the design principles of transformers into
its architecture to enhance the performance of the classic convolu-
tional neural network [48,49]. Figure 3 depicts the architecture of
ConvNeXt, which comprises a ConvNeXt block and a downsample
component. Multiple ConvNeXt blocks are stacked within each
stage. The final layer is a linear layer that produces the output rep-
resenting the number of categories.

GoogLeNet was developed in 2014 [52] and has been trained on
over 1 million images from 1000 object types. It has 22 layers
including convolution layers, inception layers, max pooling, etc.
ResNet50 was developed in 2015 and has 50 layers with 48 convo-
lution layers, 1 max pooling, and 1 average pool layer [53]. Finally,
VGG16 was developed in 2014. It has 16 layers and approximately
138 million parameters [54].
In this paper, we have used four well-established pre-trained

models (e.g., ConvNeXt, GoogLeNet, ResNet50, and VGG16)
using the ImageNet dataset which includes over 1 million labeled
images from 1000 classes of objects. Cell phones and mobile
phones were among the 1000 classes of objects included in the
dataset. Previous studies have already proven the commendable
performance of these four models in other applications [47,52–
54]. Therefore, we have selected these four models along with the
transfer learning to re-train our dataset for the repairability assess-
ment of smartphones.

3.2 The Unsupervised Learning Framework Based on
Design Similarity Analysis. This section proposes a framework
for identifying and clustering products with similar designs to
help repairmen assess the potential repairability of a device based
on its similarity to previous designs. Although other economic
and market factors such as the availability of spare parts and
repair manuals also influence repairability, product design plays a
key role in the degree of part accessibility, openability, and
disassembly.
The design similarity analysis is conducted solely based on the

visual representation of the device in teardown images. We
should acknowledge that many criteria such as types of fasteners,
types of tools needed, and availability of spare parts are important
for repairability [36] which can not necessarily be extracted from
product images. Although the similarity analysis does not have
detailed information on repairability scores, it still can be a good
reference for repairmen to find available repair instructions for
newly received products in repair centers.
Figure 4 shows the proposed unsupervised learning framework

which consists of an ORB and k-means clustering to analyze
design similarity. The ORB extracts features from teardown
images and k-means clusters similar designs into the same group.
ORB is more computationally efficient than other extractors such

as scale-invariant feature transform and speeded-up robust features
[55,56]. ORB uses FAST to find a set of keypoints and applies the
Harris corner measure to order the FAST keypoints. Then, the mod-
ified version of the descriptor binary robust independent elementary
features (BRIEF) is applied to cover FAST keypoints into binary
feature vectors that represent the object in the image. The ORB is
a data learning model with decent capability in classification prob-
lems by finding the keypoint features on images [57].
According to Refs. [56–59], the ORB is built on a descriptor,

called the intensity centroid, which measures the corner orientation.
The intensity centroid assumes angle intensity is shifted from its
center to infer orientation by definition [60]

mpq =
∑

x,y
xpyqI(x, y) (1)

wherem is described as the moments of a patch with sequence p and
q, and x, y are the coordinates of pixels in the image. Based on the
moments from Eq. (1), the centroid can be obtained as

C =
m10

m00
,
m01

m00

( )
(2)

Then, the angel θ between a vector from the origin to the centroid
and x-axis can be expressed as

θ = atan2(m01, m10) (3)

where atan2 is the arctangent function with two variables. The x and
y are used to measure the moments’ region along with the circle area
with radius r. The BRIEF descriptor is a set of binary intensity tests

Fig. 1 The AI-driven process to evaluate product repairability

Fig. 2 The supervised learning AI model to evaluate repairabil-
ity scores from teardown images
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between an image’s pixels [61]. Considering a smoothed patch of
image p, a binary test τ is defined as

τ(p; x, y) =
1:p(x) < p(y)
0:p(x) ≥ p(y)

{
(4)

where p(x) and p(y) are the intensity of patch p given points x and y,
respectively. The feature is defined to represent the vectors of n
binary tests [56]

fn(p) =
∑
1≤i≤n

2i−1τ(p; xi, yi) (5)

where fn(p) is the descriptor with a vector length of n= 256. Then,
the steered BRIEF operator is expressed as

gn(p, θ) = fn(p)|(xi, yi) ∈ Sθ = RθS (6)

where S is the feature set of n binary tests at (xi, yi) location defined
as 2 by n matrix, Rθ is the rotation matrix, and Sθ is the steered
version of S.

K-means is an effective clustering tool still popular [62]. It uses
the centroid-based algorithm to find the representative clusters for
each group. According to Ref. [63], the objective of k-means clus-
tering is to minimize the following function:

J(U) =
∑n
i=1

∑m
j=1

‖xi − uj‖2 (7)

where J(U ) is the objective function with U as a set of clusters, xi is
the vector sample with n samples, uj is the jth cluster, and m is the
number of clusters. The source codes of this study are available
here.2

4 Results and Discussions
In this section, the application of the proposed approaches in the

context of smartphones is discussed. Analyses are conducted on two
types of images, teardown and X-ray images.

4.1 Repairability Scores of Smartphones

4.1.1 Teardown Images Analysis. To show the application of
the proposed supervised learning framework, 945 teardown
images of smartphones and their corresponding repairability
scores have been collected from the iFixit website. iFixit experts
provide a score between 1 and 10 to each device based on criteria
such as types of fasteners, necessary tools, modular parts, and the
availability of spare parts, to name a few [36]. For instance, a smart-
phone’s repairability score is negatively affected when its outer
cover is glued-based and is difficult to open. According to the
iFixit scoring rubric, a device gains a high repairability rating
when it proves to be easy to disassemble and reassemble, requires
minimal costly tools for repair, and facilitates convenient access
to critical components [64]. The detailed methodology behind the
label generation by experts, the number of experts involved, their

Fig. 3 The ConvNeXt architecture, consists of four stages, each composed of ConvNeXt blocks and a downsam-
ple component [50,51]

Fig. 4 The proposed framework for design similarity analysis by
utilizing teardown images

2https://github.com/haoyuliao/AI-Reparability-scores-analysis
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expertise, and any cross-validation processes remain undisclosed.
However, iFixit bases its score assignments on factors such as
ease of disassembly, accessibility to components, and the choice
of fasteners and joint mechanisms in the design.
The distribution of teardown images and their scores are pre-

sented in Fig. 5. 176 and 238 images have repairability scores of
6 and 7, respectively. Only 18 images have a repairability score
of 10.
The images are inputs to transfer learning models. In terms of

hyperparameters setting, the number of epochs is 100, the batch
size is 5, the loss function is cross-entropy, and the decay learning
rate is set to 0.1 for every eight epochs with an initial learning rate of
0.001. 80% of teardown images are used for training; 10% for val-
idation; and the remaining 10% for testing. The models’ parameters
are trained based on training and validation phases, and the testing
data as unknown samples are used to further examine the models’
performance. In addition, data augmentation is employed during
training to further enhance the accuracy.
Besides the 1–10 scale used by iFixit, two more scales are ana-

lyzed as listed in Fig. 6. Scale 1 is from 1 to 10 same as iFixit.
Scale 2 further combines the 1–10 scores into five classes.
Finally, scale 3 combines the scores into three classes: easy
repair, medium repair, and hard to repair.
Table 2 shows the score assessment results for the above-

mentioned three scales. As expected, the testing accuracy increases
as the scale reduces from 10 to 3. Compared to ConvNeXt,
GoogLeNet, and VGG16, RestNet50 has higher accuracy on the
3-class scale (88%). Also, as the scales change from 10 to 3
classes, the testing accuracy of ConvNeXt, GoogLeNet, ResNet50,
and VGG16 improves from 77% to 82%, from 69% to 87%, from
79% to 88%, and from 70% to 82%, respectively. Although the
models are overfitting due to the limited sample size (945),
the ResNet50 can still offer 88% accuracy for the 3-class scale in
the testing phase.
Figures 7(a)–7(c) show the resulting normalized confusion matri-

ces. As shown, as the scales change from 10 to 3 classes, the accu-
racy improves. ResNet50 has better accuracy in all scales and offers
88% accuracy in the testing results on the 3-class scale. While
ResNet50 has a reasonably good performance, the reason for mis-
classification is the similarity in teardown images.

Fig. 5 The distribution of repairability scores of collected
images (a total of 945 images)

Fig. 6 Three different scales for repairability scores

Table 2 The training, validation, and testing accuracy results of
deep learning models on repairability scores

Model
No. of
classes

Training
accuracy

Validation
accuracy

Testing
accuracy

ConvNeXt 10 99% 79% 77%
GoogLeNet 10 99% 81% 69%
ResNet50 10 99% 86% 79%
VGG16 10 99% 73% 70%
ConvNeXt 5 99% 78% 77%
GoogLeNet 5 99% 79% 78%
ResNet50 5 97% 77% 80%
VGG16 5 95% 72% 71%
ConvNeXt 3 99% 88% 82%
GoogLeNet 3 99% 88% 87%
ResNet50 3 99% 91% 88%
VGG16 3 98% 83% 82%

Fig. 7 The normalized confusion matrix for ResNet50 testing
results: (a) 79% accuracy for the 10-class scale, (b) 80% accuracy
for the 5-class scale, and (c) 88% accuracy for the 3-class scale
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For example, Fig. 8 shows teardowns of the Samsung Galaxy S6
Edge and Samsung Galaxy Note Fan Edition. ResNet50 evaluates
the Galaxy S6 Edge score correctly, but the Galaxy Note Fan is mis-
categorized into Label 1. Comparing the two smartphone models,
both have a similar layout such as the position of the camera and
battery.
In this study, we applied data augmentation to solve the issues of

limited datasets and data imbalance as previous studies highlighted
the benefit of data augmentation [65,66].
Despite using data augmentation to mitigate challenges related to

limited datasets, the inherent information within the images remains
unchanged. As shown in Fig. 5, the majority of the data is concen-
trated within the range of repairability scores of 4–7. While data
augmentation expands the dataset, it does not enhance the original
information content. For instance, factors such as the configuration
of individual components, the structural attributes of the smart-
phone, and the dimensions of its constituents remain unchanged,
even after applying augmentation techniques such as rotation and
horizontal/vertical flips. Consequently, when dealing with a
restricted dataset, models are inclined to overfitting, even when
we adjust hyperparameters such as learning rate and optimization
techniques. Despite the overfitting risk, the models’ performance
is still reasonable and can achieve up to 88% accuracy on unfamiliar
datasets as summarized in Table 2. To address overfitting chal-
lenges, future research should focus on the acquisition of additional
data.

4.1.2 X-ray Images Analysis. In this study, a total of 66 X-ray
images were collected from the iFixit website. These X-ray images
provide a comprehensive view of the smartphone’s structure
without the need for any dismantling. The objective was to assess
and compare the model’s performance when utilizing X-ray
images instead of teardown images.
Figure 9 presents the distribution of repairability scores. Most

X-ray images have a repairability score of 6.
When using teardown images as discussed in Sec. 4.1.1,

ResNet50 outperforms other models when using the 3-class scale.
Therefore, we use the same framework for the X-ray images. The
X-ray images are divided into training (80%), validation (10%),
and testing (10%). The hyperparameters of ResNet50 are the
same as in the previous section. Figure 10 describes the testing
results of ResNet50 with an accuracy of 85%.
Figure 11 shows the evaluation results of the testing phase for the

teardown image and X-ray image for the Samsung Galaxy Note 20.
The utilization of X-ray images provides several advantages com-
pared to teardown images, as it eliminates the need for disassembly
actions and offers a clear view of the smartphone’s inner structure.

4.1.3 Ablation Study on ResNet50. This section presents an
ablation study focusing on ResNet50 for the 3-class scale

prediction, given its performance of achieving a testing accuracy
of up to 88%. The purpose of this ablation study is to systematically
eliminate specific components of the model and assess their corre-
sponding impacts on overall performance.
ResNet50’s architecture consists of four main stages as shown in

Fig. 12, where each stage contains convolutional layers [53].
In this study, we explore six modified ResNet50 models, summa-

rized as Ab1–Ab6, which represent the systematic removal of spe-
cific stages. These stages are defined as follows: Ab1 (removing the
2nd to 4th stages), Ab2 (removing the 3rd to 4th stages), Ab3
(removing the 1st stage), Ab4 (removing the 2nd stage), Ab5
(removing the 3rd stage), and Ab6 (removing the 4th stage).
Table 3 presents the results of training, validation, and testing

accuracy. A decline in accuracy shows the significance of the
removed components and their role in the model’s overall perfor-
mance. Particularly, Ab1, Ab2, and Ab6 show lower accuracy,
approximately 70%, compared to Ab3–Ab5, which keep an accu-
racy level of approximately 85%. Among single-stage removal sce-
narios (Ab3–Ab6), Ab6 shows the lowest accuracy and suggests
that the 4th stage holds vital importance in model performance.

Fig. 8 Repairability scores evaluation by ResNet50 in a 3-class
scale in the testing phase for (a) Samsung Galaxy S6 Edge and
(b) Samsung Galaxy Note Fan Edition; both are in the same
cluster based on similarity assessment

Fig. 9 The distribution of repairability scores of the collected
images (a total of 66 images)

Fig. 10 The normalized confusion matrix of ResNet50 testing
results with 85% accuracy for the 3-class scale on X-ray images

Fig. 11 Repairability scores evaluation by ResNet50 in a 3-class
scale in the testing phase for Samsung Galaxy Note 20: (a) tear-
down image and (b) X-ray image
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Still, the original ResNet50 architecture has the highest test-
ing accuracy of 88% in comparison to Ab1–Ab6. This underlines
the non-redundancy of components within ResNet50 and empha-
sizes the significance of each part. Furthermore, our findings
indicate that the 4th stage contributes significantly to model per-
formance which can be investigated further in future studies.
One potential future direction is to keep the 4th stage structure
and incorporate additional mixed neural network layers to
enhance overall accuracy.

4.2 The Similarity of Smartphone Designs. Although super-
vised learning is capable of properly mapping product images into
the repairability score, collecting labeled data, and gathering expert
opinions is often very resource-intensive and costly. One solution to
address this problem is to identify the similarity of a specific design
to existing designs and then infer repairability. To show the feasibil-
ity of the proposed approach, 111 teardown images of different
brands and models of smartphones have been collected from the
iFixit website (Table 4). Each image represents a unique model.
Table 4 shows the number of models from each brand with

iPhone and Samsung representing the most frequent brands each
with 26 and 30 models.
Two teardowns with features such as camera position, compo-

nent size, and structure are shown in Fig. 8. Each teardown image
is resized into 224 by 224 with a grayscale image. Then, ORB
retrieves features from each image. The first 250 keypoints are
selected from each image. The size of each keypoint is 32 by 1
vector and the size of each input to k-means clustering is 250 by
32. The 250 keypoints of each image are further fed into
k-means. Finally, k-means groups images with similar features
into the same group.
The best number of clusters is decided by the Dunn index. As

shown in Fig. 13, the maximum Dunn index is obtained when the
number of clusters equals four.
All 111 images are fed to k-means to identify the best number of

clusters by the Dunn index. Table 5 shows the clustering outcomes
and the number of models in each cluster. Brands (#12) to (#17) are
grouped into Cluster 1. Other brands have appeared in two or more
clusters.
Figure 14 illustrates the keypoints of the Huawei Mate 10 Pro,

highlighting features such as the camera, microphone, and
speaker with a circle. Those keypoints can be further analyzed as
shown in Fig. 15 which shows the feature-matching results of
devices in the same cluster. Each teardown image retrieved 250
keypoints. The percentage of matching points between the
Huawei Mate 10 Pro and LG G6 is 32% (79/250). The more match-
ing keypoints mean a more similar layout in teardown images.
Figure 16 demonstrates the average of matching features of

Huawei Mate 10 Pro between other models in different clusters.

Fig. 12 An overview of the six modified ResNet50 models (Ab1–Ab6: the original ResNet50
architecture shown with a solid line is obtained from Ref. [53]). The dashed line represents the
components removed from the original architecture before training.

Table 3 The training, validation, and testing accuracy results of
the ablation study on ResNet50 for repairability scores in the 3-
class scale

Model
Removal
stage

Training
accuracy

Validation
accuracy

Testing
accuracy

Ab1 2nd to 4th 72% 73% 70%
Ab2 3rd to 4th 72% 73% 70%
Ab3 1st 98% 87% 85%
Ab4 2nd 99% 89% 85%
Ab5 3rd 99% 92% 85%
Ab6 4th 72% 73% 70%

Table 4 The number of smartphone models from each brand

Brand Number of models Brand Number of models

Samsung 30 Microsoft 1
iPhone 26 Essential 1
Google 8 Meizu 1
Huawei 7 Wiko 1
Motorola 7 Shift 1
Nexus 6 BlackBerry 1
Fairphone 4 Amazon 1
HTC 4 Mi 1
LG 3 Nokia 1
Apple 3 Xiaomi 1
OnePlus 3 Total 111

Fig. 13 The Dunn index based on the number of clusters
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Huawei Mate 10 Pro belongs is assigned to Cluster 2. Note that the
highest average matching is 81.2 which is for Cluster 2.
While ORB can find features such as the camera and speaker, it

also finds non-meaningful features such as the texts on the battery as
shown in Fig. 15. These non-meaningful features, (e.g., the text of
the battery), are errors in the k-means. In future research, image seg-
mentation can be applied to first find the specific components such
as the camera and speaker, and the non-meaningful segmentation
like the text. After filtering, the non-meaningful features using
image segmentation, k-means clustering can be used to provide
better results.
Figure 17 shows the distribution of repairability scores in Cluster

1. The number of models with a score of 6 and 7 is the most fre-
quent. Despite variation in scores among products within the
same cluster, the design similarity analysis highlights promising
potential. The results of similarity analysis can help in addressing
the lack of repairability information for future designs. It opens
up the opportunity for using semi-supervised learning where a
limited set of labeled data (e.g., repairability scores from the first
section) can be integrated with other unlabeled images from the
second section to identify the repairability score of each cluster.

4.3 Implementation of Repairability Analysis in Practice.
To operationalize the proposed frameworks for diverse applica-
tions, such as assessing the repairability of automobiles, trucks,
and industrial equipment, practical implementation entails several
key steps. First, it is necessary to train the models with relevant
datasets. The foundation of this process lies in analyzing repairabil-
ity scores, which are determined based on criteria such as fastener
types, required tools, modularity of components, and the availabil-
ity of spare parts [36]. These repairability scores serve as the ground
truth labels during the training of machine learning models. Second,
once the repairability scores are carefully defined, an extensive col-
lection of teardown images and sufficient sample size becomes

Table 5 The k-means clustering results

Clusters

# Brand 1 2 3 4

1 Samsung 13 3 4 10
2 iPhone 12 8 2 4
3 Google 4 1 3 0
4 Huawei 2 4 0 1
5 Motorola 3 0 1 3
6 Nexus 1 1 2 2
7 Fairphone 2 0 1 1
8 HTC 2 0 1 1
9 LG 1 2 0 0
10 Apple 1 1 1 0
11 OnePlus 0 1 1 1
12 Microsoft 1 0 0 0
13 Essential 1 0 0 0
14 Meizu 1 0 0 0
15 Wiko 1 0 0 0
16 Shift 1 0 0 0
17 BlackBerry 1 0 0 0
18 Amazon 0 1 0 0
19 Mi 0 0 1 0
20 Nokia 0 0 1 0
21 Xiaomi 0 0 0 1
Total 47 22 18 24

Fig. 14 The results of 250 keypoints from ORB feature extractor
on Huawei Mate 10 Pro (with circle)

Fig. 15 The ORB keypoints matching results of Huawei Mate 10
Pro (left) and LG G6 (right) with 79 matching keypoints are in the
same cluster

Fig. 16 The average of matching feature quantities between
Huawei Mate 10 Pro (belonging to group 2) and all clusters

Fig. 17 The distribution of repairability scores of models in
cluster 1 (a total of 47 models)
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important. The quantity of images becomes a critical factor in effec-
tively associating them with their corresponding repairability scores
and using such datasets for training machine learning models.
Finally, proper machine learning architecture should be adopted.
In this study, we investigated the use of ResNet, VGG, and
GoogleNet architectures as the primary models for training the
dataset in the smartphone application. However, other capable net-
works such as Transformers [67], EfficientNet [68], DenseNet [69],
Explainable AI [70], and RegNet [71] can be tested for evaluating
repairability across various domains.
In terms of computational infrastructure, the models are trained

by using a computer desktop with 20 processors (i9-10900 K
CPU @ 3.70 GHz), a graphic card (NVIDIA Quadro RTX 4000
GPU), and RAM with 64 GB memory. The parameters of
ConvNeXt, GoogLeNet, ResNet50, and VGG16 are 87 M, 5.6 M,
23 M, and 138 M, respectively. The 100 epochs training time of
ConvNeXt, GoogLeNet, ResNet50, and VGG16 are 207 min,
31 min, 57 min, and 94 min. Future applications’ computational
needs may vary based on architectural design, data volume, and
specific usage scenarios.
To address data shortage, data augmentation techniques can

enhance accuracy by expanding the dataset through methods such
as rotation and horizontal/vertical flips. However, it is important
to mention that while data augmentation can increase dataset size,
obtaining more diverse data remains necessary for improving infor-
mation diversity.

5 Conclusion
The study investigated two main approaches for assessing

product repairability: (1) a deep learning framework that automati-
cally assesses repairability from product teardown images and (2) a
design similarity analysis to identify products with similar
features and assess repairability based on existing products. The
first approach is a supervised learning framework in which four
transfer learning models, including ConvNeXt, GoogLeNet,
ResNet50, and VGG16, are compared to evaluate the repairability
considering three different scales (3, 5, and 10) using teardown
images. Besides teardown images, the X-ray images have been
applied to demonstrate the proposed framework. The second
approach is an unsupervised learning framework that combines
ORB feature extractor and k-means clustering to group products
with similar designs. The results reveal that ConvNeXt, GoogLe-
Net, ResNet50, and VGG16 can have an accuracy of up to 88%
for the case of a 3-class scale.
The current study shows several limitations. First, it suffers from

data constraints and utilizes only physical images to assess product
repairability without considering factors such as product reliability,
and electrical and mechanical failures. Future frameworks should
incorporate a more extensive scoring system by considering
factors beyond just visual inspections. Also, the study relies on tear-
down and X-ray images, however, product repairability is a
complex multidimensional problem. Subsequent research should
incorporate various datasets including those that include magnetism
and optics features. Moreover, the current dataset is limited and
consists of only 111 models from 21 brands. Expanding the
dataset to cover a wider collection of brands, product models, and
technology types is important for robust findings. In addition, to
improve the evaluation accuracy, advanced deep learning models
such as transformers and large language models could be employed.
These models could consider not only product images but also user
queries and feedback to advance the overall assessment.
The study can be extended in several ways. First, the outcomes

can be evaluated with expert opinions. Second, the scoring
system can be extended to combine the knowledge extracted from
object detection with other techniques to tune the repairability
scores with other business and sustainability factors. Third, the pro-
posed AI-driven assessment framework can inspire other scores
such as disassembly, recyclability, and sustainability in general.

Moreover, the definition of design similarity score can be further
extended. Also, the proposed frameworks can be applied to a
wide range of product types to identify future research needs.
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