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Abstract— Machine vision and artificial intelligence hold
promise across healthcare applications. In this paper, we
focus on the emerging research direction of infant ac-
tion recognition, and we specifically consider the task of
reaching which is an important developmental milestone.
We develop E-babyNet, a lightweight yet effective neural-
network-based framework for infant action recognition that
leverages the spatial and temporal correlation of bound-
ing boxes of infants’ hands and objects to reach for to
determine the onset and offset of the reaching action. E-
babyNet consists of two main layers based on two LSTM
and a Bidirectional LSTM (BiLSTM) model, respectively. The
first layer provides a pre-evaluation of the reaching action
for each hand by providing onset and offset keyframes.
Then, the biLSTM model merges the previous outputs to
deliver an outcome of the reaching actions detection for
each frame including the reaching hand. We evaluated our
approach against four other lightweight structures using
a dataset comprising 5,865 annotated images resulting in
16,337 bounding boxes from 375 distinctive infant reaching
actions performed while sitting by different subjects in un-
constrained (home/clinic) environments. Results illustrate
the effectiveness of our approach and ability to provide
reliable reaching action detection and offer onset and offset
keyframes with a precision of one frame. Moreover, the
biLSTM layer can handle the transition between reaching
actions and help reduce false detections.

Index Terms—Infant Action Recognition, Infant Reach-
ing, Machine Vision, Artificial Intelligence

[. INTRODUCTION

The ability to employ machine vision and artificial intel-
ligence (AI) to identify, comprehend, and anticipate various
human activities is critical to developing effective and in-
teractive human-computer interfaces [1], [2] and healthcare
systems [3]-[5]. Such an ability falls within the realm of
developing vision-based human action recognition algorithms
(e.g., [6]-[13]), often using different sensing modalities. Most
existing works have considered the development of action
recognition algorithms based on datasets that contain (young)
adult motions (e.g., [14]-[17]) considering the large possible
actions and application domains afforded by such populations.

This paper focuses on the emerging research thrust of infant
action recognition, mainly toward pediatric applications. Some
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examples include identification of early signs of neuromotor
disorders [18], [19] and assessment of the performance of
behavioral and physical therapy through smart environments
and assistive wearable robotic devices [20], [21]. Unlike
datasets containing (young) adult activity, datasets containing
infant motions are sparse due to stricter regulations protecting
children’s privacy as infants have no control over the release
of the data, which has hindered the development of action
recognition methods for this population.

There has been a keen effort in the research community to
address the current shortage of infant activity datasets [21]-
[26]. Such datasets contain information retrieved as RGB
images, depth images, or 2D/3D skeletons through one or
multiple cameras, and were collected following either passive
or interactive paradigms to elicit infant motion. Motivated
by an observed decrease in the accuracy of pose estimation
approaches trained on adult data, Sciortino et al. [27] devel-
oped a dataset collected using publicly available videos of
104 children in natural environments and manually annotated
22 body keypoints. Another significant dataset is the Moving
INfants In RGB-D (MINI-RGBD) based on the Skinned Multi-
Infant Linear body model (SMIL) [23]. The authors used
realistic shapes and textures to produce RGB and depth images
for 2D and 3D joint positions by mapping real infants’ move-
ments to the SMIL model. Kokkoni et al. [20] designed an
interactive infant learning environment where multiple Kinect
cameras were used to capture various infant motions during
both structured tasks and environment exploration. Recently,
the InfAct (Infant Action) dataset was introduced in [25]. The
dataset contains 200 video clips of infant activities and 400
images of infant postures. It also includes structured action
and transition segmentation labels.

The focus of this work is on infant reaching action recog-
nition, by specifically employing machine vision and Al as
a means to achieve so. Reaching is a significant milestone
since the ability of infants to explore and interact with their
environment directly impacts their motor, social, perceptual,
and cognitive development [28]-[31]. It is thus important
to monitor and track the development of reaching skills.
At the same time, new technology such as machine vision
and Al can offer new ways to monitor children’s develop-
ment in fast, scalable, and accessible ways, sometimes even
from in-home settings. This can be viewed as a form of
telehealth/telemedicine, the significance of which was clearly
demonstrated during the COVID-19 pandemic [32]. Hence,
this work aims to develop a method for Al-based infant action
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Fig. 1. Sample frames from the infant reaching dataset employed in this work.

recognition directly from videos taken at home (or in clinics)
using regular video cameras. To do so, it is critical to employ
datasets for training and validating the learning system.

Previous work [22] introduced a lightweight infant ac-
tion recognition framework along with a reaching activity
dataset that was obtained by curating videos published in
the public domain via video-sharing platforms. Development
of the dataset in that work was needed since experienced
reachers tend to have more consistent reaching actions, thereby
fundamentally differing from reaching actions of developing
humans [33]. The learning structure proposed there was based
on a Long-Short Term Memory (LSTM) model and provided
the first and last frame corresponding to the reaching ac-
tion and the reaching hand information. That work yielded
important information which motivated the research in this
present manuscript. Smaller memory-based structures were
found to perform similarly with much larger CNN (ResNet-
based [34]) structures. The latter exhibited strong performance
during training and validation but resulted in increased false
positive rates. Hence our previous work [22] demonstrated the
preliminary feasibility and potential of employing small(er)
structures. However, the consideration of a single layer alone
revealed several limitations, including the inability to identify
the active reaching hand and being sensitive to data sample
types (i.e. left vs right hand reaching actions). In fact, missing
hand/object detection can compromise the whole reaching
action recognition.

To address those limitations, in this paper we propose a new
two-layered learning structure able to assess separately right-
handed and left-handed reaching actions as well as to handle
both very short and bimanual reaches which were previously
difficult to detect. This is facilitated by the first layer consisting
of two independent LSTM modules similar to BabyNet [22]
that operate in parallel and each is responsible for the left
or the right hand. Then, we integrate a Bidirectional LSTM
(biLSTM) structure in a second layer that fuses the outputs of
the two parallel models and enables better identification of the
transition between the no-reaching and the reaching phases.
Further, we consider a larger dataset of annotated images

and associated bounding boxes that feature examples from
bimanual reaching actions, have diverse camera viewpoints,
and include various occlusions and/or hand/object overlap. We
test the efficacy of the new structure against several small
memory-based baselines and assess our method’s performance
in a series of ablations studying the effect of key hyperparam-
eters, out-of-sample generalization, and utility of the BiLSTM
network as the second layer component.

[I. METHODS
A. Dataset of Infant Reaching Actions

This work employs an extended version of the dataset
reported in [22]. The dataset contains videos from infants (up
to 12 months of age) performing reaching actions in natural
scenes (at home and/or in clinical settings)—sample cases are
shown in Fig. 1. The videos were identified and collected
via online publicly available video-sharing platforms. ! From
the viewpoint of visual learning, environmental conditions in
the considered videos are relatively stable (e.g., good lighting
and relatively clear backgrounds), but several factors introduce
complexity in the dataset. Most critically, there are at cases
occlusions, camera viewpoint variations between different
subjects, accompanying adults’ hands appearing in the scene,
and multiple possible target objects to potentially reach for
(see Fig. 1). Compared to [22] that considered 193 reaching
actions from 21 subjects, this work considered an increased
number of reaches (375) performed by 40 different infants
which also included reaching actions from a wider variety of
camera viewpoints as well as bimanual reaches.

Reaching actions were obtained via a manual annotation
process. We followed the approach outlined in [22], whereby
a reaching action is a sequence of video frames between the
Reaching Onset (RN) and the Reaching Offset (RF). The onset
was defined as the first frame in which movement of the
infant’s hand (left, right, or both) toward an object presented
to the infant is initiated. Herein, we denote this frame as the

' We refer the interested reader to [22] for more details regarding the video
collection process such as inclusion/exclusion criteria.
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Fig. 2. Flowchart of our approach E-BabyNet. At initialization, both Reaching Onset and Offset Keyframes, Krn and KrF, are set as the first
frame of the sequence of frames F. For each pair F; and F;_1, the bounding boxes of both left and right hands and the object are extracted.
Next, the distances and the intersection of union are calculated for each frame and are provided as inputs to the first layer of the structure. Each
subsystem assesses the reaching action for each hand by providing an output that consists of four probabilistic scores: Onset (RN), Offset (RF),
Reach (R), and No Reach (NoR), and used to update the Onset and Offset Keyframes (K rn and Krr). Then, the outputs of two parallel models
in the first layer are merged in the second layer via a Bidirectional LSTM (biLSTM) network. This yields the final output including the four states RN,
RF, R and NoR, along with the probabilities of Left (Lh) and Right (Rh) reaching hand.

Onset Keyframe (Kgry). The offset is the first frame in which
any part of the infant’s hand(s) make intentional contact with
the object; we denote this frame as the Offset Keyframe (Krr).

A total of N=375 reaches were considered; 158 for the left
hand (LH) and 217 for the right hand (RH). Let J” € N,n =
1,..., N denote the duration for each reaching action, i.e. the
number of all frames, F;,7 = 1,...,J", between Krx and
Kpgr keyframes. The duration, J”, of LH and RH reaches
are quite balanced, and follow a similar distribution. In detail,
59.24% of LH reaching actions are within a range of 3 to 15
frames (34.41% LH reaches last only between 3 to 7 frames).
Longer reaches for the left-hand case are considerably fewer.
LH reaches lasting between 31 to 48 frames and 49 to 63
frames comprise only 6.37% and 1.27% of the total number
of left-hand reaches, respectively. RH reaching actions have
about the same percentage of actions in the range of 3 to 15
frames as in the LH case. Actions with a length exceeding 30
frames represent up to 10% of the total number of right-hand
reaches. Further, the number of left- and right-hand reaches is
roughly the same for actions within the range of 3 to 7 frames,
and for actions within the range of 8 to 15 frames.

Given all frames [ for each reaching action, we developed
bounding box annotations to track both the subject’s hand(s)
and any target objects (OBS). Annotations were done manually
for each image throughout every reaching action.> A total of
5,865 images were annotated resulting in 16,337 bounding
boxes. For each bounding box, the respective annotation
provides the planar (z,y) coordinates for its top-left corner
as well as its width and height (coordinates refer to the

2 Various learning-based object detection methods such as YOLO [35] or
Mask R-CNN [36] are in principle applicable to help automate this process.
Our method is currently agnostic to how these detections are made (which
helps with generalization), and at the same time, the developed annotations
can be employed to finetune/train such object detection networks.

image plane, and all dimensions are in units of pixels). This
information was employed to train, test, and assess the efficacy
of our proposed action recognition approach as discussed next.

B. Development of E-BabyNet

Figure 2 illustrates the overall structure of our proposed
approach for infant reaching action recognition, E-BabyNet.
Let B = {b/} and H = {h],h};} denote the objects and
the left and right hand detected in a sequence of frames F,
respectively. Each detection is associated with a bounding box
with its top-left corner defined by x and y coordinates (in
pixels); Cyp,, Cp, and C}, denote the object, the left hand
and the right hand bounding boxes, respectively. Let Dy, :
{Hy,, Ws,} denote the bounding box dimensions for objects.
Likewise, let Dy, := {H}p,, Wy, } and Dy, := {Hp,, Why}
denote the bounding box dimensions for the left hand and the
right hand, respectively.

At initialization, both keyframes, Kry and Kgrp, are set
as the first frame of F. The obtained bounding box detections
are used to correlate spatiotemporal patterns between H and
O, and undergo two separate processes for the Reaching Onset
phase (RN) and the Reaching Offset phase (RF). A qualitative
example to demonstrate the process is shown in Fig. 3.

The Onset Phase: First, we compute the distance d§ be-
tween each hand {h] ,h7}} and the object b in the current
fr;une F;. Next, we evaluate dz» — d§—1 as follows: if d; —

;_1 < 0, the onset is conﬁrmed and .7-' rN 1s kept as the onset
keyframe Kpn; however, if d;- — d;-fl > (0 and continues
increasing for four consecutive frames, the current onset is
invalidated and the onset keyframe Kgry is updated as Fj.
This is a practical way to help prevent false detections since
the shortest reaching action lasts only three frames.
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The Offset Phase: To confirm the contact of the hand
with the object, the Intersection of Union (IOU) is estimated
between each hand {h],h%} and the object b). To do so,
we extract the distance between the center of the LH and
RH bounding boxes and the center of all possible target
OBJ bounding boxes. The computed IOU is compared against
a threshold value (a hyperparameter of our approach). This
threshold can be estimated empirically via the data analysis
process. The keyframe Krp is updated as the current frame
Fj as long as the IOU is less than the threshold and, thus
no offset is confirmed. Otherwise, if contact is detected, the
keyframe K g is definitively set as the current frame JF, and
a new reaching action is initiated.

Structure of the E-BabyNet: With reference to Fig. 2, our
visual learning structure employs the aforementioned infor-
mation as input to a two-layer network. The first layer con-
tains two sub-networks organized in parallel to each other.
These sub-networks are LSTM models built directly upon our
previous work BabyNet [22], and consider either the right
or the left hand separately. They each aim at assimilating
the correspondence between the corresponding hand’s and the
object’s bounding boxes using the distances and IOU. Each
sub-network assesses the reaching action for the corresponding
hand via an output comprising four probabilistic scores: Onset
(RN), Offset (RF), Reach (R), and No Reach (NoR). The Onset
(RN) assesses the probability that the hand is about to initiate
the action, while the Offset (RF) represents the probability that
the reaching action is completed. All frames that are between
the Onset (RN) and the Offset (RF) phases are marked as
Reach (R), whereas the frames before the Onset and after the
Offset are labeled as No Reach (NoR).

The outputs of the two parallel sub-networks in the first
layer are fused into the second layer of our structure via a
Bidirectional LSTM (biLSTM). The latter processes the input
in a forward and a backward direction. Thus, it considers
past and future information critical when transitioning from
a Reach (R) to a No Reach (NoR). The final output is six-
dimensional, and includes the four probabilistic scores RN,
RF, R, and NoR (as defined previously) along with two
additional probabilistic scores of Left (Lh) and Right (Rh)
hand. These two scores highlight the probability that the left
or right hand, respectively, is the reaching one. When both
values are increased at the same time, this indicates a bimanual
reaching action. To illustrate this output structure, consider
the following exemplary case. A correctly detected reaching
action with the right hand will yield a high score for Rh
throughout the reaching action’s duration (i.e. all frames). The
RN score will spike at and around true onset (and be low in
other frames), while the RF score will spike at and around
true offset (and be low in other frames). Finally, the score for
R will be high in all frames between RN and RF, and the NoR
score will be high in all frames before RN and after RF.

C. Implementation and Experiments

To assess the performance of our approach, we considered
an implementation and an evaluation phase. During the former,
we considered a split of the dataset as 70% training, 15%

0] i (e)

Fig. 3. Qualitative illustration of our approach. (a) Onset: the movement
of the right hand (cyan) is initiated to reach the object (magenta). During
the (b)-(d) reach and (e) offset: the distance between the right hand
and the object (dark blue) decreases as the IOU (orange) increases
until its value stabilizes (which indicates that a reaching action has
been successfully achieved). Note that during this specific example, the
distance between the left hand (red) and the object does not decrease
in a significant manner and hence the respective IOU remains null which
confirms that no reaching action is performed by the left hand.

validation, and 15% testing using 266 reaches out of the total
of 375. We performed a comparison against various baselines
and conducted an ablation study to determine the effect of key
hyperparameters on the performance of E-BabyNet. For the
latter phase, we used the remaining 109 reaches, consisting of
58.72% reaching actions lasting between 3 to 15 frames and
35.78% lasting between 16 to 30 frames. Besides evaluating
the complete E-BabyNet network structure, we also performed
an additional ablation study where the first layer models for
the left hand and the right hand were evaluated independently
on this unseen part of the dataset, to assess the significance
and necessity of the second layer (BiLSTM). All experiments
were performed on a workstation featuring an Intel Core
i7 Processor (16 x 2.30GHz), 16 GB DDR4 RAM, and an
NVIDIA GeForce RTX 3050 GPU. All networks were trained
with learning rate 10e-4 using Adam optimizer and cross-
entropy loss with 30 hidden layers.

Based on [22] that demonstrated the efficacy of compara-
tively smaller (and memory-based) networks,* the baselines in
this work include only lightweight structures. These are:

e Multi-Layer Perceptron (MLP),

o Gated Recurrent Unit (GRU),

o Bidirectional LSTM (BiLSTM), and
o BabyNet (based on LSTM).

3 In earlier work we evaluated several large CNN methods (specifically,
ResNet-based [34] architectures combined with different data augmentation
techniques), and it was found [22, Table II] that these larger structures
demonstrated solid performance during training and validation but were
providing results with increased false positives rates.
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TABLE |
PERFORMANCE OF THE E-BabyNet AND COMPARATIVE RESULTS AGAINST BASELINES.
Model Parameters ~ Avg. Training Acc. [%]  Avg. Validation Acc. [%]  Avg. Testing Acc. [%]  Precision  Recall ~AUC
MLP 183 64.7 59.1 60.3 0.66 0.61 0.80
GRU 3153 72.6 72.3 85.6 0.68 0.70 0.82
BiLSTM 8103 76.3 77.7 85.5 0.71 0.69 0.81
BabyNet 3960 71.8 72.1 89.5 0.70 0.69 0.82
E-BabyNet 8249 95.4 97 95.5 0.96 0.97 0.97
TABLE Il
HYPERPARAMETERS EFFECT ON THE PERFORMANCE OF THE E-BabyNet.
Batch
Batch  Hidden Layer  Avg. Training Acc. [%]  Avg. Validation Acc. [%]  Avg. Testing Acc. [%]  Precision Recall ~AUC
16 30 89.4 83.7 94.7 0.82 0.82 0.87
32 30 73.7 74.9 95.2 0.88 0.95 0.96
64 30 96.2 97.5 97.3 0.98 0.97 0.98
full 30 95.4 97 95.5 0.96 0.97 0.97
Hidden Layer
Batch  Hidden Layer  Avg. Training Acc. [%]  Avg. Validation Acc. [%]  Avg. Testing Acc. [%]  Precision  Recall ~AUC
full 15 61.5 61.0 57.6 0.82 0.82 0.87
full 20 72.6 72.3 85.6 0.68 0.70 0.82
full 30 95.4 97 95.5 0.96 0.97 0.97
full 100 99.9 100 100 1.0 1.0 1.0

The aforementioned baselines employ two inputs, that is,
the distances and the IOU of the detected hands’ and objects’
bounding boxes, and output the probabilistic scores (RN, RF,
R, NoR) and the final keyframes Kry and Kgrp. E-BabyNet
employs the same input format and outputs probabilistic scores
Rh, Lh, RN, RF, R, NoR (see Fig. 2).

[1l. RESULTS

Obtained experimental results during the two phases are
presented in Table I (E-BabyNet performance and comparison
against baselines), Table II (ablation study regarding hyper-
parameters), and Table III (evaluation in unseen part of the
dataset and ablation study regarding the second layer). In the
implementation phase, we provide classification accuracy for
training, validation, and testing for each tested structure. In
both phases, we evaluated the precision, recall and area under
the receiver operating characteristic (ROC) curve (AUC) to
assess the tested structure’s performance.

A. Implementation Phase

Comparison Against Baselines: With reference to Table I, it
can be readily observed that the GRU, BabyNet, and BiLSTM
baseline structures yielded similar performance. Their average
testing accuracy exceeds 85%, but the recall score is at 0.70,
which essentially indicates a higher number of false positives.
The MLP demonstrated the worst performance, especially
in terms of average accuracy and recall scores. The worse
quantitative performance can also be associated with observed
qualitative results. For all the correct reaching actions, the
MLP had a difference within a range of five to eight frames
in its keyframes. Moreover, it was unsuccessful at detecting
comparatively shorter reaching actions (lasting between 5 to
8 frames) compared to the three other baseline structures.

In contrast, E-BabyNet yielded the best performance, with
an average testing accuracy of 95.5% and high precision

(0.96) and recall (0.97) scores. The AUC score confirms these
findings as E-BabyNet has a score of 0.97. E-BabyNet had a
delay in a range of one to four frames but was able to yield
fewer false positives compared to all other methods.

Effect of Hyperparameters in E-BabyNet: The key hyper-
parameters considered herein include the batch size and the
number of hidden layers. With reference to Table II, it can be
seen that as the batch size varies, E-BabyNet can maintain
its performance albeit with somewhat lower accuracy and
smallest recall of 0.82 for the smallest batch size. The full
and 64 batch sizes performed best with high recall and
precision scores; however, the full batch size needed over eight
times less time to train, providing a better trade-off between
performance and time execution. With respect to the number
of hidden layers, it can be observed that the number of hidden
layers has a much more immediate and variable effect on the
network’s performance. A smaller number of hidden layers
(20 or less) leads to a noticeable drop in performance, while
the structure will overfit with a hidden layer of 100 after
only 12 epochs. Based on these findings, we inferred that the
structure with 30 hidden layers and full batch size is the most
appropriate for our application.

B. Evaluation Phase

With reference to Table III, E-BabyNet can maintain its
performance even in the unseen part of the dataset, with
precision and recall scores of 0.73 and 0.82, respectively. The
reported keyframes had an average precision of three frames.
Assessing how the method would perform if the second layer
(the BiLSTM) was not employed yields variable results. The
left hand model has worse performance compared to the right
hand model (and the complete network). However, the right
hand model alone has an overall better performance than
the complete network. These findings suggest that when the
outputs of the two parallel models for the left and right hand
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Fig. 4. Examples of occlusion of the infant’s hand during reaching actions. The top panels (a, b, and c) show the object obstructed by the infant’s
hand. The bottom panels (d, e, and f) show a hand obstructed by an object.

are pooled together via the BiLSTM in the second layer, the
network can become more robust. We observed that 72% and
79% of reaching actions lasting between 3 to 7 and 8 to 15
frames were correctly recognized, respectively. In the case of
challenging or confusing cases, the E-BabyNet is more prone
to predict a false negative than a false positive. Lastly, out of
the six reaching actions with frames number greater than 31,
four were correctly detected with a precision of four frames.

IV. DISCUSSION

The obtained results collectively suggest that the developed
E-BabyNet can demonstrate solid performance. The average
testing accuracy of our method was 95.5%, with a precision
of 0.96 and a recall of 0.97. Additional experimentation by
evaluating our method using a never-seen-before part of the
dataset yielded solid results with precision and recall at 0.73
and 0.82, respectively. These findings show that it is possible
to perform robust infant reaching action recognition with
comparatively small learning-based structures.

Three main features can be associated with this solid perfor-
mance. First, the integration of memory is important as it helps
capture the temporal correlation between the onset and offset
points of a reaching task. This assessment can be made best
when compared to our earlier results in [22, Table II] where
large, CNN-based structures had lower performance compared
to smaller, memory-based structures. Second, among smaller
memory-based networks, the ability to differentiate between
left-hand and right-hand reaches and assess them separately
can help increase performance (i.e. average testing accuracy,
precision, and recall). This is best viewed by comparing the
first four baseline cases in Table I (all of which do not
explicitly differentiate the left- and right-hand reaches) with
the fifth line of the same table and with Table I. Results when
both hands are considered explicitly are in all cases better.
Third, and related to the previous feature, is the addition of
the BiLSTM in the second layer to fuse the information from
the first layer that addresses the left and right hand separately.

TABLE 1lI
PERFORMANCE OF THE E-BabyNet DURING THE EVALUATION PHASE.
Model Precision  Recall AUC
Left 0.69 0.89 0.86
Right 0.75 0.91 0.92
E-BabyNet 0.73 0.82 0.85

This is critical because it reduces sensitivity to data sample
types (i.e. left vs right hand reaching actions) as shown in
Table III, while it also considers past and future information
critical when transitioning from a Reach (R) to a No Reach
(NoR). Owing to the BILSTM integrated into the second layer
of E-BabyNet, discontinued reaching actions were predicted
regardless of the number of frames with partial information,
e.g., the hands could be obstructed by the infant’s body or
another object in the scene during the reaching actions (Fig. 4).
Predictions of keyframes were also highly accurate, with some
delays observed only in reaching actions that also included a
final grasp of the object.

Besides improved performance, E-BabyNet has additional
core benefits compared to baselines. While the baseline models
underperformed in the case of short reaching actions, the
E-BabyNet can recognize short reaching actions as well as
long ones. It can also recognize bimanual reaching actions.
Results also suggest that the baseline structures provided low
scores for precision which can lead to high false positives. In
contrast, E-BabyNet can provide reliable action recognition,
and when uncertainty is too high, it will render a false
negative detection. This last point is critical in the context
of our application that seeks to integrate visual-learning-based
reaching action recognition into a new soft wearable robotic
device [37]-[41]. Our soft wearable robotic device seeks to
offer perceptual-based assistive feedback to infants with upper
extremity mobility impairments, and for safety purposes, it
is important in the case of failing to correctly recognize a
reaching action to not force an infant’s arm to move against
their will. (A false negative will not lead to device actuation.)
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Despite these positive findings, the evaluation phase high-
lighted lingering challenges that can be addressed to further
improve our method’s outcomes. Some of these challenges
pertain to the complexity of the visual learning task considered
herein. This is because of various types of possible occlusions
and hand/object overlap (Fig. 4 and Fig. 5), camera viewpoint
variations among different subjects, as well as accompanying
adults’ hands and multiple possible target objects appearing in
images (Fig. 1). The front-view reaching actions were the most
challenging for the E-BabyNet as the bounding boxes of the
hand and the object may have significant overlap (Fig. 5). This
effect was noticeable on the low score of the left model since
left reaching actions were largely captured from the front (or
rear) camera viewpoints. In this case, the IOU is set at a high
value during the onset phase and thus infers either a shorter
reach or a no reach. Further, reaching actions of developing hu-
mans can be less straight, less smooth, and more diverse [33],
and this can lead to cases where the distance between the hand
and the object increases significantly throughout the reaching
action. This impacts the detection of reaching if it occurs for
more than three frames. Figure 6 illustrates two such cases. We
also observed that several grasping actions were reported by
the network as featuring a reduced number of frames compared
to the correct one when the infants’ hand contacted the target
object first before grasping it. This can be associated with the
fact that the employed dataset includes training offsets with
both touching and grasping, which can lead to a few frames
difference in the offset although the detection remains correct.

While further improving out-of-sample outcomes is possible
(e.g., by implementing more robust metrics for reaching offset
determination that employ additional information such as 2D
skeleton data), the current findings show that it is possible
to perform robust infant reaching action recognition with
comparatively small learning-based structures. We believe that
this work can help inspire more works in this emerging area
of infant reaching action recognition via visual learning and
serve as a basis for future works to build on top of it.

V. CONCLUSION

In this work we proposed E-BabyNet, a learning-based
structure that leverages machine vision and artificial intel-
ligence to recognize infant reaching actions in unstructured
environments. Results obtained through different types of
testing and evaluation demonstrated the efficacy of E-BabyNet

Fig. 6. Examples of reaching action trajectories of a (top) 6 and (bottom)
7 months infant. Panels (a) and (c) correspond to onset phases, while
panels (b) and (d) show frames at the offset phase along with the
complete trajectories followed by the hand during the reaching action.

as compared to other lightweight neural-network-based struc-
tures. This work also enables interesting future directions
of research. First, the rich infant motion variability during
development could be better harnessed by further extending
the reaching action dataset. To address challenging camera
views, fusion with the infant’s 2D skeleton data (at a minimum
their arms, if not full-body) may improve the result of the
first layer of the E-BabyNet structure, and thus increase the
overall reaching action recognition efficiency. Furthermore, an
online learning scheme could expand the scope of the structure
and its capability to detect complex reaching actions, while a
prediction model might aid in reducing the effect of hands’ and
objects’ occlusions during reaching actions. It is also possible
to integrate automated hand detection processes, for instance
via learning-based visual detectors. In addition, the precision
of the keyframe detection could be enhanced by an explicit
definition of grasping and touching objects.
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