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A B S T R A C T

As a fundamental concept in information theory, mutual information (𝑀𝐼) has been commonly
applied to quantify association between random vectors. Most existing nonparametric estimators
of 𝑀𝐼 have unstable statistical performance since they involve parameter tuning. We develop
a consistent and powerful estimator, called fastMI, that does not incur any parameter tuning.
Based on a copula formulation, fastMI estimates 𝑀𝐼 by leveraging Fast Fourier transform-
based estimation of the underlying density. Extensive simulation studies reveal that fastMI
outperforms state-of-the-art estimators with improved estimation accuracy and reduced run time
for large data sets. fastMI provides a powerful test for independence that exhibits satisfactory
type I error control. Anticipating that it will be a powerful tool in estimating mutual information
in a broad range of data, we develop an R package fastMI for broader dissemination.

1. Introduction

Investigating dependence between two random variables is a key issue in statistical science. It is known that classical measures
ike Pearson’s 𝑟, Kendall’s 𝜏, and Spearman’s 𝜌 [9], although widely used in practice, are incapable of capturing a non-linear,
on-monotonic association, which cannot be properly estimated using ranks and their monotonic transformations. To address
his practical need, more sophisticated measures, like the distance correlation (dCor) [31], the Heller–Heller–Gorfine (HHG) [13]
tatistic, and the maximal information coefficient (MIC) [24] have been introduced to study more complex association patterns such
s the dependence of two random vectors.
Among many non-linear association metrics, mutual information (𝑀𝐼) [5] has recently re-emerged in the statistics and machine

earning literature with many exciting applications [34]. Originally introduced in a communication theory context [27],𝑀𝐼 presents
a remarkably general and intuitive measure of dependence. Its widespread use in practice is due largely to the self-equitability [15]
of 𝑀𝐼 - the ability to characterize dependency strength for both linear and non-linear relationships.

For continuous data, which shall be the focus of this paper, there are three distinct 𝑀𝐼 estimation approaches. The first approach
implements a binning method to group continuous data into different bins and estimates 𝑀𝐼 from the binned data [22,29]. The
success of this simple method depends heavily on proper specification of both number and position of said bins. Another approach
is based on a k-nearest neighbors (kNN) estimation method, utilized by the Kraskov–Stögbauer–Grassberger (KSG) estimator [16].
As is the case with all kNN-based methods, the KSG estimator greatly depends on properly specifying the number of neighbors. The
third approach is based on estimates of probability density functions (PDFs), using histograms, kernel density estimation (KDE) [20],
B-splines [8], or wavelets [23]. This nonparametric approach typically relies on a tuning parameter (e.g. bandwidth) that needs to
be specified in the estimation routine.
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Although the approaches mentioned above demonstrate good properties [8,16,20,22,23], they are all sensitive to proper
pecification of tuning parameter(s) in a chosen smoothing technique. As a consequence, the resulting estimators may be numerically
nstable and/or suffer from serious bias. A recent study [38] presents a tuning-free KDE approach to estimate 𝑀𝐼 in which the
bandwidth parameter is automatically set to maximize the jackknifed version of 𝑀𝐼 (henceforth referred to as 𝐽𝑀𝐼). Not only does
this method exhibit better estimation efficiency than other existing𝑀𝐼 estimation approaches but it also provides a stable hypothesis
test for independence that is shown to be more powerful than its competitors such as the dCor, HHG, or MIC. According to existing
literature, 𝐽𝑀𝐼 serves as the current gold standard for estimating 𝑀𝐼 as well as is the choice of test for independence [38].

Along the line of tuning-free estimation, an improvement on 𝐽𝑀𝐼 is proposed in this paper. This new estimator is motivated by
the self-consistent density estimator proposed by [2,21] to minimize the mean integrated squared error (MISE) between the estimated
density and the true density without incurring any manual parameter tuning. The estimation process relies on fast Fourier transforms
(FFT).

Furthermore, utilizing this ‘optimal’ density estimator, we propose a plug-in estimator of 𝑀𝐼 , termed as the fastMI, which
is shown to be consistent and manyfold faster than the original 𝐽𝑀𝐼 for large data sets. This proposed fastMI automatically
determines the bandwidth by minimizing the MISE objective function in a data-adaptive way.

Simulation studies comparing estimation accuracy reveal fastMI outperforms the current gold standard 𝐽𝑀𝐼 estimator.
Through extensive numerical experiments, fastMI demonstrates improved estimation efficiency, higher empirical power when
testing for independence, and reduced computation time. All these lead to a recommendation of our new methodology to
practitioners.

The rest of the paper is organized as follows. In Section 2 we define 𝑀𝐼 and underline a key connection of 𝑀𝐼 with copula. In
Section 3 we describe the self-consistent density estimation method in detail. In Section 4 we provide theoretical guarantees on the
asymptotic behavior of the fastMI estimator. We present extensive simulation studies in Section 5 to highlight the strengths and
advantages of using fastMI over the existing state-of-the-art estimator, the 𝐽𝑀𝐼 estimator. Further, we benchmark our findings
by means of an empirical copula estimator-based 𝑀𝐼 as well. Finally, we present an application of fastMI to real data in Section 6
before summarizing our findings in the concluding Section 7. All heavy technical details are included in Section 8.

2. Methods

To formalize the problem, suppose that 𝑑 ∈ N can be written as 𝑑 = 𝑝 + 𝑞 for some 𝑝, 𝑞 ∈ N, that 𝑿 and 𝒀 are random
vectors taking values in R𝑝 and R𝑞 , respectively, and that 𝒁 = (𝑿⊤, 𝒀 ⊤)⊤ has density 𝑓𝑿𝒀 with respect to Lebesgue measure on
R𝑑 . We write 𝑓𝑿 and 𝑓𝒀 for the marginal Lebesgue densities of the random vectors 𝑿 and 𝒀 , respectively. Given independent and
identically distributed copies

{

𝒁1,… ,𝒁𝑛
}

of 𝒁, one of our primary tasks is to test the null hypothesis 𝐻0 that the vectors 𝑿 and
𝒀 are independent against the alternative that 𝑿 and 𝒀 are not independent.

2.1. Mutual information and its copula-based formulation

In order to test the independence of 𝑿 and 𝒀 we consider mutual information 𝑀𝐼(𝑿, 𝒀 ), defined by

𝑀𝐼(𝑿, 𝒀 ) = E𝑿𝒀

[

ln
{

𝑓𝑿𝒀 (𝑿, 𝒀 )
𝑓𝑿 (𝑿)𝑓𝒀 (𝒀 )

}]

,

where E𝑿𝒀 denotes expectation under the joint density 𝑓𝑿𝒀 . It is known that 𝑀𝐼 is a valid measure of association; that is, it is
equal to zero if and only if 𝑿 and 𝒀 are independent and positive otherwise. Larger values of 𝑀𝐼 indicate a stronger association.
𝑀𝐼 is invariant under monotonic transformations, which is an important property allowing various rank-based transformations.
Further, 𝑀𝐼 satisfies the self-equitability condition [38], implying that it detects associations without a bias for specific association
patterns, unlike the 𝑀𝐼𝐶 [15].

Interestingly, 𝑀𝐼 may be rewritten as a function of copulas, a class of dependence models [14]. Note that by using Sklar’s
theorem [7], we can apply monotonic marginal transformations to reduce the technical complexity by using uniform transformations
𝑼𝑿 =

(

𝐹𝑋1
(𝑋1),… , 𝐹𝑋𝑝

(𝑋𝑝)
)⊤

and 𝑼𝒀 =
(

𝐹𝑌1 (𝑌1),… , 𝐹𝑌𝑞 (𝑌𝑞)
)⊤
, where 𝐹𝑋𝑖

and 𝐹𝑌𝑗 are the cumulative distribution functions (CDFs)
of 𝑋𝑖 and 𝑌𝑗 , respectively, for 1 ≤ 𝑖 ≤ 𝑝 and 1 ≤ 𝑗 ≤ 𝑞. We use 𝑐𝑼𝑿𝑼𝒀

, 𝑐𝑼𝑿
, and 𝑐𝑼𝒀

to denote the copula density functions of
(𝑼⊤

𝑿 ,𝑼
⊤
𝒀 )

⊤, 𝑼𝑿 , and 𝑼𝒀 respectively. Using this marginal uniform transformation trick, we arrive at an alternative copula-based
formulation of 𝑀𝐼 :

𝑀𝐼(𝑿, 𝒀 ) = 𝑀𝐼(𝑼𝑿 ,𝑼𝒀 ) = ∫[0,1]𝑝 ∫[0,1]𝑞
ln

{

𝑐𝑼𝑿𝑼𝒀
(𝒖𝑿 , 𝒖𝒀 )

𝑐𝑼𝑿
(𝒖𝑿 )𝑐𝑼𝒀

(𝒖𝒀 )

}

𝑐𝑼𝑿𝑼𝒀
(𝒖𝑿 , 𝒖𝒀 )𝑑𝒖𝑿𝑑𝒖𝒀 . (1)

𝑀𝐼 in (1) may be estimated by plug-in copula density estimators. The marginal uniform transformation trick allows us to consider
ranks instead of raw data, making copula-based estimation methods robust to any marginal irregularity, in contrast with methods
which use raw data to estimate𝑀𝐼 , such as the kNN-based KSG estimator. Recognizing𝑀𝐼 as an integral in (1), we may invoke data
generative methods, including classical Monte Carlo methods [25] for estimation purposes. The estimated copula density functions
𝑐𝑼𝑿𝑼𝒀

, 𝑐𝑼𝑿
, and 𝑐𝑼𝒀

are used to obtain an estimate of the underlying 𝑀𝐼 . Using a fast Fourier transform-based density estimation
technique [2,21], which is described in greater detail in Sections 3 and 2.2, we obtain said copula density estimates. This estimation
routine will be utilized in a powerful 𝑀𝐼-based hypothesis test for independence of 𝑿 and 𝒀 .
2
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2.2. Improved nonparametric estimation of copula density using probit transformation

From (1) we note the need to estimate three multivariate copula density functions, namely 𝑐𝑼𝑿𝑼𝒀
, 𝑐𝑼𝑿

, and 𝑐𝑼𝒀
. Here we describe

the nonparametric KDE of a generic 𝑑-variate copula density function for vector 𝑼 =
(

𝑈1,… , 𝑈𝑑
)⊤ on unit hypercube [0, 1]𝑑 . The

naive KDE [28], is not suitable for unit hypercube-supported copula densities, mainly because it is known to be heavily affected by
boundary bias issues. Most kernel estimators, for instance, have problems with such bounded support because, for points close to
the boundaries, they typically place some positive mass outside of the support. In addition, according to [10], kernel estimators may
fail to provide consistent estimation for some copula density values at corners of the unitary cubic because of the unboundedness
issue (i.e., infinite density values). For example, in the bivariate Gaussian copula case with moderate correlation, the copula density
is unbounded in two corners of the unitary square [0, 1]2. Therefore, to address this issue, a variable transformation approach in the
kernel estimation of copula densities was proposed [10,19], which we describe below.

We define a vector of normal scores 𝑽 =
(

𝑉1,… , 𝑉𝑑
)⊤ where 𝑉𝑖 = 𝛷−1(𝑈𝑖), 1 ≤ 𝑖 ≤ 𝑑, with 𝛷 denoting the standard normal CDF

and 𝛷−1 denoting its quantile (probit) function. Given that each 𝑈𝑖 is uniformly distributed on [0, 1], we have each 𝑉𝑖 distributed
as a standard normal variable, although this does not force the joint distribution of 𝑽 to be multivariate normal. Then, the joint
density function of 𝑽 , given by 𝑔, may be expressed as follows:

𝑐(𝑢1,… , 𝑢𝑑 ) =
𝑔
{

𝛷−1(𝑢1),… , 𝛷−1(𝑢𝑑 )
}

𝜙
{

𝛷−1(𝑢1)
}

…𝜙
{

𝛷−1(𝑢𝑑 )
} , 𝒖 ∈ [0, 1]𝑑 .

The motivation for this probit transformation is as follows: if 𝑐(𝒖) > 0 Lebesgue-a.e. over [0, 1]𝑑 , 𝑽 has unconstrained support over
R𝑑 and estimating its density 𝑔 no longer suffers from boundary issues. In addition, due to its normal margins, one may expect 𝑔
to be smooth and well-behaved, and its estimation becomes relatively easy and accurate. It is clear that any estimator 𝑔̂ of 𝑔 on R𝑑

will produce a corresponding estimator of the copula density on (0, 1)𝑑 :

𝑐(𝑢1,… , 𝑢𝑑 ) =
𝑔̂
{

𝛷−1(𝑢1),… , 𝛷−1(𝑢𝑑 )
}

𝜙
{

𝛷−1(𝑢1)
}

…𝜙
{

𝛷−1(𝑢𝑑 )
} , 𝒖 ∈ (0, 1)𝑑 . (2)

Further, when necessary, 𝑐 can also be defined at the boundaries of [0, 1]𝑑 by continuity [10]. This probit transformation trick confers
many advantages to the estimator 𝑐, including (i) 𝑔̂, being an unconstrained density estimator on R𝑑 does not suffer from boundary
bias issues and does not allocate any probability to 𝑐 outside [0, 1]𝑑 ; (ii) if 𝑔̂ is a bona fide density estimator, i.e., 𝑔̂(𝒗) ≥ 0 ∀𝒗 ∈ R𝑑

and ∫R𝑑 𝑔̂(𝒗)𝑑𝒗 = 1, then by change of variable 𝑈𝑖 = 𝛷(𝑉𝑖) for 1 ≤ 𝑖 ≤ 𝑑 we have 𝑐(𝒖) ≥ 0 ∀𝒖 ∈ [0, 1]𝑑 and ∫[0,1]𝑑 𝑐(𝒖)𝑑𝒖 = 1; (iii) if
̂ is a uniformly (weak or strong) consistent estimator for 𝑔, we note that the corresponding 𝑐 inherits the same behavior on any
compact subset of [0, 1]𝑑 .

The key challenge now lies in obtaining a ‘good’ PDF estimator 𝑔̂. Kernel density estimators (KDEs) are commonly used for
estimating PDFs. A well-known technical challenge in the KDE method is to determine a kind of optimal bandwidth 𝐻 in addition to
a specifically chosen kernel density [38]. Albeit a vast literature exists on this issue of bandwidth tuning, selecting optimal 𝐻 remains
case-dependent and computationally burdensome, and oftentimes this task involves a manual user intervention [28]. A review of
automatic selection methods [12] recommends a variety of different approaches that are dependent on data set characteristics
(including sample size, smoothness, and skewness) and thus are hard to implement properly in practice. In Section 3, we consider
an alternative approach to density estimation that relies on fast Fourier transforms.

In summary, using the probit-transformation trick and an FFT-based density estimation method, we are able to obtain the
estimated copula density functions 𝑐𝑼𝑿𝑼𝒀

, 𝑐𝑼𝑿
, and 𝑐𝑼𝒀

via (2). These estimated densities are used to compute our estimator
fastMI for 𝑀𝐼 as described in Section 2.3.

2.3. fastMI : fast nonparametric estimation of MI

Let 𝒁 𝑖 =
(

𝑿⊤
𝑖 , 𝒀

⊤
𝑖
)⊤, with 𝑿𝑖 =

(

𝑋1𝑖,… , 𝑋𝑝𝑖
)⊤ and 𝒀 𝑖 =

(

𝑌1𝑖,… , 𝑌𝑞𝑖
)⊤ for 𝑖 ≤ 𝑖 ≤ 𝑛 be a random sample drawn from a

𝑑-variate distribution 𝑓𝑿𝒀 . As a preliminary processing step, we define the vectors of empirical probability integral transforms
𝑼𝑿𝑖 =

(

𝐹𝑿1
(𝑋1𝑖),… , 𝐹𝑿𝑝

(𝑋𝑝𝑖)
)⊤

and 𝑼𝒀 𝑖 =
(

𝐹𝒀 1
(𝑌1𝑖),… , 𝐹𝒀 𝑞

(𝑌𝑞𝑖)
)⊤
. Here, 𝐹𝑋𝑖

and 𝐹𝑌𝑗 are the empirical CDFs of 𝑋𝑖 and 𝑌𝑗
respectively for 1 ≤ 𝑖 ≤ 𝑝 and 1 ≤ 𝑗 ≤ 𝑞. Next, we invoke the probit transformation as described in Section 2.2 to obtain the
stimated copula density functions: 𝑐𝑼𝑿𝑼𝒀

, 𝑐𝑼𝑿
, and 𝑐𝑼𝒀

, as described by (2). These estimated densities are used to compute our
lug-in estimator fastMI estimator using (1). Consequently, fastMI is given by

𝑀𝐼𝑓𝑎𝑠𝑡 = 𝑛−1
𝑛
∑

𝑖=1
ln

{

𝑐𝑼𝑿𝑼𝒀
(𝑼𝑿𝑖,𝑼𝒀 𝑖)

𝑐𝑼𝑿
(𝑼𝑿𝑖)𝑐𝑼𝒀

(𝑼𝒀 𝑖)

}

. (3)

Note that we use fastMI and 𝑀𝐼𝑓𝑎𝑠𝑡 interchangeably in this article. In Section 3 we discuss a data-driven fast Fourier transform-
based density estimation technique that yields consistent and fast estimates of the underlying density function without being
3
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3. Self-consistent density estimation via fast Fourier transforms

A density estimation technique that has no need for user-selected parameter tuning was introduced by [2] for univariate
ontinuous random variables and later extended to higher dimensions by [21]. The density estimator called the self-consistent (SC)
stimator, was shown to converge almost surely to the true underlying density for the univariate case. In this section, we present
he derivation of the SC estimator for the multivariate case and present proof of almost sure consistency of the SC estimator to the
rue 𝑑-dimensional density under mild assumptions. To our knowledge, while proof of consistency for the SC estimator exists for
he univariate case, this is the first attempt at proving the consistency of the estimator for the multivariate case.
The SC estimator has desirable large-sample properties in addition to enjoying greatly improved computations speeds. Using

he SC estimator and (2), we obtain the estimated copula density functions 𝑐𝑼𝑿𝑼𝒀
, 𝑐𝑼𝑿

, and 𝑐𝑼𝒀
, which are then used to compute

astMI using (3).

.1. Formulation

Let  =
{

𝒁𝑗 ∈  ⊆ R𝑑 , 𝑗 = 1,… , 𝑛
}

denote a random sample drawn from PDF 𝑓𝒁 . Assume that the true PDF 𝑓𝒁 belongs to
the Hilbert space of square-integrable functions, namely 2 =

{

𝑔 ∶ ∫ 𝑔2(𝒛)𝑑𝒛 < ∞
}

. We propose to estimate 𝑓𝒁 by the following
convolution of an arbitrary kernel 𝐾 and the set of delta functions centered on the dataset for 𝒛 ∈ R𝑑 :

𝑓𝒁 (𝒛) ∶= 𝑛−1
𝑛
∑

𝑗=1
𝐾(𝒛 −𝒁𝑗 ) = 𝑛−1

𝑛
∑

𝑗=1
∫R𝑑

𝐾(𝒕)𝛿(𝒛 −𝒁𝑗 − 𝒕)𝑑𝒕 = 𝑛−1
𝑛
∑

𝑗=1
(𝐾 ∗ 𝛿) (𝒛 −𝒁𝑗 ), (4)

where 𝛿(𝒛) is the Dirac delta function [17] and 𝑓 ∗ 𝑔 denotes the convolution of two functions 𝑓 and 𝑔: (𝑓 ∗ 𝑔)(𝒕) ∶= ∫R𝑑 𝑓 (𝝉)𝑔(𝒕−𝝉)𝑑𝝉.
Here 𝐾 is chosen such that the resulting estimator 𝑓𝒁 ∈ 2.

Denote the space of candidate kernel functions by

 ∶=
{

𝐾 ∶ 𝐾(𝒛) ≥ 0;𝐾(𝒛) = 𝐾(−𝒛);∫ 𝐾(𝒛)𝑑𝒛 = 1
}

.

Given a random sample , our aim is to identify an optimal kernel 𝐾̂ ∈ , that achieves the minimal mean integrated square error
(MISE) between the true density 𝑓𝒁 and an estimator 𝑓𝒁 :

𝐾̂ ∶= argmin
𝐾∈

MISE(𝑓𝒁 , 𝑓𝒁 ) = argmin
𝐾∈

E
[

∫R𝑑
{𝑓𝒁 (𝒛) − 𝑓𝒁 (𝒛)}2𝑑𝒛

]

, (5)

where the E operator denotes expectation taken over the entire support of 𝑓𝒁 .
To perform minimization in (5), we follow a procedure for signal deconvolution [37] via Fourier transforms. First, consider the

Fourier transform of the true density 𝑓𝒁 , namely the characteristic function (CF) given by

𝜙(𝒕) ∶= ∫R𝑑
𝑓𝒁 (𝒛) exp(𝑖𝒕⊤𝒛)𝑑𝒛, 𝒕 ∈ R𝑑 .

Then, using the Fourier convolution theorem we obtain

{𝐾(𝒛 −𝒁𝑗 )}(𝒕) = {𝐾(𝒛) ∗ 𝛿(𝒛 −𝒁𝑗 )}(𝒕) = 𝜅(𝒕) exp(𝑖𝒕⊤𝒁𝑗 ), 𝒕 ∈ R𝑑 , (6)

where  is the Fourier transform operator and 𝜅(𝒕) ∶=  {𝐾(𝒛)} (𝒕) denotes the Fourier transform of the kernel 𝐾. From (6) and the
linearity of Fourier transforms in (4), we obtain 𝜙̂(𝒕), the Fourier transform of the estimate 𝑓𝒁 , as follows for 𝒕 ∈ R𝑑 :

𝜙̂(𝒕) = 
{

𝑓𝒛(𝒛)
}

(𝒕) = 𝜅(𝒕) 𝑛−1
𝑛
∑

𝑗=1
exp(𝑖𝒕⊤𝒁𝑗 ) = 𝜅(𝒕)(𝒕), (7)

where (𝒕) = 𝑛−1
∑𝑛

𝑗=1 exp(𝑖𝒕
⊤𝒁𝑗 ) is the empirical characteristic function (ECF). Since the data

{

𝒁1,… ,𝒁𝑛
}

are i.i.d., it is
easy to see that the ECF is an unbiased estimator of the corresponding CF, i.e., E {(𝒕)} = 𝜙(𝒕). It can also be shown that
E |(𝒕) − 𝜙(𝒕)|2 =

(

1 − |𝜙(𝒕)|2
)

∕𝑛. We refer the reader to [33, Chapter 3] for more details on the ECF and its properties. It follows
that E

{

𝜙̂(𝒕)
}

= 𝜅(𝒕)𝜙(𝒕) for 𝒕 ∈ R𝑑 .
The MISE in (5) corresponds to the mean-square distance between the true density 𝑓𝒁 and the estimate 𝑓𝒁 , in terms of the

uclidean metric in the Hilbert space 2. We rewrite (5) in Fourier space using Parseval’s theorem as follows:

MISE(𝑓𝒁 , 𝑓𝒁 ) = (2𝜋)−𝑑 E
[

∫R𝑑
|𝜙̂(𝒕) − 𝜙(𝒕)|2𝑑𝒕

]

. (8)

ince 𝑓𝒁 (𝒛), 𝑓𝒁 (𝒛), 𝜙(𝒕), 𝜙̂(𝒕) ∈ 2, we may interchange the expectation and integral operations [3] and rewrite the MISE in (8) as
follows:

MISE(𝑓𝒁 , 𝑓𝒁 ) = (2𝜋)−𝑑 ∫R𝑑

[

E|𝜙̂(𝒕) − 𝜙(𝒕)|2𝑑𝒕
]

= (2𝜋)−𝑑 ∫R𝑑

[

E|𝜙̂(𝒕) − E
{

𝜙̂(𝒕)
}

+ E
{

𝜙̂(𝒕)
}

− 𝜙(𝒕)|2𝑑𝒕
]

= (2𝜋)−𝑑
[

𝑛−1|𝜅(𝒕)|2
{

1 − |𝜙(𝒕)|2
}

+ |𝜙(𝒕)|2|1 − 𝜅(𝒕)|2
]

𝑑𝒕.
(9)
4
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Since the integrand in the last line of (9) is quadratic in 𝜅 it is straightforward to find the optimal Fourier-transformed kernel 𝜅𝑂𝑃𝑇
that minimizes MISE, by equating the functional derivative of MISE with respect to 𝜅 to zero and solving for 𝜅𝑂𝑃𝑇 , given by

𝜅𝑂𝑃𝑇 (𝒕) =
𝑛

𝑛 − 1 + |𝜙(𝒕)|−2
, 𝒕 ∈ R𝑑 . (10)

(10) reveals that a unique ‘optimal’ Fourier transformed kernel can be derived as a function of the power spectrum of the (unknown)
density that is to be estimated. Although this finding was first reported in [36], the result alone is unfortunately of little use since
the power spectrum 𝜙 of the true density 𝑓𝒁 is not known. We follow the suggestions in [2] and take a step further to plug in to
(7), the transformed kernel 𝜅𝑂𝑃𝑇 obtained in (10) to write the Fourier transform 𝜙̂ of the density estimate 𝑓𝒛 as follows

𝜙̂(𝒕) = (𝒕)𝜅𝑂𝑃𝑇 (𝒕) =
𝑛(𝒕)

𝑛 − 1 + |𝜙(𝒕)|−2
, 𝒕 ∈ R𝑑 . (11)

hen, an iterative procedure proposed by [2,21] may be applied to determine the exact fixed point of (11), with the details described
n Section 3.2.

.2. Multivariate self-consistent estimation

An iterative procedure is defined by the following sequence of estimates, begun with an initial guess 𝜙̃0(𝒕):

𝜙̃𝑛+1(𝒕) =
𝑛(𝒕)

𝑛 − 1 + |𝜙̃𝑛(𝒕)|−2
, 𝒕 ∈ R𝑑 . (12)

he convergent point from (12) yields an estimate 𝜙̃𝑆𝐶 (𝒕) which satisfies

𝜙̃𝑆𝐶 (𝒕) =
𝑛(𝒕)

𝑛 − 1 + |𝜙̃𝑆𝐶 (𝒕)|−2
, 𝒕 ∈ R𝑑 . (13)

The existence of 𝜙̃𝑆𝐶 (𝒕) is warranted as (13) has two fixed and unique non-null solutions. We show that (13) has only one stable
non-null solution. Noting that 𝜙̃𝑆𝐶 is complex-valued, we take the absolute value of (13). When the null solution 𝜙̃𝑆𝐶 = 0 is removed,
we obtain a simple quadratic equation:

(𝑛 − 1) |𝜙̃𝑆𝐶 (𝒕)|2 = 𝑛|(𝒕)||𝜙̃𝑆𝐶 (𝒕)|.

Provided |(𝒕)| ≥ 4(𝑛 − 1)∕𝑛2, the above equation has two solutions denoted by the superscripted |𝜙̃𝑆𝐶 (𝒕)±|,

|𝜙̃𝑆𝐶 (𝒕)±| =
𝑛|(𝒕)|
2(𝑛 − 1)

[

1 ±

√

{

1 −
4(𝑛 − 1)
𝑛2|(𝒕)|2

}

]

.

When substituted in (13), they return the solution for 𝜙̃𝑆𝐶 (𝒕)± of the form:

𝜙̃𝑆𝐶 (𝒕)± =
𝑛(𝒕)

2(𝑛 − 1)

[

1 ±

√

{

1 −
4(𝑛 − 1)
𝑛2|(𝒕)|2

}

]

, 𝒕 ∈ R𝑑 ∩
{

𝒕 ∶ |(𝒕)| ≥ 4(𝑛 − 1)∕𝑛2
}

.

Since these two solutions only depend on the ECF , they may be used to estimate 𝜙. Below, we identify a stable solution to be
used in (11).

Whereas 𝜙̃+
𝑆𝐶 is normalized, 𝜙̃−

𝑆𝐶 is not; that is, (𝟎) = 1 implies 𝜙̃+
𝑆𝐶 (𝟎) = 1, which is desirable; in contrast 𝜙̃−

𝑆𝐶 (𝟎) = 1∕(𝑛 − 1),
which is undesirable. Furthermore, we compute the derivative

d|𝜙̃𝑛+1|

d|𝜙̃𝑛|

|

|

|

|

||𝜙̃𝑛|=|𝜙̃
±
𝑆𝐶 |

= 1 ∓

√

{

1 −
4(𝑛 − 1)
𝑛2|(𝑡)|2

}

.

hus, under |(𝒕)| ≥ 4(𝑛 − 1)∕𝑛2, 𝜙̃+
𝑆𝐶 has a derivative smaller than one, indicating a stable equilibrium point, whereas 𝜙̃−

𝑆𝐶 has a
erivative larger than one, indicating instability. In summary, we choose 𝜙̂𝑆𝐶 = 𝜙̃+

𝑆𝐶 as the solution to (11) in the construction of
he estimate. That is,

𝜙̂𝑆𝐶 (𝒕) =
𝑛(𝒕)

2(𝑛 − 1)

[

1 −

√

{

1 −
4(𝑛 − 1)
𝑛2|(𝒕)|2

}

]

I𝐴𝑛
(𝒕), 𝒕 ∈ R𝑑 . (14)

here 𝐴𝑛 serves as a low-pass filter that ensures the stability of the estimation process. Since 𝜙̂𝑆𝐶 and 𝐴𝑛 are bounded (see remarks
below), (14) can be antitransformed back to the estimate in real space, given as follows:

𝑓𝑆𝐶 (𝒙) = (2𝜋)−𝑑 ∫R𝑑
𝜙̂𝑆𝐶 (𝒕) exp(−𝑖𝒕⊤𝒙)𝑑𝒕. (15)

emark 1. The purpose of the filter I𝐴𝑛
(𝒕) is to define a Fourier-based low-pass filter on the ECF (𝒕) that yields a stable optimal

stimate in the minimum MISE sense. Primarily, the set 𝐴𝑛 is specified such that:

𝐴𝑛 =
{

𝒕 ∈ R𝑑 ∶ |(𝒕)|2 ≥ 2 =
4(𝑛 − 1)

}

. (16)
5

min 𝑛2
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Here, the primary filter is necessary for the stability of the iteration method, since the lower bound 𝐶min can ensure a well-defined
quare root term in (14). Moreover, according to [2], the set 𝐴𝑛 may exclude an additional small subset of frequencies to produce
smoother density estimate 𝑓𝒁 . In order for 𝑓𝒁 to converge to the true density 𝑓𝒁 as 𝑛 increases, we require that this set of

additionally excluded frequencies must shrink, so that the set 𝐴𝑛 of included frequencies grows with increasing 𝑛.

Remark 2. According to [21], the multivariate ECF (𝒕) consists of a finite set of contiguous hypervolumes denoted by
{

𝐻𝑉 𝑛
1 ,… ,

𝐻𝑉 𝑛
𝑘𝑛

}

where 𝑘𝑛 is a finite integer. Each hypervolume permits ‘above-threshold’ frequency values 𝒕 for which the constraint in (16)
holds. Note that at least one such contiguous hypervolume containing 𝒕 = 𝟎 is guaranteed to exist since (𝟎) = 1 due to normalization
and the primary filter 𝐴𝑛 has a lower bound min ≤ 1. Following the suggestion by [21] we employ the lowest contiguous
ypervolume filter, choosing the only hypervolume centered at 𝒕 = 𝟎, which we denote as 𝐻𝑉 𝑛

1 for notational convenience. We
ake the following observations about 𝐻𝑉 𝑛

1 :

1. The set of frequencies included in the lowest contiguous hypervolume filter is bounded above since the frequencies will
always be contained within a finite-sized hypervolume around the origin.

2. The volume of the lowest contiguous hypervolume filter grows as the number of data points 𝑛 increases, implying more
frequencies are included for larger sample sizes.

he resulting filter satisfies the convergence conditions described by [2]. Hence, we set 𝐴𝑛 = 𝐻𝑉 𝑛
1 , and study convergence of 𝑓𝑆𝐶

o the true 𝑓𝒛 as 𝑛 increases. For notational convenience, let 𝐴̄𝑛 denote the complement set of 𝐴𝑛 and (𝐴𝑛) denote the volume of
𝑛.

When compared to the classical kernel estimation approach [28] that assumes a specific form of the kernel with a need of tuning
andwidth, the advantage of the above SCE lies in making minimal assumptions on the functional form of 𝐾, while determining the
stimate 𝜙̂𝑆𝐶 as a function of the ECF , along with a well-specified low-pass frequency filter 𝐴𝑛 entirely by a data-driven approach.
he proposed optimization via (11) enjoys computational efficiency when ‘finding’ the functional form of the optimal kernel.

. Theoretical guarantees

.1. Large sample properties

We now present key large-sample properties for the SCE estimator and the subsequent plug-in estimator of 𝑀𝐼 , beginning with
heorem 1 that establishes strong consistency of the SCE estimator 𝑓𝑆𝐶 at all points on the support of 𝑓𝒁 .

heorem 1. Let the true density 𝑓𝒁 be square integrable and its corresponding Fourier transform 𝜙 be integrable, then the self consistent
stimator 𝑓𝑆𝐶 , which is defined by (15), converges almost surely to 𝑓𝒁 as 𝑛 → ∞, under the additional assumptions (𝐴𝑛) → ∞,
(𝐴𝑛)∕

√

𝑛 → 0 and (𝐴̄𝑛) → 0 as 𝑛 → ∞. Further, assuming 𝑓𝒁 to be continuous on support R𝑑 , we have uniform almost sure convergence
of 𝑓𝑆𝐶 to 𝑓𝒁 as 𝑛 → ∞.

The proof of Theorem 1 is given in Section 8. Note that 𝑓𝑆𝐶 can be used in conjunction with the probit transformation trick
described in Section 2.2 in order to obtain uniformly strong consistent estimators for the copula density functions 𝑐𝑼𝑿𝑼𝒀

, 𝑐𝑼𝑿
,

nd 𝑐𝑼𝒀
and subsequently obtain the fastMI estimator described by (3). fastMI is shown to be consistent, as established by

heorem 2 below.

heorem 2. Let the assumptions of Theorem 1 hold. Further, we assume the true underlying copula functions 𝑐𝑼𝑿𝑼𝒀
, 𝑐𝑼𝑿

, and 𝑐𝑼𝒀
are

ounded away from zero and infinity on their support. Then, the estimator fastMI given by (3) converges in probability to the true 𝑀𝐼
iven in (1) as 𝑛 → ∞.

The proof of Theorem 2 is given in Section 8.

.2. Test for independence

On the basis of Theorem 2, using the estimator 𝑀𝐼𝑓𝑎𝑠𝑡, we propose a permutation-based test for independence, i.e., a test for
0 ∶ 𝑀𝐼 = 0 against the alternative 𝐻𝑎 ∶ 𝑀𝐼 > 0.
Typically, rejection rules of a test based on large-sample theory require data with large sample sizes, which may not be

lways available in practice. Leveraging the fast computational speed of our SC estimation method, in this paper we consider
hypothesis testing method that is deemed stable and reliable. Thus, we implement a permutation-based test as it is known to
ive a precise finite-sample distribution of the test statistic for even small samples [18]. For a random sample of 𝑛 observations,
=

{

(𝑿1, 𝒀 1),… , (𝑿𝑛, 𝒀 𝑛)
}

, let {𝛿(1),… , 𝛿(𝑛)} be a random permutation of {1,… , 𝑛}. Based on 𝛿-permuted data set 𝑆𝛿 =
(𝑿1, 𝒀 𝛿(1)),… , (𝑿𝑛, 𝒀 𝛿(𝑛))

}

, we calculate the corresponding estimate 𝑀𝐼
𝛿
𝑓𝑎𝑠𝑡. On repeating the above procedure 𝑟 times, 𝑝𝑒𝑟𝑚 =

𝑀𝐼
𝛿1
𝑓𝑎𝑠𝑡,… ,𝑀𝐼

𝛿𝑟
𝑓𝑎𝑠𝑡

}

, a collection of estimates is obtained, which may be used to approximate the null distribution of 𝑀𝐼𝑓𝑎𝑠𝑡,
nder the null hypothesis 𝐻0 ∶ 𝑿 and 𝒀 are independent. At significance level 𝛼, we reject the null hypothesis when 𝑀𝐼𝑓𝑎𝑠𝑡 based
n the original data is greater than the (1 − 𝛼)th empirical quantile of  .
6
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Table 1
Percentage decrease in mean squared error values of fastMI relative
to 𝐸𝐶𝑀𝐼 (fastMI relative to 𝐽𝑀𝐼) for sample sizes 𝑛 = 256 for
all copula models across various levels of association, controlled by
Kendall’s 𝜏.
𝜏 Copula

Clayton Gaussian Gumbel

0.0 97 (98) 28 (81) 83 (73)
0.1 83 (72) 71 (71) 46 (72)
0.2 17 (68) 12 (75) 14 (80)
0.3 17 (90) 97 (99) 17 (61)
0.4 78 (70) 72 (64) 64 (76)
0.5 40 (68) 25 (68) 22 (73)
0.6 27 (79) 36 (91) 97 (99)
0.7 5 (54) 79 (71) 67 (68)
0.8 58 (71) 45 (79) 32 (73)
0.9 46 (81) 42 (83) 6 (73)

5. Simulation experiments

Previous replicable studies [38] have compared the performance of the 𝐽𝑀𝐼-based test with other popular methods, including
Cor, HHG and MIC-based tests, and concluded that 𝐽𝑀𝐼 appears to be the most stable test for independence. Further, as a
enchmark we compare the performance of our fastMI estimator with the empirical copula-based estimator of 𝑀𝐼 (named

𝐸𝐶𝑀𝐼), in which a naive bandwidth-driven kernel density estimation route is taken when estimating the copula functions described
in (1).

In this section, our proposed nonparametric estimator is compared with the 𝐸𝐶𝑀𝐼 and 𝐽𝑀𝐼 from three distinct but inter-related
erspectives: (i) estimation accuracy, (ii) ability to test for independence, and (iii) computation time. We design and implement
xhaustive simulation-based experiments for our study. In brief: relative to the 𝐸𝐶𝑀𝐼 as well as the 𝐽𝑀𝐼 , the fastMI is the more
ccurate estimator with reduced estimation error and is able to conduct a hypothesis test for independence with a higher power
hile exhibiting satisfactory type I error control. Reduced computation times further indicate it is more amenable to applications
n large data sets when compared to 𝐸𝐶𝑀𝐼 and 𝐽𝑀𝐼 .

.1. Estimation accuracy of MI

Through extensive simulation studies, we compare the MSE performance of fastMI with 𝐸𝐶𝑀𝐼 and 𝐽𝑀𝐼 for a wide range
f association patterns for different sample sizes. We generate a sample of 𝑛 observations drawn from PDF 𝑓𝑋𝑌 on R𝑑 , specified by
the underlying copula and marginal densities. In the data simulation, choices of marginal distributions have little effect, and for
numerical convenience, normal marginals are chosen for data generation in our empirical studies.

We first consider the bivariate case (𝑑 = 2) and restrict ourselves to three separate classes of copula models [7,14] – the symmetric
Gaussian copula and two asymmetric Archimedean copula — the Clayton and Gumbel copulas. While the Clayton copula exhibits
greater dependence in the negative tail, the Gumbel copula exhibits greater dependence in the positive tail. Each of these copula
classes may be specified by fixing the underlying value of Kendall’s 𝜏, which in turn, may be used to compute the underlying true

𝐼 [4]. For each of the three copula classes considered, we fix 𝜏 ∈ {0, 0.1, 0.2,… , 0.9} and generate 𝑛 ∈ {64, 128, 256} bivariate
samples. The simulated data are used to compute 𝐸𝐶𝑀𝐼 , 𝐽𝑀𝐼 , and fastMI. The MSEs of all estimators for different models
nd sample sizes are calculated based on 𝑠 = 1000 replications. Our findings are presented in Fig. 1. To study the behavior of our
stimators more closely, in Table 1 we present information on the following percentage decreases:

% decrease in MSE of 𝚏𝚊𝚜𝚝𝙼𝙸 relative to ECMI = 100 ×
MSE(𝐸𝐶𝑀𝐼) −MSE(𝚏𝚊𝚜𝚝𝙼𝙸)

MSE(𝐸𝐶𝑀𝐼)

% decrease in MSE of 𝚏𝚊𝚜𝚝𝙼𝙸 relative to JMI = 100 ×
MSE(𝐽𝑀𝐼) −MSE(𝚏𝚊𝚜𝚝𝙼𝙸)

MSE(𝐽𝑀𝐼)
,

with positive values indicating more accurate performance of fastMI over 𝐸𝐶𝑀𝐼 and 𝐽𝑀𝐼 respectively. Higher values indicate
educed estimation error.
From both the figure as well as the table, we note that fastMI has appreciably lower MSE for all models and sample sizes

onsidered, indicating its superior performance over 𝐽𝑀𝐼 . Further, from Fig. 1 we note that while the overall standard error for
astMI is lower than 𝐸𝐶𝑀𝐼 as well as 𝐽𝑀𝐼 in almost all the cases considered, the absolute bias performance of fastMI and
𝐶𝑀𝐼 are comparable while still being lower than that of 𝐽𝑀𝐼 . Overall, there seems to be a bias–variance trade-off between
astMI and 𝐸𝐶𝑀𝐼 , with fastMI yielding better MSE performance.
Now, for the multivariate case (𝑑 > 2) where both 𝑿 and 𝒀 are bivariate random vectors following a joint 𝑑−variate normal

istribution with zero mean and dispersion matrix 𝛴 of the form

𝛴 ∶=
[

𝛴𝑋𝑋 𝛴𝑋𝑌
⊤

]

.

7

𝛴𝑋𝑌 𝛴𝑌 𝑌
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Fig. 1. Comparison of residual mean squared error (left panel), absolute bias (middle panel), and standard error (right panel) of competing MI estimation methods
among different configurations of bivariate copula families with varying sample sizes. The competing estimation methods include the empirical copula-based
plugin MI (ECMI), the fast Fourier transform based-MI (fastMI) and the jackknifed MI (JMI).
8
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Table 2
Percentage decrease in mean squared error values of fastMI relative to 𝐸𝐶𝑀𝐼 (fastMI relative to 𝐽𝑀𝐼) for
sample sizes 𝑛 = 256 for different dispersion structures of a 4-dimensional multivariate normal distribution across
various strengths of correlation, controlled by Pearson’s 𝜌.
𝜌 Dispersion structure

AR-1 CS Spatial Block (𝜌𝑤 = 1∕3) Block (𝜌𝑤 = 2∕3)

0.0 83 (94) 80 (95) 75 (96) 63 (97) 47 (97)
0.1 30 (98) 84 (95) 73 (95) 44 (95) 32 (96)
0.2 44 (95) 24 (92) 81 (94) 51 (96) 7 (90)
0.3 7 (88) 19 (87) 26 (89) 36 (88) 65 (95)
0.4 63 (96) 58 (97) 56 (98) 51 (98) 50 (94)
0.5 38 (95) 4 (94) 34 (96) 29 (96) 13 (97)

Table 3
Comparison of empirical type I error of permutation-based test for
independence in several bivariate copula families. Using 𝑟 = 1000
permutations, we compare the type I error of 𝐸𝐶𝑀𝐼 , 𝐽𝑀𝐼 , and fastMI
for sample sizes 𝑛 = 128 (𝑛 = 256).

Copula

Clayton Gaussian Gumbel

𝐸𝐶𝑀𝐼 0.04 (0.07) 0.04 (0.05) 0.05 (0.04)
𝐽𝑀𝐼 0.06 (0.07) 0.04 (0.06) 0.06 (0.07)
fastMI 0.03 (0.04) 0.04 (0.04) 0.03 (0.04)

The reason for choosing the multivariate normal distribution is that it is one of the few multivariate distributions which give rise to a
closed-form expression of𝑀𝐼(𝑿, 𝒀 ) = 0.5 ln

(

|𝛴𝑋𝑋 ||𝛴𝑌 𝑌 |∕|𝛴|

)

where |𝛴| denotes the determinant of 𝛴. This enables the comparison
of the three competing estimators in a meaningful way. We set all marginal variances to be unity and consider different structures
of 𝛴 including the (i) first-order auto-regressive (AR-1) structure, with the generic (𝑖, 𝑗)−th element being 𝜎𝑖𝑗 = 𝜌|𝑖−𝑗|; (ii) compound
symmetry (CS) structure, that has off-diagonal elements are set to 𝜌 ∈ (0, 1); (iii) spatial structure with the generic (𝑖, 𝑗)th element
being 𝜎𝑖𝑗 = exp(−|𝑖−𝑗|∕𝜌); (iv) two block-correlation matrices that emulate two hierarchies of correlation: a within-block correlation
𝜌𝑤 and a between-block correlation 𝜌:

𝛴𝑏𝑙𝑜𝑐𝑘 ∶=

⎡

⎢

⎢

⎢

⎢

⎣

1 𝜌𝑤 𝜌 𝜌
𝜌𝑤 1 𝜌 𝜌
𝜌 𝜌 1 𝜌𝑤
𝜌 𝜌 𝜌𝑤 1

⎤

⎥

⎥

⎥

⎥

⎦

, 𝜌𝑤 ∈ {1∕3, 2∕3} .

We set 𝜌𝑤 = 1∕3 for mild within-block correlation and 𝜌𝑤 = 2∕3 for strong within-block correlation.
For each of the five correlation structures described above, we vary 𝜌 ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5} and compare the accuracy of the

competing estimators by means of MSE. Our findings are presented in Fig. 2. To study the behavior of our estimators more closely,
in Table 2 we present information on percentage decrease in MSE of fastMI relative to 𝐸𝐶𝑀𝐼 and 𝐽𝑀𝐼 for the different models
and with sample size set to 𝑛 = 256. As was the case for lower dimensions, from Fig. 2 and Table 2 we note that fastMI has
ppreciably lower MSE than 𝐸𝐶𝑀𝐼 and 𝐽𝑀𝐼 for all models and sample sizes considered, indicating its superior performance.

.2. Test for independence

We compare the permutation-based tests based respectively on our fastMI with 𝐸𝐶𝑀𝐼 and the 𝐽𝑀𝐼 . For the same bivariate
atterns as described in Section 5.1, with 𝜏 ∈ {0, 0.05,… , 0.50} (𝜏 = 0 indicates independence), we plot the empirical power curves
or the tests at significance level 𝛼 = 0.05 and present our results under different settings in Fig. 3 for 𝑟 = 1000 permutations. In
able 3 we present a comparison (𝐸𝐶𝑀𝐼 and 𝐽𝑀𝐼 versus fastMI) of empirical type I error of the permutation-based test for
ndependence in several bivariate distributions for different sample sizes respectively. Note that the type I error rates of all three
ethods considered are very close to the nominal level 𝛼 = 0.05.
Similarly, for the same multivariate normal patterns, with 𝜌 ∈ {0, 0.05,… , 0.50} (𝜌 = 0 indicates independence), we plot the

mpirical power curves for the tests at significance level 𝛼 = 0.05 and present our results under different settings in Fig. 4 for
= 1000 permutations. In Table 4 we present a comparison (𝐸𝐶𝑀𝐼 and 𝐽𝑀𝐼 versus fastMI) of empirical type I error of the

permutation-based test for independence in several multivariate distributions for different sample sizes respectively. Note that the
type I error rates of all three methods considered are very close to the nominal level 𝛼 = 0.05.

5.3. Computation time

Since nonparametrically estimating 𝑀𝐼 is a computationally intensive method, we compare run times of 𝐸𝐶𝑀𝐼 , 𝐽𝑀𝐼 and
9

fastMI for various sample sizes for bivariate data. We report the mean and standard deviation of run time (in seconds) in Table 5.
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Fig. 2. Comparison of residual mean squared error, absolute bias, and standard error of competing MI estimation methods for different configurations of
multivariate copula families with varying sample sizes. The estimation methods in the comparison include the empirical copula-based plugin MI (ECMI), the fast
Fourier transform based-MI (fastMI) and the jackknifed MI (JMI).
10
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c

Fig. 3. Comparison on empirical power of competing tests for independence via mutual information (MI) among various configurations of bivariate copula
families with varying sample sizes. The dotted black line parallel to the 𝑥-axis denotes the specified level of significance 𝛼 = 0.05. The estimation methods
onsidered in the comparison include the empirical copula-based plugin MI (ECMI), the fast Fourier transform based-MI (fastMI) and the jackknifed MI (JMI).

Table 4
Comparison of empirical type I error of permutation-based test for independence in several multivariate normal families.
Using 𝑟 = 1000 permutations, we compare the type I error of 𝐸𝐶𝑀𝐼 , 𝐽𝑀𝐼 , and fastMI for sample sizes 𝑛 = 128 (𝑛 = 256).

Dispersion structure

AR-1 CS Spatial Block (𝜌𝑤 = 1∕3) Block (𝜌𝑤 = 2∕3)

𝐸𝐶𝑀𝐼 0.05 (0.05) 0.08 (0.02) 0.06 (0.10) 0.07 (0.06) 0.03 (0.07)
𝐽𝑀𝐼 0.07 (0.04) 0.04 (0.07) 0.07 (0.02) 0.08 (0.08) 0.08 (0.06)
fastMI 0.08 (0.07) 0.04 (0.04) 0.04 (0.03) 0.07 (0.07) 0.04 (0.03)

Of note, for smaller sample sizes, 𝐽𝑀𝐼 is fastest; in contrast, as sample size increases, fastMI becomes fast with run times being
many fold smaller than both 𝐸𝐶𝑀𝐼 and 𝐽𝑀𝐼 . This improvement in run time establishes fastMI as an attractive method for
studying association in practice, because it is the case of large sample size that matters in real-world computations.
11
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c

Fig. 4. Comparison on empirical power of competing tests for independence via mutual information (MI) for different configurations of multivariate copula
families with varying sample sizes. The dotted black line parallel to the 𝑥-axis denotes the specified level of significance 𝛼 = 0.05. The estimation methods
ompared here are the empirical copula-based plugin MI (ECMI), the fast Fourier transform based-MI (fastMI) and the jackknifed MI (JMI).

Table 5
Mean (standard deviation) computation time (in seconds) of 𝐽𝑀𝐼 and fastMI for bivariate data of varying sample size
(𝑛) for 𝑠 = 100 iterations.

Sample size (𝑛)

250 500 1000 2500 5000

𝐸𝐶𝑀𝐼 0.695 (0.141) 1.599 (0.281) 4.360 (0.356) 5.368 (0.308) 6.404 (0.254)
𝐽𝑀𝐼 𝟎.𝟏𝟏𝟒 (𝟎.𝟎𝟒𝟑) 𝟎.𝟔𝟓𝟗 (𝟎.𝟐𝟎𝟎) 3.150 (0.107) 18.446 (0.116) 62.454 (4.601)
fastMI 0.355 (0.088) 0.750 (0.213) 𝟏.𝟏𝟗𝟗 (𝟎.𝟏𝟑𝟓) 𝟐.𝟗𝟔𝟒 (𝟎.𝟎𝟖𝟏) 𝟓.𝟗𝟓𝟐 (𝟎.𝟏𝟐𝟓)

6. Data analysis

To illustrate an application of our method in practice, we re-analyze the dependence between 𝑋 = ‘death rate’ and 𝑌 = ‘birth
rate’ in 229 countries and territories around the world in the first trimester of 2020 [11]. This dependence was previously found in
[11] to be complex with a departure from linearity and monotonicity. (𝑋, 𝑌 ) denote the number of deaths and births per year per
1000 individuals in the country. Fig. 5 presents a scatterplot of the data (𝑋𝑖, 𝑌𝑖) denoting the number of deaths and births per year
per 1000 individuals in the 𝑖th country, indicated by one point on the plot. It demonstrates an interesting ‘C’ shape. For ease of
12
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(

Fig. 5. Birth rate versus death rate (per thousand individuals) around the world in 2020, where countries are color-/shape-coded by their continent. The data
are available in the R package HellCor.

exposition, we stratified countries by the continent they belong to, marked by different symbols in the figure. Note that we clubbed
North American and South American countries together in Fig. 5; this clustering has no role to play in our analysis and is used
only for ease of visualization. We may, indeed by simple data visualization, expect a strong association between these two variables
whose data points are not randomly distributed but show a clear C-shape.

A closer investigation by [11] reveals the presence of two possible and opposite relationship patterns. First, it shows an
‘decreasing’ trend from ‘moderate’ birth rate to ‘low’ birth rate as death rate increases, for the industrialized countries (mostly
Europe, Oceania and the Americas). Second, an ‘increasing’ trend is present from ‘moderate’ birth rate to ‘high’ birth rate as death
rate increases, mostly for African nations. The downward trend is more pronounced, while the increasing trend is more diffused.

The strength of such nonlinear dependence and non-monotonic patterns is hardly captured by Pearson’s correlation whose
estimate is 𝑟̂ = −0.125, implying an insignificant association with 𝑝-value equal to 0.97 at level 𝛼 = 0.05. In contrast, both fastMI
estimate of 𝑀𝐼 = 0.333) and 𝐽𝑀𝐼 (estimated 𝑀𝐼 = 0.451) report significant association with 𝑟 = 5000 permutations. We find the
𝑝-values for both statistic to be less than 2 × 10−4 via the permutation testing approach at level 𝛼 = 0.05.

We further note the disparity between estimated values of 𝑀𝐼 using fastMI and 𝐽𝑀𝐼 estimators, respectively. Based on our
knowledge learned from the simulation studies in Section 5.1, namely fastMI-based estimate having reduced estimation error, it is
rational to deduce that the 𝐽𝑀𝐼 method overestimated the strength of association between death rate and birth rate from the data,
when compared with our fastMI method. This may lead to erroneous inference in other applications. This example illustrates the
advantage of fastMI as being a useful and meaningful measure of dependence to capture complex nonlinear relationships.

7. Concluding remarks

This paper develops a fast and consistent 𝑀𝐼 estimator through a powerful nonparametric copula estimation approach. Through
extensive simulation studies, we have demonstrated that the proposed nonparametric method has several desirable properties,
13
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outperforming the current gold standard, the 𝐽𝑀𝐼 as well as the benchmark 𝐸𝐶𝑀𝐼 . Since the proposed method is nonparametric,
t does not assume any parametric copula models and works under minimal model assumptions about relationships. An advantage
f the 𝑀𝐼-based approach is that the quantification of dependence is little dependent on marginal distributions, in which by virtue
f its focus on the copula, the proposed method only takes into account the intrinsic association between variables without suffering
rom potential irregularities in the marginal distributions. An appealing technical advance pertains to that we overcome issues that
lague bandwidth-based𝑀𝐼 estimators, such as bandwidth selection and slow computation times for large data sets. fastMI relies
on a data-adaptive Fast Fourier transformation-based approach to nonparametrically estimating the underlying copula structures.
Its run time is many-fold faster than both 𝐸𝐶𝑀𝐼 as well as 𝐽𝑀𝐼 for large data sets. fastMI exhibits reduced estimation error and
provides a more powerful test of independence than both 𝐸𝐶𝑀𝐼 and 𝐽𝑀𝐼 .

While typically used to study pairwise association, 𝑀𝐼 may be extended in a multivariate setting. However, as evidenced by
the discussion below, 𝑀𝐼 may lose some of its original interpretability, which affects its legitimate use in testing for independence.
et consider a 𝑑-dimensional random vector 𝑿 =

(

𝑋1,… , 𝑋𝑑
)⊤ with joint density function 𝑓𝑿 with marginal density functions

{

𝑓1,… , 𝑓𝑑
}

. It follows from Sklar’s theorem that there exists a unique associated copula density given by

𝑐
(

𝑢1,… , 𝑢𝑑
)

=
𝑓𝑿

(

𝐹−1
1

(

𝑢1
)

,… , 𝐹−1
𝑑

(

𝑢𝑑
))

∏𝑑
𝑖=1 𝑓𝑖

(

𝐹−1
𝑖

(

𝑢𝑖
))

.

ere copula density 𝑐(𝑢1,… , 𝑢𝑑 ) can in turn, be used to define 𝑀𝐼(𝑋1,… , 𝑋𝑑 ), known as the multivariate mutual information
𝑀𝑀𝐼). Other names of 𝑀𝑀𝐼 include total correlation [35] or multi-information [30]. Basically, 𝑀𝑀𝐼 quantifies the amount
f information shared among the different random variables, which characterizes the relatedness of the random variables in a
roup. [32] proved the possible negativity of 𝑀𝑀𝐼 when 𝑑 ≥ 3. Thus, 𝑀𝑀𝐼 loses one key property of non-negativity, which
akes 𝑀𝑀𝐼 illegitimate to quantify the size of information (which is believed to be non-negative). 𝑀𝑀𝐼 is deemed undesirable
or its role as a metric of information volume.
Nevertheless, mathematically,𝑀𝑀𝐼 may still be used as a tool to test for independence. From Theorem 2 of [1], we know that 𝑑

ariables 𝑋1,… , 𝑋𝑑 are mutually independent if and only if all𝑀𝑀𝐼s of 2𝑑−𝑑−1 sub-vectors vanish, i.e.,𝑀𝐼(𝑋𝑖1 ,… , 𝑋𝑖𝑘 ) = 0 with
𝑑 ≥ 𝑘 ≥ 2, where the indices

{

𝑖1,… , 𝑖𝑘
}

are a subset of size 𝑘 of {1,… , 𝑑}. This would lead to an unduly tedious testing procedure
f 𝑀𝑀𝐼s were used to investigate independence. Some alternative forms of MI are worth future exploration with no sacrifice of
on-negativity and avoidance of exhaustive tests.
In conclusion, due to its adaptability to complex associations and robustness to sample size, fastMI may be potentially

pplicable in a wide range of practical problems where complex non-linearities [26] are of particular interest. To encourage use of
ur proposed toolkit for estimation and testing purposes, we developed an R package fastMI that is publicly available on Github.

. Technical details

roof of Theorem 1. Large sample behavior of the optimal density estimator. Here, we prove Theorem 1 which establishes strong
onsistency of the estimator 𝑓𝑆𝐶 to the true density 𝑓𝒁 as 𝑛 → ∞ at all points on the support of 𝑓𝒁 .
Note the frequency filter 𝐴𝑛, its complement 𝐴̄𝑛 and its volume (𝐴𝑛) are described in Remarks 1 and 2 in Section 3.2. Since

he true density 𝑓𝒛 and the estimator 𝑓𝑆𝐶 are both square-integrable, we can express them in terms of their corresponding Fourier
ransforms 𝜙 and 𝜙̂ respectively. Since the characteristic function is integrable, we have, ∫ |𝜙(𝒕)| 𝑑𝒕 < ∞. Through the following
equence of inequalities, we are able to establish an upper bound for the absolute error ||

|

𝑓𝑆𝐶 (𝒛) − 𝑓𝒛(𝒛)
|

|

|

for any 𝑧 ∈ . By definition,
ote that 𝜙̂(𝒕) = 0 for 𝒕 ∉ 𝐴𝑛. To establish Theorem 1, it is sufficient to show that the upper bound of the absolute error given below
ends to zero as 𝑛 → ∞. We have:

|

|

|

𝑓𝑆𝐶 (𝒛) − 𝑓𝒛(𝒛)
|

|

|

=
|

|

|

|

(2𝜋)−𝑑 ∫R𝑑
exp(−i𝒕′𝒛)

{

𝜙̂(𝒕) − 𝜙(𝒕)
}

d𝒕
|

|

|

|

≤ (2𝜋)−𝑑 ∫R𝑑
|exp(−i𝒕′𝒛)||𝜙̂(𝒕) − 𝜙(𝒕)|d𝒕

= (2𝜋)−𝑑 ∫R𝑑
|𝜙̂(𝒕) − 𝜙(𝒕)|d𝒕 = (2𝜋)−𝑑 ∫𝐴𝑛1

|𝜙̂(𝒕) − 𝜙(𝒕)|d𝒕 + (2𝜋)−𝑑 ∫𝐴̄𝑛

|𝜙(𝒕)|d𝒕

≤ (2𝜋)−𝑑 ∫𝐴𝑛

|𝜙̂(𝒕) − (𝒕)|d𝒕 + (2𝜋)−𝑑 ∫𝐴𝑛

|(𝒕) − 𝜙(𝒕)|d𝒕 + (2𝜋)−𝑑 ∫𝐴̄𝑛

|𝜙(𝒕)|d𝒕 ∶= 𝐷1 +𝐷2 +𝐷3. (17)

Under the assumptions, lim𝑛→∞ 
(

𝐴𝑛
)

= ∞ and lim𝑛→∞ 
(

𝐴̄𝑛
)

= 0. Consequently, the second term in (17), 𝐷2 → 0 as 𝑛 → ∞ due
o Theorem 1 of [6]. Further, 𝐷3 ≤ 

(

𝐴̄𝑛
)

∕(2𝜋)𝑑 , since |𝜙(𝒕)| ≤ 1. Consequently, 𝐷3 → 0 as 𝑛 → ∞. To prove 𝐷1 → 0 as 𝑛 → ∞, we
irst consider the two following disjoint sets,

𝐵+
𝑛 = {𝒕 ∶ |(𝒕)|2 ≥ 4(𝑛 − 1)∕𝑛2}, 𝐵−

𝑛 = {𝒕 ∶ |(𝒕)|2 < 4(𝑛 − 1)∕𝑛2}.

sing (14), we rewrite the first integral 𝐷1 as follows

𝐷1 = (2𝜋)−𝑑 ∫𝐴𝑛∩𝐵+
𝑛

|(𝒕)|

(

1 − 𝑛
2(𝑛 − 1)

[

1 +

√

1 −
4(𝑛 − 1)
|𝑛(𝒕)|2

]

𝑑𝒕

)

+ (2𝜋)−𝑑 ∫𝐴𝑛∩𝐵−
𝑛

|(𝒕)|𝑑𝒕 ∶= 𝐷4 +𝐷5.

he first term 𝐷4 may be simplified by noting that for 𝒕 ∈ 𝐵+
𝑛 , we have |(𝒕)|2 ≥ 4(𝑛 − 1)∕𝑛2. This ensures a non-negative
√

1 − 𝑥 +
√

𝑥 ≥ 1 for 0 ≤ 𝑥 ≤ 1 for 𝐷 , and using the inequality
14

rgument under the square root operation. Using the inequality 4

https://github.com/soumikp/fastMI
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|(𝒕)| ≤
√

4(𝑛 − 1)∕𝑛2 for 𝒕 ∈ 𝐵−
𝑛 , we establish that 𝐷1 is bounded as follows:

𝐷1 = 𝐷4 +𝐷5 ≤ (2𝜋)−𝑑 ∫𝐴𝑛∩𝐵+
𝑛

{

1
√

𝑛 − 1
−

|(𝒕)|
𝑛 − 1

}

𝑑𝒕 + (2𝜋)−𝑑
√

4(𝑛 − 1)
𝑛 ∫𝐴𝑛∩𝐵−

𝑛

𝑑𝒕

≤ (2𝜋)−𝑑
{

1
√

𝑛 − 1
+ 1

𝑛 − 1

}

∫𝐴𝑛∩𝐵+
𝑛

𝑑𝒕 + (2𝜋)−𝑑
√

4(𝑛 − 1)
𝑛 ∫𝐴𝑛

𝑑𝒕

= (2𝜋)−𝑑
{

1
√

𝑛 − 1
+ 1

𝑛 − 1

}

(𝐴𝑛 ∩ 𝐵+
𝑛 ) + (2𝜋)−𝑑

√

4(𝑛 − 1)
𝑛

(𝐴𝑛 ∩ 𝐵−
𝑛 )

≤ (2𝜋)−𝑑
{

1
√

𝑛 − 1
+ 1

𝑛 − 1
+

√

4(𝑛 − 1)
𝑛

}

(𝐴𝑛) ≤ (2𝜋)−𝑑
{

1
√

𝑛 − 1
+ 1

𝑛 − 1
+ 2

√

𝑛 − 1

}

(𝐴𝑛). (18)

The assumptions in Theorem 1 include (𝐴𝑛)∕
√

𝑛 → 0 as 𝑛 → ∞, which ensures that the upper bound in (18) tends to zero for large
𝑛. In summary, assuming (𝐴𝑛) → ∞, (𝐴̄𝑛) → 0, and (𝐴𝑛)∕

√

𝑛 → 0 as 𝑛 → ∞, we have |

|

|

𝑓𝑆𝐶 (𝒛) − 𝑓𝒛(𝒛)
|

|

|

→ 0 for every 𝒛 ∈ . In
fact, we can claim sup𝒛∈

|

|

|

𝑓𝑆𝐶 (𝒛) − 𝑓𝒛(𝒛)
|

|

|

→ 0 as 𝑛 → ∞. Further, assuming the true density 𝑓𝒛 is continuous on  we have uniform
strong convergence of 𝑓𝑆𝐶 to 𝑓𝒁 as 𝑛 → ∞. □

Proof of Theorem 2. Consistency of 𝑀𝐼𝑓𝑎𝑠𝑡. Here, we prove Theorem 2 which establishes that the estimator 𝑀𝐼𝑓𝑎𝑠𝑡 given by (3)
converges in probability to the true 𝑀𝐼 in (1). For this proof we define the oracle estimator

𝑀𝐼𝑜𝑟𝑎𝑐𝑙𝑒 = 𝑛−1
𝑛
∑

𝑖=1
ln

{

𝑐𝑼𝑿𝑼𝒀
(𝑼𝑿𝑖,𝑼𝒀 𝑖)

𝑐𝑼𝑿
(𝑼𝑿𝑖)𝑐𝑼𝒀

(𝑼𝒀 𝑖)

}

.

ote that by the law of large numbers 𝑀𝐼𝑜𝑟𝑎𝑐𝑙𝑒 is consistent for 𝑀𝐼 . From Theorem 1 we know that for any small 𝜖, there
xists a large enough 𝑁 such that sup𝒖∈(0,1)𝑑 |𝑐(𝒖) − 𝑐(𝒖)| < 𝜖. Using Taylor series expansion to ln

{

𝑐(𝒖𝑖)∕𝑐(𝒖𝑖)
}

, we get ln
{

𝑐(𝒖𝑖)
}

=
n
{

𝑐(𝒖𝑖)
}

+ 𝑐(𝒖𝑖)−𝑐(𝒖𝑖)
𝑐(𝒖𝑖)

+𝑜(𝜖), where we ignore the last term. Summing the expression above over 𝑁 observations, we get the following
chain of inequalities:

|

|

|

|

|

|

1
𝑁

𝑁
∑

𝑖=1
ln
{

𝑐(𝒖𝑖)
}

− 1
𝑁

𝑁
∑

𝑖=1
ln
{

𝑐(𝒖𝑖)
}

|

|

|

|

|

|

≤ 1
𝑁

𝑛
∑

𝑖=1

|

|

|

|

𝑐(𝒖𝑖) − 𝑐(𝒖𝑖)
𝑐(𝒖𝑖)

|

|

|

|

≤
sup𝑖 ||𝑐(𝒖𝑖) − 𝑐(𝒖𝑖)||

𝑐0
≤ 𝜖

𝑐0
,

where the true copula density is bounded below by 𝑐0. The argument above can be repeated individually for all three of the
underlying copula density functions 𝑐𝑼𝑿𝑼𝒀

, 𝑐𝑼𝑿
, and 𝑐𝑼𝒀

and their respective estimates 𝑐𝑼𝑿𝑼𝒀
, 𝑐𝑼𝑿

, and 𝑐𝑼𝒀
. Finally, we can

rite

|

|

|

𝑀𝐼𝑓𝑎𝑠𝑡 −𝑀𝐼𝑜𝑟𝑎𝑐𝑙𝑒
|

|

|

≤
|

|

|

|

|

|

1
𝑁

𝑁
∑

𝑖=1
ln
{

𝑐𝑼𝑿𝑼𝒀
(𝑼𝑿𝑖,𝑼𝒀 𝑖)

}

− 1
𝑁

𝑁
∑

𝑖=1
ln
{

𝑐𝑼𝑿𝑼𝒀
(𝑼𝑿𝑖,𝑼𝒀 𝑖)

}

|

|

|

|

|

|

+
|

|

|

|

|

|

1
𝑁

𝑁
∑

𝑖=1
ln
{

𝑐𝑼𝑿
(𝑼𝑿𝑖)

}

− 1
𝑁

𝑁
∑

𝑖=1
ln
{

𝑐𝑼𝑿
(𝑼𝑿𝑖)

}

|

|

|

|

|

|

+
|

|

|

|

|

|

1
𝑁

𝑁
∑

𝑖=1
ln
{

𝑐𝑼𝒀
(𝑼𝒀 𝑖)

}

− 1
𝑁

𝑁
∑

𝑖=1
ln
{

𝑐𝑼𝒀
(𝑼𝒀 𝑖)

}

|

|

|

|

|

|

≤ 𝜖∗,

here the last step follows from the intermediate inequality obtained above. Hence, as 𝑀𝐼𝑜𝑟𝑎𝑐𝑙𝑒 is consistent for 𝑀𝐼 , we can claim
𝐼̂𝑓𝑎𝑠𝑡 is consistent for 𝑀𝐼 as well. □
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