Journal of Multivariate Analysis 201 (2024) 105270

Contents lists available at ScienceDirect

Multivariate

Analysis

Journal of Multivariate Analysis

journal homepage: www.elsevier.com/locate/jmva

n
fastMI: A fast and consistent copula-based nonparametric s
estimator of mutual information

Soumik Purkayastha', Peter X.-K. Song ™!

Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA

ARTICLE INFO ABSTRACT

AMS 2020 subject classifications: As a fundamental concept in information theory, mutual information (M I) has been commonly
primary 62H12 applied to quantify association between random vectors. Most existing nonparametric estimators
secondary 62G05 of M T have unstable statistical performance since they involve parameter tuning. We develop
Keywords: a consistent and powerful estimator, called fastMI, that does not incur any parameter tuning.
Copula Based on a copula formulation, fastMI estimates M1 by leveraging Fast Fourier transform-
Fast Fourier transformation based estimation of the underlying density. Extensive simulation studies reveal that fastMI
Kernel density estimation outperforms state-of-the-art estimators with improved estimation accuracy and reduced run time

Permutation test for large data sets. fastMI provides a powerful test for independence that exhibits satisfactory

type I error control. Anticipating that it will be a powerful tool in estimating mutual information
in a broad range of data, we develop an R package fastMI for broader dissemination.

Statistical dependence

1. Introduction

Investigating dependence between two random variables is a key issue in statistical science. It is known that classical measures
like Pearson’s r, Kendall’s z, and Spearman’s p [9], although widely used in practice, are incapable of capturing a non-linear,
non-monotonic association, which cannot be properly estimated using ranks and their monotonic transformations. To address
this practical need, more sophisticated measures, like the distance correlation (dCor) [31], the Heller-Heller-Gorfine (HHG) [13]
statistic, and the maximal information coefficient (MIC) [24] have been introduced to study more complex association patterns such
as the dependence of two random vectors.

Among many non-linear association metrics, mutual information (M I) [5] has recently re-emerged in the statistics and machine
learning literature with many exciting applications [34]. Originally introduced in a communication theory context [27], M I presents
a remarkably general and intuitive measure of dependence. Its widespread use in practice is due largely to the self-equitability [15]
of M1 - the ability to characterize dependency strength for both linear and non-linear relationships.

For continuous data, which shall be the focus of this paper, there are three distinct M I estimation approaches. The first approach
implements a binning method to group continuous data into different bins and estimates M I from the binned data [22,29]. The
success of this simple method depends heavily on proper specification of both number and position of said bins. Another approach
is based on a k-nearest neighbors (kNN) estimation method, utilized by the Kraskov-Stogbauer—Grassberger (KSG) estimator [16].
As is the case with all kKNN-based methods, the KSG estimator greatly depends on properly specifying the number of neighbors. The
third approach is based on estimates of probability density functions (PDFs), using histograms, kernel density estimation (KDE) [20],
B-splines [8], or wavelets [23]. This nonparametric approach typically relies on a tuning parameter (e.g. bandwidth) that needs to
be specified in the estimation routine.
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Although the approaches mentioned above demonstrate good properties [8,16,20,22,23], they are all sensitive to proper
specification of tuning parameter(s) in a chosen smoothing technique. As a consequence, the resulting estimators may be numerically
unstable and/or suffer from serious bias. A recent study [38] presents a tuning-free KDE approach to estimate M [ in which the
bandwidth parameter is automatically set to maximize the jackknifed version of M I (henceforth referred to as J M I). Not only does
this method exhibit better estimation efficiency than other existing M I estimation approaches but it also provides a stable hypothesis
test for independence that is shown to be more powerful than its competitors such as the dCor, HHG, or MIC. According to existing
literature, J M I serves as the current gold standard for estimating M I as well as is the choice of test for independence [38].

Along the line of tuning-free estimation, an improvement on J M I is proposed in this paper. This new estimator is motivated by
the self-consistent density estimator proposed by [2,21] to minimize the mean integrated squared error (MISE) between the estimated
density and the true density without incurring any manual parameter tuning. The estimation process relies on fast Fourier transforms
(FFT).

Furthermore, utilizing this ‘optimal’ density estimator, we propose a plug-in estimator of M1, termed as the fastMI, which
is shown to be consistent and manyfold faster than the original JM I for large data sets. This proposed fastMI automatically
determines the bandwidth by minimizing the MISE objective function in a data-adaptive way.

Simulation studies comparing estimation accuracy reveal fastMI outperforms the current gold standard JM I estimator.
Through extensive numerical experiments, fastMI demonstrates improved estimation efficiency, higher empirical power when
testing for independence, and reduced computation time. All these lead to a recommendation of our new methodology to
practitioners.

The rest of the paper is organized as follows. In Section 2 we define M I and underline a key connection of M I with copula. In
Section 3 we describe the self-consistent density estimation method in detail. In Section 4 we provide theoretical guarantees on the
asymptotic behavior of the fastMI estimator. We present extensive simulation studies in Section 5 to highlight the strengths and
advantages of using fastMI over the existing state-of-the-art estimator, the J M I estimator. Further, we benchmark our findings
by means of an empirical copula estimator-based M I as well. Finally, we present an application of fastMI to real data in Section 6
before summarizing our findings in the concluding Section 7. All heavy technical details are included in Section 8.

2. Methods

To formalize the problem, suppose that ¢ € N can be written as d = p + g for some p,q € N, that X and Y are random
vectors taking values in R? and RY, respectively, and that Z = (X',Y")" has density fyxy with respect to Lebesgue measure on
RY. We write fy and fy for the marginal Lebesgue densities of the random vectors X and Y, respectively. Given independent and
identically distributed copies {Z,, ..., Z,} of Z, one of our primary tasks is to test the null hypothesis H, that the vectors X and
Y are independent against the alternative that X and Y are not independent.

2.1. Mutual information and its copula-based formulation

In order to test the independence of X and Y we consider mutual information M I(X,Y), defined by

Sxy(X,Y) }]
fx(X) fy(Y)

where Eyy denotes expectation under the joint density fyy. It is known that M is a valid measure of association; that is, it is
equal to zero if and only if X and Y are independent and positive otherwise. Larger values of M I indicate a stronger association.
M is invariant under monotonic transformations, which is an important property allowing various rank-based transformations.
Further, M I satisfies the self-equitability condition [38], implying that it detects associations without a bias for specific association
patterns, unlike the M IC [15].

Interestingly, M T may be rewritten as a function of copulas, a class of dependence models [14]. Note that by using Sklar’s
theorem [7], we can apply moTnotonic marginal transformationsTto reduce the technical complexity by using uniform transformations
Uy= (FX (X1, Fy (X p)2 and Uy = (Fy] @, ... ,Fyq(Yq)> , where Fy and Fy, are the cumulative distribution functions (CDFs)
of X; and Y}, respectively, for | <i <pand 1 <, < q. We use ¢y, y,, cy,, and cy, to denote the copula density functions of
wr, U,T,)T, Uy, and Uy respectively. Using this marginal uniform transformation trick, we arrive at an alternative copula-based
formulation of M I:

MI(X.Y)=Eyxy [m {

cy Uy Uy, uy)
MIX,Y MIWUy,Uy) = c Uy, uy)duyduy. (€D)
( )= Ux,Uy)= 01JP-/(111" {CUX("X)CUy(uy) U Uy (Ux,uy)duyduy

MT in (1) may be estimated by plug-in copula density estimators. The marginal uniform transformation trick allows us to consider
ranks instead of raw data, making copula-based estimation methods robust to any marginal irregularity, in contrast with methods
which use raw data to estimate M I, such as the kNN-based KSG estimator. Recognizing M I as an integral in (1), we may invoke data
generative methods, including classical Monte Carlo methods [25] for estimation purposes. The estimated copula density functions
¢uyuy» Cuy> and ¢y, are used to obtain an estimate of the underlying M I. Using a fast Fourier transform-based density estimation
technique [2,21], which is described in greater detail in Sections 3 and 2.2, we obtain said copula density estimates. This estimation
routine will be utilized in a powerful M I-based hypothesis test for independence of X and Y.
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2.2. Improved nonparametric estimation of copula density using probit transformation

From (1) we note the need to estimate three multivariate copula density functions, namely ¢y, y,, ¢y, and ¢y, . Here we describe
the nonparametric KDE of a generic d-variate copula density function for vector U = (Uy, ..., Ud)T on unit hypercube [0, 1]. The
naive KDE [28], is not suitable for unit hypercube-supported copula densities, mainly because it is known to be heavily affected by
boundary bias issues. Most kernel estimators, for instance, have problems with such bounded support because, for points close to
the boundaries, they typically place some positive mass outside of the support. In addition, according to [10], kernel estimators may
fail to provide consistent estimation for some copula density values at corners of the unitary cubic because of the unboundedness
issue (i.e., infinite density values). For example, in the bivariate Gaussian copula case with moderate correlation, the copula density
is unbounded in two corners of the unitary square [0, 1]>. Therefore, to address this issue, a variable transformation approach in the
kernel estimation of copula densities was proposed [10,19], which we describe below.

We define a vector of normal scores V = (..., Vd)T where V; = ®~1(U)), 1 <i < d, with @ denoting the standard normal CDF
and @' denoting its quantile (probit) function. Given that each U; is uniformly distributed on [0, 1], we have each V; distributed
as a standard normal variable, although this does not force the joint distribution of ¥V to be multivariate normal. Then, the joint
density function of V, given by g, may be expressed as follows:

_ g{@7 ), ..oy}
p{otup} ..o {@ 1wy}’

The motivation for this probit transformation is as follows: if c(u) > 0 Lebesgue-a.e. over [0, 1], V has unconstrained support over
R¢ and estimating its density g no longer suffers from boundary issues. In addition, due to its normal margins, one may expect g
to be smooth and well-behaved, and its estimation becomes relatively easy and accurate. It is clear that any estimator g of g on RY
will produce a corresponding estimator of the copula density on (0, 1)¢:

_ g{o7 ), ..oy}
p{D )} ... p {7y}

Further, when necessary, ¢ can also be defined at the boundaries of [0, 1]¢ by continuity [10]. This probit transformation trick confers
many advantages to the estimator ¢, including (i) g, being an unconstrained density estimator on R¢ does not suffer from boundary
bias issues and does not allocate any probability to ¢ outside [0, 1]¢; (ii) if £ is a bona fide density estimator, i.e., §(v) > 0 Vv € R?
and [ps §(w)dv = 1, then by change of variable U; = @(V)) for 1 < i < d we have éu) > 0 Vu € [0,11 and f,,« é@)du = 1; (iii) if
£ is a uniformly (weak or strong) consistent estimator for g, we note that the corresponding ¢ inherits the same behavior on any
compact subset of [0, 1]%.

uel0,1).

c(uy,...,uy)

ue 0,1 @

E(uy, ... uy)

The key challenge now lies in obtaining a ‘good’ PDF estimator §. Kernel density estimators (KDEs) are commonly used for
estimating PDFs. A well-known technical challenge in the KDE method is to determine a kind of optimal bandwidth H in addition to
a specifically chosen kernel density [38]. Albeit a vast literature exists on this issue of bandwidth tuning, selecting optimal H remains
case-dependent and computationally burdensome, and oftentimes this task involves a manual user intervention [28]. A review of
automatic selection methods [12] recommends a variety of different approaches that are dependent on data set characteristics
(including sample size, smoothness, and skewness) and thus are hard to implement properly in practice. In Section 3, we consider
an alternative approach to density estimation that relies on fast Fourier transforms.

In summary, using the probit-transformation trick and an FFT-based density estimation method, we are able to obtain the
estimated copula density functions ¢y, y,, ¢y, and ¢y, via (2). These estimated densities are used to compute our estimator
fastMI for M as described in Section 2.3.

2.3. fastMI: fast nonparametric estimation of MI

Let Z; = (X,.T,YIT)T, with X; = (X“,...,Xp,-)T and Y; = (Y],-,...,Yqi)T for i < i < n be a random sample drawn from a

d-variate distribution fyy. As a preliminary processing step, we define the vectors of empirical probability integral transforms
X . o X T X X

Uy, = FXI(X“),...,FXP(Xpiz]) and Uy, = (FYI(YII),...,Fyq(Yqi)) . Here, Fy, and Fy, are the empirical CDFs of X; and Y;

respectively for | < i < pand 1 < j < ¢. Next, we invoke the probit transformation as described in Section 2.2 to obtain the

estimated copula density functions: ¢y, y,, ¢y, and ¢y, , as described by (2). These estimated densities are used to compute our

plug-in estimator fastMI estimator using (1). Consequently, fastMI is given by

o~ : é Ux:Uyy)
BT gy = i Uatr Cxe v | @
izl Cuy Ux)ey, (Uy;)

Note that we use fastMI and M1 sas interchangeably in this article. In Section 3 we discuss a data-driven fast Fourier transform-
based density estimation technique that yields consistent and fast estimates of the underlying density function without being
encumbered by bandwidth selection issues.
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3. Self-consistent density estimation via fast Fourier transforms

A density estimation technique that has no need for user-selected parameter tuning was introduced by [2] for univariate
continuous random variables and later extended to higher dimensions by [21]. The density estimator called the self-consistent (SC)
estimator, was shown to converge almost surely to the true underlying density for the univariate case. In this section, we present
the derivation of the SC estimator for the multivariate case and present proof of almost sure consistency of the SC estimator to the
true d-dimensional density under mild assumptions. To our knowledge, while proof of consistency for the SC estimator exists for
the univariate case, this is the first attempt at proving the consistency of the estimator for the multivariate case.

The SC estimator has desirable large-sample properties in addition to enjoying greatly improved computations speeds. Using
the SC estimator and (2), we obtain the estimated copula density functions ¢y, y,, ¢y, and ¢y, , which are then used to compute
fastMI using (3).

3.1. Formulation

Let S = {Z ,€ZC R, j=1,... ,n} denote a random sample drawn from PDF f,. Assume that the true PDF f, belongs to
the Hilbert space of square-integrable functions, namely £? = {g : [ g2(z)dz < oo}. We propose to estimate /. by the following
convolution of an arbitrary kernel K and the set of delta functions centered on the dataset for z € R¢:

J

2@ =n" Y K@-2Z)=n") / K0é(z—Z;—tydt =n"" Y (K = 6)(z— Z), Q)
=1 j=1 /R4 =1

where §(z) is the Dirac delta function [17] and f * g denotes the convolution of two functions f and g: (f * g)(¥) := /Rf] f(D)gt—7)dr.
Here K is chosen such that the resulting estimator f, € £2.
Denote the space of candidate kernel functions by

K= {K : K(z) >20;K(z) = K(—z);/K(z)dz = 1}.

Given a random sample S, our aim is to identify an optimal kernel K € K, that achieves the minimal mean integrated square error
(MISE) between the true density f, and an estimator f:

R :=argmin MISE(f,, f7) = argmin E [/ (fz(z)— fZ(z)}Zdz] , (5)
KeK Kek R

where the E operator denotes expectation taken over the entire support of f,.
To perform minimization in (5), we follow a procedure for signal deconvolution [37] via Fourier transforms. First, consider the
Fourier transform of the true density f,, namely the characteristic function (CF) given by

o) = / fz(@exp(it' z)dz, teR?.
R4
Then, using the Fourier convolution theorem we obtain
F{K(z—Z)}(t) = F{K(z) * 8(z = Z)}(t) = k() exp(it' Z;), tER, 6)

where F is the Fourier transform operator and «(¢) := F { K(z)} (t) denotes the Fourier transform of the kernel K. From (6) and the
linearity of Fourier transforms in (4), we obtain ¢(t), the Fourier transform of the estimate f. 2, as follows for t € R¢:

n
bty =F{ £} © =x@ n™" Y explit” Z,) = x(OC(), )
j=1
where C(t) = n™' ¥7_ exp(it’ Z)) is the empirical characteristic function (ECF). Since the data {Z,,...,Z,} are iid, it is
easy to see that the ECF is an unbiased estimator of the corresponding CF, i.e., E{C(t)} = ¢(t). It can also be shown that
E |C@t) — ¢p@)|? = (1 - |¢(t)|2) /n. We refer the reader to [33, Chapter 3] for more details on the ECF and its properties. It follows
that E {$(1)} = x()¢(t) for t € RY.

The MISE in (5) corresponds to the mean-square distance between the true density f, and the estimate f,, in terms of the
Euclidean metric in the Hilbert space £2. We rewrite (5) in Fourier space using Parseval’s theorem as follows:

MISE(,. /) = Q) E [ /]R 190 ¢(t>|2dt] . ®

Since f,(z), f 2(2), p(2), (t) € £2, we may interchange the expectation and integral operations [3] and rewrite the MISE in (8) as
follows:

MISE(f. ) = () /]R [E1d - paoPar] = @my /R [EI@ - B {d0) +E {$0)} - s a
©)
= Qo™ /Rd [77 k@1 {1 = 19@®} + [p®I|1 — k(@] dt.

4
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Since the integrand in the last line of (9) is quadratic in « it is straightforward to find the optimal Fourier-transformed kernel «,py
that minimizes MISE, by equating the functional derivative of MISE with respect to x to zero and solving for xps, given by

t d

Kopr(t) = (10)

n
n—1+|p@)|2
(10) reveals that a unique ‘optimal’ Fourier transformed kernel can be derived as a function of the power spectrum of the (unknown)
density that is to be estimated. Although this finding was first reported in [36], the result alone is unfortunately of little use since
the power spectrum ¢ of the true density f, is not known. We follow the suggestions in [2] and take a step further to plug in to
(7), the transformed kernel x,p; obtained in (10) to write the Fourier transform & of the density estimate fz as follows

nC(t)
n—1+]¢@|2
Then, an iterative procedure proposed by [2,21] may be applied to determine the exact fixed point of (11), with the details described
in Section 3.2.

Bt) = Ctxopr(t) = teR?. (11)

3.2. Multivariate self-consistent estimation

An iterative procedure is defined by the following sequence of estimates, begun with an initial guess ¢(?):

. nC(t) 4
o )=————  teR 12
Oy P Y FO (12
The convergent point from (12) yields an estimate ¢ (¢) which satisfies
. C(t
fscty=—W___ jem, a3

n—1+I|dsc®2’

The existence of ¢ (t) is warranted as (13) has two fixed and unique non-null solutions. We show that (13) has only one stable
non-null solution. Noting that ¢ ¢ is complex-valued, we take the absolute value of (13). When the null solution ¢4 = 0 is removed,
we obtain a simple quadratic equation:

(=1 |sc®* = nlCOPsc @)

Provided |C(t)| > 4(n — 1)/n?, the above equation has two solutions denoted by the superscripted |¢gc(t)*],

L nlcq) _An-D)
|dsc®*| = 2n—1) |:1 * {1 n2|c@)? }] '

When substituted in (13), they return the solution for ¢ sc(®)* of the form:

- nC(t) 4(n—1) d 2
boc®)* = 1+ {1——} , teRINn{t:|CH)|>4n—-1)/n"}.
s¢ 2(n—1) n2|C@)? { /)
Since these two solutions only depend on the ECF C, they may be used to estimate ¢. Below, we identify a stable solution to be
used in (11).
Whereas ‘f;}c is normalized, ‘73§c is not; that is, C(0) = 1 implies zj}}c(()) = 1, which is desirable; in contrast q.'?g c0) =1/(n-1),
which is undesirable. Furthermore, we compute the derivative

B s {1_4(n—1)}
- N 2
IBal=Id% | n|C)

d|d,|
Thus, under [C(t)| > 4(n — 1)/n?, qE}C has a derivative smaller than one, indicating a stable equilibrium point, whereas ‘[’Ec has a
derivative larger than one, indicating instability. In summary, we choose ¢y = q§§c as the solution to (11) in the construction of
the estimate. That is,

N nC(t) 4n-1) d
1= 1- l—-—= |, (), teR‘ 14
$sc®) -1 [ { 2ICOP }] 4,0, t€ 14

where A, serves as a low-pass filter that ensures the stability of the estimation process. Since ¢4 and A, are bounded (see remarks
below), (14) can be antitransformed back to the estimate in real space, given as follows:

Fse@ =00 [ dscexpit o as)

Remark 1. The purpose of the filter I, (¢) is to define a Fourier-based low-pass filter on the ECF C(?) that yields a stable optimal
estimate in the minimum MISE sense. Primarily, the set A, is specified such that:

A, = {teRd CICOPR 22, = 4("_1)}. (16)

min n2
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Here, the primary filter is necessary for the stability of the iteration method, since the lower bound C,,;, can ensure a well-defined
square root term in (14). Moreover, according to [2], the set A, may exclude an additional small subset of frequencies to produce
a smoother density estimate f,. In order for f, to converge to the true density f, as n increases, we require that this set of
additionally excluded frequencies must shrink, so that the set A4, of included frequencies grows with increasing n.

Remark 2. According to [21], the multivariate ECF C() consists of a finite set of contiguous hypervolumes denoted by {HV",...,

HV]" { where k, is a finite integer. Each hypervolume permits ‘above-threshold’ frequency values ¢ for which the constraint in (16)
holds. Note that at least one such contiguous hypervolume containing ¢ = 0 is guaranteed to exist since C(0) = 1 due to normalization
and the primary filter A, has a lower bound C.;, < 1. Following the suggestion by [21] we employ the lowest contiguous
hypervolume filter, choosing the only hypervolume centered at ¢ = 0, which we denote as HV" for notational convenience. We
make the following observations about HV":

1. The set of frequencies included in the lowest contiguous hypervolume filter is bounded above since the frequencies will
always be contained within a finite-sized hypervolume around the origin.

2. The volume of the lowest contiguous hypervolume filter grows as the number of data points » increases, implying more
frequencies are included for larger sample sizes.

The resulting filter satisfies the convergence conditions described by [2]. Hence, we set A, = HV}", and study convergence of fsc
to the true f, as n increases. For notational convenience, let A, denote the complement set of A, and V(4,) denote the volume of
A

ne

When compared to the classical kernel estimation approach [28] that assumes a specific form of the kernel with a need of tuning
bandwidth, the advantage of the above SCE lies in making minimal assumptions on the functional form of K, while determining the
estimate ¢ g as a function of the ECF C, along with a well-specified low-pass frequency filter A, entirely by a data-driven approach.
The proposed optimization via (11) enjoys computational efficiency when ‘finding’ the functional form of the optimal kernel.

4. Theoretical guarantees
4.1. Large sample properties

We now present key large-sample properties for the SCE estimator and the subsequent plug-in estimator of M I, beginning with
Theorem 1 that establishes strong consistency of the SCE estimator fg. at all points on the support of f.

Theorem 1. Let the true density f, be square integrable and its corresponding Fourier transform ¢ be integrable, then the self consistent
estimator fgc, which is defined by (15), converges almost surely to f, as n — co, under the additional assumptions V(A,) — oo,
V(A,)/ \/ﬁ — 0 and V(A,) - 0 as n — oo. Further, assuming f, to be continuous on support RY, we have uniform almost sure convergence
of fsc to fz as n— oo.

The proof of Theorem 1 is given in Section 8. Note that fg can be used in conjunction with the probit transformation trick
described in Section 2.2 in order to obtain uniformly strong consistent estimators for the copula density functions ¢y, y,, ¢uy»
and ¢y, and subsequently obtain the fastMI estimator described by (3). fastMI is shown to be consistent, as established by
Theorem 2 below.

Theorem 2. Let the assumptions of Theorem 1 hold. Further, we assume the true underlying copula functions cy ,y,, cy,» and cy, are
bounded away from zero and infinity on their support. Then, the estimator fastMI given by (3) converges in probability to the true M1
given in (1) as n — oo.

The proof of Theorem 2 is given in Section 8.
4.2. Test for independence

On the basis of Theorem 2, using the estimator MI fast» WE Propose a permutation-based test for independence, i.e., a test for
H, : MI =0 against the alternative H, : M1 > 0.

Typically, rejection rules of a test based on large-sample theory require data with large sample sizes, which may not be
always available in practice. Leveraging the fast computational speed of our SC estimation method, in this paper we consider
a hypothesis testing method that is deemed stable and reliable. Thus, we implement a permutation-based test as it is known to
give a precise finite-sample distribution of the test statistic for even small samples [18]. For a random sample of n observations,

S = {(X,,Yl),...,(X,,,Y,,)}, let {6(1),...,6(n)} be a random permutation of {1,...,n}. Based on §-permuted data set S5 =
5

fast
,}, a collection of estimates is obtained, which may be used to approximate the null distribution of M1 fast>

. On repeating the above procedure r times, 7, =

{(XI,Y,S(”), ,(X,,,Yé(,,))}, we calculate the corresponding estimate M1
) — 5,

{lem, M

under the null hypothesis H,, : X and Y are independent. At significance level a, we reject the null hypothesis when M1, based

on the original data is greater than the (I — a)th empirical quantile of 7,,,,,.



S. Purkayastha and P.X.-K. Song Journal of Multivariate Analysis 201 (2024) 105270

Table 1

Percentage decrease in mean squared error values of fastMI relative
to ECMI (fastMI relative to JMI) for sample sizes n = 256 for
all copula models across various levels of association, controlled by

Kendall’s .
T Copula

Clayton Gaussian Gumbel
0.0 97 (98) 28 (81) 83 (73)
0.1 83 (72) 71 (71) 46 (72)
0.2 17 (68) 12 (75) 14 (80)
0.3 17 (90) 97 (99) 17 (61)
0.4 78 (70) 72 (64) 64 (76)
0.5 40 (68) 25 (68) 22 (73)
0.6 27 (79) 36 (91) 97 (99)
0.7 5 (54) 79 (71) 67 (68)
0.8 58 (71) 45 (79) 32 (73)
0.9 46 (81) 42 (83) 6 (73)

5. Simulation experiments

Previous replicable studies [38] have compared the performance of the J M I-based test with other popular methods, including
dCor, HHG and MIC-based tests, and concluded that JM I appears to be the most stable test for independence. Further, as a
benchmark we compare the performance of our fastMI estimator with the empirical copula-based estimator of M1 (named
ECMT), in which a naive bandwidth-driven kernel density estimation route is taken when estimating the copula functions described
in (1).

In this section, our proposed nonparametric estimator is compared with the ECM I and J M I from three distinct but inter-related
perspectives: (i) estimation accuracy, (ii) ability to test for independence, and (iii) computation time. We design and implement
exhaustive simulation-based experiments for our study. In brief: relative to the ECM I as well as the J M I, the fastMI is the more
accurate estimator with reduced estimation error and is able to conduct a hypothesis test for independence with a higher power
while exhibiting satisfactory type I error control. Reduced computation times further indicate it is more amenable to applications
in large data sets when compared to ECM I and JMI.

5.1. Estimation accuracy of MI

Through extensive simulation studies, we compare the MSE performance of fastMI with ECMT and JM1 for a wide range
of association patterns for different sample sizes. We generate a sample of » observations drawn from PDF f,, on R?, specified by
the underlying copula and marginal densities. In the data simulation, choices of marginal distributions have little effect, and for
numerical convenience, normal marginals are chosen for data generation in our empirical studies.

We first consider the bivariate case (d = 2) and restrict ourselves to three separate classes of copula models [7,14] — the symmetric
Gaussian copula and two asymmetric Archimedean copula — the Clayton and Gumbel copulas. While the Clayton copula exhibits
greater dependence in the negative tail, the Gumbel copula exhibits greater dependence in the positive tail. Each of these copula
classes may be specified by fixing the underlying value of Kendall’s 7, which in turn, may be used to compute the underlying true
MT [4]. For each of the three copula classes considered, we fix = € {0,0.1,0.2,...,0.9} and generate n € {64,128,256} bivariate
samples. The simulated data are used to compute ECM I, JMI, and fastMI. The MSEs of all estimators for different models
and sample sizes are calculated based on s = 1000 replications. Our findings are presented in Fig. 1. To study the behavior of our
estimators more closely, in Table 1 we present information on the following percentage decreases:

MSE(ECMT) — MSE(fastMI)
MSE(ECM1)

MSE(J M I) — MSE(fastMI)
MSE(J M) ’

with positive values indicating more accurate performance of fastMI over ECM I and J M respectively. Higher values indicate
reduced estimation error.

From both the figure as well as the table, we note that fastMI has appreciably lower MSE for all models and sample sizes
considered, indicating its superior performance over J M I. Further, from Fig. 1 we note that while the overall standard error for
fastMI is lower than ECMT as well as JM T in almost all the cases considered, the absolute bias performance of fastMI and
ECMT are comparable while still being lower than that of JMI. Overall, there seems to be a bias—variance trade-off between
fastMI and ECM I, with fastMI yielding better MSE performance.

Now, for the multivariate case (d > 2) where both X and Y are bivariate random vectors following a joint d—variate normal
distribution with zero mean and dispersion matrix ¥ of the form

3= [Zxx ny]
=7 .
ZXY Zyy

% decrease in MSE of fastMI relative to ECMI = 100 x

% decrease in MSE of fastMI relative to JMI = 100 x
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Fig. 1. Comparison of residual mean squared error (left panel), absolute bias (middle panel), and standard error (right panel) of competing MI estimation methods
among different configurations of bivariate copula families with varying sample sizes. The competing estimation methods include the empirical copula-based
plugin MI (ECMI), the fast Fourier transform based-MI (fastMI) and the jackknifed MI (JMI).
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Table 2

Percentage decrease in mean squared error values of fastMI relative to ECM I (fastMI relative to JMI) for
sample sizes n = 256 for different dispersion structures of a 4-dimensional multivariate normal distribution across
various strengths of correlation, controlled by Pearson’s p.

p Dispersion structure
AR-1 cs Spatial Block (p,, =1/3) Block (p,, =2/3)

0.0 83 (94) 80 (95) 75 (96) 63 (97) 47 (97)
0.1 30 (98) 84 (95) 73 (95) 44 (95) 32 (96)
0.2 44 (95) 24 (92) 81 (94) 51 (96) 7 (90)
0.3 7 (88) 19 (87) 26 (89) 36 (88) 65 (95)
0.4 63 (96) 58 (97) 56 (98) 51 (98) 50 (94)
0.5 38 (95) 4 (94) 34 (96) 29 (96) 13 (97)

Table 3

Comparison of empirical type I error of permutation-based test for

independence in several bivariate copula families. Using r = 1000

permutations, we compare the type I error of ECM1, JM I, and fastMI
for sample sizes n = 128 (n = 256).

Copula

Clayton Gaussian Gumbel
ECMI 0.04 (0.07) 0.04 (0.05) 0.05 (0.04)
JMI 0.06 (0.07) 0.04 (0.06) 0.06 (0.07)
fastMI 0.03 (0.04) 0.04 (0.04) 0.03 (0.04)

The reason for choosing the multivariate normal distribution is that it is one of the few multivariate distributions which give rise to a
closed-form expression of M I(X,Y)=0.5In (|Z x| Zyyl/12 |) where | 2| denotes the determinant of X. This enables the comparison
of the three competing estimators in a meaningful way. We set all marginal variances to be unity and consider different structures
of X including the (i) first-order auto-regressive (AR-1) structure, with the generic (i, j)—th element being o; ;= p!"=J1; (ii) compound
symmetry (CS) structure, that has off-diagonal elements are set to p € (0, 1); (iii) spatial structure with the generic (i, j)th element
being o;; = exp(~|i—j|/p); (iv) two block-correlation matrices that emulate two hierarchies of correlation: a within-block correlation
p,, and a between-block correlation p:

L py, »p »p

P 1 p
ek i= 1/3,2/3}.
block poo 1 sl pw € {1/3,2/3}

PP P 1

We set p,, = 1/3 for mild within-block correlation and p,, = 2/3 for strong within-block correlation.

For each of the five correlation structures described above, we vary p € {0,0.1,0.2,0.3,0.4,0.5} and compare the accuracy of the
competing estimators by means of MSE. Our findings are presented in Fig. 2. To study the behavior of our estimators more closely,
in Table 2 we present information on percentage decrease in MSE of fastMI relative to ECM I and J M for the different models
and with sample size set to n = 256. As was the case for lower dimensions, from Fig. 2 and Table 2 we note that fastMI has
appreciably lower MSE than ECM I and JM I for all models and sample sizes considered, indicating its superior performance.

5.2. Test for independence

We compare the permutation-based tests based respectively on our fastMI with ECM I and the J M I. For the same bivariate
patterns as described in Section 5.1, with = € {0,0.05,...,0.50} (z = 0 indicates independence), we plot the empirical power curves
for the tests at significance level a = 0.05 and present our results under different settings in Fig. 3 for r = 1000 permutations. In
Table 3 we present a comparison (ECM I and JM 1 versus fastMI) of empirical type I error of the permutation-based test for
independence in several bivariate distributions for different sample sizes respectively. Note that the type I error rates of all three
methods considered are very close to the nominal level a = 0.05.

Similarly, for the same multivariate normal patterns, with p € {0,0.05,...,0.50} (p = 0 indicates independence), we plot the
empirical power curves for the tests at significance level « = 0.05 and present our results under different settings in Fig. 4 for
r = 1000 permutations. In Table 4 we present a comparison (ECM I and JMI versus fastMI) of empirical type I error of the
permutation-based test for independence in several multivariate distributions for different sample sizes respectively. Note that the
type I error rates of all three methods considered are very close to the nominal level a = 0.05.

5.3. Computation time

Since nonparametrically estimating M [ is a computationally intensive method, we compare run times of ECMI, JMI and
fastMI for various sample sizes for bivariate data. We report the mean and standard deviation of run time (in seconds) in Table 5.
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Fig. 2. Comparison of residual mean squared error, absolute bias, and standard error of competing MI estimation methods for different configurations of
multivariate copula families with varying sample sizes. The estimation methods in the comparison include the empirical copula-based plugin MI (ECMI), the fast
Fourier transform based-MI (fastMI) and the jackknifed MI (JMI).
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Fig. 3. Comparison on empirical power of competing tests for independence via mutual information (MI) among various configurations of bivariate copula
families with varying sample sizes. The dotted black line parallel to the x-axis denotes the specified level of significance a = 0.05. The estimation methods
considered in the comparison include the empirical copula-based plugin MI (ECMI), the fast Fourier transform based-MI (fastMI) and the jackknifed MI (JMI).

Table 4
Comparison of empirical type I error of permutation-based test for independence in several multivariate normal families.
Using r = 1000 permutations, we compare the type I error of ECM 1, JMI, and fastMI for sample sizes n = 128 (n = 256).

Dispersion structure

AR-1 CcSs Spatial Block (p,, =1/3) Block (p,, =2/3)
ECMI 0.05 (0.05) 0.08 (0.02) 0.06 (0.10) 0.07 (0.06) 0.03 (0.07)
JMI 0.07 (0.04) 0.04 (0.07) 0.07 (0.02) 0.08 (0.08) 0.08 (0.06)
fastMI 0.08 (0.07) 0.04 (0.04) 0.04 (0.03) 0.07 (0.07) 0.04 (0.03)

Of note, for smaller sample sizes, J M I is fastest; in contrast, as sample size increases, fastMI becomes fast with run times being
many fold smaller than both ECMI and JM . This improvement in run time establishes fastMI as an attractive method for
studying association in practice, because it is the case of large sample size that matters in real-world computations.
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Fig. 4. Comparison on empirical power of competing tests for independence via mutual information (MI) for different configurations of multivariate copula
families with varying sample sizes. The dotted black line parallel to the x-axis denotes the specified level of significance a = 0.05. The estimation methods
compared here are the empirical copula-based plugin MI (ECMI), the fast Fourier transform based-MI (fastMI) and the jackknifed MI (JMI).

Table 5
Mean (standard deviation) computation time (in seconds) of JM I and fastMI for bivariate data of varying sample size
(n) for s = 100 iterations.

Sample size (n)

250 500 1000 2500 5000
ECMI 0.695 (0.141) 1.599 (0.281) 4.360 (0.356) 5.368 (0.308) 6.404 (0.254)
JMI 0.114 (0.043) 0.659 (0.200) 3.150 (0.107) 18.446 (0.116) 62.454 (4.601)
fastMI 0.355 (0.088) 0.750 (0.213) 1.199 (0.135) 2.964 (0.081) 5.952 (0.125)

6. Data analysis

To illustrate an application of our method in practice, we re-analyze the dependence between X = ‘death rate’ and Y = ‘birth
rate’ in 229 countries and territories around the world in the first trimester of 2020 [11]. This dependence was previously found in
[11] to be complex with a departure from linearity and monotonicity. (X,Y) denote the number of deaths and births per year per
1000 individuals in the country. Fig. 5 presents a scatterplot of the data (X;,Y;) denoting the number of deaths and births per year
per 1000 individuals in the ith country, indicated by one point on the plot. It demonstrates an interesting ‘C’ shape. For ease of
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Fig. 5. Birth rate versus death rate (per thousand individuals) around the world in 2020, where countries are color-/shape-coded by their continent. The data
are available in the R package HellCor.

exposition, we stratified countries by the continent they belong to, marked by different symbols in the figure. Note that we clubbed
North American and South American countries together in Fig. 5; this clustering has no role to play in our analysis and is used
only for ease of visualization. We may, indeed by simple data visualization, expect a strong association between these two variables
whose data points are not randomly distributed but show a clear C-shape.

A closer investigation by [11] reveals the presence of two possible and opposite relationship patterns. First, it shows an
‘decreasing’ trend from ‘moderate’ birth rate to ‘low’ birth rate as death rate increases, for the industrialized countries (mostly
Europe, Oceania and the Americas). Second, an ‘increasing’ trend is present from ‘moderate’ birth rate to ‘high’ birth rate as death
rate increases, mostly for African nations. The downward trend is more pronounced, while the increasing trend is more diffused.

The strength of such nonlinear dependence and non-monotonic patterns is hardly captured by Pearson’s correlation whose
estimate is # = —0.125, implying an insignificant association with p-value equal to 0.97 at level « = 0.05. In contrast, both fastMI
(estimate of M1 =0.333) and JM I (estimated M I = 0.451) report significant association with r = 5000 permutations. We find the
p-values for both statistic to be less than 2 x 10~* via the permutation testing approach at level « = 0.05.

We further note the disparity between estimated values of M I using fastMI and J M I estimators, respectively. Based on our
knowledge learned from the simulation studies in Section 5.1, namely fastMI-based estimate having reduced estimation error, it is
rational to deduce that the J M I method overestimated the strength of association between death rate and birth rate from the data,
when compared with our fastMI method. This may lead to erroneous inference in other applications. This example illustrates the
advantage of fastMI as being a useful and meaningful measure of dependence to capture complex nonlinear relationships.

7. Concluding remarks

This paper develops a fast and consistent M I estimator through a powerful nonparametric copula estimation approach. Through
extensive simulation studies, we have demonstrated that the proposed nonparametric method has several desirable properties,
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outperforming the current gold standard, the J M I as well as the benchmark EC M I. Since the proposed method is nonparametric,
it does not assume any parametric copula models and works under minimal model assumptions about relationships. An advantage
of the M I-based approach is that the quantification of dependence is little dependent on marginal distributions, in which by virtue
of its focus on the copula, the proposed method only takes into account the intrinsic association between variables without suffering
from potential irregularities in the marginal distributions. An appealing technical advance pertains to that we overcome issues that
plague bandwidth-based M I estimators, such as bandwidth selection and slow computation times for large data sets. fastMI relies
on a data-adaptive Fast Fourier transformation-based approach to nonparametrically estimating the underlying copula structures.
Its run time is many-fold faster than both ECM I as well as J M I for large data sets. fastMI exhibits reduced estimation error and
provides a more powerful test of independence than both ECM I and JMI.

While typically used to study pairwise association, M may be extended in a multivariate setting. However, as evidenced by
the discussion below, M I may lose some of its original interpretability, which affects its legitimate use in testing for independence.
Let consider a d-dimensional random vector X = (X,...,X d)T with joint density function fy with marginal density functions
{ Sioees fa } It follows from Sklar’s theorem that there exists a unique associated copula density given by

Sx (F7 () oo By (ug))
c(ul,...,ud)= v —
[T /i (F7 ()

Here copula density c(uy,...,u,;) can in turn, be used to define MI(X},...,X,), known as the multivariate mutual information
(M MT). Other names of MM I include total correlation [35] or multi-information [30]. Basically, M M I quantifies the amount
of information shared among the different random variables, which characterizes the relatedness of the random variables in a
group. [32] proved the possible negativity of MM when d > 3. Thus, M M1 loses one key property of non-negativity, which
makes M M I illegitimate to quantify the size of information (which is believed to be non-negative). M M I is deemed undesirable
for its role as a metric of information volume.

Nevertheless, mathematically, M M I may still be used as a tool to test for independence. From Theorem 2 of [1], we know that d
variables X, ..., X, are mutually independent if and only if all M M I's of 2¢ —d — 1 sub-vectors vanish, i.e., M I(X i X3 ) =0 with
d > k > 2, where the indices {i,...,i; } are a subset of size k of {1,...,d}. This would lead to an unduly tedious testing procedure
if MM Is were used to investigate independence. Some alternative forms of MI are worth future exploration with no sacrifice of
non-negativity and avoidance of exhaustive tests.

In conclusion, due to its adaptability to complex associations and robustness to sample size, fastMI may be potentially
applicable in a wide range of practical problems where complex non-linearities [26] are of particular interest. To encourage use of
our proposed toolkit for estimation and testing purposes, we developed an R package fastMI that is publicly available on Github.

8. Technical details

Proof of Theorem 1. Large sample behavior of the optimal density estimator. Here, we prove Theorem 1 which establishes strong
consistency of the estimator fgc to the true density f, as n — co at all points on the support of f.

Note the frequency filter A, its complement A, and its volume V(A,) are described in Remarks 1 and 2 in Section 3.2. Since
the true density f, and the estimator fg. are both square-integrable, we can express them in terms of their corresponding Fourier
transforms ¢ and ¢ respectively. Since the characteristic function is integrable, we have, [ 1¢@®)|dt < co. Through the following
sequence of inequalities, we are able to establish an upper bound for the absolute error |fs(z) — f,(2)| for any z € Z. By definition,
note that ¢(t) = 0 for t ¢ A,,. To establish Theorem 1, it is sufficient to show that the upper bound of the absolute error given below
tends to zero as n — co. We have:

fsc@) - £.2)| = '(270—" /R exp(-it'z) () - 40} dt' < @ny /R lexa(=it 2] 40) — peolar
= o [ iw-gwi=an [ 10 =01+ o / I
<@mn™ /A |p(t) — C()|dt + )~ /A |Ct) — p@)|dt + 2n)~? /A |¢(®)|dt := Dy + D, + D5. a7
Under the assumptions, lim,_, ., Vn(A,,) = oo and lim,_,o, ¥ (nfi,,) = 0. Consequently, th”e second term in (17), D, — 0 as n — oo due

to Theorem 1 of [6]. Further, D; <V (/i,,) /(@x)4, since |¢(t)| < 1. Consequently, D; — 0 as n — co. To prove D; — 0 as n — co, we
first consider the two following disjoint sets,

Bf ={t:|COP 24— 1/n*}, B ={t:|CO* <4mn-1)/n?}.

n

Using (14), we rewrite the first integral D, as follows

o o A=) _,,/ .
D, = () /Aan+|C(t)|<1 =T [1+ 1 lnc(t)lz]dt>+(27r) Anan_|C(t)|dt. D, + Ds.

n

The first term D, may be simplified by noting that for ¢ € B}, we have |C(®|*> > 4(n — 1)/n?. This ensures a non-negative
argument under the square root operation. Using the inequality /1 —x + \/; > 1for 0 < x <1 for D,, and using the inequality
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|C(®)| < v/4(n—1)/n? for t € B;, we establish that D, is bounded as follows:
L _ 1O\ 4y oy YA 2D
Vn-1 "~ 1

5(27[)_‘1{ L, 1 }/ dz+(2;z)-d—”4("_l)/ dt

dt

D, =D, +Ds <(Q2n)” d/
A,NBy

A,NBY

VT

V(A, N BN+ (2n)™ +———=V(4, n B])
n

= @)™ S
Vi1 n-1
- 1 1 4n—1) - 1 1 2
<) {— + +—— v, <ern™ + + V(A,). 18)
Vasi -1 a Va1 -1 Vaoi
The assumptions in Theorem 1 include V(4,)/ \/Z — 0 as n — oo, which ensures that the upper bound in (18) tends to zero for large
n. In summary, assuming V(4,) — oo, V(4,) — 0, and V(A4, )/\/_ — 0 as n - oo, we have |fsc(z) fz(z)) — 0 for every z € Z. In

fact, we can claim sup,. > ‘ Fsc(z) - fz(z)| — 0 as n — oo. Further, assuming the true density f, is continuous on Z we have uniform
strong convergence of f. sctofzasn— 0. []

Proof of Theorem 2. Consistency of M1 rast- Here, we prove Theorem 2 which establishes that the estimator Mi fast 8lven by (3)
converges in probability to the true M I in (1). For this proof we define the oracle estimator

n coou. Uy Uy
M1, =n"" Z]n _UxUy 7 X0 7Y L
iz cyy Uxiey, Uy))
Note that by the law of large numbers M1, is consistent for MI. From Theorem 1 we know that for any small ¢, there
exists a large enough N such that sup,c 1y |6u) — c(w)| < e. Using Taylor series expansion to In {é(u;)/c(u;)}, we get In {é(u,)} =
In {c(u,)} + =20 Su)—c@) 4 ), where we ignore the last term. Summing the expression above over N observations, we get the following

c(u;)
chain of inequalities:

N N n
1 \ 1 1
¥ ; In{e)} - ~ Eln {ew}| <+ ;

where the true copula density is bounded below by ¢,. The argument above can be repeated individually for all three of the
underlying copula density functions cy,y,, cy,, and ¢y, and their respective estimates ¢y, y,, ¢y, and éy,. Finally, we can
write

é(u;) — c(u;)
c(u;)

< Sup; |éu;) — c(uy)| L€

< —,
€ €0

z

N

1 . 1
SN Zln {CUXUY(UX/"UYI')} N ZIH{CUXUY(UXi’UYI)}
i i=1

Zln{cUX(UX, } jb]zv:ln{cux(le } Zln{cuy(Uy, } Zln{cuy(Uy,)} <eé,
i=1

where the last step follows from the intermediate inequality obtained above. Hence, as M1,
M1, is consistent for M I as well. []

MI 4 - M1,

oracle

z I

2.—

is consistent for M I, we can claim
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