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Accelerometry data enables scientists to extract personal digital features
useful in precision health decision making. Existing analytic methods often
begin with discretizing Physical Activity (PA) counts into activity categories
via fixed cutoffs; however, the cutoffs are validated under restricted settings
and cannot be generalized across studies. Here, we develop a data-driven
approach to overcome this bottleneck in the analysis of PA data, in which
we holistically summarize an individual’s PA profile using Occupation-Time
Curves that describe the percentage of time spent at or above a continuum
of activity levels. The resulting functional curve is informative to capture
time-course individual variability of PA. We investigate functional analytics
under an L regularization approach, which handles highly correlated micro-
activity windows that serve as predictors in a scalar-on-function regression
model. We develop a new one-step method that simultaneously conducts fu-
sion via change-point detection and parameter estimation through a new Lg
constraint formulation, which is evaluated via simulation experiments and a
data analysis assessing the influence of PA on biological aging.

1. Introduction.

1.1. Biological Aging and Epigenetic Age. Biological aging is a growing area of research
that seeks to understand the variation in how people age biologically, as opposed to chrono-
logically, or are affected by age-related diseases. Epigenetic age is a biological concept that
refers to the biological age of an individual, as determined by the epigenetic modifications
that occur on their DNA. The term "epigenetic" refers to modifications that occur on the
DNA molecules that do not change the actual DNA code sequence, but can alter the way
genes are expressed. This is an emerging field of research that has gained much attention in
recent years due to its potential to provide insight into the aging process and the development
of age-related diseases. Thus, epigenetic age can act as a useful biomarker of an individual’s
overall state of health and allow for personalized or preemptive health interventions (Marioni
et al., 2015). Various epigenetic age calculators consider different groups of DNA methyla-
tion (DNAm) alterations along different areas of the genome to deliver a predicted epigenetic
age, and are hosted online (Horvath, 2013); see Horvath (2013), among others.

While much of the research into epigenetic age has focused on adults, there is also inter-
est in studying epigenetic age in children. This is because epigenetic modifications can be
influenced by a range of environmental factors, including prenatal and early life experiences,
which may impact later-life health outcomes. As these childhood environmental and experi-
ential factors can be observed in changes in the the DNA methalome, they are thus reflected
in epigenetic age. Studies show that children and adolescents (age 0-18) undergo the fastest
and most dynamic rate of growth and DNAm changes (Wu et al., 2019; McEwen et al., 2020).
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As these childhood environmental and experiential factors can be observed in changes in the
the DNA methalome, they are thus reflected in epigenetic age. One study (Wiklund et al.,
2019) found that maternal smoking during pregnancy was associated with accelerated epige-
netic aging in offspring. In this study, data from five prospective birth cohorts were used to
examine the relationship between maternal smoking during pregnancy and DNA methylation
patterns in offspring, and children whose mothers smoked during pregnancy were found to
have their DNA methylation patterns consistent with accelerated epigenetic aging. Research
into epigenetic age in children has also shown that it may be a useful tool for predicting future
health outcomes. For example, Huang et al. (2019) found that epigenetic age acceleration in
adolescents was associated with risk of cardiovascular disease in middle-age.

By better understanding the relationship between epigenetic modifications and childhood
experiences, researchers may be able to develop interventions to prevent or mitigate the neg-
ative health effects of early life stressors. However, further research is needed to fully under-
stand the complex relationship between genetics, epigenetics, and environmental factors in
shaping health outcomes across the lifespan. An important investigation of scientific interest
is to assess the relationship between the experiential determinant of physical activity (PA)
in adolescence with biological aging. Research and conventiional wisdom suggest that in-
creased physical activity may slow epigenetic aging (Kankaanpéai et al., 2022; Quach et al.,
2017). By promoting physical activity in children, we may be able to improve not only their
current health outcomes but also their long-term health outcomes by slowing down the ag-
ing process. The focus of this paper is to investigate the association of epigenetic age with
objectively measured functional PA as captured by wearable devices.

1.2. Wearable Devices and Accelerometer Data. Wearable technologies use devices
worn over continuous time-periods to collect subjects’ personal data. Notably, these de-
vices can conduct automatic real-time data collection in high frequency and track physio-
logical variables and clinical symptoms outside of clinical environments. In providing this
high-frequency, personalized time-series data, wearable devices are promising technologies
to promote Smart Health care management and precision medicine. Additionally, the data
collection can be relatively cheap, convenient, and flexible in variable environments, which
increases their popularity in both research and personal use.

While their popularity and potential usefulness are growing quickly, the ability to effi-
ciently and effectively glean statistically-robust information from wearable devices is slower
to catch up. The data retrieved from these technologies present challenges in data analy-
sis, due to their inherent noisy nature, the non-generalizability of methodologies, and high
computational requirements. These challenges motivate the need for statistical innovations
to enable the wide-scale use of such wearable Smart Health devices in research related to
improving quality of life.

Accelerometers are a type of wearable device that measures continuous PA and move-
ment data, providing real-time, large-scale, personalized information on an individual’s PA
patterns. They capture raw gravitational acceleration data that are then processed into activ-
ity “counts” over specific “epochs”, or lengths of time (Chen and Bassett, 2005). The count
levels reflect the relative intensity of activity, with higher values indicating more intense
exertion. For tri-axial accelerometers, the three-dimensional count information at each time
point is often summarized into a one-dimensional summary value of Vector Magnitude (VM),
with VM = Vaxis1? + axis22 + axis32. Figure 1 depicts continuous time-series VM count
data for an individual from our motivating data detailed in Section 2. A typical analysis
may then categorize these count values into activity levels of interest, such as Sedentary,
Light, and Moderate-to-Vigorous Activity (MVPA), based on certain pre-specified activity
thresholds, and assess the association between amount of time spent in each activity level
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24 Hour Accelerometer Data
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Figure 1: Accelerometer Data for an individual over a 24 hour period. The horizontal lines
indicate activity categorization cutoffs based on Chandler Vector Magnitude cutoffs for 1-
minute epochs (Chandler et al., 2016). These cutoffs are pre-determined by in-lab supervised
research and then applied to a free-living subject.

and a health outcome of interest (Freedson, Pober and Janz, 2005; Crouter, Flynn and Bas-
sett, 2015; Chandler et al., 2016). As these types of analyses are dependent on pre-specified
threshold values, which in turn need to be validated for each specific device type (e.g. Fitbit,
Apple Watch) and underlying population characteristics (e.g. age, sex), they suffer from a
lack of generalizability and flexibility. Such shortcomings make them impractical within a
Smart Health setting. Thus, it is beneficial to conduct feature extraction from PA accelerom-
eter data using a more generalizabale approach to relax or even eliminate the dependence on
pre-fixed cutoffs.

1.3. Wearable Devices and Functional Data Analysis. In recent years, Functional Data
Analysis (FDA) techniques have emerged as a powerful tool to analyze and interpret these
data streams. By treating PA data as functional data, researchers can explore the dynamics
and patterns of movement over time, gaining insights into activity profiles and fluctuations
(Ramsay, 2004; Goldsmith et al., 2012). This deeper understanding of activity patterns can
help identify optimal exercise regimes, track changes in health-related behaviors, and detect
early signs of health issues. Integrating PA, mobile health, and functional data analysis opens
up new avenues for promoting healthier lifestyles, facilitating personalized interventions, and
advancing our understanding of the complex relationship between PA and health.

By analyzing functional data collected from wearable devices, researchers can gain valu-
able insights into how an individual’s physiological patterns affect health outcomes, monitor
health conditions, track changes over time, and make informed decisions regarding lifestyle,
fitness, and healthcare management. At a high level, characteristics of functional data in-
clude being (i) high-dimensional (ii) temporal or structural in nature (iii) recorded over a
continuous domain (Ramsay, 2005). Compared to traditional statistics, where data is typi-
cally represented as a set of discrete observations, functional data considers the function as a
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whole as the primary unit of analysis. In our case, the PA serves as a functional predictor in
the analysis. Considering the data in this way enables the extraction of valuable information
regarding the overall shape, trends, and patterns present in the data (Chen and Miiller, 2012).
As a relatively new and growing field, comprehensive reviews of Functional Data and their
uses are provided by Ramsay and Silverman (2005), Ferraty and Vieu (2006), and Horvéth
and Kokoszka (2012), among others.

1.4. Study Objectives. This need of data-adaptive cutoffs motivates the statistical objec-
tive of this paper: to develop a generalized, functional-focused approach to analyze PA data
with the aim to free the dependence on subjective choices of pre-determined PA categoriza-
tions. Our new approach will allow the data to adapatively determine the change-points and
different PA ranges of interest together with our primary task of assessing the association of
detected PA ranges with health outcomes of interest. Of note, by a more “generalizable” ap-
proach, we refer to methodological and algorithmic generalizability in terms of the ability to
adaptively determine cutpoints when analyzing data from various devices. In this way, practi-
tioners will not have to rely on some pre-established cutpoints, which need to be validated for
every new device/device placement/population of interest. Here we consider actigraphy data
under the purview of Occupation Time Curves (OTCs). This method of analyzing activity
data involves a summary curve which describes the proportion of time an individual spends
at or above successive activity levels (Bogachev and Ratanov, 2011). Section 3 introduces
these OTCs as functional predictors in a Functional Data Analysis (FDA) paradigm.

We consider a supervised learning framework of scalar-on-function models in which we
develop a simultaneous operation of estimation and changepoint detection (or clustering).
The scalar-on-function regression allows us to investigate functional associations between
health outcomes, specifically epigenetic age, and OTCs adjusted by confounding factors. In
particular, we propose an Lg regularization approach to determine cutoff points adaptively.
Until relatively recently, L regularization and discrete optimization has been less of a focus
verses the Li-related continuous optimization approaches as it was deemed computationally
impractical. However, with recent advances in algorithmic and numeric capabilities, discrete
optimization is a feasible and powerful tool (Bertsimas, King and Mazumder, 2016). We im-
plement the modern optimization methods to functional analysis, by means of Mixed Integer
Optimization (MIO), to accurately detect critical activity windows of interest, conducting
regularization in a supervised learning framework. This MIO-based optimization is demon-
strated to be computationally feasible and scalable to practically-sized problems of interest.

The organization of this paper is as follows. We introduce the motivating cohort study in
Section 2. Section 3 concerns the functional OTC variables, while Section 4 compares exist-
ing and proposed model formulations. Section 5 introduces MIO and presents its formulation
for our scalar-on-function statistical analysis, with a discussion of theoretical guarantees in
Section 6. In Section 7 we explore numeric experiments illustrating the capabilities of this
approach, while Section 8 provides a detailed analysis with our motivating data, exploring
the functional associations between OTCs and epigenetic age. Lastly, we discuss the mer-
its, limitations, and potential extensions of this discrete optimization approach in Section 9.
Some additional numerical results are included in the Supplementary Material.

2. Motivating Cohort Study. This work is motivated by the Early Life Exposures in
Mexico to Environmental Toxicants (ELEMENT) longitudinal birth cohort study involving
mother/child dyads in Mexico City. Refer to a review paper by Perng et al. (2019) for de-
tails. Briefly, in 2015 researchers collected actigraphy data from 549 children (258 boys and
281 girls) with mean (SD) ages of 13.9 (2.2), ranging from 9 to 18 years old. The partici-
pants were directed to wear a wrist-worn, tri-axial Actigraph GT3X+ (Actigraph LLC) for
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seven consecutive days with no interruptions. As this Actigraph device is water-resistant and
can be removed only when physically cut off, the study warranted high compliance and lim-
ited non-wear time during data collection. While the utilized Actigraph GT3X+ collects 30
measurements per second (30 Hz), this raw tri-axial high-frequency time-series data was pro-
cessed and summarized into epochs of various lengths (e.g. 30 sec, 1 min). In this paper, we
focus on analyzing activity counts over one-minute epochs, which is widely used in practice.

In addition to PA, the ELEMENT cohort also collected DNA methylation data from EPIC
array (850K) that was used to calculated epigenetic age. In our study, we also consider covari-
ates, including chronological age, sex, lead exposure (Wu et al., 2019), and pubertal status
measured by a five-category ordinal variable of Tanner staging, and others.

3. Occupation Time Curves: A Functional Predictor. The Occupation Time Curve
(OTC) (Bogachev and Ratanov, 2011) provides a useful way to summarize PA patterns and
represent data as an informative functional curve. OTCs summarize high-frequency time-
series accelerometer data by representing the empirical proportion of time an individual
spends at successive activity count levels. For a vector of VM time-series data V M (t), an
OTC can be calculated over a domain of count values C by: OT'C(c) =P(VM(t) > ¢) for
¢ € C, where c represents the sequential moving activity levels, and P denotes an empirical
probability measure defined by the proportion: dtqf)zsltzsgr%jfl ZfMV%{Z(f)}.

Figure 2a illustrates the construction of an OTC, with the successive increase in threshold ¢
shown on the left panel, and the respective P(V M () > ¢) shown in the resulting continuous
curve on the right panel. The shape of the OTCs reflect the relative amounts of time an
individual spends in different activity levels. For an inactive person, who spends the majority
of time in low-activity counts, their OTC curve would decay quickly, representing a high
proportion of time in low activity levels and a small proportion of time in high activity levels.
However, the OTC of an individual with higher proportions of time spent in high activity
levels would appear more linear in nature at its start, before eventually flattening. These
differences are illustrated in Figure 2b. Thus, the OTCs reflect inherent PA characteristics of
each individual.

These OTCs provide a more flexible and generalizable PA summary variable than using
the standard “minutes per activity category” from continuous accelerometer data as shown
in Figure 1. In order to ensure comparable summary measures among subjects when using
the previously described standard approach, the data from each subject should reflect non-
missing continuous data over the same length of time. As subjects generally have different
lengths of “awake” (i.e. non-sleep) time, as well as different patterns of non-wear time (i.e.
missing data), these requirements are not often met in practice. In contrast, OTCs scale the
PA measures to the duration of time under consideration, providing more apt comparison
between individuals who have different lengths of time of continuous accelerometer data.

Utilizing the functional OTC curve also requires a different apporach to estimating the
parameters of effect between PA and specific health outcomes of interest. While the standard
analysis approach illustrated in Figure 1 incorporates fixed coefficients relating Total Minutes
in each pre-fixed activity window, the OTC requires a non-parametric coefficient. We model
the OTC as a functional covariate in a scalar-on-function regression model (described further
in Section 4) in which the goal is to estimate the non-constant 3 parameter as a function of
activity count, and more specifically as a step-function. For example, Figure 3 illustrates a
continuous [ estimation as a step-function of activity count, which reflects specific activity
windows in the OTC. This functional 5 suggests that the proportion of time spent in the three
different segments of the OTC have different impact on the health outcome of interest. We
will develop this model formulation in Section 4.
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Figure 2: (a) An illustration of the construction of an OTC from a time-series of VM counts.
The left panel represents accelerometer data, with a rising bar of “count” cutoff indicated by
the horizontal lines with varying point-shapes. The corresponding proportion of time spent
at or above that level of activity is indicated in the right panel by the corresponding point
shape. The continuous curve is the realized OTC for this individual. (b) Comparison of OTC
shapes for More Active vs Less Active individuals, with VM count summarized over 1-
minute epochs varying over 0 to 30000. The distinctive shapes of the OTCs represent the
subject’s activity pattern. For example, curves for less active people decay quickly in the
beginning, signifying that a small percentage of their time is spent in even mid-active regions.

4. Model Formulations. There are many Functional Data Analysis (FDA) techniques
that can be used to analyze various aspects of these functional data sets. Some analytical
methods within this framework include: functional regression (Ramsay, 2005; Reiss et al.,
2017), which can be used to model the relationship between functional data and other vari-
ables; functional principal component analysis (FPCA) (Ramsay, 2004, 2005; Goldsmith,
Zipunnikov and Schrack, 2015; Yao, Miiller and Wang, 2005; Nwanaji-Enwerem et al., 2021;
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Figure 3: Left panel: Two realized OTCs with vertical dashed lines representing the cutoffs
for activity window ranges of interest. Right panel: Example of a non-constant functional
[5— parameter as a step-function to estimate the association of PA in selected activity-count
windows with a health outcome of interest

Chen and Miiller, 2012), which can help in dimension reduction and identifying dominant
patterns variation; and functional classification and clustering (Heinzl and Tutz, 2014), which
involve grouping functional data based on measures of similarity or dissimilarity. This paper
will focus on functional linear regression techniques with functional predictors. These tech-
niques extend the concept of linear regression to functional predictors and responses. More
specifically, it allows one to model the relationship between functional variables, such as pre-
dicting a response curve based on a set of predictor curves. Here, we will focus on a subset of
functional linear regression, deemed scalar-on-function regression, in which the relationship
between scalar outcomes and functional predictors is assessed.

4.1. Scalar-on-Function Analysis with OTC Functional Predictor. Motivated by the in-
herent variability of the OTCs, it is natural to analyze the features under the auspices of
FDA, considering the OTCs as a functional covariate with a varying association on a health
outcome of interest. The goal of such an analysis is to understand the functional association
between OTC and a health outcome, particularly identifying critical changepoints and critical
activity windows. For a certain scalar outcome Y, the standard scalar-on-function model is
expressed as:

(1) Y:/H(C)X(c) de+ZTa + e,
c

where Y € R"*!; X(c) is the functional OTC defined on C C R; Z is a g-dimensional
vector of confounders with corresponding parameter vector o; € is the vector of error term
with mean 0 and variance o2.;

The goal of a scalar-on-function model as defined above is to estimate the functional pa-
rameter 0(c). In practice, researchers are typically interested in estimating a smooth curve
as functional parameter 0(c). In these cases, a popular choice is to estimate 6(c) via basis
expansions, such as B-splines, natural cubic splines, and tensors, among others (Goldsmith,
Zipunnikov and Schrack, 2015; Goldsmith et al., 2012). In this case, however, our goal is to
discretize the continuous functional parameter estimate 6(c) as a piece-wise function with
change points, thereby effectively defining windows of PA levels by fusing the 6(c) of adja-
cent count ranges with similar effects on the outcome. In other words, for a given K number
of PA windows (e.g. K = 3), we aim to estimate both the change points cy,--- ,cx—1 and
step-function parameter values simultaneously. In this way, we reparamaterize the functional
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parameter 6(c) into a step-function parameter represented with f;,- - , Bk as the respective
coefficients for activity windows [0, ¢1], (1 + 1,¢2], -+, (CK—1, Cmaz|- Here, ¢pq, denoted
the maximum activity count considered in the analysis. Thus, the changepoints impose an
abrupt change in the functional coefficient of physical activity, which influences the mean
function of the outcome. Such categorization in the stepwise function is reflective of the
fact that not all physical activity ranges nor every small PA changes would impact health
outcomes; rather, critical influential windows of activity, if they exist, are appealing for the
sake of clinical interpretation and subsequent translational research. Thus, a piece-wise linear
functional coefficient would provide distinct activity intensity ranges that are associated with
the health outcome of interest, as well as estimates of association magnitude.

To achieve this goal, we first discretize each OTC into many small segments by dividing
the interval C into J-many small successive intervals with a grid ¢ =0, ¢y, -+ , ¢y = 30,000,
with C = [0, ¢1] U}-IZQ (¢j—1,c;]. Within each interval j, we treat §(c) as a constant parameter
¢;, which leads to Equation (2) given as follows:

J e,
/H(C)X(c) de+ZTa = Z/ 0(c)X(c) de+ ZTa
C j=17¢i-1

J ¢
() A Z 0 / X(c)de+ ZTax

7j=1 Jj—

J
= ZGJAJ- + ZTa,
7=1

where X (c) is defined as above; A; denotes the Area Under the Curve (AUC) over interval
(cj—1,c5]or Aj = fcij,l X (c) dc; and Z is a g-dimensional vector of confounders with corre-
sponding parameter vector ce. Unlike the conventional functional regression analysis, in the
same spirit of categorization shown in Figure 1, our analytic aim is to fuse similar adjacent
parameter 6;’s together in order to estimate a K -group sized step function with parameters
B, for k =1,---, K. This results in a final estimate model: Zszl BrAr + ZT o, with Ay,
denoting AUC over interval (cg_1,cx) or Ap = fcckf“_l X (c)dc. The resulting step function
for O(c) is deemed for desirable results of scientific interest, including both critical activity
window and its influence on the outcome, as well as and their interpretability.

4.2. Existing L1 Regularization Approaches. There are existing methods applicable to
carry out the parameter fusion on 3;, among which Fused Lasso (Tibshirani et al., 2005) and
Hidden Markov Model (HMM) (Rabiner and Juang, 1986) are of great popularity. However,
such an L penalization approach, like Fused Lasso, have known computational issues es-
pecially when faced with high multi-collinearity. L; penalization is known to induce bias
in the estimation due to its nature of penalizing larger coefficients more than smaller co-
efficients (Bertsimas, King and Mazumder, 2016). While this bias often can be controlled
via various correction methods (such as adaptive lasso) (Candes, Wakin and Boyd, 2008;
Candes and Plan, 2009; Zou, 2006), when there is severe multi-collinearity among predic-
tors the bias can become out of control and may produce misleading results. Indeed, with
the OTCs, the A; variables experience severe multi-collinearity; for example, the mean pair-
wise correlations between AUC variables A’.s under J = 300 from our motivating data were:
cor(Aj, Aj41) = 0.998, cor(A;, Ajis) =0.985, cor(Aj, Ajt10) = 0.967. This unduly high
multi-collinearity presents a great challenge to the Fused Lasso approach and introduces mis-
specifications in both changepoint detection and parameter estimation.
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Figure 4: Estimates of (3; coefficients from two different standard analysis approaches in-
cluding multiple linear regression (left) and an L; Regularization approach of Fused Lasso
(right). The respective model parameter estimates are represented by the black circles, while
the true 3; values are represented as the step function.

To demonstrate the inability of the L, regularization approach, which fails to accurately
conduct changepoint and parameter estimation, we consider a simulation experiment with
functional OTC variables with J = 300 and correlation patterns as described above, analyzed
under a scalar-on-function linear model as described in Equation (2) with a null covariate
matrix Z. This simulation experiment used three activity windows (A}, A3, A%) with corre-
sponding end cutpoints (¢}, c3, c3)) = (40,80, 300) and parameters (37, 55, 35) = (4,0, —4),
as well as normally distributed error term with mean O and variance 1. Given this relatively
easy case (i.e. big between-window gaps), when conducting changepoint detection and pa-
rameter estimation of the piece-wise functional 3(c) under the fused lasso approach using the
R package glasso, both estimates of the changepoints and the associated parameters are
severely biased, as shown in Figure 4 (the right panel) and Table 1. We obtain similar poor
results even when reducing the collinearity to cor(A;, Aj41) = 0.98, cor(A;, Ajys5) = 0.90,
and cor(A;, Aj1+10) = 0.80 by setting J = 60; see Table 1. In this example, it is clear that we
have undesirable results; the cutpoint ¢ is over-estimated, leading to mis-specified cardinal-
ities of activity intervals Al and 1212 as well as negatively-biased estimates of both 51 and 3s.
Additionally, the left panel of Figure 4 shows the performance multiple linear regression us-
ing the R package 1m where unduly large discrepancies from the true values are apparent due
to the curse of highly correlated predictors. Note that in this case we a large sample size with
N > J so we are able to conduct the multiple regression analysis for this comparison. This
motivates us to consider an alternative solution, and after analyzing the same model using an
L penalization approach, we find that such bias can be reduced to almost zero. The detail is
included in Section 5.

4.3. Integer Programming and Lq Penalization. Under a modified Ly optimization strat-
egy, we can simultaneously conduct fusion via change-point detection and parameter es-
timation in a one-step approach. Based on a repertoire of literature, the Ly approach has
been shown to be robust against bias and multi-collinearity (Bertsimas, King and Mazumder,
2016; Bertsimas and Shioda, 2009; Bertsimas, Pauphilet and Van Parys, 2020). The stan-
dard Lg penalization with constrains on the number of non-zero parameters is not flexible
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TABLE 1
Simulation Results of a 3-group Model with N = 500 and number of intervals J = 60, 300 demonstrate the
performance of Fused Lasso, summarized over 500 replicates. Results include average estimate (Mean), median
estimate (Med.), and empirical standard error (ESE). Cutpoint values are represented as VM/100.

J=60 J =300
Truth Mean Med. ESE Mean Med. ESE
b1 4 2.97 2.83 0.46 2.87 2.77 0.41
Bo 0 —0.58 —0.31 0.98 —0.79 —0.41 1.19
B3 —4 —3.98 —3.99 0.01 —3.98 —3.98 0.01
1 40 57.75 60.00 9.50 59.47 60.00 9.04
c2 80 78.40 80.00 2.45 78.47 79.00 2.22

enough to solve our dual analytic goals of changepoint detection and parameter fusion in our
analysis; rather, we propose a modified Lg-fusion method for constrained optimization.

A straightforward explanation of standard discrete optimization using Lg penalization is
by means of the the best subset problem. Suppose we have a linear regression model: y =
A0+ Za+ e where y is an n x 1 response vector, A is an n X J design matrix € R™* and
0 is a J x 1 vector of regression coefficients € R”7*!. It is often advantageous, particularly in
cases of J > n, to estimate a sparse parameter vector 8. The best subset problem constrains
the level of sparsity by restricting the set of non-zero regression estimates to a maximum
cardinality, of say k (Miller, 2002). This can be expressed as:

3) mein||Y—A9—Za||§, subject to ||0]|o < K,

where |00 = Z;le 1(6;) # 0, or the Lp-norm of @, with 1(-) representing an indicator
function. Thus, ||@0||o effectively counts the number of non-zero regression coefficients, and
is constrained to maximum cardinality k. As this formulation with discrete constraints has
historically been considered computationally intractable in standard approaches (Natarajan,
1995), the best subset problem is often estimated via continuous constraint surrogates, such
as Tibshirani’s Lasso (Tibshirani, 1996).

S. Mixed Integer Optimization. This section details the utility of mixed integer opti-
mization (MIO) to achieve the following analytic goals by one-step operation in a supervised
learning paradigm: (i) Fusion (or clustering) and (ii) estimation. Its application in our study
results in critical windows of physical activity.

5.1. Proposed Fusion-Adapted MIO Formulation. Bertismas et al (Bertsimas, King and
Mazumder, 2016) offered an MIO formulated-solution to address the best subset problem
in Equation (3) using Specially Ordered Sets of Type 1 (SOS-1). In this paper, we propose
an adaptation of this MIO framework with new L¢ constraint formulations to conduct con-
current parameter fusion and changepoint detection to analyze Equation (2). The number
of groupings is controlled by setting the number of desired clusters K, which is tuned by
goodness-of-fit measures such as BIC. Before formalizing the MIO constraints, we first in-
troduce variable n identifying group membership such that:

(4) T,k':(nliﬂnlzﬂ'”777];])6{071}JX17]€:17”'7K

where ni = 1 corresponds to the case of 3; belonging in activity window k. Given cutoffs or
edges of windows, cy,...,ckx with cx = J, such binary group labels take values:
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®)
j_ I, j=1,,a i 1, j=cr-1,"" ¢k i 1, j:CK—1+17"'7J
= . M = . Mk = . .
0, otherwise 0, otherwise 0, otherwise
For a K-group model, a fusion-adapted L constrained optimization with J original inter-
vals and ¢ covariates is represented as:

min Y — A8 — Za|)?
97777137C7a

subjectto €= (61, 79J)T GRJXla a= (o, 7al1)T ERqXI;

c= (Cly"' )CK—I) c NIX(K_I)
61217 Ck;zck‘—1+]-a CK,1§J*17]C:1,"‘K*1;
(6) n=0%)sxx € RF

Hj_ﬁl:ovj:la"'acl;
9]‘—52:0,].:014-1,"'702;

Hj_ﬂK:(Lj:CK—l_‘_la'”aJv

where Y € R"*!, A € R/, and Z € R"*9. The above optimization is operated via aug-
mented parameters where labels 1 and cutpoints ¢ = (cq,. .., cK,l)T do not exist in the
original model (2) but are added for parameter fusion. Obviously, group labels 1 and cut-
points ¢ are determined in a one-to-one correspondence fashion, which will be enforced via
adequate constrains given below in Section 5.2.

5.2. MIO Implementation. This MIO model can be solved via numerical software such
as GUROBI under a system of constraints. These constraints set to minimize the objective
function by optimizing cutpoints cy,- -+ ,cx—1 and thus the cluster labels represented by the
variable n,, k =1,--- , K defined in Equations (4) and (5). This set of linear constraints for
the K -group model is specified as follows:

ni(ej —0Bk)=0, j=1,---,J, k=1,---, K (SOS-1 constraints);
K .
nizljjzlj... W
k=1
co=0,c1>1;¢c,>cp1+1; andeg 1 <J—1,fork=2,--- K —1;
(7)

Ck—j . .
7 <1—?7i+17]:17-..7j7fork:O’...7K_1;

k1 —J U —c)
J J
J—Crp1+1
J
These constraints determine the locality of changepoints and grouping in the fused-
adaption MIO formulation for the Lg-type analysis of a K-group model. In this paper, the

Snk—‘rhj:lv"'ﬂ]} fOI']C:O7“'7K—].;

Sl_nk+17j:17"‘7¢]7 fOI'kZO,"',K—].;
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constraints are implemented in GUROBI numerical solver package in Python. In a recent pa-
per Wang et al. (2022) show that the MIO GUROBI optimization solvers provide the global
optimal solutions for a similar homogeneity fusion problem.

6. Theoretical Guarantees. Here we discuss the selection consistency of the MIO esti-
mator of the parameter @ = (fy,...,0;)7 obtained by the constrained optimization given in
Equations (6) and (7) under some mild regularity conditions. This paves the theoretical basis
for large-sample statistical inference. Wang et al. (2022) considered a more general version
of an MIO optimization problem than ours, where their group parameters 61, ...,6; are not
sequentially ordered. In other words, the MIO optimization given in Equations (6) and (7) is
a special case of the setting studied by Wang et al. (2022), and thus, we can establish relevant
theoretical guarantees by arguments given in Wang et al. (2022).

To present the sufficient conditions for selection consistency, we first introduce the oracle
estimators that represent the parameter estimates under the true number of clusters K and

. . ~ol o
cutpoints ¢* = (cj,---, ¢} ). We denote the oracle estimates of 3 and « as BO and &°
respectively, which are obtained through the ordinary least squares (LS) estimation:

ol

®) (8”,6%) ;= argmin|[Y — AB — Zalj5.
B,

When these cutpoints are unknown, we propose to use the MIO approach to obtain con-
sistent estimators of the model parameters and the cutoff values in one step. In order to
achieve this, we aim to minimize our constrained objective function in Equations (6) and (7)
where cutpoints c are determined when J individual-level parameters 6;’s are reduced to K
group-level parameters [y via suitable constraints. To quantify the sensitivity of the model to
the precision of clustering, we follow Zhu, Shen and Pan (2013)’s work with simultaneous
grouping and feature selection and adopt a measure of Mean Squared Error (MSE) sensi-
tivity deemed c¢;,;,,. This measurement quantifies the minimum increase of MSE due to an
inaccurately determined set of cutpoints c. That is,

IA(6 —B") + Z(a — a*)|[3

min = Cmin *3A7Z =mi o )
) ¢ cmin(€ ) mcm n max(d(8,3"),1

subject to Equations (6) and (7).

with the true values ¢* = (8*",a*",¢*)T e R2 -1+, ¢ = (87, aT,¢)" € R?*9, and
d(0,3") represents a grouping incongruity measure reflective to the accuracy of the cutpoint
estimation. See more details in Wang et al. (2022). In addition, we assume that errors ¢ in the
scalar-on-function model Gaussian with variance o2,

To present selection consistency, for any MIO estimator f MIO _
¢* with estimated cutpoints é of ¢*, we define a loss function L({MIO; ¢*) as the grouping
risk associated with inaccurate grouping and estimates of ¢* in the form of L(¢MIO;¢*) =
P(EMIO £ ¢*) With both the given number of intervals J and given number of activity
windows K, we show that the finite sample error bound is given by:

~MIOT
(/8 7&]\/1]OT)T of

3N

EMIO, fx _
(10 L(¢ ,<)§4exp[ 50052

2
{Cmm - % (1341log(JK) + 220)}] .
This bound in (10) implies that when ¢, > < (134 log(JK)+220), ¢ FMIO consistently re-

constructs ¢* because N, J — oo, P(¢ FMIO ;é ¢*) — 0. The proof of this sufficient condition
result can be carried out by following the lines of arguments given in the proof of Theorem
2.4 in Wang et al. (2022) and thus is omitted in this paper.
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7. Simulation Experiments. Simulation experiments demonstrate robust, reliable per-
formance of the proposed MIO paradigm. Here we discuss the setup of the conducted nu-
merical experiments, report on their results, and comment on computational performance
comparing to Fused Lasso.

7.1. Simulation Setup. We first simulated 6-hour time-series of VM counts by linking
many consecutive 10-minute intervals of the ELEMENT accelerometer data. To achieve this,
the individual 6-hour time-series of VM counts for the 549 subjects from the ELEMENT
dataset were divided into non-overlapping 10-minute segments. Each 10-minute interval was
randomly drawn from a pool of 549 10-minute candidate segments. To ensure that the vari-
ability in the simulated PA reflected the variability of the ELEMENT dataset as shown in
Figure 5, we first classified these 549 subjects into three groups with low, medium, and high
levels of PA respectively, as defined by tertiles of “Moderate-to-Vigorous” VM counts us-
ing the pre-set Chandler cutoffs (Chandler et al., 2016). We then simulated the time-series
data within each tertile. With the simulated VM counts, OTC curves were calculated as de-
scribed in Section 3. For the 500 simulated OTCs, we calculated the J = 300 successive inte-
grals (i.e. AUCs) over domain C = (0, 30,000), with each interval covering 100 VM counts:
(co =0,¢1 =100,---,c; =30,000). For ease of exposition, we will refer to the V M /100
values, i.e. ¢ = (0/100, - -- ,30000/100) " or ¢ = (0,---,300) . We normalize the OTC val-
ues at each j-interval to mean zero and variance one prior to the MIO operation.

To assess the fusion-adapted L approach’s ability to detect the true cutoffs and parameter
estimates, we specified K* = 3 groups and corresponding true cutoffs (¢}, ¢5, c3) in addition
to ¢ = 0, and calculated the vector of AUCs, (A}, A5A3)T with A} = fcik;l V M(c)de. Fi-

nally, we generated outcome Y from the zero-intercept linear model Y = Zizl AL By +
Zo* + €, with true effect sizes (57, 0;5,/05) and o*, where single continuous covariate
Z ~ N(0,1) and € ~ N(0,10). We specified various 3-group models (K* = 3) with VM
count changepoints (¢}, c3, c5) € {(40, 80, 300), (20,120, 300)} to evaluate the performance
under various window sizes. Here, we specified four different scenarios of effect size
(B1.55.85) € {(4,0, —4), (1,0, —1)}. These simulations were conducted for two differ-
ent specifications of J, the number of intervals to fuse over, J € {60,300}, representing
two different levels of multi-collinearity with J = 300 encompassing the most severe multi-
collinearity among the A;’s. Additionally, we conducted scenarios with three different sam-
ple sizes N € {100,250,500} with J =60, and N = 500 when J = 300. Note that when
J =300, the method is limited to scenarios with J < N as the fusion-adapted Ly formula-
tion does not introduce the true sparsity into the model that allows for J > N. With these
simulated 3-group models, we applied the new fusion-adapted Lg constraint method using
GUROBI to fit models with K = 2,3,4, and used BIC to select the final model with the
best goodness of fit among the candidate in order to determine the method’s sensitivity in
selecting the right-sized model. BIC was chosen as the goodness-of-fit (GoF) criterion as it is
deemed best suited for discovery in connection to the goal of uncovering the true signals for
the underlying model. In many occasions, BIC has been theoretically proved to be selection
consistent for the true underlying data generating process. Other measures, such as AIC, are
regarded as being more suited for the evaluation of prediction, which is not aligned with the
scope of this analytic interest. (Kass and Raftery, 1995; Vrieze, 2012). Additionally, we con-
ducted simulation experiments for the K* = 4—group model with corresponding true cutoffs
(c},c5, c5,c;) and true effect sizes (87, 55, B, 5;) (refer to the Supplemental Material).

7.2. Simulation Results. The simulation results produced by the fusion-adapted L con-
straint model demonstrated that this new approach has high sensitivity to select the right-sized
model, produces reliable change-point detection and parameter estimation, and is robust to
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TABLE 2
Simulation Results of the 3-group model with number of micro-intervals J = 300 and sample size of N = 500
summarized over 500 replicates, including average estimate (L Mean), empirical standard error (Ly ESE),
and average estimate from an L1 Fused Lasso analysis (FL Mean) using R package glasso. Cutpoint values
are represented as VM/100.

Scenario A Scenario B Scenario C

Truth Ly Mean Ly ESE FL Mean Truth Ly Mean Ly ESE FL Mean Truth Ly Mean Ly ESE FL Mean

B1 4 4.00 0.04 2.87 1 1.00 0.04 0.71 1 1.01 0.09 0.31
Bo 0 —-0.01 0.11  —-0.79 0 -0.01 0.11 -0.22 0 <0.01 0.02 -0.17
B3 -4  —4.00 0.00 =398 -1 —1.00 0.00 —-099 -1 —1.00 0.01 —0.98

c1 40 40.04 0.75 59.47 40 39.95 3.49 60.45 20 19.80 2.10 76.83
co 80 80.05 0.63 78.47 80 80.28 2.65 79.50 120 119.92 1.38 118.65
« 1 0.98 0.44 0.94 1 0.98 0.44 1.20 1 0.98 0.44 1.16
Sensitivity: > 99% > 99% > 99%

handle highly correlated AUCs. Tables 2 and 3 summarize the results from 500 rounds of
simulations of the 3—group model for the J = 300 and J = 60 settings, respectively.

This method demonstrated high sensitivity, selecting the correct sized model in over 99%
of simulations in all Scenarios A, B, C, for both J = 300 and 60. As discussed previously,
we employed the GoF measure BIC to select the model size as it is best served in these
studies of discovering the true signals (Kass and Raftery, 1995). However, similar strong
selection accuracy was observed when using the less (more) conservative measure of AIC
(EBIC). Among these correctly specified models, the fusion-adapted constraint model cor-
rectly identified the changepoints (¢}, ¢3, ¢5) = {(40,80, 300), (20, 120,300) } and estimated
the 3 parameters (37, 55, 53) € {(4,0, —4), (1,0, —1)} with minimal bias.

The method maintained its ability to reliably identify changepoints and estimate parame-
ters as the sample size N decreased from N = 500 to N = 250 and even N = 100. For Sce-
nario B with (37, 55, 85) = (1,0, —1) and N = 250, the mean (ESE) estimates of 5}, 85, and
B3 from this Lg constrained approach are 1.00(0.06), —0.02(0.17), and —1.00(0.01). Similar
strong results are repeated in the second window size scenario of (cj, ¢3, c5) = (20,120, 300).

In contrast, the L; fused lasso approach via the R package glasso had undesirable
sensitivity, ranging from 0-30% across the different Scenarios and sample size combina-
tions. Furthermore, even if the number of windows is correctly specified in advance, namely
K* = 3, the performance of Fused Lasso analysis exhibited high bias in both coefficient
and changepoint detection, as shown in the "FL. Mean" columns of Tables 2 and 3. The
proposed MIO formulation can produce desirable results even in scenarios of severe multi-
collinearity. In fact, in the J = 300 setting, the pairwise correlation was extremely high with
COT(Aj, Aj+1) = 0.998, COT(Aj, Aj+5) = 0.985, and COT(Aj,Aj_Ho) =0.967. Even in this
very challenging scenario, the parameter and changepoint estimates have been estimated well
with remarkably low bias and variance. Results for the K* = 4 simulation experiments were
similarly strong for the proposed MIO approach, and weak for an L; Fused Lasso approach,
as shown in the Supplemental Tables.

7.3. Comparison to standard FDA approaches. Current FDA approaches aim to estimate
functional parameter 6(c) as a smooth curve. A popular approach to estimate 6(c) is the cubic
B-splines technique or as such. Here we compare the quality of fit for both scalar outcome and
coefficient function via measures of Mean Square Error (MSE) and Integrated Mean Square
Error (IMSE), respectively, when leveraging this approach to analyze the functional OTCs
in a scalar-on-function regression model. To estimate functional parameter 0(c) we utilize
cubic b-splines (R package: £da.usc (Bande et al., 2022)) in two scenarios: (i) Setting the
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TABLE 3
Simulation Results of the 3-group model with number of micro-intervals J = 300 and sample size of
N € {500,250,100} summarized over 500 replicates, including average estimate (Lg Mean), empirical
standard error (L ESE), and average estimate from an L1 Fused Lasso analysis (FL Mean) using R package
glasso. Cutpoint values are represented as VM/100. Sensitivity for selecting 3-group model based on
goodness-of-fit comparisons was greater than 99% in all scenarios.

N =500 N=250 N=100

Truth Lo Mean Ly ESE FL Mean Ly Mean Ly ESE FLMean Ly Mean Ly ESE FL Mean
Scenario A
51 4 4.00 0.03 2.97 3.99 0.04 2.87 4.00 0.09 2.79
B2 0 0.00 0.05 —0.58 0.00 0.06 —-0.69 —0.01 0.22 —0.96
B3 -4  —4.00 0.00 —-398 —4.00 0.00 —-398 —4.00 0.01 =397
c1 40 40.01 0.22 57.75 40.06 0.54  59.44 40.02 1.64 60.83
co 80 80.01 0.22 78.40 80.01 0.22 7844 80.13 1.28 80.12
@ 1 0.98 0.44 0.98 1.04 0.66 0.92 1.01 1.04 1.07
Sensitivity: > 99% > 99% > 99%
Scenario B
51 1 1.00 0.04 0.69 1.00 0.06 0.69 1.03 0.19 0.68
B2 0 —0.01 0.12 —-0.18 —0.02 0.17 -0.21 —0.06 0.30 —0.28
B3 -1 —1.00 0.00 -099 -—1.00 0.01 -099 —1.00 0.02 —-0.96
c1 40 39.94 3.59 61.63 39.98 5.38  61.51 39.73 9.75 61.89
c2 80 80.28 2.85 78.24 80.84 5.08  80.27 84.93 21.07 84.73
« 1 0.98 0.44 1.20 1.00 0.67 1.11 1.00 1.04 1.46
Sensitivity: > 99% > 99% > 99%
Scenario C
51 1 1.00 0.10 0.29 1.01 0.14 0.28 1.05 0.28 0.27
B2 0 —0.001 0.02 —-0.16 0.001 0.03 —-0.19 —-0.002 0.05  —0.25
B3 -1  —1.00 0.006 —-098 —1.00 0.01 —-098 —1.00 0.01 —-0.97
cl 20 20.14 2.21 79.36 20.09 3.50 81.25 20.22 5.98 80.47
() 120 120.02 1.27  118.27 119.94 2.33 118.73 120.31 3.60 120.88
@ 1 0.98 0.44 1.15 1.00 0.66 1.09 1.00 1.02 1.41
Sensitivity: > 99% > 99% > 99%

knot-points to the oracle cutpoints of the simulation scenario; and (ii) selecting the number of
equally-spaced knot-points via BIC. Table 4 summarizes the performance of the functional
estimation as well as quality of fit for the “easy” simulation scenarios of J = 60, N = 500.

We also explored to employ existent FDA methodologies to estimate a piece-wise lin-
ear coefficient function to better address the need of identifying the underlying critical PA
window given by the piece-wise linear coefficient function. We found that two popular func-
tional data R packages fda and fda.usc cannot produce a stepwise coefficient function
with more than one change point (or 2 or more steps). These software packages do not aim
at changepoint detection as part of their solution. In contrast, the FDA package refund
(Goldsmith et al., 2024) allows one to estimate a piece-wise linear coefficient function with
multiple breaks; however, such R function has been largely restricted on the use of equally-
spaced knots with little flexibility of knot selection. Nevertheless, we compared the perfor-
mance of the re fund package with our MIO method in terms of MSE, IMSE and sensitivity
of detecting the true group number; see Table 4 for the detail.

These limitations discussed above are major driving factors for inferior performances over
our MIO method in terms of MSE, IMSE and sensitivity of detecting the true segments.
Using these criteria, we found that in all Scenarios A, B, and C (with varying cutpoints and
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TABLE 4
Simulation results for competing FDA methods to estimate a 3-segment functional parameter 0(c) with number
of micro-intervals J = 60 and sample size of N = 500 summarized over 500 replicates. ‘Oracle knots’ refers to
the use of the true cutpoints as knots in the splines smoothing, while ‘GoF knots’ refers to the BIC-based
selection of knots from equally-spaced knot points.

Metric Method Simulation Scenario
A B C
MSE MIO 100.61 98.71 98.82
Cubic B-splines: Oracle Knots  175.78  102.98  112.52
Cubic B-splines: GoF knots 98.16 101.95 99.92
Linear splines: GoF knots 116.83  100.68 100.53
IMSE MIO 0.002 0.01 0.01
Cubic b-splines: Oracle knots 0.51 0.03 0.12
Cubic b-splines: GoF knots 10.20 0.04 0.04
Linear splines: GoF knots 0.71 0.03 0.05
Segment Number "K°  MIO 3 3 3
Cubic b-splines: Oracle knots 3 3 3
Cubic b-splines: GoF knots 17.44 7.71 7.36
Linear splines: GoF knots 21.92 6.34 11.98

effect sizes), the MIO approach clearly outperformed the existent FDA methodologies. In the
two cubic B-splines methods, the inferior IMSE is not surprising, as the methods estimate
a smoothed curve of 6(c), rather than a piece-wise linear function. In terms of MSE, the
MIO approach demonstrates very similar, or better, results in all scenarios. The cubic B-
spline method that utilizes BIC to determine the number of knot points performs the most
similar to our “MIO” method; however, it over-selected knot points, resulting in over-fitting.
It is evident from this simulation experiment that these existent FDA methods do not reach a
comparable level of the quality of fit in comparison to the proposed MIO method. Moreover,
the detection of the critical windows of PA, as determined by the “K” selected knot points,
are vital. With the existing methods, it is hard to identify satisfactorily the locations of these
knot points and thus establish the critical windows.

7.4. Computation Time. The fused-adapted MIO solver via GUROBI is also computa-
tionally efficient. A 3-group simulation model with N = 500, J = 60 computes in 10 sec-
onds, with J = 300 scenario completing in 10 minutes. The method is scalable to a reason-
able number of windows, with computation time for a 4-group model taking 30 seconds and
30 minutes for J = 60, 300 scenarios respectively. These simulation scenarios represent in-
stances of defined signal for the K = 3,4 number of groups. However, it is possible that in
scenarios of low signal or inappropriate number of groups K that the computation would
take longer. Thus in the simulation and data analysis we implement a computation budget of
20 hours to control the run time. If the analysis does not complete within this time frame,
the MIO model is terminated and the combination of (.J, K') deemed an inappropriate model
representation.

8. Data Analysis. The primary objective of this data analysis was to investigate whether
physically more active individuals are biologically younger or older. To do this, we focused
on assessing the functional relationship between PA and biological aging through a scalar-
on-function regression model. Introduced in Section 2, we had complete accelerometry and
covariate data for 354 subjects from our motivating dataset (172 male, 182 female), with
mean(SD) age of 13.7(1.9) years and mean(SD) lead exposure of 3.17(3.33) pug/dL. The
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Figure 5: OTCs for 354 ELEMENT subjects stratified by boys and girls. The vertical lines
represent Chandler’s cutoffs (Chandler et al., 2016) for prefixed activity levels (Sedentary,
Light, Moderate, Vigorous). The relative shape of OTC reflects the subject’s activity profile.

reduction to 354 subjects was mainly driven by availability of the covariates of interest, which
were assessed to be Missing Completely at Random (the detail omitted). The majority (332)
of subjects had completed puberty in terms of Tanner staging standards. Figure 5 illustrates
the functional predictors of OTCs representing the subjects’ activity profiles fom 4:00PM
- 10:00PM on weekends; this block was chosen with the rationale that it is reflective of
time when the children have more control over their activities. Our choice of outcome was
Horvath’s AgeSkinBlood Clock (Horvath et al., 2018) that primarily targets DNAm changes
in skin and blood cells that undergo rapid changes during adolescence, including fibroblasts
that help with the structural components of skin.

To use the fusion-adapted L analytic in Section 5, we began setting J = 300, with each
interval covering 100 VM counts, followed by an augmentation scenario of J = 60 by sum-
ming every five. For ease of interpretation, we considered K € {2,3,4} PA windows, in
which selection of K was determined by BIC. Each setting was given a budget of 20 hours
runtime. If the search did not converge within this time, the attempt was terminated and the
respective combination of (.J, K') disregarded from reporting.

Table 5 shows the results, among which the 3-group model demonstrated the best fit in
both the J = 300 and the J = 60 scenarios according to BIC. In the scenario J = 300, K =4
the MIO search did not complete within the budgeted 20 hours, and was thus terminated. As
the scenario of K = 4,.J = 60 was inferior over the scenario of K = 3,.J = 60, the chance
of K =4,J = 300 scenario being the best seemed to be rather low and thus the decision of
termination was not concerning. P-values and BIC are determined by fitting a resulting linear
model with the detected cutpoints.

To assess the validity of the p-values used in the above discovery we conducted a permuta-
tion analysis. To do so, we randomly permuted the epigenetic age outcomes to be misaligned
with the original covariates and extracted the p-values from the refit linear model. Using 1000
permutations, we established a null distribution, and then compared the analytic p-values with
those determined by the permutation-derived null distribution, termed as “permuted p-value”.
We found that the permuted p-values follows approximately uniform distribution on (0,1),
and remarkably similar to the original analytic p-values, as evident in Table 5. The uniform
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distribution of the permuted p-values indicates that the L( fusion-adapted model furnishes an
adequate approximation of the functional relationship between epigenetic age and functional
OTCs. If this functional model were not an adequate approximation, the error term, €, would
carry a substantial proportion of the relationship between the outcome and covariates, thus
resulting in a non-uniform distribution of p-values in the permutation analysis.

Under the chosen K = 3 model, the estimated activity windows reflect that (i) more time in
the low PA window ¢ = [0, 20] is associated with younger AgeBloodSkin (/5 = 4.17, p-value
0.004), and (ii) more time in the extreme window ¢ = (290, 300] is associated with older
AgeBloodSkin (3 = 13.0, p-value 0.012). Such findings suggest that more PA is associated
with faster biological aging of blood cells and skin in adolescents.

TABLE 5
Data Analysis Results obtained by the fusion-adapted Ly method, where J indicates the number of
micro-intervals and K is a prefixed number of activity windows. Significance is measures in two different ways;
'p-val’ represents the p-values from linear regression, whereas 'perm’ represents empirical p-value when
assessing 'p-val’ to the distribution of p-values attained through 1000 permutations. Cutpoint values are
represented as VM/100.

J =300 J=60
K=2 K=3 K=2 K=3 K=4
Parameters Est p-val perm. Est p-val perm. Est p-val perm. Est p-val perm. Est p-val perm.
B1 1950 .03 .04 417 .01 .01 473 .01 .02 421 .01 .01 0.13 53 .52
Ba —-0.07 .53 54 -036 .02 .02 —0.12 34 34 -037 .02 .02-126.26<.01<.01
B3 - - - 13.00 .01 .02 - - - 856 .01 .02 6291<.01<.01
B4 - - - - - - - - - - - - —054 70 .70
cl 3 - - 20 - - 15 - - 20 - - 240 - -
co - - - 293 - - - - - 290 - - 245 - -
c3 255

Sex (Male) 1527 .76 .77 —-333 94 95 668 .89 91 —-324 94 095 2350 .64 .64
Chron. Age 086<.01<.01 086<.01<.01 086<.01<.01 0.86<.01<.01 0.85<.01<.01
Lead —644 39 044 —639 39 43 —632 40 45 —-632 39 44 703 34 37
Puberty —97.10 .29 0.30-88.14 .34 34-9639 .30 .31-8825 .34 .34 8686 .35 .35

To facilitate a clinically understandable interpretation of analysis results in Table 5, we
propose an AUC Ratio metric that measures the amount of time they spend within a PA
window relative to the maximum amount of time they could spend above their PA level.
That is, it represents a relative activity level of the individual within the detected window
compared to the hypothetical most active person. Computationally, as illustrated in Figure
6, the AUC Ratio is a ratio of the individual’s AUC in the detected activity window & (A;x)
versus that the area of the rectangle (), with the latter representing PA of an individual
who spends all of his or her time above the PA level of this window. In Figure 6, the AUC
Ratio for the first window is calculated by AUC Ratio;; = ’;‘;;11 . The interpretation of this ratio
depends on its sequential location. For an example of the first window 1, a lower AUC Ratio
represents more time spent within the specific window, and less time spent above the window.
In contrast, for the last window K, a higher AUC Ratio represents more time spent within
the specific window.

In general, for all but the last sequential window, i.e. for windows 1,--- | K — 1, the value
(1—AUC Ratio) represents a percentage that the individual is Less Active than the hypotheti-
cal most active person in that window. For example, in Figure 6, Subject 1 has a smaller AUC
(dark grey shaded region) than Subject 2, representing that Subject 1 spends more time within
the cutpoints (co, ¢1) than Subject 2. The value (1—-AUC Ratio;;), or 1%1;27;411, represents the




INTEGER PROGRAMMING IN THE LEARNING OF PHYSICAL ACTIVITY FEATURES 19

AUC Ratio Calculation Examples
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Figure 6: An illustration of the AUC Ratio calculation for Window 1. The dark grey shaded
regions below the OTC curves represent the AUC for subjects 1 and 2, or A;; and A;o,
respectively. The outlined rectangle represents the area of the full rectangle with cutpoints
(co =0,¢1 = 20), deemed R; representing the hypothetical subject spending 100% of time
above this activity level.

percentage Subject 1 is less active than the hypothetical most active person within the first

window. This value is greater than (1—AUC Ratiog; ), or %, as can be visualized by

1

the area of the hashed shaded regions above the OTC curves. For the K" window (i.e. the
last one), the interpretation of the AUC Ratio, ;¢ represents the percent of time the individual
spends within that window compared to the hypothetically most active person. In this case, a
higher AUC Ratio; i value represents higher PA within the window.

Let us interpret the results in Table 5 for the scenario of K = 3,J = 300 under model
Yy~ B1A] + BoAs+ B3As+ ZT a, where AUC Ay, = fcc:  OTC(c)de,k =1,2,3. Here Win-

dow 1 has estimated cutpoints [co, ¢1] = [0, 20] with 3; = 4.17 for predictor A;. For subject
i, the area of the Window 1 rectangle R1 = (¢1 — ¢p) X (1 —0) = 20, and AUC Ratio of Win-
dow 1is ‘gg . Correspondingly, the parameter estimate Bl may be adjusted by 31 Ratio = 2031
for the interpertability. In the case of Window 1, a lower AUC Ratio reflects more time spent
within the activity cutpoints [0, 20] than the hypothetical “most active individual” who spends
all his or her time above the cutpoint range [0, 20]. Thus, for a subject who is 1% more active
in the activity range of Window 1 compared to the hypothetical “most active individual”, as
reflected by a smaller AUC Ration, this subject’s BloodSkin epigentic age decreases approx-
imately 80 days. See Figure 6 for a schematic of this calculation.

9. Discussion. In this paper we utilize a scalar-on-function model to assess the influence
of physical activity on biological age using a methodology of fusion-adapted Lg regulariza-
tion. This scalar-on-function regression naturally accommodates a functional accelerometer
predictor with great flexibility to study similar scientific questions in other populations with
various underlying characteristics and devices. We adopt a mixed integer optimization (MIO)
analytic that can simultaneously detects key cutpoints to define critical windows of activity
and estimates discretized functional association parameters, while accounting for important
covariates of interest. One advantage of the MIO technique lies on the fully data-driven simul-
taneous operation in both cutpoint detection and parameter estimation. This use of functional
regression is notably different from current methods of analyzing accelerometer activity and
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investigating windows of activity associated with health outcomes. Unlike methods establish-
ing fixed cutoff values regardless of specific outcomes under investigation, our analysis takes
a new supervised learning approach that involves the outcome of interest to detect different
change points, which are adaptive to different outcomes of interest and study populations
under investigation. For example, if applied to different age populations, or to analyze data
collected from a different accelerometer device (e.g. Fitbit or iWatch), our functional OTC
predictor would likely form a robust functional physical activity profile despite the different
activity count ranges that may be recorded by different populations and devices. Thus, as
shown in our numerical analyses, our MIO based optimization approach can deliver reliable
and reproducible findings on activity windows of importance and functional associations in
the study of the influence of physical activity on human health outcomes. In contrast, existing
approaches that apply pre-set child-specific cutpoints (e.g. Chandler) to an adult population
could potentially lead to biased or even contradicting results.

A potential limitation of this adaptive data-driven cutpoint detection mechanism is that the
activity windows are not yet tied to specific known activity types or METs (metabolic equiv-
alent of task). This calls for an extension of our method, which however requires relevant
information on device-specific characterization of PA patterns and METs. Thus, a device un-
der investigation must be validated for populations of interest. This would lead to a major
bottle-neck in analysis of PA patterns as more and more different devices are being used on
populations of varying characteristics. Our approach unveils a marginal relationship between
activity intensity levels and the health outcome, which may be applied prior to any validation
studies for device/population of interest. In this case, however, the ability to make cross-study
comparisons could be limited due to the adaptive nature of detected cutpoints.

We perform extensive simulation experiments to numerically demonstrate the high stabil-
ity and accuracy of the MIO technique, including a useful finding that the strength of the
results is not overly sensitive to the choice of J, the starting number of correlated intervals.
Simulation results for J = 60 and J = 300 were very similar, with computation time slightly
longer for the larger number of intervals. Investigators can choose the number of .J intervals
based on factors of sample size and data availability without concern that the tuning choice
of J will significantly affect the analysis. Such desirable numerical performance confirms the
selection consistency property for the MIO solution under mild regularity conditions.

Our analysis gives rise to a data analytic toolbox enabling to explore various questions of
interest related to the effect of functional physical activity features on health outcomes. For
example, some researchers hypothesize that the timing of physical activity, not only they rel-
ative intensity, is related to specific health outcomes. Through application of this MIO tech-
nique focusing on physical activity during different time periods of the day, such as morning
versus evening, researchers can investigate if the activity intensity changepoints are depen-
dent on time of day. Additionally, future extensions can include multiple functional covariates
to assess the longitudinal affect of functional physical activity profiles on health outcomes,
and even longitudinal effects with both repeated outcomes and functional exposures to phys-
ical activity using longitudinal functional data analysis models. This proposed fusion MIO
method can also easily be extended to include variable selection procedures for the selec-
tion of important covariates. For example, one could include additional Ly regularization
constraints for the real-values covariables of interest, akin to Bertsismas’ Ly ‘best-subset’
solution (Bertsimas, King and Mazumder, 2016). We have implemented this extension (not
shown in this paper), in which the functional coefficient can be estimated via the fusion con-
straints, while the additional covariables estimated via the best-subset constraints.

While this paper focused on time series of physical activity counts from wearable ac-
celerometer devices, the use of Occupation-Time Curves to summarize such high-frequency
time series data can be extended to a myriad of applications. Other forms of data from ob-
jective high-frequency measurements, such as ambulatory blood pressure or glucose level
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monitoring, can be represented as functional OTCs. In this way, important windows of the
blood pressure or glucose levels to a health outcome of interest can be identified and assessed
for statistical significance and scientific importance. The MIO technique is also flexible to
accommodate different forms and number of covariates with an extension from the current
formulation via little effort. Currently, our analysis of biological age focuses on a continuous
outcome, though future work could extend this data analytic to non-normal and non-linear
models, such as logistic regression with binary outcomes, and Cox regressions with time-to-
event outcomes.
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