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Supervised Learning of Physical Activity
Features From Functional Accelerometer Data

Margaret Banker and Peter X. K. Song

Abstract—Objective: We propose a new health informat-
ics framework to analyze physical activity (PA) from ac-
celerometer devices. Accelerometry data enables scientists
to extract personal digital features useful for precision
health decision making. Existing methods in accelerome-
try data analysis typically begin with discretizing summary
counts by certain fixed cutoffs into activity categories. One
well-known limitation is that the chosen cutoffs are often
validated under restricted settings, and cannot be gener-
alizable across populations, devices, or studies. Methods:
We develop a data-driven approach to overcome this bot-
tleneck in PA data analysis, in which we holistically sum-
marize a subject’s activity profile using Occupation-Time
curves (OTCs), which describe the percentage of time spent
at or above a continuum of activity count levels. We develop
multi-step adaptive learning algorithms to perform super-
vised learning via a scalar-on-function model that involves
OTC as the functional predictor of interest as well as other
scalar covariates. Our learning analytic first incorporates a
hybrid approach of fused lasso for clustering and Hidden
Markov Model for changepoint detection, then executes re-
finement procedures to determine activity windows of inter-
est. Results: We evaluate and illustrate the performance of
the proposed learning analytic through simulation experi-
ments and real-world data analyses to assess the influence
of PA on biological aging. Our findings indicate a different
directional relationship between biological age and PA de-
pending on the specific outcome of interest. Significance:
Our bioinformatics methodology involves the biomedical
outcome of interest to detect different critical points, and
is thus adaptive to the specific data, study population, and
health outcome under investigation.

Index Terms—Actigraphy, changepoint detection,
epigenetic ageing, fused lasso, scalar-on-function
regression.

I. INTRODUCTION

PHYSICAL activity (PA) is of ubiquitous interest in smart
health-related research. One question of great interest is

whether a more physically active person would be biologically
“younger” than a less active person. In clinical lab settings re-
searchers can directly observe andmeasure PA bywell-designed
experiments and facilities. However, measuring PA levels is
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more difficult to conduct in free-living populations outside of
the lab setting. In the past, PA for these populations was often
measured via subjective methods such as self-reported PA di-
aries. More recently, AI-guided sensors such as accelerometers
have been utilized as objective measures to provide continuous
high-frequency PA data [1], [2], [3], giving rise to new technical
needs and challenges in data analyses.
Accelerometer devices capture how speed changes over time

through electrical signals representing the volume and intensity
of movement. Such data are recorded in high resolutions of
sampling frequencies (Hz), and then processed via proprietary
software, such as ActiLife LLC. Typically, the processed data
describing PA levels are expressed as activity “counts” over spe-
cific periods of time known as “epochs” [4]. The count levels re-
flect the relative intensity of activity, with higher values indicat-
ingmore intense exertion. For tri-axial accelerometers, the three-
dimensional count information at each time point is often sum-
marized into a one-dimensional summary value of vector mag-
nitude (VM), with VM =

√
axis12 + axis22 + axis32 [3].

With the ability to provide high-frequency measurements
(example frequency: 60 Hz, or 60 data points per second), the
technical challenge becomes how to retrieve useful informa-
tion from this high-frequency time-series data type. A popular
method of analyzing accelerometer data involves specifying
activity “cutoffs” to discretize activity counts into categories,
such as Sedentary, Light, andModerate-to-Vigorous [5], [6], [7].
Supplementary Fig. S1 illustrates an example of pre-specified
cutoffs (the horizontal lines) applied to 24-hours of accelerom-
eter data for a subject from our motivating dataset.
While the use of accelerometers provides a multitude of ben-

efits, including reducing reporting bias found in subjective mea-
sures (e.g. self-reported PA surveys), and providing a continuous
account of activity over a wear-time period, their use in studies
does present some analytic challenges in data analysis [2]. First,
while categorization is a useful approach, the cutoffs must be
pre-specified by the researcher. There are many potential cut-
offs published in the literature, each validated against different
narrowly focused studies with small subgroup populations [2],
[6], [7]. These cutoffs may be affected by many variables, in-
cluding what device was used (e.g. Actigraph GT3X, Fitbit), the
placement of the device (e.g. hip, wrist, ankle), or characteristics
of the study population (e.g. age, sex, race) [5]. For example, in
the software ActiLife, which is used to analyze actigraphy data
from Actigraph devices, there are over fifteen cutoff options. In
addition, a researcher can choose to input their own cutoffs in
ActiLife (ActiLife software, v6.13.3), leading to subjectivity in
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Fig. 1. (a) The construction of an OTC from a time-series of VM
counts. The left panel represents accelerometer data, with an increasing
bar of “count” cutoff indicated by the horizontal lines with varying point-
shapes. The corresponding proportion of time spent at or above that
level of activity is shown in the indicated point on the right panel with the
corresponding point shape. The grey continuous curve is the realized
OTC for this individual; (b) Comparison of OTC shapes for More vs
Less Active Individuals, with VM count summarized over 1-min epochs
varying over 0 to 30000. The distinctive shapes of the curves represent
the subject’s activity pattern. For example,curves of less active people
steeply drop in the beginning, signifying that a small percentage of their
time is spent in even mid-active regions.

data processing. Such flexibility exposes analyses to the risk
of applying pre-set cutoffs that do not align with a specific
study population, potentially resulting in incorrect or biased
activity classifications. Thus, it becomes important to call a new
algorithm to adaptively choose appropriate cutoffs tailored to
different studies.
The goal of this article is to develop a more holistic, gener-

alized, functional-focused approach to analyze PA data. Specif-
ically, the proposed approach aims to free the dependence on
subjective choices of pre-determined PA categorizations, and
instead allow the data to adapatively determine the changepoints
and different activity ranges of interest. In this way, we utilize
the supervised learning paradigm to assess the association of PA
ranges with health outcomes of interest.
To this end, we consider actigraphy data under the purview

of Occupation-Time Curves (OTCs). This method of analyzing
activity data involves a summary curve which describes the
proportion of time an individual spends at or above succes-
sive activity levels [8]. The OTCs retain key features of the
activity profile while greatly reducing the background noise
inherent to accelerometer devices. OTCs compute the empirical
proportional activity across possible activity levels for each
individual, defined mathematically by P (VM(t) ≥ c), where
VM(t) is the time-series ofVectorMagnitude counts (as defined
above), c the sequential moving activity levels, and P denotes
an empirical probability measure defined by the proportion:
durationof {t:VM(t)≥c}
total durationof VM(t) [9]. Fig. 1(a) illustrates the construction
of an OTC, and Fig. 1(b) illustrates four OTC plots over VM

varying from 0 to 30,000. Notably, Fig. 1(b) includes OTCs
for more-active people whose curves show a distinct shape
from those of less-active people. We aim to utilize the features
inherent in the curves to assess the influence of PA profiles on a
certain health outcome of interest (e.g. biological aging). Refer
to Section II for more details concerning the motivating data and
scientific research questions.
Utilizing the OTCs as a functional variable in the supervised

learning paradigm leads us to a Functional Data Analysis (FDA)
approach. For the ease of exposition, suppressing other covari-
ates for the time being, we consider the following scalar-on-
function regression model:

Y = <X, β> + ε =

∫
C
X(c)β(c)dc+ ε, (1)

where Y is a scalar health outcome of interest, X(c) is
the functional OTC defined on C ⊂ R = (−∞,∞) and ε is
the error term. Here, <a, b> depicts the inner product of
two square-integrable functions, namely

∫
C a(c)b(c)dc with∫

C a
2(c)dc < ∞ and

∫
C b

2(c)dc < ∞. Categorization is of spe-
cific interest in this field for interpretability. Thus, we aim
to develop a changepoint detection method that searches for
the best segmentation of X(c) by adaptively determining both
the number and location of cutoffs that align with the activity
intensity patterns. In this way, data-driven cutoffs are not only
determined in a supervised fashion by the outcome of interest,
but are also tailored to a study population under investigation.
The rationale behind the goal of activity categorization is that
not all PA ranges would impact a health outcome, and influential
windows of activity, if they exist, should be appealing for the
sake of interpretation. To address these technical needs, we
develop a supervised learning analytic that incorporates multi-
step, adaptive, learning procedures to estimate the functional
parameter β(c) with possible jump points representing activity
ranges associated with the scalar health outcome.
The supervised learning aspect of this proposed methodology

is due to the changepoint detection and functional parameter
estimation being outcome dependent, as is required to address
the scientific need of generalizability. The proposed method
provides great flexibility to study similar scientific questions
in other populations with various underlying characteristics and
devices. This use of functional regression is notably different
fromcurrentmethods of analyzing accelerometer activity and in-
vestigatingwindowsof activity associatedwith health outcomes.
Unlike methods establishing fixed cutoff values regardless of
specific outcomes under investigation, our analysis takes a new
supervised learning approach inwhich changepoints and activity
ranges are determined by the specific outcome of interest la-
belling in the model, which may take different forms in different
applications.
The multi-step nature of the proposed analytic is an addi-

tional benefit versus one-step estimation alternatives, such as
integer programming. With its multiple estimation iterations,
the proposed method mines various relevant features in the
data, providing useful insights into the intermediary steps of
the data-learning process as well as the data quality and data
structure. This is particularly important when collaborating with
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non-statisticians who have limited training in data analytics and
want to understand and cross-validate the analytic steps. Thus,
the proposed methodology is more digestible to practitioners
who may then prefer a deep dive into complex data and take a
more understandable approach when conducting their scientific
studies.
This article is organized as follows. Section II introduces our

motivating dataset from the Early Life Exposure in Mexico to
ENvironmental Toxicants (ELEMENT) study,where bothOTCs
and epigenetic age (a scalar outcome that reflects biological
aging) are described. Section III and IVconcern the development
and implementation of amulti-step supervised adaptive learning
analytic that enables changepoint detection of important activ-
ity ranges, whose performance is evaluated and demonstrated
through simulation experiments in Section V. In Section VI, we
apply our proposed method to assess the functional association
between PA and epigenetic age. Section VII includes a few
concluding remarks.

II. MOTIVATING STUDY DATA

This work ismotivated by the Early Life Exposures inMexico
to Environmental Toxicants (ELEMENT) cohort, which is a
longitudinal birth cohort study involving mother/child dyads
fromMexicoCity. The study is discussed in detail in a previously
published review article [10]. Briefly, the ELEMENT study
consists of three birth cohorts (cohort 1 in 1994−1997, cohort
2 in 1997−2000, and cohort 3 in 2001−2005), with a 2015
follow-up study consisting of some members from the three
original groups.

A. ELEMENT Actigraphy Data

As a part of this 2015ELEMENT follow-up study, researchers
collected actigraphy data from 549 children (258 boys and 281
girls) with mean (SD) ages of 13.9 (2.2), ranging from 9 to 18
years old. The participants were provided a wrist-worn, tri-axial
Actigraph GT3X+ (Actigraph LLC), which was worn for seven
consecutive days with no interruption. The Actigraph GT3X+
has an acceleration range of±6 g(g = 9.81m/s2) with a default
sampling frequency of 30 Hz corresponding to a collection of 30
measurements per second. The raw tri-axial data was processed
and summarized into epochs of various lengths (i.e. 10 sec,
30 sec, 1 min). In this article, we focus on Vector Magnitude
(VM) activity counts over one-minute epochs, which is widely
used in practice. This Actigraph device is water-resistant and
can be removed only when physically cut off. This warranted
both high study compliance and limited non-wear time during
the consecutive seven days of actigraphy data collection.
Besides age and sex, our analysis includes two additional

covariates: lead exposure, shown to be associatedwith biological
aging acceleration in children [11], and pubertal statusmeasured
by a five-category ordinal variable of Tanner staging.

B. Epigenetic Age

Biological aging rates are of great interest, but not well
understood. There is significant variation in how people visibly

Fig. 2. OTCs for 354 ELEMENT subjects, representing functional co-
variates. The vertical lines represent Chandler’s cutoffs (Chandler et
al., 2016) for activity levels (Sedentary, Light, Moderate, Vigorous). The
relative shape of these OTCs reflect the subject’s activity profile.

age or are affected by age-related disease. By quantifying this
characteristic, the biological aging rate can act as a biomarker
of the overall state of health, and allow for personalized or pre-
emptive health interventions [12]. Epigenetic Age is one such
quantitative way to represent a person’s biological aging, and is
the outcomeof interest in this article. EpigeneticAgeCalculators
hosted online [13] receive inputs of DNA methylation (DNAm)
alterations along different areas of the genome and deliver an
output of predicted Epigenetic Age; see Horvath (2013), among
others.
Studies show that children and adolescents (age 0–18) un-

dergo the fastest and most dynamic rate of growth and DNAm
changes [11], [14]. Furthermore, research in fetal origins of
adult disorders suggest that childhood experiences and expo-
sures could form the foundation of health issues experienced by
individuals in adulthood and beyond. These childhood environ-
mental and experiential factors can be observed in changes in
the the DNA methalome and thus reflected in epigenetic age.
An important investigation of scientific interest is to assess
the association of epigenetic age with objectively measured
functional PA (e.g. OTCs shown in Fig. 2).
Research has demonstrated the relationship between health

and epigenetic age may not be monotonic, motivating the use
of different types of epigenetic ages to study the influence of
PA on different biological aging processes. Here, we focus on
two biological ages for the adolescents aged 9–18: Horvath’s
Skin andBlood clock (DNAmAgeSkinBlood) [15] andLevine’s
Phenotypic Age clock (DNAm PhenoAge) [16], both calculated
from the epigenetic age calculators [13]. The former reflects
aging in skin and blood cells while the latter pertains to age-
related disease/phenotypes.

C. Occupation-Time Curves (OTCs)

The subject’s PA profile may be summarized by an OTC that
entirely translates the high-frequency time-series data to a single
functional curve. OTCs greatly reduce the device’s inherent
noise while retaining key features of activity. Calculating an
OTC is computationally straightforward. Take an example of
a time-series of Vector Magnitude (VM) counts VM(t). To
yield the first data point of OTC, we calculate the empirical
proportion of time spent at or above count level of 0, (i.e.
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c = 0), or OTC(0) = P (VM(t) ≥ 0), which is clearly 100%.
We then vary c in ascending order, such as say c = 100 and
c = 200, and calculate OTC(100) = P (VM(t) ≥ 100) and
OTC(200) = P (VM(t) ≥ 200), and so on. This calculation
continues up to c = 30, 000, or 300× 102, which appears as the
largest ordered VM count in the data. Fig. 1(a) illustrates this
numerical OTC construction procedure. The resulting OTC is
denoted asX(c), c ∈ C = [0, 300× 102] throughout the rest of
this article.
As shown in Fig. 1(b), the OTC’s shape provides key in-

formation of variability on the subjects’ PA profiles, with the
curves of more and less active individuals taking distinct shapes.
Here, “more” or “less” active is determined by relative levels
of high activity counts. Fig. 2 illustrates OTC variability in its
representation of 354 OTCs from ELEMENT.

III. METHOD

In this article we develop a holistic multi-step supervised
learning approach to analyze accelerometer data in that both
changepoints and PA ranges are adaptively determined via
scalar-on-function regression model. A key aspect of the pro-
posed method is to detect PA ranges that impact the association
between health outcomes of interest (e.g. epigenetic age) and
a functional covariate, OTC, adjusting for other variables. This
proposed methodology is considered supervised learning as the
goal is to estimate changepoints that are outcome dependent.
That is, the activity windows are determined by the specific
outcome labelling in the model; this supervised-learning aspect
is intrinsic to the generalizability of the proposed method to a
wide rangeof scientific problems thatmayuse differentwearable
devices or means of data collection for different study purposes.

A. Scalar-on-Function Regression and Changepoint
Detection

It is natural to utilize such inherent variability in the curves to
study the association between PA and our outcome of interest,
epigenetic age. Since OTCs present distinct informative func-
tional shapes on individual’s PA profile, it is desirable to take
OTC as a functional covariate in the association analysis through
a scalar-on-function regression model within a functional data
analysis framework. Identifying PA ranges pertains to detection
of changepoints or cutoffs on OTCX(c). This sets up a different
analytic goal than that of standard PA analyses performed in
literature. For the ease of exposition, we begin with a simple
scalar-on-function linear model with no covariates as described
in (1), inwhich the error terms εi’s are assumed to be independent
and identically normal distributed with mean 0 and variance σ2.
Our analytic goal is to estimate the functional parameter

β(c) with certain jump points, which describes a piece-wise
varying effect of the OTC X(c) on epigenetic age Y . Here, the
changepoints define the windows of PA, similar to the practice
of activity categorization widely considered in the literature for
scientific interpretation. In other words, our proposed approach
focuses on changepoint detection, or grouping like activity count
ranges with similar effects on the outcome to gain better insights
and interpretations for the functional association. Our key idea is

rooted in the utility of fused regularization technique that enables
the identification of jump points of functional parameter β(c).
This analytic task is technically challenging as it involves both
clustering and estimation of functional parameters. To proceed,
we first discretize each OTC into many small segments so the
integral

∫
C β(c)X(c)dc can be approximated by a step-function

over many small pieces. That is, we divide interval C into J-
many small successive intervalswith a grid c0 = 0, c1, . . . , cJ =
30, 000, namely C = [0, c1] ∪J

j=2 (cj−1, cj ], and assume β(c)
takes one parameter within one small interval. Precisely, on
the jth interval (cj−1, cj ], we set constant parameters βj , j =
{1, . . . , J} resulting in β(c) ≈ ∑J

j=1 βjI(X(c) ∈ (cj−1, cj ]).
Consequently, we have

∫
C
β(c)X(c) dc =

J∑
j=1

∫ cj

cj−1

β(c)X(c) dc

≈
J∑

j=1

βj

∫ cj

cj−1

X(c) dc :=
∑

βjAj , (2)

whereAj denotes theAreaUnder the Curve (AUC) over interval
(cj−1, cj ] or Aj =

∫ cj
cj−1

X(c) dc. In preparation of regularized
estimation, we normalize individualA′

js to mean 0 and variance
1.One keymethodological goal is to fuse similarβj’s into bigger
segments to identify appropriate activity windows affecting the
outcome of interest. One challenge arising from the discretiza-
tion strategy is that β′

js in (2) may be high-dimensional, in-
evitably requiring a regularizationmethod (e.g. fused lasso). Un-
fortunately, the resulting Aj variables appear highly correlated,
essentially challenging existing high-dimensional regularization
methods.
There are existing methods applicable to carry out the pa-

rameter fusion on βj , among which fused lasso [17] and Hidden
MarkovModel (HMM) [18] are popular.However, these existent
approaches do not perform well due to the high correlation of
Aj’s. As shown in Supplementary Fig. S2 from a simulation
model, the regularized estimates of βj’s are bifurcate, leading
to a clearly poor parameter fusion on these estimates and an
inaccurate determination of changepoints.
To address the issue of high correlation, we propose a su-

pervised learning analytic: the Functional Regularized Adap-
tive Changepoint-detection Technique (FRACT), which pro-
vides more effective strategies via adaptive, multi-step learning
algorithms. FRACT consists of the following procedures: (i)
Tuning J, the number of intervals, (ii) Initialization of βj’s, (iii)
Changepoint Detection, and (iv) Refinement Learning.

B. FRACT Methodology

Herewepresent the details of FRACT.Themulti-step learning
analytic encompasses two penalization themes; strategies 1 and
2 deal with the first regularized estimation to generate initial
estimates ofβ(c), while strategies 3 and 4 aim to group the initial
β estimates to form activity windows whose edges determine
jump points. Algorithm 1 outlines these procedures, with further
detail in the FRACT Implementation Section IV.
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Strategy 1. Tuning the number of intervals, J:Thefirst strategy
of FRACT is to alleviate the high correlation amongA′

js. This is
achieved through tuning the number of intervals J via a tradeoff
between pair-wise correlation levels and minimal loss of signal
strength. Our experience from simulation experiments suggests
that selecting aJ-partition ofC such that cor(Aj , Aj+1) < 0.98,
cor(Aj , Aj+5) < 0.90, and cor(Aj , Aj+10) < 0.80 is reason-
able. Future applications of this methodology should select the
maximum J such that the correlation parameters remain below
this suggested threshold. Such a selection minimizes the trade-
off between signal strength and multi-collinearity, resulting in a
more stable and reliable data analyses. Note that this tuning
step is mostly responsible for ensuring the quality of initial
estimates β̂j’s; that is, to avoid the bifurcate initial estimates
in Supplementary Fig. S2. However, this tuning step may not
be necessary if an algorithm more suited to high-correlation is
used.
Strategy 2. βj Initialization: This step is to generate initial

regularized estimates of β′
js in (2). To gain numeric stability

we adopt the Minimax Convex Penalty (MCP) that takes the
form: pλ(β) = λ|β| − β2

2a if |β| ≤ aλ, and aλ2

2 otherwise, with
λ ≥ 0, a > 1, and enjoys lower estimation bias [19]. With
this choice in parameter estimation, and with tuning param-
eters λ and a selected via cross-validation, for model Y =∑

βiAi + ZTα+ ε we obtain initial estimates by (β̂, α̂) =
argmin(β,α)

1
2‖Y −Aβ − Zα‖22 + pλ(β), where Y is the out-

come of interest, and A,Z are the relevant variables, covariates
with respective parameters β, α.
Strategy 3. Changepoint Detection: The initial estimates β̂j’s

are then processed under Strategy 3 to perform a clustering
analysis by means of Hidden Markov Modelling (HMM) ini-
tialized by the results obtained by Fused Lasso. HMM contains
a latent process that helps group similar β̂j values, leading to
the detection of jump points. An important element of HMM
is the transition matrix, which determines the probabilities of
transitioning between latent states, and which plays a two-fold
role in the FRACT analytic. First, supplying HMMwith a smart
initial estimated transitionmatrix provides useful “warm starting
points” to improve numeric stability of the EM algorithm used
in HMM. These “warm starting points” are estimated from
initial clustering estimates obtained by fusing the initial β̂j’s
via Fused Lasso. See Algorithm 2. Second, an evaluation of the
final transition matrix from the fitted HMM model facilitates
tuning the ideal number of latent clusters K (or, the number
of activity windows). Both the use of Fused Lasso-estimated
“warm starting points” of the initial transition matrix, and the
evaluation of the fitted HMM transition matrix, improve the
FRACT analytic’s ability to correctly identify changepoints
versus applying a one-step algorithmalone, as discussed in detail
in Section IV.
Strategy 4. Refinement Learning of Cutpoints: The final step

in FRACT pertains to a Refinement Learning procedure to fine-
tune the changepoint detection selections via supervised learning
techniques. This strategy allows us to systematically evaluate if
micro-modifications of changepoints in the fitted model result
in improved goodness of fit, and addresses concerns of potential

over or under-fitting by comparing the current sizeK modelwith
those of size K − 1 and K + 1. See implementation details in
Algorithms 3 and 4 in Section IV.
Notes on Regularization: In this analytic, the worry of over-

fitting pertains to the number of activity windows K; we do
not want to estimate a higherK than necessary. To control this,
we use the regularization methods of Fused Lasso, HMM, and
goodness-of-fit measures to learn, test, and calibrate the value
K. Fused Lasso provides initial feature fusion as a smoothing
technique. These results provide some initial demonstration
of group structures as the so-called “warm starting points”of
HMM’s initial transitionmatrix, thereby reducing the sensitivity
to individual data points and outliers. Within the HMM frame-
work, regularization focuses on controlling the complexity of
the model via limiting the number of hidden states to range of
K (between 2−4 here), and further data evidence is generated to
test and calibrate the group structure. Lastly, the goodness-of-fit
measure of EBIC (Extended Bayesian Information Criterion) is
used as a regularization method to make a choice of parsimo-
nious models. EBIC is an extension of BIC that incorporates an
additional penalty term, the complexity parameter, which further
controls the trade-off between model fit and complexity. Thus,
using EBIC for final-model selection helps to prevent overfitting
and find a parsimonious model that balances goodness of fit and
complexity.

IV. FRACT IMPLEMENTATION

A. Initial Clustering

All the line numbers in this section refer to Algorithm 1
unless specified otherwise. The FRACT methodology begins
with clustering the initial estimates β̂1, . . . , β̂J obtained from
the MCP regularized linear regression, where J is tuned in ad-
vance, if necessary, to satisfy the correlation constraints among
A′

js. This clustering analysis involves a step of fused lasso to
generate “warm starting points” for initial changepoints (Lines
18–19), followed by a HMM fit to settle cutpoints and group
membership (Lines 21–25). The “warm starting points” seem
useful to improve the numeric stability of the EM algorithm
used in the subsequent HMM, as well as provide the initial
transition matrix in the HMM fit. With a given K (the number
of categories in the latent process), a transition probability is
estimated by the relative length of a fused range of initial β̂j’s
(Line 19). Algorithm 2 gives an example calculation of initial
transition probability matrix. In Lines 21–25, clusters, cluster
membership, and cutpoints are determined by means of the
HMM analysis in that one latent state corresponds to one cluster
of the initial estimates β̂j .

B. Tuning K

For each scenario of K clusters (e.g. the number of latent
states in HMM), the HMM is executed m times (say, 10) to
ensure numeric stability; among m fitted HMMs, the one with
the smallest EBIC is selected. With the selected best HMM, the
corresponding transition probabilities are then used to assess
viability of clusters. Here, a clustering result is deemed “viable”
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Algorithm 1: FRACT for Changepoint and Activity Win-
dow Detection.
Input: Time series accelerometer data of Vector Magnitude
counts VM(t) with continuous range of activity counts C
Output: Estimated activity window cutpoints, and
estimated association parameters
1: procedure CALCULATE OTCS AND AUCS
2: Set C = (0, cmax), where cmax = the maximum VM

count observed
3: With VM(t), calculate OTC X(c), c ∈ C
4: Given partition c0 = 0, c1, . . . , cJ , calculate the

AUCs Aj =
∫ cj
cj−1

X(c) dc, j ∈ 1, . . . , J

5: Normalize individual Aj’s to have mean 0 and
variance 1, respectively

6: end procedure
7: procedure STRATEGY 1: TUNE J
8: Alleviate the high correlation among the AUCs Aj ,

j ∈ 1, . . . , J
9: Combine successive normalized integrals to reduce

pairwise correlations so that the resulting partition
satisfies: cor(Aj , Aj+1) < 0.98,
cor(Aj , Aj+5) < 0.90, and cor(Aj , Aj+10) < 0.80

10: Note: If an using algorithm suited to correlated A′
js,

Strategy 1 may be skipped
11: end procedure
12: procedure STRATEGY 2: INITIALIZE ESTIMATES OF β′

js
13: Conduct high-dimensional linear regression with

Minimax Convex Penalty (MCP)
14: Run linear Model: Y ∼ A1 + · · ·+AJ + Z, where

Z is a vector of scalar covariates
15: end procedure
16: procedure STRATEGY 3: DETECT CHANGEPOINTS
17: Set: K = number of groups, withK ≥ 2

18: Run K-size fused lasso for the initial β̂′
js obtained

by MCP in Strategy 2 (lines 13-14)
19: Calculate an initial transition matrix from the group

labels determined by fused lasso � See
Algorithm 2

20: repeat
21: Fit K-state HMM with initial transition matrix
22: Calculate Extended BIC (EBIC)
23: Assess updated transition matrix to determine the

convergence of the HMM
24: until Repeat HMM fit (lines 21–23) m (say, 10)

times for numeric stability
25: return Best model among the m fitted models

selected based on EBIC and updated transition
matrix at convergence of HMM

26: Fit piecewise linear model for association parameter
estimation and inference under the HMM defined
cutpoints from line 25, as well as vector of
covariates Z,

27: Continue to Strategy 4 to select final K
28: end procedure
29: procedure STRATEGY 4: PERFORM REFINEMENT

LEARNING
30: Edge-swapping � See Algorithm 3
31: Merging � See Algorithm 3
32: Breaking � See Algorithm 4
33: end procedure

Algorithm 2: Example Calculation of Initial Transition
Probabilities withK = 3.
Input: K = 3 groups with cluster membership and
cutpoints derived from fused lasso (Line 18 of Algorithm
1), and group cardinality J1, J2, J3 such that
J1 + J2 + J3 = J . The groups (1, 2, 3) are determined by
the ordering of Aj

Output: 3× 3 initial Transition Probability Matrix
Note: Transitions between groups is allowed only between
neighboring groups in a forward direction. This results in
aK-band transition matrix.
1: procedure CALCULATE INITIAL PROBABILITY

MATRIX(3× 3 matrix)
2: for k = (1, 2) do
3: Prob. of remaining in Group k = pkk = Jk−1

Jk

4: Prob. of transitioning from Group k to Group
k + 1 = pk,k+1 = 1

Jk

5: Note: pkk + pk,k+1 = 1
6: end for
7: Prob. of transitioning from Group 3 = p33 = 1
8: 3× 3 initial probability matrix:⎡

⎢⎣
p11 p12 0

0 p22 p23

0 0 1

⎤
⎥⎦

9: end procedure

if the last state in the latent process gets stabilizedwith no chance
of jumping between states, as judged by the diagonals of the
estimated transition matrix at convergence. If the probability
of remaining in the final k = K state, defined as the diagonal
element pKK in the estimated transition matrix, is 1 then the
HMM is said to have “settled” in its final latent state. This im-
plies stable clustering results with reliable cutpoints and cluster
membership.
In Line 26 of Algorithm 1, with clustering results from the

K-state HMM, we fit a linear model with a piece-wise mean
function based on the estimated cutoffs c1, · · · cK :

Y = β1Ã1 + β2Ã2 + · · ·+ βKÃK + ZTα+ ε (3)

where Ã′
js denote the AUCs over the updated partition intervals

via merging smaller intervals into a few big intervals or win-
dows. Using EBIC again, we can determine the K by directly
comparing the different size models, such as 2-state, 3-state,
and 4-state models. The choice of potential Ks is motivated
by prior scientific knowledge; in this case, PA is classified into
2−4 intensity levels in literature. Considering larger potential
K classifications risks presenting results with statistical, but not
clinical or scientific, significance.

C. Refinement Learning of Cutpoints

To further improve the analysis we propose a Refinement
Learning procedure that refines the cutoff selection via super-
vised learning techniques, summarized in Algorithms 3 and 4.
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Algorithm 3: Implementation: Edge-Swapping and Merg-
ing.
Input: K ≥ 2 number of intervals, with cutpoints
(ck−1, ck), and estimates β̂′

ks, k = 1, . . . ,K
1: Calculate

kmin = argmink|β̂k+1 − β̂k|, k ∈ {1, 2, . . . ,K − 1}
and identify the left and right intervals � Determine
minimum gap in adjacent β′

ks
2: procedure EDGE-SWAPPING

3: for c∗ ∈ (ckmin−1 + 1, ckmin
) do � Swap

edge-points between the two windows
4: Identify the left L(c∗) = (ckmin

, c∗) and the right
window R(c∗) = (c∗, ckmin+1)

5: Fit a piecewise linear model (3) with the resulting
partition from c∗

6: return EBIC
7: end for
8: return Best K-group model with the smallest EBIC

among all models, including the original K-group
model and all K-group models with edge-swapping
by c∗

9: end procedure
10: procedure MERGING

11: Set merged window = (ckmin−1, ckmin+1)
12: Fit a piecewise linear model with new partition
13: return EBIC of (K − 1)-group model
14: end procedure

We suppose that cutoffs c1, . . . , cK and estimates β̂1, . . . , β̂K

are available from previous steps.
Edge-Swapping and Merging Technique: Algorithm 3 aims

to refine the cutoffs c1, . . . , cK and minimize over-fitting. For
fixed K, the edge-swapping technique begins with identifying
the narrowest gap in adjacent estimates β̂k and associated in-
tervals: kmin = argmink|β̂k+1 − β̂k|, k ∈ {1, 2, . . . ,K − 1}.
These two identified intervals kmin and kmin + 1 are consid-
ered for edge-swapping; we systematically swap their window
edge-points until the intervals become completely merged. Each
swap gives rise to a different K-group partition with different
group cardinality as well as different Ãj , j = kmin, kmin + 1.
As a result of this edge-swapping, we create many K-group
partitions as well as oneK − 1 partition under the two intervals
being fullymerged. TheEBIC fromeach linear regressionmodel
(3) is compared to make model selection and thus further select
a desirable partition.
Breaking by Exploration and Confirmation Steps: To ad-

dress potential under-fitting, or a current K being smaller than
desirable, we implement a “Breaking” strategy described in
Algorithm 4. This strategy attempts to create one more interval,
forming a new piecewise mean function in (3) in which one
of the original windows (or intervals) is split into two smaller
windows. This splitting consists of two steps: Exploration and
Confirmation. In theExploration step, we randomly choose a lo-
cality at which the target window is split into two sub-windows,

increasing the number of groups fromK toK + 1. This splitting
is repeated s times (say, 10) at different random localities. Of
the total number of s breaks, the number of break locations
in interval k, sk, is determined by the proportional cardinality,
Jk, of that window versus the total cardinality, J , of all the
windows. Given an sk for a specific interval k, the exact break
locations are determined randomly under a uniform distribution
over that interval. We use EBIC to determine if any of the
resulting (K + 1)-group models has a better fit than the original
K-groupmodel. If so,wemoved to the subsequentConfirmation
step.
In the Confirmation step, we consider d (say, 10) surrounding

points as alternative break-points. Based on these d new cup-
toints, we refit the (K + 1)-group model and calculate EBIC.
If over 50% of these (K + 1)-group models (3) have better fit
than the originalK-group model, we accept the new partition of
(K + 1)-groups and choose the best (K + 1)-groupmodel with
the smallest EBIC. This Confirmation step is run with multiple
flanking points to ensure the augmented (K + 1)-group model
is superior over the smallerK-group model, i.e. the lower EBIC
value is not simply a result of chance.
Up to now, a fixed K is preset. The final choice of K is

determined in the final step. We run the above algorithms 1− 4
overK = 2, 3, 4, andmore if needed, and use EBIC to select the
final model with the best goodness of fit among the candidates.
At its end, the FRACTanalytic delivers both estimates of activity
window cutpoints and their associated parameter estimates,
as well as the estimates of covariate effects for the included
covariates of interest.

V. SIMULATION EXPERIMENTS

We assessed the performance of the proposed FRACT an-
alytic through extensive simulation experiments under various
effect sizes, window lengths, and number of windows (or cut-
points). We focus on the performance of FRACT in determining
the number of activity windows K, estimating the cut-points
(c1, . . . , cK) and effect sizes (β1, . . . , βK).

A. Simulation Setup

To simulate the functional OTC, we first simulated 6-hour
time-series of VM counts by linking many consecutive 10-
minute intervals of accelerometer data from the 549 ELEMENT
children, whose individual 6-hour time-series of VM counts
are divided into non-overlapping 10-minute segments. Each
10-minute interval is randomly drawn from a pool of 549 10-
minute candidate segments. To ensure that the variability in the
simulated OTC curves reflected the variability in the motivating
dataset (Fig. 2), we first classified the subjects into three groups
with low, medium, and high levels of PA respectively, as defined
by tertiles of “Moderate-to-Vigorous” VM counts using the
pre-set Chandler cutoffs. We then simulated the time-series data
within each tertile. With the simulated VM counts, OTC curves
were calculated as described in Section II-C.
Given true cutoffs c∗0 = 0, c∗1, . . . , c

∗
K∗−1, cK∗ = 30, 000, the

successive integrals over C were specified, and the K∗-element
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Algorithm 4: Implementation: Breaking via Exploration
and Confirmation.
Input: LetK = number of activity windows, with window
length Jk = |ck−1 − ck|, end cutpoint ck, and current
estimates β̂′

ks,K ≥ 2, k ∈ {1, . . . ,K},
J1 + · · ·+ JK = J
Define: EBIC(K) = EBIC of K-group model
1: procedure EXPLORATION STEP
2: Set: s = total number of break locations
3: for k ∈ (1, . . . ,K) do
4: Calculate sk = Jk/J × s = proportional number

of potential breakpoints s allocated to Window k,
(ck−1, ck)

5: Bk = {b1, . . . , bsk} = Randomly selected sk
break points from interval (ck−1, ck)

6: With each element b ∈ Bk, fit a piecewise linear
model (3) with new partitions

7: return EBIC(K + 1, b) = EBIC of
(K + 1)-group model at break b, b = b1, . . . , bsk

8: end for
9: if argminb∈BEBIC(K + 1, b) < EBIC(K), with

B = {B1, . . . ,BK} and b ∈ B then
10: Proceed to Confirmation step at a partition with

bmin = argminb∈BEBIC(K + 1, b)
11: else
12: No breaking, and remain atK-group model
13: end if
14: end procedure
15: procedure CONFIRMATION STEP
16: For the bmin partition select d (say, 10) breakpoints

around bmin denoted by B(bmin)
17: for b ∈ B(bmin) do
18: Create a new partition with b, and fit K + 1 model
19: return EBIC(K + 1, b) = EBIC of K + 1

model with breakpoint b
20: end for
21: if∑

b∈B(bmin)
I[EBIC(K + 1, b) < EBIC(K)]/d ≥

50% then
22: Keep the (K + 1) model with the partition at bmin

23: else
24: Reject breaking
25: end if
26: end procedure

vector of AUCs, (A∗
1, . . . , A

∗
K∗)T , for each subject was cal-

culated. Outcome Y was simulated from a linear model Y =∑K∗
k=1 β

∗
kA

∗
k + Zα∗ + ε, with true effect sizes β∗

1, . . . , β
∗
K and

α∗, where single continuous covariate Z ∼ N(0, 1) and ε ∼
N(0, 10). The true model we specified as a 3-group model
(K∗ = 3) with (c∗1, c

∗
2, c

∗
3) = (4000, 8000, 30000) and effect

sizes: (β∗
1, β

∗
2, β

∗
3) ∈ {(4, 0,−4), (2, 0,−2), (4, 0,−2)}. These

simulations were conducted for three different sample sizes
N ∈ {100, 250, 500}, with results from 500 rounds of simu-
lations summarized in Table I.

TABLE I
SIMULATION RESULTS OF 3-GROUP MODEL TO EVALUATE FRACT

Results summarized over 500 replicates including average (Mean) and median 

(Med.) estimate, empirical standard error (ESE), and percent of correctly 

selected 3-group models (Sensitivity). Cutoff c3 is not estimated but included for 

completeness. Cutpoint values are shown as VM/100 for ease of visualization.

B. Simulation Performance

The proposed FRACT analytic and algorithms have shown
both high sensitivity in selecting the correct number of windows
(K∗ = 3) and small bias in the estimation of cutpoint and effect
size. For example, in considering Scenario 1withmodel parame-
ters (β∗

1, β
∗
2, β

∗
3) = (4, 0,−4), FRACT selected a 3-group model

96% (N= 500), 91% (N= 250), and 88% (N= 100) of the time
over 500 simulations. Additionally, the bias of all the effect size
estimates β̂′

ks and cutpoints ĉ
′
kswere low, with respective mean

estimates of 3.99, 0.02, and−4.0 and cutpoints 49.92, 79.87, and
300 for the N = 250 scenario (and similar strong results for N
= 500 and N= 100). Estimates β̂2, however, do have increased
variability around the truth in comparison to estimates β̂1 and
β̂3. In Table I, the Empirical Standard Error (ESE) is reported
to reflect the precision and stability of the estimation. Average
Standard Error (ASE) is not reported since estimates β̂k are
dependent on Ãk, which are related to estimates ĉk’s. Because
of this, Ãk’s are moving across the 500 simulations and thus so
are β̂k’s.

In each of the simulation scenarios, tuning J was evaluated
as part of the strategy to address the high-correlation among
AUC Aj

′s. With initial J = 300, there were high mean pair-
wise correlations: cor(Aj , Aj+1) = 0.998, cor(Aj , Aj+5) =
0.985, cor(Aj , Aj+10) = 0.967. This severe multi-collinearity
impaired standard linear regression analysis, producing bi-
furcate initial estimates β̂j , j = 1, . . . , J as shown in Sup-
plementary Fig. S2. By merging every five successive
Aj

′s, the augmented Ǎj variables gave reduced mean pair-
wise correlations cor(Ǎj , Ǎj+1) < 0.98, cor(Ǎj , Ǎj+5) <
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TABLE II
SENSITIVITY SIMULATION RESULTS FOR 3-GROUP MODEL

Results summarized over 500 replicates and signify the importance of 

FRACT’s multiple steps. The percentages represent the added sensitivity 

based on the corresponding Refinement Learning process. E.g., the row  

“3 Gps: Swapping” represents the percent of 3-group models selected 

after undergoing systematic swapping of the cutpoints, as described in 

Algorithm 3 in Sect. III.

0.90, cor(Ǎj , Ǎj+10) < 0.80. The resultant initial estimates β̂j

unveil cleaner patterns than those from non-augmented J . Refer
to Supplementary Fig. S2, which suggests that the penalized
regression improves separating the β(c) function into pieces.
The utilization of the MCP penalty seems to help the lowering
of estimation bias in the case of multicollinearity.
The Refinement Learning steps, i.e. Edge-Swapping, Merg-

ing, and Breaking, were evaluated in the simulation as the
sample size N decreases (Table II). In the simulation scenario of
(β∗

1, β
∗
2, β

∗
3) = (4, 0,−2) with N= 500, FRACT selected a final

3-groupmodel in 94%of the 500 replicates. This high sensitivity
was achieved by the successive improvements given by the
sequential multi-step process: first, 58.6% sensitivity in the
original 3-group model, then adding 27.4% by Edge-Swapping,
0.6% byMerging, and 7.8% by Breaking. When the sample size
decreased to N = 250, the sensitivity of the original 3-group
model dropped dramatically to 29.4%, but remarkably, Edge-
Swapping added 31.6% sensitivity, Merging contributed 1.6%
sensitivity, and Breaking strikingly boosted sensitivity 28.0%,
reaching the final 91% sensitivity. The Refinement Learning
steps increase the sensitivity of correctly selecting the activity
windows and determining the c∗1, . . . , c

∗
K cutpoints.

VI. DATA ANALYSIS

We now apply the proposed FRACT methodology to investi-
gate the functional association between PA and epigenetic age.
As discussed in Section II, this analysis incorporated a vector
of covariates (Z) with centered chronological age, sex, pubertal
status (based on Tanner staging) and lead exposure (measured
in micrograms of lead per deciliter of blood, or μg/dL) for
each subject. We had complete accelerometry and covariate
data for 354 ELEMENT subjects (172 male, 182 female), with
mean(SD) age of 13.7(1.9) years andmean(SD) lead exposure of
3.17(3.33) μg/dL.The majority, 332, of the subjects completed

puberty based on Tanner staging standards. Fig. 2 shows OTCs
for the 354 subjects, representing PA profiles during weekends
between 4:00 PM–10:00 PM, selected with the rationale that
this period reflects a block of time they have more control over
their activities. Among multiple epigenetic age clocks [13] we
are interested in two specific ones: Horvath’s AgeSkinBlood
Clock [15], and Levine’s PhenoAge Clock [16]. For each of
these outcomes, we fit a scalar-on-function regression model
with scalar covariates.
The FRACT analytic began the analysis by setting J = 300,

each interval covering 100 VM counts. We detected two activity
windows of interest for each of the epigenetic age outcomes,
albeit with different cutpoints and effect sizes. Association
parameters, standard errors, and p-values are estimated from
the final linear model. Of note, the p-values are conditioned on
the cutoffs found by the FRACT analytic. Table III summarizes
the data analysis results. In considering Levine’s PhenoAge
epigenetic clock,we detected activitywindowVM> 8000 count
to have a significantly negative association with epigenetic age;
the higher the AUC in the VM > 8000 range, the lower the
PhenoAge. As higher AUC at the end of an OTC represents
more activity within that range, this finding may be interpreted
as: more activity in VM > 8000 range is related to younger
epigenetic age, i.e. more time in higher PA levels is related to
slower biological aging.
In considering Horvarth’s AgeSkinBlood clock, our method

identified other important activity windows. Specifically, Ta-
ble III suggests that FRACT determined a window of activity
VM ≤ 1500 counts to be positively associated with this epige-
netic age.
As larger AUCs at the beginning of the OTC reflect more time

spent above that activity level, this positive association implies
that: less time spent in VM range ≤ 1500 counts is associated
with a higher epigenetic age. Correspondingly, more time in
the low-activity time window is related to lower epigenetic age,
or slower biological aging. As the epigenetic age clocks are
calculated from different sets of methylation variables, reflect-
ing different aspects of biological aging, these differences are
biologically meaningful and not surprising.
Encouragingly, as shown in Table III(a)–(c), there are agree-

ments between our detected cutoffs and the previously published
Crouter [6] andChandler [7] cutoffs. The changepoint for “Mod-
erate” activity using Chandler or Crouter cutoffs are 9805 and
7320 respectively; notably, our PhenoAge detected changepoint
of 8000 is within this range. The SkinBloodAge activity range
of VM counts ≤ 1500 is similar to Crouter’s cutpoint for
Sedentary behavior (VM≤ 1200). While the FRACT-identified
cutpoints enjoyed some agreement with the Chandler/Crouter
pre-determined cutpoints, the proposed FRACT methodology
did result in stronger statistical results. As seen in Table III(b)–
(c), the Chandler cutpoints detected no significant associations
withLevine’s PhenoAge, norCrouterwithHorvath’sAgeBlood-
Skin, at a significance level of p = .05. In the instanceswhere the
pre-determined cutpoints do detect significant associations, the
FRACT-determined activitywindows demonstratemore statisti-
cally significant associations than their Crouter/Chandler coun-
terparts. For example, while Crouter’s “Moderate-to-Vigorous”
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TABLE III
DATA ANALYSIS RESULTS

(a) FRACT results in the scalar-on-function regression model. (b-c) Results if 

use published adolescent cutoffs from Chandler and Crouter. Standard 

analyses with these cutoffs consider 3 activity windows for “Sedentary” 

Physical Activity (PA), “Light” PA, and Moderate-to-Vigorous PA “MVPA”.

activity window, with VM count interval (7400, 30000) was
negatively associated with PhenoAge (p = .04), the FRACT-
determined window covering VM counts (8100−30000) was
more strongly negatively associated with PhenoAge (p = .02).
To assess the stability of this supervised learning, we con-

ducted 5-fold cross-validation. To achieve this, we split the
ELEMENT data into five equally sized subsets. We trained the
cutpoints with four subsets and then fit the associated step-wise
model with the remaining testing subset. Both epigenetic age
clocks demonstrated stable results, with the results for the Age-
BloodSkin clock discussed here. In this case, all training models
detected a 2-group model, with the end cutpoint of Window 1 at
(25, 15, 15, 15, 15) demonstrating strong stability in changepoint

detection. In the associated parameter estimations of Window 1
and Window 2 in the testing datasets, the mean (sd) parameter
estimates are 5.19(1.45) and −1.13(2.40) respectively. This as-
sessment demonstrates that the significant association between
Window 1 and the AgeBloodSkin clock shown in Table III is
stable.

VII. DISCUSSION AND CONCLUSION

In this article we developed FRACT, the Functional Reg-
ularized Adaptive Changepoint-detection Technique, to trans-
form functional accelerometer data collected from wearable
devices into knowledge on PA’s effect on human biological
aging. This learning analytic detects changepoints to define
critical windows of activity, while accounting for covariates
of interest. Such an informatics toolbox can be applied to
analyze the relationship of functional digital features with
outcomes.
It is worth highlighting a key technical advance of FRACT’s

supervised learning: unlike methods discretizing functional
features via existing cutoffs regardless of specific outcomes,
FRACT offers a simultaneous operation of supervised change-
point detection and functional association parameter estimation.
Thus, it is adaptive to data collections and populations under
investigation. In the investigation for the influence of PA on
biological aging, when applied to different study populations
(e.g. adolescent or adult) or to different wearable devices (e.g.
Actigraph or Fitbits), FRACT provides data-driven solutions
tailored to characteristics of the study. This avoids potential bias
in data processing and data analyses by applying some pre-set
cutoffs (e.g. Chandler’s values for children) to different popula-
tions. Additionally, this flexibility demonstrates the value of the
FRACT analytic in the analysis of future wearable devices. In
the ever-evolvingworld ofwearable devices, there are constantly
new devices/sensors available. The applications of the proposed
FRACT methodology are not restricted to accelerometer sen-
sors; rather it can easily be applied to other devices including
biomedical/smart health devices and be used as a decision pro-
cess in biomedical engineering devices. In such a role, it can
help translate data collected from existent/future sensors into
decision-making knowledge.As such physiological sensorsmay
greatly impact the future of health-monitoring and intervention,
the translational role FRACT plays in turning high-frequency
time-series data into decision-making knowledge is invaluable
to practitioners.
FRACT has demonstrated flexibility and reliability in identi-

fying changepoints/critical windows, and estimating functional
association parameters. This greatly benefits our analysis of
detecting critical changepoints of PA related to epigenetic age.
When Levine’s PhenoAge clock was used as the age outcome,
we found that an increase in mid-range PA is associated with
younger epigenetic age. This epigenetic clock was specifically
created to reflect age and disease-related phenotypes, such as
inflammation and physical functioning [16], and the direction
of association of increased PA and lower epigenetic age makes
intuitive sense. On the other hand, when the AgeSkinBlood
clock was considered, which focuses on epigenetic variables in
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skin/blood cells including fibroblasts that dealwith the structural
components of skin cells, we detected the benefit of sedentary
PA.This could reflectmore time spent indoors versus outdoors in
the sun, which in a warm geographical area such asMexico City
could have a beneficial effect on skin aging. It is interesting to
reach an agreement between the FRACT-identified cutoffs and
the Chandler/Crouter adolescents cutoffs. As Chandler, Crouter
and FRACT investigated populations with similar underlying
characteristics, the agreement among identified cutpoints signify
FRACT’s reliability.
FRACT requires careful tuning steps in order to achieve

optimal performance. Assessing the level of multi-collinearity
when calculating initial parameter estimates is critical to over-
all performance. Our experience with simulation experiments
demonstrated that ignoring the high correlation among AUCs
in initialization steps has a detrimental effect on overall perfor-
mance. However, when J is tuned such that the correlations are
below the threshold provided inSection III, the issueswithmulti-
collinearity are mitigated. These simulations also highlighted
the importance of the Refinement Learning steps, particularly
Edge-Swapping, especially with decreasing sample size. While
theRefinement Learning strategies ofEdge-Swapping,Merging,
andBreaking can be conducted in any order, we recommend first
focusing on Edge-Swapping, leading to the most favorable in-
crease in FRACT’s sensitivity. Froma computational standpoint,
FRACT is fast. The most time-consuming step is conducting
the initial changepoint estimation via HMM due to the need of
repeated fitting to aid numeric stability. We found 10 repetitions
of HMM fitting to be sufficient, though if multi-collinearity is
less of an issue in a specific analysis the number of repetitions
may be reduced. In the data analysis, computation time for
determining the final model using 1 CPU was less than 15
seconds, with a sample size of N = 354 and potential model
sizes of K = (2, 3, 4).

While wearable accelerometer devices provide many ad-
vantages to measuring objective PA, particularly versus self-
reported data, there are some inherent limitations. First, though
single-sensor accelerometer devices are informative on PA in-
tensities, they are less equipped to differentiate between spe-
cific activity types than multi-sensor devices. Such multi-sensor
devices can provide valuable additional measurements such as
skin temperature, heart rate, and blood volume pulse. If using
a device with these additional variables, FRACT could either
utilize a new functional covariate or include as covariates of
interest. However, these devices, while useful, are more expen-
sive and can be barriers in scientific study and personal use.
Similarly, as the proposed methodology considers a summary
of activity over a pre-defined time window, it does not consider
the transition from aerobic to anaerobic activity stage. However,
if one can leverage data from themulti-sensor devices to classify
the activity data into these stages, relative time in each activity
stage could be considered as covariate in analysis. Additionally,
while wrist-worn devices are often used in studies of PA due to
high-compliance and feasibility, they have some disadvantages
versus devices worn on other body location, such as ankle or
hip. For example, wrist-worn devices can capture arm move-
ment during sedentary activities as PA, whereas it could fail

to identify activity such as biking as PA due to the stationary
placement of wrists during this activity [3], [20]. Lastly, some
studies that aim to classify PA will validate their method with
in-lab studies, aligning wearable device readings with observed
physical activity intensities [21], [22]. Future research in this
FRACT methodology could aim to further validate the analytic
by such a clinical setting.
A limitation in our current application of FRACT is that it

focused on PA over a single time frame. Some research has
shown that the timing of activity, not just the magnitude, can im-
pact certain health outcomes [23]. Future work may extend this
analysis by considering time-specific OTCs and adaptively de-
tecting corresponding activity ranges associated with the health
outcome of interest. Additionally, time of year may impact the
effect of functional PA levels on health outcomes. For example,
in geographic areas with significant seasonal weather differ-
ences, it may be important to account for these changes [24].
While this study considered subjects living in a limited weather
variability area, for studies with variable weather patterns a
researcher can include a covariate or interaction term between
PA and season to address the different functional relationships
to account for seasonal impact. Another extension could in-
volve a functional longitudinal framework to understand the
influence of repeatedly measured functional accelerometer data
on longitudinal health outcomes. Our methodology considers
PA data in a seven-day period; with repeated measurements we
can study how changing PA patterns from late-adolescence into
early adulthood affects longitudinal health outcomes.While this
article focused on linear relationship, FRACT could be extended
to non-normal and non-linearmodels, such as logistic regression
with binary outcomes, and Cox regressions with time-to-event
outcomes.
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