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A B S T R A C T
The pressure chamber (or Scholander chamber) is widely adopted for determining stem water
potential (which is linked to plant water status) due to its simplicity, relative portability, and
capacity to enable direct measurements. The method also serves as a reference when validating
and calibrating other techniques. Despite its significant utility, the current form of the pressure
chamber method is very labor-intensive, resulting in infrequent and spatially sparse sampling.
Furthermore, the typical use of a compressed gas (usually nitrogen) cylinder to build up the
pressure inside the chamber can cause safety issues (e.g., projectiles caused by pressure) and
practical concerns (e.g., gas cylinder changes that may increase measurement time). In addition,
the determination of the instance xylem water appears can vary depending on the experience
of the user. For these reasons, automation and artificial intelligence (AI) technologies can be
integrated to improve the current standard of practice in determining stem water potential. This
work presents the development and testing of an automated pressure chamber that leverages
machine vision to help determine the status of xylem wetness, a critical step toward full autonomy
in stem water potential determination. The work contributes both to pneumatic actuation,
whereby an air compressor and on-board electronics are employed to make the chamber fully
controllable via software, and to visual perception, whereby a miniature camera and on-board
electronics are integrated to provide easily visible, accessible, and real-time video feed on
the excised end of a leaf’s stem. Further, an AI-based object detection algorithm is deployed
to determine the xylem’s wetness status automatically. Several experiments with in-situ data
collection demonstrate the efficiency of our system under both (semi-)manual and automatic
(AI-assisted) modes of operation, thus confirming that our method can help enhance the current
standard-of-practice pressure chamber method to determine stem water potential in a faster, more
affordable, accurate, and repeatable manner.

1. Introduction1

The pressure chamber (also known as the Scholander chamber) is a well-known procedure to help assess stem2

water potential (Scholander et al., 1964). Stem water potential (SWP) is an important metric to approximate plant3

water stress (McCutchan and Shackel, 1992), which in turn is critical for improving water utilization and crop yield4

quantity and quality (and grower profits) (Fulton et al., 2014; Schaible and Aillery, 2012; Vellidis et al., 2016) across5

different types of plants but especially specialty crops and orchards (Rossello et al., 2019). The method involves the6

partial sealing of a cut leaf inside the pressure chamber with the excised end of the stem outside of the chamber. The7

pressure inside the chamber increases until the point of zylem water expulsion from the excised leaf’s end. At this8

point, the applied pressure can be selected as the balancing pressure. Although weather and sunlight variability may9
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still affect single measurement reliability (Schaible and Aillery, 2012), the pressure chamber method is still largely10

employed despite the introduction of proximal and remote alternatives (e.g., Dhillon et al. (2017); Gonzalez-Dugo11

et al. (2013)) since it does not require rigorous temperature control or delicate instrumentation. It also serves as the12

calibration reference or baseline for other methods (Oosterhuis and Wullschleger, 1989; Awad-Allah, 2020), namely13

sample-destructive methods of determining water status including the isopiestic psychrometer (Boyer and Knipling,14

1965), the osmometer (Ball and Oosterhuis, 2005) relying on the linear relationship between plant water to solute in15

determining osmotic potential, and the pressure probe (Husken et al., 1978) which determines the turgor pressure of16

a plant. These emphasize the method’s importance to the community. A detailed comparison of the pressure chamber17

method against other sample-destructive methods to determine plant water status is provided in Mucchiani et al. (2024).18

That work also discusses the potential of integrating automation and artificial intelligence (AI) across such methods19

and argues about the significant potential afforded by the pressure chamber.20

However, there currently exist some limitations in the pressure chamber method (Levin, 2019; Donovan et al.,21

2001; Rodriguez-Dominguez et al., 2022). Its primary limitation is that it is a very labor-intensive process (Goldhamer22

et al., 2001). Leaves have to be taken from multiple trees across a field, and, depending on plant stress, it might take a23

relatively long time to complete each measurement (Elsayed et al., 2011).1 In turn, this affects scalability to larger fields24

and can hinder spatio-temporally dense sampling which is essential to accurately map the plant stress condition across25

a field. In addition, some aspects of the pressure chamber method can be particularly error-prone, thus introducing26

measurement variability and imprecision. Typically, a user has to load a leaf at its stem to the chamber via a gasket27

seal. If the seal is tightened too much, it will clog the xylem water flow. A user must also look through a magnifying28

glass toward the stem’s excised end to determine xylem water expression. Even under ideal visual conditions of the29

environment and user’s eyesight, users of different experience levels will typically provide a different SWP assessment.30

Further, because of the high-pressure buildup in certain cases, the method can be dangerous if not conducted carefully31

(for instance not securing the gasket seal properly).32

There currently exist two main chamber form factors that are sold commercially and are employed in practice: a33

manual “pump-up" and a semi-automatic “suit-case-like" chamber.2 The former essentially works like a hand pump,34

whereby repeated upward/downward strokes increase the pressure inside the chamber. As the pressure inside the35

chamber builds up, it becomes harder and physically strenuous to keep increasing the pressure. There is also too much36

relative motion involved, which, as we discuss later, is undesirable in the context of our work. The manual chamber37

has a lower cost of acquisition and operation. It is easily portable, and hence a user can walk around the field and38

directly make measurements on the spot. The latter “suit-case-like" chamber is a static device where pressurization39

1 To be more exact, by relatively long time here we mean about 5 minutes. While on an absolute value scale this amount of time may appear
reasonable, typically many leaves need to be sampled and undergo the SWP process.

2 For information on these models we refer the reader to the PMS Instrument Company website at https://www.pmsinstrument.com/.
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happens through an external compressed gas cylinder. The user sets the flow rate of gas into the chamber and then40

looks through the magnifying glass with no other physical motion involved. Oftentimes, these form-factor chambers41

come with a digital pressure gauge, which helps evaluate SWP. Compared to the manual pressure buildup case, this42

chamber removes some of the variability associated with relative motion and is less physically strenuous. However,43

it has a considerably higher cost to acquire and maintain (compressed gas consumption can be very fast, especially44

for less-experienced users). It is also much heavier, hence it needs to be loaded onto some form of tractor or cart45

which needs to be driven around the field. Interestingly, despite these limitations, the pressure chambers have remained46

mostly the same since their early years of introduction. From a research perspective, the work of Villagrán et al. (2011)47

introduced a control system to increase and terminate pressure, but it was only tested in simulation; neither a physical48

prototype nor a comparison of attained results against the conventional approach were provided. Except for only a few49

modifications such as integrating digital pressure gauges and improved mechanical construction, no other automation50

and AI aspects have been implemented in physical commercial chambers to date (Mucchiani et al., 2024).51

In this work, we developed and tested an automated and AI-assisted system for the SWP pressure chamber52

method. Our work aims to improve SWP measurement in accuracy, consistency, safety, affordability, and accessibility,53

contributing to both pneumatic actuation and visual perception to help enable automation and AI integration into the54

chamber itself. Specifically, our developed system includes a single-board computer, a microcontroller, relays and55

solenoid valves, an air compressor, and a miniature camera with a specialized lens. The camera points directly toward56

the excised end of the stem when the leaf is mounted into the chamber. The combined system was designed to attach57

directly on top of a commercially available pressure chamber (specifically of the static semi-automatic form), and58

it can live stream the camera feed either to the immediate user via a connected monitor or to any remote user via59

HTTP. Our system allows for two different modes of operation, manual and automatic. The manual mode requires user60

input throughout all measurement steps, i.e. pressurization, detection of water in the xylem, halt of the pressure, and61

depressurization. In contrast, the automatic mode can pressurize, perform AI-assisted detection of xylem water, and62

halt autonomously. Both operation modes of the system were tested in in-situ SWP analysis of avocado tree leaves to63

determine water status, under different weather conditions.64

It is worth highlighting that there are several steps toward fully automating the SWP determination process, as65

outlined in Fig. 1. In previous related efforts, we have focused on joint task and motion planning algorithm development66

to determine how to sample in an energy-efficient manner (Kan et al., 2021); hardware development of a custom67

leaf cutting end-effector and associated actuation-perception integration for autonomous leaf cutting (Campbell et al.,68

2022); full 3D field reconstruction for localization under the canopy (Teng et al., 2023); as well as full in-field navigation69

and testing to cut and retrieve leaves (Dechemi et al., 2023). This present work focuses on the very last step where an70
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BAGGING SWP MEASUREMENTTREE AND LEAF CANDIDATE 
SELECTION EXCISION

Figure 1: A summary of the main steps involved in SWP analysis with the pressure chamber, which can serve as targets
for automation. This work focuses on the last step of SWP measurement.

excised leaf is already brought to an analysis station and mounted into the chamber. Then, the process to determine its71

SWP is enhanced via our developed automated and AI-assisted pressure chamber system.72

2. Materials and Methods73

Our overall system’s hardware components are depicted in Fig. 2. In manual mode, the human operator controls74

the chamber airflow (provided by the air compressor and directed by the solenoid valve) via joystick input. Since video75

is streamed over a network, the operator does not necessarily need to be in the vicinity of the chamber and therefore76

can operate the cycle remotely (apart from loading and unloading the sample). Similarly, in the automatic mode, the77

user has the option to control the chamber airflow (for safety); however, no input from the human operator is required78

between the pressurization state, data reading and recording, and exhausted state. A detailed description of the design79

and implementation of both modes follows.80

2.1. Hardware Design81

Our system contains two main components, the pneumatic actuation module and the visual perception module. The82

perception module (Fig. 2, A) is placed on top of a pressure chamber (I) lid (which exposes the xylem for observation)83

and consists of a custom-made 3D printed mount in PLA plastic and a Hi-Quality Pi-camera with a PT3611614M10MP84

16 mm C-mount lens. The specific lens was added to achieve the best focus and resolution on the xylem, as shown in85

Fig. 2 (right). Live camera feed can be streamed via an HDMI connection to any type of external monitor such as a86

laptop screen (L) or wirelessly via HTTP to any remote client. To offload heavy computation requirements of the object87

detection method (K) from the onboard (host) computer while also allowing real-time data processing, a GPU-enabled88

laptop (L) was also used.89
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Regarding the actuation module, there are two subcomponents: control and computing electronics, and pneumatics.90

For the former, we utilized a Raspberry Pi (E) as a host on-board computer and an Arduino (F) for the implementation91

of both manual and autonomous modes of operation. We selected those components due to their demonstrated92

utility across applications and their sufficient computational capacity to process the collected video stream from the93

camera. Yet, other similarly rated single-board computers and microprocessors can be utilized instead. To pressurize94

the chamber, air input is provided by a 300 bar maximum pressure air compressor (C), which not only makes the95

measurement process self-contained (i.e. it removes the need to rely on the refill of gas cylinders, which is a limiting96

factor for the number of samples measured in the field and can get costly over time) but also makes the process safer (as97

opposed to the handling of high-pressure gas cylinders). The airflow is controlled, on a hardware level, by a three-way98

solenoid valve (B) which, together with the air compressor, are both connected via relays (G). A pressure sensor (D)99

is connected in line with the flow toward the pressure chamber. All components are rated to withstand at minimum the100

pressure of 20 bar deemed sufficient for the application proposed herein. The pressure sensor was calibrated according101

to pressure readings from the embedded gauge on the pressure chamber basis (I); calibration revealed an approximately102

linear relation (Fig. 3). Pressure sensor data were streamed at a rate of 100 Hz. The entire system was powered by an103

external AC/DC power supply (H). For safety purposes, SWP measurement cycles have to be initiated, and can be104

aborted at any time, by a user via a wireless joystick (J, Logitech F710) which is connected to the on-board (host)105

computer.106

Considering all components listed besides the pressure chamber basis (I) and GPU computer (L), the cost for all107

utilized components is close to $600 USD. In contrast, the conventional semi-automatic approach (i.e. not the manual108

“pump-up chamber") utilizes portable gas cylinders to build pressure inside the chamber. Based on experiments, each109

cylinder roughly suffices to perform 60-80 readings under 12 bar per experiment; the refilling cost is $40 USD. Thus,110

our proposed system’s bill of material cost can be paid off in about 15 gas cylinder refills, while at the same time it can111

be deployed to make continuous measurements.112

2.2. Modes of Operation113

The detailed operation procedure is depicted in Fig. 4. There are four operational states (organized in terms of state114

machine in software) each of which is mapped to a separate joystick button. Transitions among operational states are115

currently set to happen with the press of the appropriate button at the joystick for safety purposes; yet, they can be116

made fully automatic directly, by adding the appropriate guards and transition rules in the underlying state machine117

software. With reference to Fig. 4 the four operational states are as follows.118

• State 1 (Idle): Before measurements, the air compressor remains off while the valve is positioned toward the119

“S1” or pressurize position.120
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Figure 2: Hardware system implementation: (A) HQ Pi-Camera, (B) Solenoid Valve, (C)Air-Compressor, (D) Pressure
sensor, (E) Raspberry Pi, (F) Arduino, (G) Relay, (H) Power Supply, (I) Pressure Chamber, (J) Joystick, (K) Object
Detection Output, (L) GPU enabled computer.

• State 2 (Pressurize): When the pump is turned on by input 𝐵𝑇 1, air flows toward the “S1” direction, and the121

chamber, provided an appropriate seal, will build up pressure until the desired measurement state is achieved.122

This step is critical to guarantee correct measurements. To determine the transition point from dry to wet xylem,123

and the corresponding pressure, we proposed both manual and automatic modes. The manual mode controls the124

transition to the next state via joystick input 𝐵𝑇 2 by a human operator who observes the transition from dry to125

wet xylem via the real-time video feed. The automatic mode, instead, requires no input from the human operator126

and employs an AI-assisted visual perception algorithm (discussed below) to infer the transition from dry to wet127

xylem. This procedure is denoted by 𝐷𝑇 in our state machine.128

• State 3 (Hold): Once xylem water is detected in either mode, the air compressor is turned off, while the valve is129

maintained in the “S1” position. This time will allow for the correct pressure to be registered and verified.130

• State 4 (Release): Post measurement, the valve can be remotely switched to position 𝑆2 by 𝐵𝑇 3, and the system131

goes into standby mode using input 𝐵𝑇 4.132

By allowing the human operator (understood here as the one in possession of the joystick) to choose between manual133

and automatic modes, our aim was twofold: 1) to investigate the system behavior by characterizing it in manual mode,134

and 2) to compare its performance with the automatic mode. Therefore, we carried out experiments similar to the135
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Figure 3: Sensor calibration against the pressure chamber gauge. The corresponding linear fit approximation of sensor
voltage reading and applied pressure (variable ‘x’ corresponds to the measured voltage) can be observed (line in blue) and
compared against experimentally observed values (in green).

conventional approach of SWP determination when done manually, and evaluated the proposed system in terms of136

successful measurement (or ability to see the dry-to-wet transition under pressurization) and time per measurements137

for both manual and automatic modes.138

2.3. AI-Assisted Visual Detection of Stem Wetness139

We implemented manual and automatic modes as shown in Fig. 5a. For the manual mode, the host computer140

itself (Raspberry Pi Model 3B) is connected to a monitor via HDMI and displays real-time video of the xylem, as no141

heavy computation is required and both video and control signals can be processed locally. For the automatic mode, to142

implement the AI-assisted visual object detection algorithm described below, and to enable real-time video and sensor143

data processing deemed critical for accurate pressure measurements and safety, a local stream of both video (in h264144

format) and pressure sensor values was conducted from the host computer to a GPU-enabled client computer using a145

local network and assigned IP address. Both video stream and sensor data can be accessible to a client computer via146

an HTML webpage (an instance of the latter is shown in Fig. 5b), and therefore any device (even a mobile phone) can147

be able to access the data. To process video data, however, a laptop with an onboard GPU was utilized. A comma-148

separated-value (CSV) file was generated after every run and contained the timestamp and pressure readings from the149

sensor, so values can be correlated with the video to confirm data validity.150

Mucchiani and Karydis: Preprint submitted to Elsevier Page 7 of 18



An Automated and AI-assisted Pressure Chamber for Stem Water Potential Determination

DT

  STATE 4: 
RELEASE

STATE 3: 
     HOLD

        STATE 2:
PRESSURIZE

STATE 1: 
       IDLE

PUMP:OFF
VALVE:S1

PUMP:ON
VALVE:S1

BT1

PUMP:OFF
VALVE:S1

BT2

PUMP:OFF
VALVE:S2

BT3

BT4
Valve

Chamber

S2

S1

A
ir

C
om

pr
es

so
r

MANUAL AUTOMATIC

BT

Exhaust

(a)

Pressure Chamber

Solenoid Valve
ON / OFF / 
EXHAUST

Joystick

Object DetectionUser Input

Air Compressor
ON / OFF 

Manual Mode Automatic Mode

State Machine

Camera Stream

(b)
Figure 4: (a) Overall description of implemented states. Here 𝐵𝑇 1 to 𝐵𝑇 4 represent different joystick inputs while 𝐷𝑇
is the inference result from the object detection model trained on SWP determination data. (b) Modes of operation for
our proposed system. A camera focused on the xylem streams video data to a local network in real time. In remote
(manual) mode, the human operator can control both the air input to the chamber (via air compressor) as well as the
direction of flow (via solenoid valve) based on real-time video observations utilizing a joystick. For autonomous operation,
an object detection algorithm utilizing the video stream is combined with a state machine, and can automatically track
xylem wetness.

In this work we employed an AI-assisted visual perception algorithm for object detection; i.e. to detect the xylem in151

the video feed and to determine its wetness status (dry/wet). The method chosen for our application was the You Only152

Look Once (YOLO) object detection and classification technique (Redmon et al., 2016). In earlier work (Dechemi et al.,153

2023), we evaluated the capacity of different versions of YOLO networks to detect the xylem and its wetness status.154

The YOLO network was trained from scratch on 7759 images using two sets of hyperparameters: baseline and tuned.155

The baseline used default settings, while the tuned version adjusted specific hyperparameters to evaluate the effects of156

various data augmentations on model performance and training duration. The adjustments included reduced saturation,157

added rotation, and removed mixup and paste-in augmentations, shifting the focus from color space to spatial-level158

transformations based on findings that color is not a stable feature in wetness detection. This approach aimed to make159

the models more sensitive to spatial features. Training was conducted on a Tesla P100 GPU for 80 epochs using an SGD160
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Figure 5: (a) Implementation of manual and automatic modes. In manual mode, the video output is directly connected to
the host computer via HDMI, whereas in automatic mode a video stream over the network is sent, and assessed (the state
of the xylem) via a YOLO object detector running on the client computer. The result of the latter is sent back to the host
computer for controlling the solenoid valve. (b) Screenshot of the live-streamed data from the sensor to a webpage.

Table 1
Inference results for the YOLOv5 network (Dechemi et al., 2023).

Execution time (s) Average Inference Speed per Image/Frame (ms) Classification Accuracy % Stable Transition
Cloud-based (Tesla P100) 26.5 8.8 100 N/A
Edge-based (Jetson NX on test image) 449.4 448.4 100 N/A
Edge-based (Jetson NX on test video) N/A 568.1 N/A Yes

optimizer. As seen in Table 1, inference results from the tuned YOLOv5 model excelled in accuracy and confidence;161

thus, this model was adopted in our implementation in the current work.3162

This inference result from the YOLO network (denoted as DT in Fig. 4) dictates the transition from the163

PRESSURIZE state (while 𝐷𝑇 = 0 or “dry” xylem) to the HOLD state (𝐷𝑇 = 1 or “wet” xylem). Inference164

results from the network are sent from the client to the host computer for control signal processing; after detection and165

transition to the HOLD state, the system awaits user input to RELEASE the pressure and restart the cycle. Although166

implemented locally, it is worth mentioning that our system allows for internet connectivity with minor modifications,167

which would facilitate both offload computation to a cloud service instead or further permit remote access of the live168

stream cycle by human operators located anywhere in the world.169

3 For more details we refer the interested reader to Dechemi et al. (2023, Section IV).
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3. Results170

To verify our system’s performance, experiments were conducted in an avocado tree field at the Agricultural171

Experimental Station (AES; 33◦ 58′ 3.2592′′ 𝑁, 117◦20′ 7.0296′′𝑊 ) at the University of California, Riverside.172

Avocado trees were selected because they constitute a highly salt- and drought-sensitive crop Gustafson (1976), and173

thus it is a high-value specialty crop that would directly benefit from more dense spatio-temporal SWP analysis afforded174

by our work. We collected data on two separate days: Day 1 (November 8𝑡ℎ, 2023, around 11 am) with dry weather175

and soil conditions, whereas Day 2 (November 15𝑡ℎ, 2023 around 10 am) was right after a rainy evening with high176

humidity in the air. We also performed both manual and automatic mode SWP determination. Details are listed next.177

• On both days, a researcher utilized reflective foil bags to enclose various leaves from different trees, choosing a178

mix of shaded and unshaded regions (Fig. 6 left).179

• After 10 minutes, leaves were excised from the trees, labeled, and put in an insulated bag (Fig. 6 center) for180

transportation to the laboratory facility where the system was set up, closely located (approximately 15 minutes)181

to the collection field.4182

• The physical setup (Fig. 6 right) was used in the lab 15 minutes past excision to determine SWP under both183

manual (66%) and automatic (34%) modes during Day 1, and the manual mode alone during Day 2.184

• After experiments, all video and pressure readings were verified using the generated CSV files, and plotted to185

compare the different modes proposed herein and reported SWP values.186

3.1. Assessment of Manual Mode of Remote Operation187

Considering the system validation in terms of different weather conditions (and its impact on SWP measurements),188

in-situ samples were collected over two different days. On the first day (“Day 1”), it had not rained for over a week,189

whereas on the second day (“Day 2”), sampling was done on a day after overnight rain. For both days, over 50 samples190

were collected and tested in manual mode, with results shown in Fig. 7 and Fig. 8.191

In all experiments, the human operator was able to switch between the states described in Fig. 4 via joystick input,192

and the system promptly reacted in operating the air valve and compressor. Observed pressure values as well as resulting193

SWP measurements both lie within the expected range for the chosen crop and despite pressure sensor error of about194

2%𝐹𝑆 (0.4 bar), the manual mode can accurately represent a valid alternative to the conventional approach of the195

pressure chamber method. As expected, dryer weather contributed to more negative SWP values (average 𝜇 = −11.02196

4 While earlier literature was recommending making the measurements on the spot, it has been suggested that immediate storage of excised
leaves in a cold and moist environment helps stabilize the sample’s water potential and preserve the condition for hours or even days, depending on
the species (Rodriguez-Dominguez et al., 2022).
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Figure 6: Data collection procedure. (Left) First, leaves were bagged close to noon local time and left to settle for 10
minutes. (Center) Leaves were then excised and transported in an insulated bag to the laboratory facility for prompt
measurements. (Right) The physical testing setup: (1) camera and adapter, (2) pressure chamber, (3) electric solenoid
valve, (4) air compressor, (5) pressure sensor, (6) Microcontroller boards and relays, (7) joystick, and (8) remotely connected
laptop.

Figure 7: Graphical depiction of the attained experimental results in manual mode of operation for both days of in-situ
data collection. (Left) On day 1, 12 samples were properly bagged and measured on a dry midday. (Right) On day 2, 40
samples were collected and tested midday after an overnight rain. In all cases, the pressure buildup inside the pressure
increases smoothly, until the point that the user observes xylem water in the live video feed, and switches to hold, and
the depressurize status. The differences between dry and wet environmental conditions in terminal pressure values and
measurement times are visible.

bar, standard deviation 𝜎 = 1.91 bar) as compared to values obtained after rain (average 𝜇 = −5.11 bar, standard197

deviation 𝜎 = 1.17 bar).198
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Figure 8: Determined SWP values from manual mode of operation experiments on both days. It can be seen that, as
expected, smaller values were observed on Day 2 since measurements took place after an overnight rain. Vertical bars
indicate a sensor full-scale error of 2%.

3.2. Assessment of Automatic Mode of Remote Operation199

During the automatic mode, we evaluated the system under two conditions: a real-time online evaluation and200

an offline validation. The former condition aimed at testing samples collected on Day 1 according to the automatic201

implementation, while the latter considered an offline validation of the videos collected on Day 2 for assessing the202

detection itself. Since detection is the critical aspect of the automatic mode for the system to operate correctly, we203

wanted to verify how well the chosen AI-assisted visual objector detector would perform on recorded videos.204

As seen in Fig. 9, real-time experiments were successfully conducted, resulting in an automatic reaction of the205

system (understood as turning off the pump) upon detection of water in the xylem. In Fig. 10 (left), detection of the206

“dry” state (A) would allow the operator to initialize the pump (shown as an arrow in the right panel), and automatically207

shut it off when detecting water in the xylem (B) from the live video stream. The final SWP calculated values are shown208

in Fig. 11 (average 𝜇 = −12.45 bar, standard deviation 𝜎 = 1.92 bar), which are compatible with those reported for209

Day 1 in manual mode configuration.210

For the offline evaluation, 40 video recordings of experiments were used to test the detector. In 35 out of 40 cases,211

the network was able to correctly classify the transition state of water appearance in the xylem. With reference to Fig. 12,212

the detector was robust under various lighting conditions and focus levels and was able to correctly classify the “wet”213

states with over 90% accuracy. Failed cases were caused either because of an erroneous detection (i.e. reporting “dry”214

instead of “wet” and vice versa) or no detection at all. Some sample failure cases are depicted in Fig. 13.215
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Figure 9: Graphical depiction of the attained results during the real-time evaluation of the automatic mode of operation on
Day 1. The pressure builds up automatically, until the point that AI-assisted detection determines the status of the xylem
has changed from dry to wet and then signals the hold and depressurize status, with no input from the human operator.
The attained pressures and measurement times are consistent with those attained via the manual mode on Day 1 (left
panel of Fig. 7).
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Figure 10: Example of detection (left) of dry (A) and wet (B) states of the xylem, with the respective pressure chamber
sensor readings (right) during automatic mode operation.

3.3. Assessment of Operation Time in both Modes216

We also calculated the average time per measurement cycle for both modes, considered here as the time between217

STATE 2 and STATE 3. Results are summarized in Table 2. It can be readily verified that both cases on Day 1 had a218

very similar cycle time. Although not conclusive, a slightly shorter time for the automatic method may anecdotally infer219
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Figure 11: Automatically determined SWP values from the real-time automatic mode of operation experiments on Day 1.
Values are consistent with those attained via the manual mode on Day 1 (Fig. 8).

Table 2
Average Time of Measurement per Sample.

Average 𝜇 (s) S.D. 𝜎 (s)
MANUAL (DAY1) 37.32 7.44
MANUAL (DAY2) 27.32 4.86
AUTO (DAY1) 35.65 4.9

wet 0.94 wet 0.92wet 0.92 wet 0.94 wet 0.90

wet 0.91 wet 0.93 wet 0.92 wet 0.90 wet 0.93

Figure 12: Sample detection results from offline evaluation.

a faster reaction time of the detector compared to a human when considering the point of measurement. In addition,220

since logs of pressure data and video recordings are provided by the system, the operator can confirm whether the221

chosen SWP value reflects the current determined result. The average cycle time for Day 2 in manual mode (27.32 s)222

was considerably less than the reported values of SWP for Day 1 (37.32 s) due to the overnight rain, which was also223

expected since the reported pressure values were lower.224
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(a) (b)

dry 0.86

Figure 13: Examples of (a) incorrect and (b) no detection cases.

4. Discussion225

Our goal was to make current pressure chamber systems more portable and safer and to improve the number of226

measurements that conventionally take place in situ, as opposed to a constrained number of measurements dependent227

upon the gas cylinder volume. To this end, one important modification included in our proposed system was the use of228

an air compressor instead of a pressurized gas cylinder. Our system, therefore, had to withstand the required pressure229

range and be able to report correct pressure readings while allowing repeatability and robustness.230

By design, all components were selected to withstand the working pressure range. Further, our system was able231

to successfully perform numerous repeated measurements across all cases presented before as well as preliminary232

feasibility testing that took place before field deployment and assessment. In all cases, measurements were reported to233

the human operator in a direct and accessible manner, without any observed performance degradation. This translated234

to a high repeatability rate and data throughput, both of which are highly desirable in a tool for assessing water status.235

Our system’s capacity to perform actions comparable to a human operator in terms of the sequence of operations,236

detection, and improved cycle time, besides its affordability, indicate that it can serve as a viable alternative237

to measuring in-situ SWP when determining the water status of specialty crops, such as avocado trees. Finally,238

our method can even improve validation when utilizing other sensing modalities, such as proximal sensing by239

Microtensiometer (Pagay et al., 2014) or Hydrogel Nanoreporters (Jain et al., 2021).240

Our main design consideration that led us to develop an “add-on" mechanism compatible with commercially241

available pressure chambers was made in order to minimize cost of acquisition for a user, considering that there is242

typically at least one “traditional" pressure chamber available to users that need to make SWP measurements. Indeed,243
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despite the additional upfront cost for the bill of materials to automate the pressure chamber as proposed, the operational244

cost over time makes our proposed solution more financially viable in the mid- and long-term. We hope that such a245

design consideration can help increase the chances for a higher adoption rate since no new pressure chamber other246

than those already in the field would need to be purchased or modified. Additionally, this design attempts to match in247

simplicity the interaction with the pressure chamber, since this is one of the main advantages of the method. However,248

if desired, our proposed system can be made as a standalone device by essentially adding a pressure-rated container249

with an input and output air connection, a pressure gauge, and the ability to securely fit a lid that can expose the stem’s250

excised end to atmospheric pressure while keep the rest of the leaf inside the container.251

The proposed system also allows for safer and more intuitive operation and SWP determination by removing the252

need for direct physical observation by looking through a magnifying glass. Even the seemingly modest integration of253

a camera and broadcasting the collected video feed in a screen can immediately make a difference. When coupled with254

automatic detection, then the amount of physical labor required to make multiple SWP measurements is expected to255

drop. In future work, we aim to test this hypothesis by performing user studies with agronomists and growers who rely256

on SWP assessments to optimize irrigation schedules for crops (Fulton et al., 2014).257

During automatic detection, we considered the trained model from Dechemi et al. (2023), which aside from been258

fine-tuned with data from in-situ sampling, it was not retrained with any data collected in this study. Despite this,259

results were positive and attest to the suitability of AI-assisted visual perception of stem xylem wetness. In future260

work, we aim to collect additional data, including from other crops, and perform a larger analysis and evaluation of261

other AI-assisted object detection methods as well. These data will be curated and made available to the community262

to stimulate further research in the area.263

5. Conclusion264

This work introduced the first automated pressure chamber device capable of determining stem water potential265

(SWP) remotely and autonomously. The developed system was designed to be compatible with off-the-shelf pressure266

chamber devices for in-situ measurements, and it can allow for remote connection in real-time, while also logging267

relevant data and video recordings for post-measurement verification. To assess the utility of our proposed system,268

we performed in-situ data collection of several samples under different weather conditions and evaluated it in two269

operation modes: manual and automatic. The main difference in these is that in the former a user is looking at the270

video feed and determines when xylem water expression is observed, whereas in the latter an AI-assisted visual object271

detection algorithm is employed to determine xylem water expression. Results indicate that our automated chamber272

can perform correct measurements accurately, repeatably, and fast, while facilitating the role of the human operator273

in that no direct physical observation is required. This research paves the way for integrating the device with mobile274
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robots to achieve complete autonomous measurement of SWP, further minimizing the need for human intervention in275

this process.276

Despite the successful demonstration of this prototype, our system has some limitations that can be improved in277

the future. We have not considered an air-flow regulator added in series to our system. An electronic flow control278

valve would be able to provide adjustable airflow and therefore improve the pressure profile precision and accuracy,279

especially near the transition between states. Further, our experimental procedure was limited to avocado trees and280

would benefit, especially in terms of automatic detection, by testing with additional crops. Finally, even though we281

proposed an automatic mode for detecting water in the xylem, the system still requires human input to perform a full282

cycle. While this was a deliberate choice made for safety, it would be useful to investigate a fully autonomous procedure283

as well.284
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