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A B S T R A C T
Sample-destructive methods for the determination of plant water status have been the pri-
mary reference for various agronomic practices over the years. Several recent technological
advancements in automation, robotics, and artificial intelligence (AI) have helped make progress
toward more resource-efficient water management. However, several methods, especially those
conducted in situ, still require considerable labor and can be further improved via the integration
of automation. To this end, this review article has a twofold aim. 1) To point out relevant aspects
and technological considerations of sample-destructive methods for determination of plant water
status in comparison to proximal and remote monitoring technologies, while also illustrating
interrelations among the different measurement practices. 2) To evaluate the potential of current
methods to be automated and endowed with AI capabilities that can further enhance the methods’
outcomes such as accuracy, precision, and consistency. To address the first objective, 97 articles
were downselected and included in a meta-analysis performed in this review article from an
initial literature survey comprising 550 articles related to the determination of plant water status
over a ten-year time frame. The methods developed and reported within the selected articles
were classified based on several key features such as type of measurements, required equipment,
sampling time, location of measurements, need for calibration, and affordability. To achieve the
second aim, an automation score based on several key metrics was proposed and then used to
rank the different methods in terms of potential for automation. This work can spark further
discussions within the agricultural engineering community at a time when automation and AI
efforts in agriculture create new challenges and opportunities for improving the determination
of plant water status in support of more resource-efficient agricultural water management.

1. Introduction1

Accurate water management for specialty crops in semi-arid agricultural production areas is critical to achieve2

profitable yields of market-demanded quality, while also enabling growers to attain highly-productive use of land,3

water, energy (Rossello et al., 2019) and labor. Field assessment of plant water status has been employed over the last4

century to inform efficient and timely irrigation scheduling decisions. To determine plant water status, several recent5

endeavors from academia and the agricultural industry have focused on the development of sensors and algorithms6

capable of assessing and, at times, predicting plant water status in crops without physical contact or sample handling.7

Despite the large number of methods being developed and tested, conventional sample-destructive methods are still8
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commonly used worldwide to determine plant water status. Further, the need for field validation after calibration against9

conventional methods such as the pressure chamber (Boyer, 1967) still emphasizes the importance of these manually-10

operated, in-situ techniques as a “ground truth" reference.11

The various methods and tools for assessing plant water status in agriculture can be distinguished and classified12

based on the level of interaction between the measurement device and the plant, and the “destructiveness" (if any) of13

plant samples (leaf, stem, etc.) after performing the measurements (Fig. 1). The various methods and tools can thus be14

classified as:15

• Physical Methods: Direct contact with the plant is needed to either detach a sample or utilize the probe for16

measurement. Physical methods can be subdivided into sample destructive and semi-destructive. The former17

considers cases like the complete detachment of samples (e.g., leaves and shoots) from a plant, whereas the18

latter involves localized damage (e.g., insertion of an instrument into the trunk of a tree).19

• Proximal Methods: The measurement device can be placed in the vicinity of the plant to obtain the desired20

measurement, but no direct contact is required. Proximal methods may be categorized as non-destructive.21

• Remote Methods: Data are streamed from sensors either deployed in the field (but not coming in direct physical22

contact with the plant) or mounted onto remote/proximal platforms, such as unmanned aerial vehicles (UAVs).23

• Learning Tools: Artificial Intelligence (AI) models trained on data from the aforementioned methods can enable24

the prediction of plant water stress levels given a set of bio-physical characteristics, such as relative water content.25

methods.26

Sample-destructive methods are generally labor-intensive. They require in-situ trained and skilled personnel who27

may need to work for several hours in the field under various weather conditions and while often carrying equipment28

that may be borderline portable. In addition, in several cases, multiple daily measurements must be gathered to obtain29

accurate data from sufficiently large samples. Some methods are also susceptible to how meticulously an operator30

performs measurements; if not done properly, this can lead to considerable errors and deviations from actual plant water31

status values. Given their widespread use and their role in grounding and calibrating other methods, it is important to32

identify ways to improve some of these limitations of sample-destructive methods. To this end, automation and AI can33

be a potential solution.34

Semi- or fully autonomous methods can promote a tight integration among different techniques and improve35

measurement consistency, accuracy, and precision. In turn, these may improve the utilization of resources such as water,36

energy, and labor, as well as result in higher-quality specialty crop production. Prior literature review efforts from other37

groups have focused mostly on discussing state-of-the-art sensors and methods, as well as remote-sensing and novel38
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Figure 1: Distinct methods for assessing plant water status. (a) Physical methods (sample-destructive) such as the pressure
chamber (or Scholander chamber) method. (b) Physical methods such as the Microtensiometer and Heat-pulse velocity
methods. (c) Proximal sensing methods including ground infrared thermal imaging. (d) Remote sensing utilizing platforms
such as UAVs equipped with thermal or RGB cameras. (e) Learning tools can utilize destructive, semi- or non-destructive
methods and determine or predict plant water status.

technological solutions for plant water status determination and assessment (e.g., Sibanda et al. (2021); Ishimwe et al.39

(2014); Dean et al. (2014); Maes and Steppe (2012)). Although conventional techniques are discussed to some extent40

in those prior surveys, no in-depth analysis has evaluated the potential for automation and AI applications regarding41

sensor placement, measurement, maintenance, and inspection for either destructive or semi-destructive methods.42

The present review article aims to inform agricultural engineering researchers, growers, crop and irrigation43

consultants, and practitioners, as well as agronomists and horticulturalists on 1) the characterization of conventional and44

novel methods for determining plant water status, and 2) how possible future developments on integrating automation45
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and AI could elevate conventional methods to yield more consistent, accurate and precise measurements. From an initial46

pool of 550 articles, 97 articles were selected and reviewed in detail to explore conventional methods to determine plant47

water status, which can be automated and allow integration with AI. These methods were classified according to various48

technical aspects and considerations, as well as requirements to make proper measurements, and resulting metrics. The49

need for validation after calibration was given specific consideration and served as the means to indicate inter-relations50

among certain methods; an additional benefit of such considerations is that they can also enable an appraisal of how51

automated systems can benefit newly developed technologies.52

In addition, this review paper presents findings from a meta-analysis of the selected articles and proposes an53

automation score exploring the aforementioned aspects and technical considerations of each method, as well as their54

inter-dependence due to calibration needs. Based on the attributed automation score, a follow-on discussion emphasizes55

the likelihood of partially or fully automating these methods on a physio-mechanical level utilizing various hardware56

components, and suggests different configurations per tasks that are derived from applicable methods as potential57

solutions for the automation goal. The potential of integrating AI and machine learning techniques into the proposed58

automation scheme on a case-by-case basis was also presented. Finally, the article presents a discussion of recent59

findings from one case study where some of the processes related to the pressure chamber method for determining60

stem water potential were automated.61

2. Background and Motivation: Methods to Determine Plant Water Status62

Plant water status, measured on a leaf, can be referred to as water content and water energy (or potential) in the63

leaf tissues. An overview and discussion on the general concepts of leaf water content and stem water potential is64

presented, highlighting that in many identified articles from the reviewed literature discussed next, the terms leaf65

water potential and stem water potential are used interchangeably. While inter-related (see for example Suter et al.66

(2019)), leaf water potential (measured at predawn) may overestimate soil water availability when there are underlying67

heterogeneous conditions in soil humidity (Améglio et al., 1999). Stem water potential, in contrast, is assessed around68

midday when the environmental conditions are typically more stable, which makes the measurement procedure more69

easily implementable (Intrigliolo and Castel, 2010).70

2.1. Leaf Water Content71

To determine the absolute leaf water content (LWC) one can take a leaf and immediately measure its weight, and72

subsequently subtract the weight obtained when the same leaf is dried out, thus using a gravimetric method. Some73

methods estimate water content based on a validated relation between the content and reflectivity of light, such as74

transducers (Kong et al., 2017), image analysis, and hyperspectral data (Corbin, 2015). The high accuracy of the75
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gravimetric method makes it a calibration reference for other methods. Furthermore, novel methods have recently been76

developed as non-destructive alternatives for determining leaf water content, such as standing wave radio (SWR) (Gao77

et al., 2019), wavelet analysis (Cheng et al., 2012), and terahertz quantum cascade lasers (Baldacci et al., 2017),78

including terahertz radiation spectroscopy using single (Browne et al., 2020) or multiple (Li et al., 2020) frequencies. A79

more specific determination of plant water status is leaf relative water content (RWC) (Mullan and Pietragalla, 2012),80

which relates the measured water content with its maximum value at full turgidity, and also considers the osmotic81

adjustment (OA), an important hydration mechanism for plants under drought that is not considered when determining82

the absolute water content. Assessing RWC is less common compared to LWC since turgor weight (TW) determination83

requires elaborate laboratory procedures (Corbin, 2015; Sancho-Knapik et al., 2010).84

2.2. Leaf/Stem Water Potential85

The water potential is calculated according to Eq. 1 (Jones, 2007) as:86

Ψ = Ψ𝑜 + 𝑃 + Ψ𝑔 + Ψ𝜏 (1)

where Ψ𝑜 is the osmotic potential (due to dissolved solutes), 𝑃 is the hydrostatic pressure (turgor pressure or pressure87

potential), Ψ𝑔 is the gravitational potential due to elevation differences between measured samples and soil, and Ψ𝜏 is88

the matric potential (often combined with the osmotic potential). To illustrate the concept of water potential, consider89

for instance a tree as a vertical pipe, with a pump and tank system (Fig. 2), where water moves from the soil to90

the leaves to convey nutrients, overcoming gravitational effects and pipe resistance (friction) against it. To do so, a91

negative pressure gradient between the leaf, roots, and soil is necessary. Even when the soil is saturated a leaf still92

requires water (usually transferred to the atmosphere). This negative pressure generates a tension along the soil-plant-93

atmosphere continuum, moving water (as well as ions, and nutrients) from the soil to the leaf for photosynthesis and94

carbon assimilation. Therefore, the lowest potential in the atmosphere engages the leaf to act as a “suction pump"95

(hence building up the highest water tension within the plant), and the water potential subsequently increases at the96

stem and root (pipe), and then soil (tank) which also demonstrates the highest water potential (lowest water tension).97

An important distinction when determining plant water status is the necessity of a sample, and if the procedure98

requires additional handling or modification during preparation or measurement itself. Sample-destructive methods99

require direct contact of a user with the sample, during collection and/or measurement stages, and consequent100

destruction of the sample after the measurement is conducted. These methods are generally the most accurate, given101

the physical proximity of the measuring instrument and sample, which allows for a direct measurement of the sample’s102

physiological properties.103
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Figure 2: Overview of water potential within a tree. The image on the right demonstrates a vertical pipe analogy, where
the highest water potential (least negative pressure value) will be at the tank (soil) whereas the lowest water potential
(most negative pressure) will be at the leaf (pump).

On the other hand, non-destructive methods can take advantage of distal sensing technologies such as imaging104

and thermal radiation (among others) to appraise plant water status in leaves, canopies, and even entire orchards. The105

non-destructive methods have recently gained traction and interest owing to the development of novel mobile platforms,106

such as low-cost UAVs and various multi-spectral imaging sensors. Despite their versatility, non-destructive methods107

may not be as accurate as the sample-destructive ones and still require some level of calibration routines against the108

latter.109

2.3. Sample-destructive Methods110

2.3.1. Isopiestic Psychrometer (IP)111

The psychrometer method is widely adopted due to its versatility in measuring water status in plants, soil, and any112

water-containing media. The operating principle (IP, Fig. 3) relies on the evaporation and resulting humidity level of a113

substance or sample containing water in a sealed chamber, and its subsequent comparison with a substance of known114

humidity (e.g., the air). The vapor pressure of the sample can therefore be calculated (through measurements on a115

transducer converting temperature to voltage), and water potential is then determined. Some of the conditions required116

for measurement include:117

• Humidity conditions near saturation (or near 100% relative humidity) as the method relies on water evaporation.118

• Maximum temperature variation inside the sealed chamber limited to 10−3 𝑜𝐶 , such that the relative humidity119

reflects the condition of the sample being measured.120
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Figure 3: Various methods for determination of plant water status: (RF) Radio-Frequency Santos et al. (2021), (TI)
Thermal-Imaging, (PC) Pressure Chamber, (IP) Isopiestic Psychrometer, (OM) Osmometer, (ZP) Zim-Probes Zimmer-
mann et al. (2008), (PP) Pressure-Probes, (HN) Hydrogen-Nanoreporters Jain et al. (2021), (MT) Microtensiometer
Blanco and Kalcsits (2021), and (HPV) Heat Pulse Velocity Forster (2017).

• Scale for measurement of about 10−9 Volts using a thermocouple.121

For the isopiestic condition, while pressure is maintained equal, the thermocouple is reinserted on a solution of known122

water potential. This reinsertion will determine the actual water potential of the sample, which will be the same as that123

of the chosen solution. Despite being one of the most accurate methods of determining water potential, with pressure124

tolerances around 10−2 MPa, small temperature variations (of about 10−2 𝑜𝐶) can lead to water potential variations of125

about 0.1 MPa.126

2.3.2. Osmometer127

The working principle of an osmometer (OM, Fig. 3) relies on the pressure build-up (or turgor pressure) on128

the concentrated solution of a plant cell membrane, until equilibrium is achieved. The method relies on the linear129

relationship between plant water to solute in determining osmotic potential (freezing point depression method). By130

tracking the solution freezing point decrease (as a result of increasing the solute), the osmolality can be precisely131

determined.132

Mucchiani et al.: Preprint submitted to Elsevier Page 7 of 30



Automation and Artificial Intelligence Integration in Sample-Destructive Methods to Determine Plant Water Status

2.3.3. Pressure Probe133

A pressure probe can directly determine the turgor pressure of a plant (PP, Fig. 3). The device, which resembles134

a micro syringe, contains a relatively incompressible fluid (silicone oil) that moves according to the pressure applied135

by the plunger (relative to the sap of the plant cell, initially at lower pressure). When the boundary between sap and136

silicone oil returns to the tip of the probe, volume is restored and the pressure values of the capillary and inside the137

cell are equal. Hydrostatic pressure can therefore be measured using a pressure sensor. Limitations of the method are138

mainly correlated with the size of the plant cell, as well as leakage potential or non-penetrability of the capillary into139

the cell.140

2.3.4. Pressure Chamber141

A conventional and perhaps the most well-known and commonly applied method for determining stem water142

potential is the pressure chamber (PC, Fig. 3), also called the Scholander chamber (Scholander et al., 1964). It relies143

on the pressure exerted on the leaf to counterbalance the tension (or negative pressure) with which water is retained144

by the leaf tissues. The method considers the partial sealing of the leaf inside a pressure chamber up to the xylem,145

which is exposed and held by a rubber gasket. A prerequisite before measurement consists of bagging the leaves146

utilizing reflective bags (placed around the leaf for about ten to thirty minutes). This procedure insulates the leaf147

against thermal effects and consequently transpiration of water into the atmosphere. After the leaf is separated from148

the tree by an incision at the stem, water distributes itself by osmosis through the xylem to the surrounding living cells.149

Initially, the xylem appears to be dry, but by increasing the pressure inside the chamber, the pressure state before the150

incision can be achieved, and the pressure required for it is annotated as the balancing pressure (or end-point).151

One key working assumption is that the leaf will be in pressure balance with the stem and the rest of the plant;152

when that happens, the measured value of water potential will reflect the value for the entire plant as opposed to that153

of the leaf alone. Such an assumption may not be accurate in some regions of the world (such as California in the154

United States) where higher night temperatures may prevent the occurrence of equilibrium and plants may be under155

stress before the measurements are performed. Additionally, if leaves are not bagged, the respective water pressure will156

be more negative than if bagging is done, and the measurement will instead quantify the water potential of individual157

leaves in their specific conditions. The pressure value at shaded parts of a tree will also be different than values obtained158

in leaves exposed to direct sunlight.159

The pressure chamber can also determine the relationship between water potential and relative water content160

through the calculation of pressure-volume curves (PV or P-V). These are generated by utilizing consecutive measures161

on a drying leaf, and parameters such as turgor loss point (TLP) (Bartlett et al., 2012b) (i.e., the point at which the162

value of turgor pressure is equal to zero), so that osmotic potential and bulk modulus of elasticity can be derived. As163
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the pressure chamber method does not require rigorous temperature control or delicate instrumentation compared to164

the methods previously described, it is a widely adopted technique in various orchards and specialty crops.165

2.4. Proximal Sensing Methods166

2.4.1. Microtensiometer167

The microtensiometer sensor (Pagay et al., 2014) provides real-time monitoring of water potential at the tree stem168

(MT, Fig. 3). The method applies a miniaturized version of the soil tensiometers and addresses some of the problems169

of the conventional approach such as the need for large amounts of water to register tension and the high porosity of170

the tooltip level, both of which combined can lead to bubble formation. However, greater reading variability can be171

observed in comparison to the pressure chamber, and because of the shrinking and swelling, and photosynthesis of the172

tree, sensor placement stability can be affected, thus requiring periodic calibration and maintenance.173

2.4.2. Heat Pulse Velocity174

The heat pulse velocity method (HPV, Fig. 3) can determine sap flow and water content. Since each probe has a175

small zone of influence (about 5 𝑚𝑚 radius), the technique can be utilized for plants with stems as small as 10 𝑚𝑚.176

According to recent work of Forster (2017), the method has had satisfactory results when correlating heat velocity and177

transpiration, but high errors (up to 34%) in determining transpiration alone. Measurement disparities can occur due178

to limitations in scale, probe misalignment, and wounding of the xylem during sensor placement and the method still179

requires calibration when determining tree transpiration, but not for measuring sap flow.180

2.4.3. ZIM-probes181

Magnetic leaf patch clamp pressure probes, or ZIM-probes (ZP, Fig. 3), are alternatives to the conventional pressure182

probes described in Section 2.3.3, providing continuous monitoring of turgor pressure on a leaf using opposite magnetic183

probes and a pressure sensor (Zimmermann et al., 2008). For measurements, a small leaf patch, ideally under osmotic184

and hydraulic equilibrium (early morning readings are recommended), is clamped between two magnets, the offset185

distance of which can be manipulated to control magnetic pressure exertion. The relative leaf turgor pressure is given186

by the patch pressure output, while an external magnetic pressure is kept at constant value (Rodriguez-Dominguez et al.,187

2019). The probes were tested on a variety of herbaceous and woody plant species, and numerous studies combined188

ZIM-probes with different sensing methods, such as the heat pulse velocity method (Rodriguez-Dominguez et al.,189

2012) and the pressure chamber (Fernández et al., 2011).190

2.4.4. Hydrogel Nanoreporters191

The use of hydrogel nanoreporters (HN, Fig. 3) for estimating plant water status through leaf water potential (Jain192

et al., 2021) is new. It comprises the in-situ insertion of hydrogel into the leaf (limited to the apoplastic space, and193
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not entering the xylem or cytoplasm), the measurement of water potential by different levels of gel swelling, and the194

correlation of the attained readings to the fluorescent light spectrum. This minimally-destructive method generates195

negligible effects of temperature and pH on the reporting of water potential, and it is a promising alternative for196

measuring water potential. The method, however, still requires initial calibration against the pressure chamber before197

its deployment.198

2.5. Remote-Sensing Methods199

2.5.1. Thermal Imaging200

Thermal imaging (TI, Fig. 3) provides high spatial, temporal, and temperature resolution imaging and has vastly201

been explored in case studies reported in the scientific literature (Ishimwe et al., 2014). Some direct applications include202

monitoring of crop health and field conditions, soil salinity estimation, detection of bruises on fruits, and evaluation203

of irrigation schedules. Particularly, it can use leaf/canopy temperature to provide estimates on water potential and204

stomatal conductance. Especially when implemented (or deployed) onto mobile platforms such as aerial or ground205

robots, this method can become quite expensive, thus posing restrictions to its adoption. In addition, temperature206

variations during the day as well as heating of the thermal camera itself during operation may determine the need for207

periodic sensor calibration to ensure measurement accuracy; this in turn adds one more activity to be conducted in the208

field and hence increases its overall complexity.209

2.5.2. Radio Frequency210

Although not directly related to plant water status, the use of high radio-frequency waves (RF, Fig. 3) and211

observation of the attenuation signal strength can be an indicator of water content in leaves (Santos et al., 2021). By212

considering two high-gain antennas and a leaf placed in between, the attenuation of high-frequency electromagnetic213

signals (about 20 GHz) is shown to be affected by the leaf water content irradiated by the radio beams. The method is214

non-destructive, can help determine variations of water in a single plant, and can promptly be embedded into various215

mobile robotic platforms.216

2.6. Other Methods217

Other important indicators related to plant water status not mentioned above include salinity and soil electrical218

conductivity, or leaf stomatal conductance. Although out of scope for this review, the authors suggest the following219

relevant literature and reviews on these respective themes (Volkmar et al., 1998; Parihar et al., 2015; Safdar et al.,220

2019; Friedman, 2005; Brillante et al., 2015; Gupta et al., 2019; Campbell et al., 2021; Chatziparaschis et al., 2023).221

Lastly, other methods not discussed in detail herein include sap flow using microneedles (Baek et al., 2018), nuclear222
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magnetic resonance (NMR) (Windt and Blümler, 2015), stem water content with capacitive sensors (Matheny et al.,223

2017) and thermal micro sensors (Atherton, 2012).224

3. Review on Determining Plant Water Status225

In this work, an extensive body of literature was considered regarding the scope of the various methods presented226

in Section 2. Relevant data were extracted and a meta-analysis was performed to group associated methods considering227

various aspects and technical considerations (see Fig. 8, and Fig. 9). The relevant downselected articles were ranked228

based on an automation score (denoted 𝐾𝑠) defined in this review, which aims to score both the relevance and potential229

of automating the methods utilizing current technologies and enhancing their usefulness through AI methods. Although230

no upper limit was considered for 𝐾𝑠, higher scores would translate to greater propensity to automation and AI231

integration, and vice versa.232

3.1. Methodology233

The following criteria were considered when selecting relevant work.234

• Literature search was limited to a ten-year time-frame prior to date, and selected using Google Scholar for235

uniformity and to avoid duplicates.236

• Keywords were selected by the authors owing to their expertise and past relevant works, and attempt to237

encompass the most relevant terms related to indicators of plant water status and the various available methods.238

To facilitate synergy and organization, an online collaborative platform (Rayyan 1) was utilized in this study.239

A three-phase pipeline (Fig. 4) attempted to filter out literature based on selected keywords (Keyword Clustering240

phase), ranking (Top-median phase), and meta-analysis (Methods phase). Given the breadth of the initial selection,241

focus was given to the top-median results. Although not within the scope of this work, keywords such as “remote242

sensing” inevitably represented the majority of recent work on plant water status and were also considered for the243

overall meta-analysis, as discussed below.244

3.2. Keyword Clustering245

We have selected 26 keywords, leading to 𝑁 = 550 publications considered initially. Our selection attempted to246

include most terms directly or indirectly related to the methods discussed in Section 2. We emphasized specialty crops247

(such as avocados, olives, and grapes), as these tend to require larger volumes of water for irrigation and more attentive248

water management (Yazdi et al., 2021). Other keywords relevant to determining plant water status, such as stem, leaf,249

1 https://www.rayyan.ai/
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Figure 4: Pipeline for keyword selection and meta-analysis.

and fruit diameter, were included for completeness. The overall statistics of selected literature are shown in Fig. 5,250

along with a word cloud (Fig. 6), and keyword occurrences (Fig. 7).251

3.3. Keyword Selection252

We ranked results from the previous stage by keyword occurrences, only selecting the top-median results (𝑁 =253

283). Four keywords prevailed: (plant) water stress, remote sensing, leaf (stem) water potential, and (plant) water status.254

As mentioned earlier, the appearance of the remote sensing keyword in over half of the results reflects current research255

trends in exploring alternative methods for determining plant water status, while also implying the lack of discussion256

on sample-destructive methods over the period considered in this review article.257

3.4. Meta-Analysis258

Our meta-analysis considered a total of (𝑁 = 97) final references out of the top-median results based on direct259

(title) or indirect (text) reference to at least one of the methods for determination of plant water status listed in Section 2.260

Table 1 lists these references grouped in terms of the method employed for the determination of plant water status in261

those scientific works. We proposed and calculated an automation score 𝐾𝑠 for each method in Section 2, correlating262

it with aspects and technical considerations such as target measurement (e.g., leaf water potential, turgor pressure),263

location of measurement (in-situ, ex-situ), and sampling time (Fig. 8, items A to F). For this calculation, we emphasized264

the sample-destructive methods and proximal-sensing techniques, dropping the terahertz and remote-sensing terms.265

We also selected different hardware components pertaining to available technology and considered whether or not the266

method is likely to be adopted to promote automation (Fig. 8, items G to L). Finally, we further considered whether AI267

can be readily integrated to further promote automation (Fig. 8, item M).268
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Figure 5: Statistics for the initial selection of literature (𝑁 = 550): classification by year (upper left), by type of publication
venue (upper right), and journal names (bottom).

To calculate the automation score, we defined weights 𝑤𝑖 = 𝑥, with index 𝑖 = 1, 2, 3...𝑚 denoting the current269

aspect being considered (such as target measurement, sampling time, etc.), and 𝑥 being a weight factor assessed for270

different metrics that can be improved by automation, as detailed below. As an example, for a total sampling time271

(𝑖 = 3) of less than a minute, a lower weight would be given as opposed to higher sampling times, since we assume272

automation can improve the sampling time. We also introduced 𝑤𝑗 as an “interrelation” weight. The motivation was to273

emphasize how most novel sensing modalities need some sort of in-situ calibration or validation against one or more274

sample-destructive techniques. The calculation of score 𝐾𝑠 was done according to Eq. 2 below:275

𝐾𝑠 =
∑

𝑖
𝑤𝑖 +

∑

𝑗
𝑤𝑗 , (2)
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Figure 6: Word cloud for recurring themes of the initial literature selection (𝑁 = 550).

Figure 7: Selected keywords for meta-analysis (𝑁 = 97).

with a detailed breakdown of weights on different aspects discussed below. Heavier weights essentially demonstrate276

where there may be more potential for the integration of automation to improve the current standard of a specific277

method of interest.278
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Table 1
List of References Focusing on a Method of Interest in this Work.

Method Reference

remote sensing Barton (2012); García-Tejero et al. (2012); Stagakis et al. (2012); Qi et al.
(2012); Feng et al. (2013); Mulla (2013); Shang and Chisholm (2013);
Sui et al. (2013); Yebra et al. (2013); Crawford (2014); Bellvert et al.
(2014, 2015); He et al. (2015); Ramoelo et al. (2015); Chuvieco (2016);
Thenkabail and Lyon (2016); Yousfi et al. (2016); Wójtowicz et al. (2016);
Calera et al. (2017); Khanal et al. (2017); Alvino and Marino (2017); Egea
et al. (2017); Romero-Trigueros et al. (2017); Toureiro et al. (2017); Yang
et al. (2017); Bhagwat et al. (2018); Damm et al. (2018); Helman et al.
(2018); Moreno-Martínez et al. (2018); Matese et al. (2018); Sheffield
et al. (2018); Ahmadi et al. (2019); Easterday et al. (2019); Ezenne et al.
(2019); Knipper et al. (2019); Konings et al. (2019); Krishna et al. (2019);
Maes and Steppe (2019); Mahmoud and Gan (2019); Mendes et al. (2019);
Sadaf et al. (2019); Zhang et al. (2019); Zovko et al. (2019); Blaya-Ros
et al. (2020); Chen and Liu (2020); Di Girolamo et al. (2020); Inoue (2020);
Liu et al. (2020); Na et al. (2020); Chandel (2021); Chandel et al. (2021);
Dong et al. (2021); Han et al. (2021); Meivel and Maheswari (2021);
Sibanda et al. (2021); Fullana-Pericàs et al. (2022)

pressure chamber Gaudin et al. (2012); Moriana et al. (2012); Williams et al. (2012);
Vandegehuchte (2013); Abrisqueta et al. (2015); Cole and Pagay (2015);
Paudel et al. (2015); Mirás-Avalos et al. (2016); Memmi et al. (2016);
Cai et al. (2019); Levin (2019); Kumar et al. (2019); Santesteban
et al. (2019); Suter et al. (2019); Zahoor et al. (2019); Gips et al.
(2020); Hochberg (2020); Jamshidi et al. (2020); Brodribb et al. (2021);
Rodriguez-Dominguez et al. (2022)

terahertz quantum cascade lasers Razavipour (2013); Browne et al. (2020); Li et al. (2020); Tan et al. (2020);
Shchepetilnikov et al. (2020); Pan et al. (2021); Zahid et al. (2022)

heat pulse López-Bernal et al. (2012); Ballester et al. (2013); Forster (2017)
hydrogel Milliron et al. (2018); Kumar et al. (2020); Jain et al. (2021)
microtensiometer Pagay et al. (2014); Blanco and Kalcsits (2021)
pressure probe Gholipour et al. (2012); Rodriguez-Dominguez et al. (2012)
thermal imagery and spatial analysis Song et al. (2018)
psychrometer Dainese et al. (2022)
radio frequency Santos et al. (2021)
osmometer Bartlett et al. (2012a)

• Target Measurement: 𝑤𝑖 =
∑

0.5 for each target measurement indirectly determined by the method, and279

𝑤𝑖 =
∑

1 for those directly measured.280

• Sampling Time: 𝑤𝑖 = 2 if no continuous (discrete) data are provided by the method, therefore demanding longer281

sampling time.282

• In/Ex situ: 𝑤𝑖 = 0 for ex-situ, 𝑤𝑖 = 2 for in-situ, and 𝑤𝑖 = 3 for both in-situ and ex-situ measurement locations,283

prioritizing automation of in-situ methods to assist humans in the field.284

• Validation: If validation or calibration of measurements is required using in-situ methods, these received a weight285

𝑤𝑗 = 1 for every occurrence.286
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Pressure
Chamber

Isopiestic
Psychrometer Osmometer Pressure Probe Microtensiometer Heat Pulse

Velocity Radio Frequency Thermal Imaging Hydrogel
Nanoreporters

A Target
Measurement

(Leaf) Water
Potential

(Leaf ) Water
Potential,
Osmotic

Pressure,
Turgor

Pressure
(indirect)

Osmotic
Potential,

Turgor
Pressure
(indirect)

Turgor Pressure (Xylem) Water
Potential

Stem Water
Content

Sap Flow

Water Content
(indirect)

Water Content
(indirect)

(Leaf) Water
Potential

B Equipment
Required

Pressure
Chamber

Sealed
Chamber Osmometer Pressure Probe Microtensiometer Sensor Radar Thermal Camera

Injection of
nanoparticles,

Microscope
C Sampling  Time Discrete Discrete Discrete Discrete Continuous Continuous Continuous Continuous Continuous

D In situ (I) / Ex
situ (E) I / E E E E I I I I I

E Vailidation None None None None Yes, Pressure
Chamber None None None Yes, Pressure

Chamber
F Affordability Low Low Low Low High High Low Low Low

G

Mobile Platform

Yes Yes Yes Yes Yes Yes Yes Yes Yes

H

Manipulation

Yes Yes Yes Yes Yes Yes Yes Yes Yes

I
Specialized
End-Effector

Yes Yes Yes Yes Yes Yes Yes Yes Yes

J
Specialized

Sensor

No Yes Yes Yes No Yes Yes Yes Yes

K Pressure/
Temperature
Controlled
Chamber

Yes Yes Yes No No No No No No

L

Teleoperation

Yes Yes Yes Yes No No No No No

M
Artificial

Intelligence

Yes No No Yes Yes Yes Yes Yes Yes

Figure 8: Plant water status methods, aspects, and technological considerations.

• Cost: Despite the difficulty in accurately determining costs due to factors such as logistics for sampling, number287

of personnel involved, and others, a qualitative feature of affordability aimed to capture overall costs. Higher-cost288

methods (low affordability) received weight 𝑤𝑖 = 2, as more elaborate methods often require human input, tend289

to be of higher acquisition cost, and consequently would benefit more from automation (which in turn tends to290

make processes more affordable).291

The technological considerations selected were as follows.292

• Mobile Platform: The need for mobility (sample transportation or data acquisition) received a weight 𝑤𝑖 = 1. It293

is understood that a mobile platform can also be used to carry heavy equipment for in-situ measurements or any294

other relevant material.295

• Manipulation: If handling is required for sample retrieval or insertion into a measurement device, a weight𝑤𝑖 = 1296

was given.297
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• Specialized End-Effector: If the sample or container around the sample needs to be directly manipulated, a298

specialized end-effector (cutter, vacuum, among others) may be required, and a weight 𝑤𝑖 = 1 was given.299

• Specialized Sensors: Cameras ranging from conventional RGB to thermal imaging devices and microscopes are300

considered, and a weight 𝑤𝑖 =
∑

1 is attributed for each sensor required.301

• Pressure or Temperature Controlled Chamber: For methods relying on temperature-controlled environments302

or enclosed chambers, a weight 𝑤𝑖 = 1 was given, whereas pressure-controlled chambers received weight303

𝑤𝑖 = 2. This attempts to highlight the benefit and increased safety of having pressure chambers handled by304

an automated process rather than being physically operated by a human. For determination purposes, a capillary305

is here considered as an enclosed chamber.306

• Teleoperation: In-situ methods with frequent sampling may alternatively adopt teleoperation to alleviate chal-307

lenges imposed on human operators (such as unfavorable weather conditions, heavy equipment, and repetitive308

motions). A score of 𝑤𝑖 = 1 was attributed in applicable cases.309

• AI Integration Potential: Since most methods rely on visual observation to determine measurements, the potential310

for automation through artificial intelligence and machine learning is considered. A score of 𝑤𝑖 = 1 was311

attributed to the method can leverage learning tools to facilitate measurements or as part of the automation312

pipeline, beyond the predictive aspect which can generally be applied to all methods.313

4. Evaluation and Discussion314

A summary of evaluated methods and their respective technical considerations is presented in Fig. 8. The methods315

are grouped into items G to M due to their commonalities in terms of handling of the sample, sample preparation,316

observations during measurement, need for a controlled environment, and data analysis potential. A breakdown of317

each method is proposed that considers various high-level tasks and corresponding groups of hardware configurations318

(Fig. 9) to enable task automation. From Fig. 9 it can be seen that configurations A through F represent a combination319

of mobility, vision-aided automation, manipulation, specialized end-effector and chamber design from which each task320

listed can be automated, as discussed below.321

Pressure Chamber (𝐾𝑠 = 16.5): The pressure chamber method received the highest automation score since it322

not only determines stem water potential on its own but also reliably serves as a reference to verify and calibrate other323

methods. Various stages of the method can be automated:324

• Sample selection (which is time and location dependent due to measurement variations) utilizing configuration325

B, can explore leaf health, size, and light conditions with a certain degree of mobility around the tree. Previous326
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Figure 9: Proposed hardware configurations for achieving tasks common to the described methods of assessing plant water
status: Pressure Chamber (PC), Isopiestic Psychrometer (IP), Osmometer (OM), Pressure Probe (PP), Microtensiometer
(MT), Heat Pulse Velocity (HPV), Radio Frequency (RF), Thermal Imaging (TI), Hydrogel Nanoreporters (HN).

work developed an autonomous vision-based task with a manipulator and end-effector (D) capable of selecting327

candidate leaves, retrieving them cleanly from the tree, and storing them into a dedicated container for further328

analysis (Campbell et al., 2022).329

• Time sequencing between leaf bagging, excision, and pressurization can be optimized. Research has shown these330

timing factors can be quantified for accurate pressure readings, and human interpretation itself may be the highest331

source of discrepancy in measurements (Levin, 2019).332

• Placement of the sample inside the pressure chamber (F), following stem tracking for water appearance during333

pressure increase (E) can also be done autonomously. The detection itself can be provided by AI-assisted object334

detection method (M), as described by Dechemi et al. (2023).335

• Sample disposal and recycling can be implemented (C).336

• One remark for the pressure chamber is the ability to perform measurements in-situ or ex-situ with samples337

transported under proper conditions to a laboratory.338

A future autonomous system should thus have the ability to sample different trees at various hours of the day repeatably339

and provide consistent readings that can be tracked remotely or logged for subsequent evaluation or comparison with340

other additional methods.341

Isopiestic Psychrometer (𝐾𝑠 = 10.5): Similar to the pressure chamber, the isopiestic psychrometer method is also342

a high-potential candidate for automation in terms of leaf selection (B), sample retrieval, transportation (A), placement343
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in a dedicated chamber (D), continuous monitoring of one condition while varying another (E), and sample disposal344

and solution substitution (C). However, the need for a temperature-controlled environment limits measurements to be345

conducted ex-situ, constraining its ability to be deployed along with other sensing modalities in the field. Enhancing346

automation via AI does not seem immediately viable besides the predictive aspect that can be added in any method in347

essence.348

Osmometer (𝐾𝑠 = 9.5): Sample selection (B), transportation (A), placement in a measuring instrument (D), and349

sample disposal (C) can be automated. While the osmometer is limited to osmotic potential measurements (and turgor350

loss point) in ex-situ locations, and as a method has limitations preventing it from being a sole indicator of water status,351

other tasks such as probing the leaf sample, enveloping it, and placing into liquid nitrogen, measurement of the dried352

sample (Bartlett et al., 2012a) and chamber sanitation are some procedures that can be subjected to automation. Similar353

to the isopiestic psychrometer, AI integration does not have any immediate effect on further developing automation of354

the method.355

Pressure Probe (𝐾𝑠 = 9): Despite its ability to measure the water status of single cells, the pressure probe356

method requires precise positioning of the microcapillary into the sample cell, and it is a time-consuming and labor-357

intensive process, susceptible to vibration and temperature effects affecting measurements. Earlier research efforts358

demonstrated the feasibility of in-situ measurements (Gholipour et al., 2012) and developed a leaf patch clamp non-359

invasive alternative for measuring relative changes in leaf turgor pressure (Rüger et al., 2011). One possibility of360

automation involves dynamic tracking of the cytoplasm/oil meniscus position during cytoplasm motion into the cell,361

through the microcapillary. An automated system can track the meniscus position while the cytoplasm returns to the362

cell before puncturing (config. E), including integration of AI-assisted approaches (M).363

Microtensiometer (𝐾𝑠 = 7): The fast installation time, ability to stream data continuously, and minimum364

maintenance requirements are appealing in further integrating automation elements into this method. Deployment365

of the microtensiometer sensor can be automated (config. C) along with remote monitoring for sensor placement and366

fixture (config. A) considering the integration of possible computer vision and machine learning tools (M).367

Heat Pulse Velocity (𝐾𝑠 = 9): The HPV method is versatile in the sense that it can be applied to various plant368

species, and measure flow with high temporal resolution. Automation can improve the method in terms of sensor369

placement in the sapwood and periodic monitoring to minimize probe misalignment (config. C), and extending points370

of measurement to the whole plant for remote monitoring (config. C). Minimization of probe misalignment can utilize371

learning tools (M) combined with the proposed configurations.372
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Radio Frequency (𝐾𝑠 = 7.5): Despite limitations in utilizing radio frequency as a unique indicator of water status,373

the possibility of adapting the hardware to a robotic platform can be advantageous for integrating automation elements374

into this method. Given the ability to select and sample candidate trees autonomously (configurations A, B), sample375

analysis on a mobile platform and continuous monitoring (configuration A) will offer additional advantages to the376

method’s adoption. Further, various AI-based techniques (M) can positively impact data analysis, complementing and377

enhancing these configurations.378

Hydrogel Nanoreporters (𝐾𝑠 = 7): One of the unique features of this method is the possibility of determining379

water potential gradient along leaf blades while providing real-time, continuous in-situ data. This can allow for the380

characterization of leaf hydraulics (Jain et al., 2021), which is impossible with other sample-destructive methods. AI381

tools (M) can be an important factor in improving the determination of these gradients. If sensing apparatus (namely382

fiber-optic probe, clamp, and spectrometer) are embedded in mobile platforms (config. A), continuous monitoring can383

provide a unique level of insight into plant water status beyond other methods described above.384

Thermal Imaging (𝐾𝑠 = 5.5): Thermal imaging methods are already embedded on mobile platforms (configu-385

ration A) so the lowest automation score was attributed to the ranking. However, in-situ thermal imaging techniques386

in combination with leaf-level measurements and fluorescence imaging (Beverly et al., 2020) can allow for prediction387

models of leaf water potential and allow for prediction of water plant status and stress. Currently, a vast number of AI388

and machine learning tools (M) are directly applied to these methods.389

5. Sample-destructive Case Study: Toward Automating the Pressure Chamber Method390

The previous discussion suggests that, among sample-destructive methods, the pressure chamber has several391

potential benefits if automated. In this section, some recent related developments are presented to highlight the392

suitability and usefulness of some of the tasks illustrated in Fig. 9. In Campbell et al. (2022), the task of leaf-cutting393

(i.e. sample retrieval in the case of the pressure chamber method) was addressed with a custom-made 6-DOF end-394

effector attached to a mobile robot, as depicted in Fig. 10. The framework considered a perception-based approach395

where a three-dimensional point cloud from a depth camera was translated into a six-dimensional pose (position and396

orientation) of a potential leaf candidate. Then, the mobile manipulator approached the candidate leaf and retrieved it397

via the specialized end-effector. Experiments conducted with avocado trees on both indoor and outdoor settings led to398

an overall success rate of detection of about 80%, while 78% of the total 70% leaf captures were successfully cut at the399

stem. These findings could serve as a basis for enhanced automation integration by enabling AI-assisted leaf detection.400

The work of Dechemi et al. (2023) extended the findings of Campbell et al. (2022) by introducing methods to handle401

additional tasks to complete measurements with the pressure chamber (Fig. 11). Newly proposed tasks included:402
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Figure 10: In Campbell et al. (2022) a custom-made end-effector (a) utilized a depth-camera sensor to translate input
images (b) to 3D bounding boxes of candidate leaves (c), and a final 6D pose for retrieval utilizing a robot arm mounted
on a mobile platform (d). (Snapshots taken from Campbell et al. (2022) with permission from the authors.)

• Informed sampling for tree location and navigation: by utilizing Gaussian processes (GP) and the Rapidly403

Exploring Random-Exploring-Tree (RRT) motion planning algorithm, the method can assign a path to the mobile404

robot based on energy budget constraints.405

• Machine vision identification of leaf stem wetness in stem water potential analysis: by employing AI-assisted406

visual perception using a custom dataset from avocado and citrus trees, the method can speed up the process of407

determining stem water potential.408

Field experiments were conducted for both tasks. A demonstration illustrated the overall pipeline in sampling trees409

from the budged-constrained calculated path. Finally, utilizing the setup on Fig. 11 (bottom left), transferable to both410

manual and automated pressure chambers, experiments revealed a 98% precision in detecting wet or dry states of411

the xylem during stem water potential determination. These results confirm the availability of current technology to412

partially automate the pressure chamber method and allow for future work to utilize these as future references toward413

automated solutions for the determination of plant water status. This current state of progress could benefit by further414

integrating joint task and motion planning (Kan et al., 2021), multi-robot system deployment (Kan et al., 2019, 2020),415

and localization under the canopy (Teng et al., 2023).416

6. Conclusion417

This work aimed at evaluating different sample-destructive methods for determining plant water status, and418

proposed a set of tasks common to these methods yielding the potential of being automated. Specifically, this work419

focused on methods of measuring water status in plants for which little or no automation discussion has occurred to420

date. While considering a large body of literature and focusing on specific aspects, we acknowledge that the choice421

of factors (namely adoption rate, reported accidents, accuracy, and others) and technological considerations (type of422

manipulator, specialized sensor, or AI agent) for each method could further be expanded into subcategories to improve423

scoring. With this proposed automation score, we aimed to establish a common comparative basis among different424
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Figure 11: In Dechemi et al. (2023) a mobile robot with the leaf sampler from Campbell et al. (2022) was able to
autonomously navigate to tree sampling candidates (top) with an informed path planning method considering robot
energy constraints (middle), while a learning-based computer vision approach addressed the dry/wet state detection in
SWP measurements (bottom). (Snapshots taken from Dechemi et al. (2023) with permission from the authors.)

methods and highlight some immediate directions for improvements in terms of integrating automation and AI toward425

more resource-efficient water management. The different weights provided in the proposed automation score were426

based on distilling information from the available literature, and on the authors’ combined expertise on the topic. Still,427

we recognize that one might argue in favor or against any specific weighting, or suggest additional weight factors to be428

considered, possibly based on local and site-specific conditions. Thus, we anticipate that this work can spark further429

discussions within the agricultural engineering community and among researchers, consultants, and practitioners. We430

feel that this is an important and timely topic considering that a large body of literature on existing automation and AI431

efforts has focused on harvesting, weed detection, and spraying, but comparatively fewer automation and AI efforts432

have considered precision irrigation management leading to higher water productivity. As can be inferred from this433

review article, the integration of AI with automated systems for monitoring plant hydration can lead to significant labor434
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savings and increased efficiency. This approach not only enhances water and energy conservation but also boosts crop435

productivity, especially as many specialty crops rely on micro-irrigation systems that pressurize water. Furthermore,436

the likelihood of more frequent and severe weather events such as droughts and heat waves necessitates more vigilant437

and accurate water management. This is crucial not only to meet the high-quality standards demanded by both local438

and international markets but also to implement regulated deficit irrigation strategies effectively. Such strategies aim439

to achieve and sustain the desired level of plant hydration (from mild to moderate stress) during critical phases of crop440

development. In this sense, deploying new technologies toward resource-efficient water management has multifaceted441

challenges and opportunities that remain to be addressed.442

References443

Abrisqueta, I., Conejero, W., Valdés-Vela, M., Vera, J., Ortuño, M.F., Ruiz-Sánchez, M.C., 2015. Stem water potential estimation of drip-irrigated444

early-maturing peach trees under mediterranean conditions. Computers and Electronics in Agriculture 114, 7–13.445

Ahmadi, B., Ahmadalipour, A., Tootle, G., Moradkhani, H., 2019. Remote sensing of water use efficiency and terrestrial drought recovery across446

the contiguous united states. Remote Sensing 11, 731.447

Alvino, A., Marino, S., 2017. Remote sensing for irrigation of horticultural crops. Horticulturae 3, 40.448

Améglio, T., Archer, P., Cohen, M., Valancogne, C., Daudet, F.a., Dayau, S., Cruiziat, P., 1999. Significance and limits in the use of predawn leaf449

water potential for tree irrigation. Plant and Soil 207, 155–167.450

Atherton, J., 2012. Development of a thermal sensor for probing small volumes. Ph.D. thesis. Durham University.451

Baek, S., Jeon, E., Park, K.S., Yeo, K.H., Lee, J., 2018. Monitoring of water transportation in plant stem with microneedle sap flow sensor. Journal452

of microelectromechanical systems 27, 440–447.453

Baldacci, L., Pagano, M., Masini, L., Toncelli, A., Carelli, G., Storchi, P., Tredicucci, A., 2017. Non-invasive absolute measurement of leaf water454

content using terahertz quantum cascade lasers. Plant Methods 13, 1–7.455

Ballester, C., Castel, J., Testi, L., Intrigliolo, D.S., Castel, J., 2013. Can heat-pulse sap flow measurements be used as continuous water stress456

indicators of citrus trees? Irrigation science 31, 1053–1063.457

Bartlett, M.K., Scoffoni, C., Ardy, R., Zhang, Y., Sun, S., Cao, K., Sack, L., 2012a. Rapid determination of comparative drought tolerance traits:458

using an osmometer to predict turgor loss point. Methods in Ecology and Evolution 3, 880–888.459

Bartlett, M.K., Scoffoni, C., Sack, L., 2012b. The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes:460

a global meta-analysis. Ecology letters 15, 393–405.461

Barton, C.V., 2012. Advances in remote sensing of plant stress. Plant and Soil 354, 41–44.462

Bellvert, J., Marsal, J., Girona, J., Zarco-Tejada, P.J., 2015. Seasonal evolution of crop water stress index in grapevine varieties determined with463

high-resolution remote sensing thermal imagery. Irrigation Science 33, 81–93.464

Bellvert, J., Zarco-Tejada, P.J., Girona, J., Fereres, E., 2014. Mapping crop water stress index in a ‘pinot-noir’vineyard: comparing ground465

measurements with thermal remote sensing imagery from an unmanned aerial vehicle. Precision agriculture 15, 361–376.466

Beverly, D.P., Guadagno, C.R., Ewers, B.E., 2020. Biophysically informed imaging acquisition of plant water status. Frontiers in Forests and Global467

Change 3, 589493.468

Mucchiani et al.: Preprint submitted to Elsevier Page 23 of 30



Automation and Artificial Intelligence Integration in Sample-Destructive Methods to Determine Plant Water Status

Bhagwat, T.N., Hegde, V., Shetty, A., 2018. Application of remote sensing and gis for identification of potential ground water recharge sites in469

semi-arid regions of hard-rock terrain, in north karnataka, south india. Sustainable Water Resources Management 4, 1063–1076.470

Blanco, V., Kalcsits, L., 2021. Microtensiometers accurately measure stem water potential in woody perennials. Plants 10, 2780.471

Blaya-Ros, P.J., Blanco, V., Domingo, R., Soto-Valles, F., Torres-Sánchez, R., 2020. Feasibility of low-cost thermal imaging for monitoring water472

stress in young and mature sweet cherry trees. Applied Sciences 10, 5461.473

Boyer, J., 1967. Leaf water potentials measured with a pressure chamber. Plant Physiology 42, 133–137.474

Brillante, L., Mathieu, O., Bois, B., Van Leeuwen, C., Lévêque, J., 2015. The use of soil electrical resistivity to monitor plant and soil water475

relationships in vineyards. Soil 1, 273–286.476

Brodribb, T., Brodersen, C.R., Carriqui, M., Tonet, V., Rodriguez Dominguez, C., McAdam, S., 2021. Linking xylem network failure with leaf477

tissue death. New Phytologist 232, 68–79.478

Browne, M., Yardimci, N.T., Scoffoni, C., Jarrahi, M., Sack, L., 2020. Prediction of leaf water potential and relative water content using terahertz479

radiation spectroscopy. Plant direct 4, e00197.480

Cai, G., Ahmed, M., Reth, S., Reiche, M., Kolb, A., Carminati, A., 2019. Measurement of leaf xylem water potential and transpiration during soil481

drying using a root pressure chamber system, in: XI International Workshop on Sap Flow 1300, pp. 131–138.482

Calera, A., Campos, I., Osann, A., D’Urso, G., Menenti, M., 2017. Remote sensing for crop water management: From et modelling to services for483

the end users. Sensors 17, 1104.484

Campbell, M., Dechemi, A., Karydis, K., 2022. An integrated actuation-perception framework for robotic leaf retrieval: Detection, localization, and485

cutting, in: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 9210–9216.486

Campbell, M., Ye, K., Scudiero, E., Karydis, K., 2021. A portable agricultural robot for continuous apparent soil electrical conductivity487

measurements to improve irrigation practices, in: 17th IEEE International Conference on Automation Science and Engineering (CASE), pp.488

2228–2234.489

Chandel, A.K., 2021. Small Unmanned Aerial System Based Remote Sensing to Map Geospatial Water Use of Field and Perennial Specialty Crops.490

Ph.D. thesis. Washington State University.491

Chandel, A.K., Khot, L.R., Molaei, B., Peters, R.T., Stöckle, C.O., Jacoby, P.W., 2021. High-resolution spatiotemporal water use mapping of surface492

and direct-root-zone drip-irrigated grapevines using uas-based thermal and multispectral remote sensing. Remote Sensing 13, 954.493

Chatziparaschis, D., Scudiero, E., Karydis, K., 2023. Robot-assisted soil apparent electrical conductivity measurements in orchards. arXiv preprint494

arXiv:2309.05128 .495

Chen, J.M., Liu, J., 2020. Evolution of evapotranspiration models using thermal and shortwave remote sensing data. Remote Sensing of Environment496

237, 111594.497

Cheng, T., Rivard, B., Sánchez-Azofeifa, A.G., Féret, J.B., Jacquemoud, S., Ustin, S.L., 2012. Predicting leaf gravimetric water content from foliar498

reflectance across a range of plant species using continuous wavelet analysis. Journal of plant physiology 169, 1134–1142.499

Chuvieco, E., 2016. Fundamentals of satellite remote sensing: An environmental approach. CRC press.500

Cole, J., Pagay, V., 2015. Usefulness of early morning stem water potential as a sensitive indicator of water status of deficit-irrigated grapevines501

(vitis vinifera l.). Scientia Horticulturae 191, 10–14.502

Corbin, A.E., 2015. Towards estimating leaf water content through hyperspectral data. Master’s thesis. University of Twente.503

Crawford, K.E., 2014. Remote Sensing of Almond and Walnut Tree Canopy Temperatures Using An Inexpensive Infrared Sensor on A Small504

Unmanned Aerial Vehicle. University of California, Davis.505

Mucchiani et al.: Preprint submitted to Elsevier Page 24 of 30



Automation and Artificial Intelligence Integration in Sample-Destructive Methods to Determine Plant Water Status

Dainese, R., de Cfl Lopes, B., Tedeschi, G., Lamarque, L.J., Delzon, S., Fourcaud, T., Tarantino, A., 2022. Cross-validation of the high-capacity506

tensiometer and thermocouple psychrometer for continuous monitoring of xylem water potential in saplings. Journal of Experimental Botany507

73, 400–412.508

Damm, A., Paul-Limoges, E., Haghighi, E., Simmer, C., Morsdorf, F., Schneider, F.D., van der Tol, C., Migliavacca, M., Rascher, U., 2018. Remote509

sensing of plant-water relations: An overview and future perspectives. Journal of plant physiology 227, 3–19.510

Dean, P., Valavanis, A., Keeley, J., Bertling, K., Lim, Y., Alhathlool, R., Burnett, A., Li, L., Khanna, S., Indjin, D., et al., 2014. Terahertz imaging511

using quantum cascade lasers—a review of systems and applications. Journal of Physics D: Applied Physics 47, 374008.512

Dechemi, A., Chatziparaschis, D., Chen, J., Campbell, M., Shamshirgaran, A., Mucchiani, C., Roy-Chowdhury, A., Carpin, S., Karydis, K., 2023.513

Robotic assessment of a crop’s need for watering: Automating a time-consuming task to support sustainable agriculture. IEEE Robotics &514

Automation Magazine 30, 52–67.515

Di Girolamo, F., Toncelli, A., Tredicucci, A., Bitossi, M., Paoletti, R., 2020. Leaf water diffusion dynamics in vivo through a sub-terahertz portable516

imaging system, in: Journal of Physics: Conference Series, IOP Publishing. p. 012002.517

Dong, X., Peng, B., Sieckenius, S., Raman, R., Conley, M.M., Leskovar, D.I., 2021. Leaf water potential of field crops estimated using ndvi in518

ground-based remote sensing—opportunities to increase prediction precision. PeerJ 9, e12005.519

Easterday, K., Kislik, C., Dawson, T.E., Hogan, S., Kelly, M., 2019. Remotely sensed water limitation in vegetation: Insights from an experiment520

with unmanned aerial vehicles (uavs). Remote Sensing 11, 1853.521

Egea, G., Padilla-Díaz, C.M., Martinez-Guanter, J., Fernández, J.E., Pérez-Ruiz, M., 2017. Assessing a crop water stress index derived from aerial522

thermal imaging and infrared thermometry in super-high density olive orchards. Agricultural Water Management 187, 210–221.523

Ezenne, G., Jupp, L., Mantel, S., Tanner, J., 2019. Current and potential capabilities of uas for crop water productivity in precision agriculture.524

Agricultural Water Management 218, 158–164.525

Feng, H., Chen, C., Dong, H., Wang, J., Meng, Q., 2013. Modified shortwave infrared perpendicular water stress index: a farmland water stress526

monitoring method. Journal of Applied Meteorology and Climatology 52, 2024–2032.527

Fernández, J., Rodriguez-Dominguez, C., Perez-Martin, A., Zimmermann, U., Rüger, S., Martín-Palomo, M., Torres-Ruiz, J.M., Cuevas, M., Sann,528

C., Ehrenberger, W., et al., 2011. Online-monitoring of tree water stress in a hedgerow olive orchard using the leaf patch clamp pressure probe.529

Agricultural Water Management 100, 25–35.530

Forster, M.A., 2017. How reliable are heat pulse velocity methods for estimating tree transpiration? Forests 8, 350.531

Friedman, S.P., 2005. Soil properties influencing apparent electrical conductivity: a review. Computers and electronics in agriculture 46, 45–70.532

Fullana-Pericàs, M., Conesa, M.À., Gago, J., Ribas-Carbó, M., Galmés, J., 2022. High-throughput phenotyping of a large tomato collection under533

water deficit: Combining uavs’ remote sensing with conventional leaf-level physiologic and agronomic measurements. Agricultural Water534

Management 260, 107283.535

Gao, C., Zhao, Y., Zhao, Y., 2019. A novel sensor for noninvasive detection of in situ stem water content based on standing wave ratio. Journal of536

Sensors 2019.537

García-Tejero, I., Durán-Zuazo, V.H., Arriaga, J., Hernández, A., Vélez, L.M., Muriel-Fernández, J.L., 2012. Approach to assess infrared thermal538

imaging of almond trees under water-stress conditions. Fruits 67, 463–474.539

Gaudin, R., Gary, C., Wéry, J., Coulon, V., 2012. Monitoring of irrigation in a mediterranean vineyard: water balance simulation versus pressure540

chamber measurement, in: VII International Symposium on Irrigation of Horticultural Crops 1038, pp. 295–302.541

Gholipour, Y., Erra-Balsells, R., Nonami, H., 2012. In situ pressure probe sampling and uv-maldi ms for profiling metabolites in living single cells.542

Mass Spectrometry 1, A0003–A0003.543

Mucchiani et al.: Preprint submitted to Elsevier Page 25 of 30



Automation and Artificial Intelligence Integration in Sample-Destructive Methods to Determine Plant Water Status

Gips, E., Gutman, P., Linker, R., Netzer, Y., 2020. Model predictive control of stem water potential in grapevines: A simulation study. IFAC-544

PapersOnLine 53, 15847–15851.545

Gupta, S., Kumar, M., Priyadarshini, R., 2019. Electrical conductivity sensing for precision agriculture: A review. Harmony Search and Nature546

Inspired Optimization Algorithms , 647–659.547

Han, Y., Tarakey, B.A., Hong, S.J., Kim, S.Y., Kim, E., Lee, C.H., Kim, G., 2021. Calibration and image processing of aerial thermal image for uav548

application in crop water stress estimation. Journal of Sensors 2021.549

He, K.S., Bradley, B.A., Cord, A.F., Rocchini, D., Tuanmu, M.N., Schmidtlein, S., Turner, W., Wegmann, M., Pettorelli, N., 2015. Will remote550

sensing shape the next generation of species distribution models? Remote Sensing in Ecology and Conservation 1, 4–18.551

Helman, D., Bahat, I., Netzer, Y., Ben-Gal, A., Alchanatis, V., Peeters, A., Cohen, Y., 2018. Using time series of high-resolution planet satellite552

images to monitor grapevine stem water potential in commercial vineyards. Remote Sensing 10, 1615.553

Hochberg, U., 2020. Facilitating protocols while maintaining accuracy in grapevine pressure chamber measurements-comments on levin 2019.554

Agricultural Water Management 227, 105836.555

Inoue, Y., 2020. Satellite-and drone-based remote sensing of crops and soils for smart farming–a review. Soil Science and Plant Nutrition 66,556

798–810.557

Intrigliolo, D.S., Castel, J.R., 2010. Response of grapevine cv.‘tempranillo’to timing and amount of irrigation: water relations, vine growth, yield558

and berry and wine composition. Irrigation Science 28, 113–125.559

Ishimwe, R., Abutaleb, K., Ahmed, F., et al., 2014. Applications of thermal imaging in agriculture—a review. Advances in remote Sensing 3, 128.560

Jain, P., Liu, W., Zhu, S., Chang, C.Y.Y., Melkonian, J., Rockwell, F.E., Pauli, D., Sun, Y., Zipfel, W.R., Holbrook, N.M., et al., 2021. A minimally561

disruptive method for measuring water potential in planta using hydrogel nanoreporters. Proceedings of the National Academy of Sciences 118,562

e2008276118.563

Jamshidi, S., Zand-Parsa, S., Kamgar-Haghighi, A.A., Shahsavar, A.R., Niyogi, D., 2020. Evapotranspiration, crop coefficients, and physiological564

responses of citrus trees in semi-arid climatic conditions. Agricultural Water Management 227, 105838.565

Jones, H.G., 2007. Monitoring plant and soil water status: established and novel methods revisited and their relevance to studies of drought tolerance.566

Journal of experimental botany 58, 119–130.567

Kan, X., Teng, H., Karydis, K., 2019. Multi-robot field exploration in hex-decomposed environments for dubins vehicles, in: International568

Conference on Robotics and Biomimetics (ROBIO), IEEE. pp. 449–455.569

Kan, X., Teng, H., Karydis, K., 2020. Online exploration and coverage planning in unknown obstacle-cluttered environments. IEEE Robotics and570

Automation Letters 5, 5969–5976.571

Kan, X., Thayer, T.C., Carpin, S., Karydis, K., 2021. Task planning on stochastic aisle graphs for precision agriculture. IEEE Robotics and572

Automation Letters 6, 3287–3294.573

Khanal, S., Fulton, J., Shearer, S., 2017. An overview of current and potential applications of thermal remote sensing in precision agriculture.574

Computers and Electronics in Agriculture 139, 22–32.575

Knipper, K.R., Kustas, W.P., Anderson, M.C., Alfieri, J.G., Prueger, J.H., Hain, C.R., Gao, F., Yang, Y., McKee, L.G., Nieto, H., et al., 2019.576

Evapotranspiration estimates derived using thermal-based satellite remote sensing and data fusion for irrigation management in california577

vineyards. Irrigation Science 37, 431–449.578

Kong, Q., Chen, H., Mo, Y.l., Song, G., 2017. Real-time monitoring of water content in sandy soil using shear mode piezoceramic transducers and579

active sensing—a feasibility study. Sensors 17, 2395.580

Mucchiani et al.: Preprint submitted to Elsevier Page 26 of 30



Automation and Artificial Intelligence Integration in Sample-Destructive Methods to Determine Plant Water Status

Konings, A.G., Rao, K., Steele-Dunne, S.C., 2019. Macro to micro: microwave remote sensing of plant water content for physiology and ecology.581

New Phytologist 223, 1166–1172.582

Krishna, G., Sahoo, R.N., Singh, P., Bajpai, V., Patra, H., Kumar, S., Dandapani, R., Gupta, V.K., Viswanathan, C., Ahmad, T., et al., 2019.583

Comparison of various modelling approaches for water deficit stress monitoring in rice crop through hyperspectral remote sensing. Agricultural584

water management 213, 231–244.585

Kumar, K.M., Lokesh, V.G., Daamodaran, S., Indhirajeeth, S., Christo, M.D., 2019. Development of low cost pressure chamber instrument for leaf586

water potential. International Journal of Research in Engineering, Science and Management 2, 774–776.587

Kumar, R., Yadav, S., Singh, V., Kumar, M., Kumar, M., 2020. Hydrogel and its effect on soil moisture status and plant growth: A review. Journal588

of Pharmacognosy and Phytochemistry 9, 1746–1753.589

Levin, A.D., 2019. Re-evaluating pressure chamber methods of water status determination in field-grown grapevine (vitis spp.). Agricultural water590

management 221, 422–429.591

Li, R., Lu, Y., Peters, J.M., Choat, B., Lee, A.J., 2020. Non-invasive measurement of leaf water content and pressure–volume curves using terahertz592

radiation. Scientific Reports 10, 1–14.593

Liu, N., Deng, Z., Wang, H., Luo, Z., Gutiérrez-Jurado, H.A., He, X., Guan, H., 2020. Thermal remote sensing of plant water stress in natural594

ecosystems. Forest Ecology and Management 476, 118433.595

López-Bernal, Á., Testi, L., Villalobos, F.J., 2012. Using the compensated heat pulse method to monitor trends in stem water content in standing596

trees. Tree physiology 32, 1420–1429.597

Maes, W., Steppe, K., 2012. Estimating evapotranspiration and drought stress with ground-based thermal remote sensing in agriculture: a review.598

Journal of experimental botany 63, 4671–4712.599

Maes, W.H., Steppe, K., 2019. Perspectives for remote sensing with unmanned aerial vehicles in precision agriculture. Trends in plant science 24,600

152–164.601

Mahmoud, S.H., Gan, T.Y., 2019. Irrigation water management in arid regions of middle east: Assessing spatio-temporal variation of actual602

evapotranspiration through remote sensing techniques and meteorological data. Agricultural Water Management 212, 35–47.603

Matese, A., Baraldi, R., Berton, A., Cesaraccio, C., Di Gennaro, S.F., Duce, P., Facini, O., Mameli, M.G., Piga, A., Zaldei, A., 2018. Estimation of604

water stress in grapevines using proximal and remote sensing methods. Remote Sensing 10, 114.605

Matheny, A.M., Garrity, S.R., Bohrer, G., 2017. The calibration and use of capacitance sensors to monitor stem water content in trees. JoVE (Journal606

of Visualized Experiments) , e57062.607

Meivel, S., Maheswari, S., 2021. Remote sensing analysis of agricultural drone. Journal of the Indian Society of Remote Sensing 49, 689–701.608

Memmi, H., Couceiro, J.F., Gijón, C., Pérez-López, D., 2016. Impacts of water stress, environment and rootstock on the diurnal behaviour of stem609

water potential and leaf conductance in pistachio (pistacia vera l.). Spanish journal of agricultural research 14, 0804–0804.610

Mendes, W.R., Araújo, F.M.U., Dutta, R., Heeren, D.M., 2019. Fuzzy control system for variable rate irrigation using remote sensing. Expert611

systems with applications 124, 13–24.612

Milliron, L.K., Olivos, A., Saa, S., Sanden, B.L., Shackel, K.A., 2018. Dormant stem water potential responds to laboratory manipulation of613

hydration as well as contrasting rainfall field conditions in deciduous tree crops. Biosystems Engineering 165, 2–9.614

Mirás-Avalos, J.M., Pérez-Sarmiento, F., Alcobendas, R., Alarcón, J.J., Mounzer, O., Nicolás, E., 2016. Using midday stem water potential for615

scheduling deficit irrigation in mid–late maturing peach trees under mediterranean conditions. Irrigation Science 34, 161–173.616

Moreno-Martínez, Á., Camps-Valls, G., Kattge, J., Robinson, N., Reichstein, M., van Bodegom, P., Kramer, K., Cornelissen, J.H.C., Reich, P., Bahn,617

M., et al., 2018. A methodology to derive global maps of leaf traits using remote sensing and climate data. Remote sensing of environment 218,618

Mucchiani et al.: Preprint submitted to Elsevier Page 27 of 30



Automation and Artificial Intelligence Integration in Sample-Destructive Methods to Determine Plant Water Status

69–88.619

Moriana, A., Pérez-López, D., Prieto, M., Ramírez-Santa-Pau, M., Pérez-Rodriguez, J., 2012. Midday stem water potential as a useful tool for620

estimating irrigation requirements in olive trees. Agricultural Water Management 112, 43–54.621

Mulla, D.J., 2013. Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps. Biosystems622

engineering 114, 358–371.623

Mullan, D., Pietragalla, J., 2012. Leaf relative water content. Physiological breeding II: A field guide to wheat phenotyping , 25–27.624

Na, S.i., Ahn, H.y., Park, C.w., Hong, S.y., So, K.h., Lee, K.d., 2020. Crop water stress index (cwsi) mapping for evaluation of abnormal growth of625

spring chinese cabbage using drone-based thermal infrared image. Korean Journal of Remote Sensing 36, 667–677.626

Pagay, V., Santiago, M., Sessoms, D.A., Huber, E.J., Vincent, O., Pharkya, A., Corso, T.N., Lakso, A.N., Stroock, A.D., 2014. A microtensiometer627

capable of measuring water potentials below- 10 mpa. Lab on a Chip 14, 2806–2817.628

Pan, S., Qin, B., Bi, L., Zheng, J., Yang, R., Yang, X., Li, Y., Li, Z., 2021. An unsupervised learning method for the detection of genetically modified629

crops based on terahertz spectral data analysis. Security and Communication Networks 2021, 1–7.630

Parihar, P., Singh, S., Singh, R., Singh, V.P., Prasad, S.M., 2015. Effect of salinity stress on plants and its tolerance strategies: a review. Environmental631

science and pollution research 22, 4056–4075.632

Paudel, I., Naor, A., Gal, Y., Cohen, S., 2015. Simulating nectarine tree transpiration and dynamic water storage from responses of leaf conductance633

to light and sap flow to stem water potential and vapor pressure deficit. Tree physiology 35, 425–438.634

Qi, Y., Dennison, P.E., Spencer, J., Riaño, D., 2012. Monitoring live fuel moisture using soil moisture and remote sensing proxies. Fire Ecology 8,635

71–87.636

Ramoelo, A., Dzikiti, S., Van Deventer, H., Maherry, A., Cho, M.A., Gush, M., 2015. Potential to monitor plant stress using remote sensing tools.637

Journal of Arid Environments 113, 134–144.638

Razavipour, S.G., 2013. Design, analysis, and characterization of indirectly-pumped terahertz quantum cascade lasers. Electrical and Computer639

Engineering Theses .640

Rodriguez-Dominguez, C.M., Ehrenberger, W., Sann, C., Rüger, S., Sukhorukov, V., Martín-Palomo, M., Diaz-Espejo, A., Cuevas, M., Torres-Ruiz,641

J.M., Perez-Martin, A., et al., 2012. Concomitant measurements of stem sap flow and leaf turgor pressure in olive trees using the leaf patch clamp642

pressure probe. Agricultural Water Management 114, 50–58.643

Rodriguez-Dominguez, C.M., Forner, A., Martorell, S., Choat, B., Lopez, R., Peters, J.M., Pfautsch, S., Mayr, S., Carins-Murphy, M.R., McAdam,644

S.A., et al., 2022. Leaf water potential measurements using the pressure chamber: Synthetic testing of assumptions towards best practices for645

precision and accuracy. Plant, Cell & Environment 45, 2037–2061.646

Rodriguez-Dominguez, C.M., Hernandez-Santana, V., Buckley, T.N., Fernández, J., Díaz-Espejo, A., 2019. Sensitivity of olive leaf turgor to air647

vapour pressure deficit correlates with diurnal maximum stomatal conductance. Agricultural and Forest Meteorology 272, 156–165.648

Romero-Trigueros, C., Nortes, P.A., Alarcón, J.J., Hunink, J.E., Parra, M., Contreras, S., Droogers, P., Nicolás, E., 2017. Effects of saline reclaimed649

waters and deficit irrigation on citrus physiology assessed by uav remote sensing. Agricultural Water Management 183, 60–69.650

Rossello, N.B., Carpio, R.F., Gasparri, A., Garone, E., 2019. A novel observer-based architecture for water management in large-scale (hazelnut)651

orchards. IFAC-PapersOnLine 52, 62–69.652

Rüger, S., Ehrenberger, W., Zimmermann, U., Ben-Gal, A., Agam, N., Kool, D., et al., 2011. The leaf patch clamp pressure probe: a new tool for653

irrigation scheduling and deeper insight into olive drought stress physiology. Acta horticulturae , 223.654

Sadaf, R., Mahar, G.A., Younes, I., 2019. Appraisal of ground water potential through remote sensing in river basin, pakistan. International Journal655

of Economic and Environmental Geology , 25–32.656

Mucchiani et al.: Preprint submitted to Elsevier Page 28 of 30



Automation and Artificial Intelligence Integration in Sample-Destructive Methods to Determine Plant Water Status

Safdar, H., Amin, A., Shafiq, Y., Ali, A., Yasin, R., Shoukat, A., Hussan, M.U., Sarwar, M.I., 2019. A review: Impact of salinity on plant growth.657

Nat. Sci 17, 34–40.658

Sancho-Knapik, D., Gómez Álvarez-Arenas, T., Peguero-Pina, J.J., Gil-Pelegrín, E., 2010. Air-coupled broadband ultrasonic spectroscopy as a new659

non-invasive and non-contact method for the determination of leaf water status. Journal of experimental botany 61, 1385–1391.660

Santesteban, L., Miranda, C., Marín, D., Sesma, B., Intrigliolo, D., Mirás-Avalos, J., Escalona, J., Montoro, A., de Herralde, F., Baeza, P., et al.,661

2019. Discrimination ability of leaf and stem water potential at different times of the day through a meta-analysis in grapevine (vitis vinifera l.).662

Agricultural Water Management 221, 202–210.663

Santos, L.C., dos Santos, F.N., Morais, R., Duarte, C., 2021. Potential non-invasive technique for accessing plant water contents using a radar664

system. Agronomy 11, 279.665

Scholander, P.F., Hammel, H.T., Hemmingsen, E.A., Bradstreet, E.D., 1964. Hydrostatic pressure and osmotic potential in leaves of mangroves and666

some other plants. Proceedings of the National Academy of Sciences of the United States of America 52, 119.667

Shang, X., Chisholm, L.A., 2013. Classification of australian native forest species using hyperspectral remote sensing and machine-learning668

classification algorithms. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 7, 2481–2489.669

Shchepetilnikov, A.V., Zarezin, A.M., Muravev, V.M., Gusikhin, P.A., Kukushkin, I.V., 2020. Quantitative analysis of water content and distribution670

in plants using terahertz imaging. Optical Engineering 59, 061617–061617.671

Sheffield, J., Wood, E.F., Pan, M., Beck, H., Coccia, G., Serrat-Capdevila, A., Verbist, K., 2018. Satellite remote sensing for water resources672

management: Potential for supporting sustainable development in data-poor regions. Water Resources Research 54, 9724–9758.673

Sibanda, M., Mutanga, O., Chimonyo, V.G., Clulow, A.D., Shoko, C., Mazvimavi, D., Dube, T., Mabhaudhi, T., 2021. Application of drone674

technologies in surface water resources monitoring and assessment: A systematic review of progress, challenges, and opportunities in the global675

south. Drones 5, 84.676

Song, Z., Yan, S., Zang, Z., Fu, Y., Wei, D., Cui, H.L., Lai, P., 2018. Temporal and spatial variability of water status in plant leaves by terahertz677

imaging. IEEE Transactions on Terahertz Science and Technology 8, 520–527.678

Stagakis, S., González-Dugo, V., Cid, P., Guillén-Climent, M.L., Zarco-Tejada, P.J., 2012. Monitoring water stress and fruit quality in an679

orange orchard under regulated deficit irrigation using narrow-band structural and physiological remote sensing indices. ISPRS Journal of680

Photogrammetry and Remote Sensing 71, 47–61.681

Sui, X.Y., Zhang, X., Wang, Y., Li, S.K., 2013. Estimation of leaf thickness with remote sensing, in: Applied Mechanics and Materials, Trans Tech682

Publ. pp. 339–345.683

Suter, B., Triolo, R., Pernet, D., Dai, Z., Van Leeuwen, C., 2019. Modeling stem water potential by separating the effects of soil water availability684

and climatic conditions on water status in grapevine (vitis vinifera l.). Frontiers in Plant Science 10, 1485.685

Tan, Z.Y., Wan, W.J., Cao, J.C., 2020. Research progress in terahertz quantum-cascade lasers and quantum-well photodetectors. Chinese Physics686

B 29, 084212.687

Teng, H., Wang, Y., Song, X., Karydis, K., 2023. Multimodal dataset for localization, mapping and crop monitoring in citrus tree farms, in:688

International Symposium on Visual Computing, Springer Nature Switzerland Cham. pp. 571–582.689

Thenkabail, P.S., Lyon, J.G., 2016. Hyperspectral remote sensing of vegetation. CRC press.690

Toureiro, C., Serralheiro, R., Shahidian, S., Sousa, A., 2017. Irrigation management with remote sensing: Evaluating irrigation requirement for691

maize under mediterranean climate condition. Agricultural Water Management 184, 211–220.692

Vandegehuchte, M., 2013. Measuring sap flow and stem water content in trees: a critical analysis and development of a new heat pulse method693

(Sapflow+). Ph.D. thesis. Ghent University.694

Mucchiani et al.: Preprint submitted to Elsevier Page 29 of 30



Automation and Artificial Intelligence Integration in Sample-Destructive Methods to Determine Plant Water Status

Volkmar, K., Hu, Y., Steppuhn, H., 1998. Physiological responses of plants to salinity: a review. Canadian journal of plant science 78, 19–27.695

Williams, L.E., et al., 2012. Leaf water potentials of sunlit and/or shaded grapevine leaves are sensitive alternatives to stem water potential. J. Int.696

Sci. Vigne Vin 46, 207–219.697

Windt, C.W., Blümler, P., 2015. A portable nmr sensor to measure dynamic changes in the amount of water in living stems or fruit and its potential698

to measure sap flow. Tree physiology 35, 366–375.699

Wójtowicz, M., Wójtowicz, A., Piekarczyk, J., et al., 2016. Application of remote sensing methods in agriculture. Communications in Biometry700

and Crop Science 11, 31–50.701

Yang, G., Liu, J., Zhao, C., Li, Z., Huang, Y., Yu, H., Xu, B., Yang, X., Zhu, D., Zhang, X., et al., 2017. Unmanned aerial vehicle remote sensing702

for field-based crop phenotyping: current status and perspectives. Frontiers in plant science 8, 1111.703

Yazdi, M.N., Owen Jr, J.S., Lyon, S.W., White, S.A., 2021. Specialty crop retention reservoir performance and design considerations to secure704

quality water and mitigate non-point source runoff. Journal of Cleaner Production 321, 128925.705

Yebra, M., Van Dijk, A., Leuning, R., Huete, A., Guerschman, J.P., 2013. Evaluation of optical remote sensing to estimate actual evapotranspiration706

and canopy conductance. Remote Sensing of Environment 129, 250–261.707

Yousfi, S., Kellas, N., Saidi, L., Benlakehal, Z., Chaou, L., Siad, D., Herda, F., Karrou, M., Vergara, O., Gracia, A., et al., 2016. Comparative708

performance of remote sensing methods in assessing wheat performance under mediterranean conditions. Agricultural Water Management 164,709

137–147.710

Zahid, A., Dashtipour, K., Abbas, H.T., Mabrouk, I.B., Al-Hasan, M., Ren, A., Imran, M.A., Alomainy, A., Abbasi, Q.H., 2022. Machine learning711

enabled identification and real-time prediction of living plants’ stress using terahertz waves. Defence Technology 18, 1330–1339.712

Zahoor, S.A., Ahmad, S., Ahmad, A., Wajid, A., Khaliq, T., Mubeen, M., Hussain, S., Din, M.S.U., Amin, A., Awais, M., et al., 2019. Improving713

water use efficiency in agronomic crop production. Agronomic Crops: Volume 2: Management Practices , 13–29.714

Zhang, L., Zhang, H., Niu, Y., Han, W., 2019. Mapping maize water stress based on uav multispectral remote sensing. Remote Sensing 11, 605.715

Zimmermann, D., Reuss, R., Westhoff, M., Gessner, P., Bauer, W., Bamberg, E., Bentrup, F.W., Zimmermann, U., 2008. A novel, non-invasive,716

online-monitoring, versatile and easy plant-based probe for measuring leaf water status. Journal of experimental botany 59, 3157–3167.717

Zovko, M., Žibrat, U., Knapič, M., Kovačić, M.B., Romić, D., 2019. Hyperspectral remote sensing of grapevine drought stress. Precision agriculture718

20, 335–347.719

Mucchiani et al.: Preprint submitted to Elsevier Page 30 of 30


