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Figure 1: ReparamCAD takes a parametric 3D model and a corresponding text description as input and generates a re-
parameterized version of the model as output. It uses ChatGPT and user guidance to generate text prompts describing variations
of the input model and uses stable diffusion to optimize the CAD parameters towards these prompts. The resulting variations
are used by the constraint discovery system to identify common constraints across all designs.

ABSTRACT

Parametric CAD models encode entire families of shapes that should,
in principle, be easy for designers to explore. However, in practice,
parametric CAD models can be difficult to manipulate due to im-
plicit semantic constraints among parameter values. Finding and
enforcing these semantic constraints solely from geometry or pro-
grammatic shape representations is not possible because these con-
straints ultimately reflect design intent. They are informed by the
designer’s experience and semantics in the real world. To address
this challenge, we introduce ReparamCAD, a zero-shot pipeline
that leverages pre-trained large language and image model to infer
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meaningful space of variations for a shape We then re-parameterize
a new constrained parametric CAD program that captures these
variations, enabling effortless exploration of the design space along
meaningful design axes. We evaluated our approach through five
examples and a user study. The result showed that the inferred
spaces are meaningful and comparable to those defined by experts.
Code and data are at: https://github.com/milmillin/ReparamCAD.
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1 INTRODUCTION

The goal is to create a system that would be flexible enough to
encourage the engineer to easily consider a variety of designs.
And the cost of making design changes ought to be as close to
zero as possible.

Samuel Geisberg, PTC Founder, 1988

The impact of parametric CAD on engineering design cannot
be overstated. Almost every manufactured object that exists today
started its life in a parametric CAD tool. Yet, decades past the CAD
revolution, the envisioned goals of effortless design variability and
manipulation remain unrealized. The foundational vision of para-
metric CAD is to enable manipulation through parameter tweaking
within a sequence of parametric constructive operations. For in-
stance, if we model the back of a chair as an extrude of a base 2D
rectangle, we can manipulate the height of the chair by varying the
extrude distance. In practice, modifying CAD parameters directly
can be challenging due to a lack of user understanding regarding
which parameters to modify to achieve the desired variation. In
addition, the absence of constraints can lead to undesirable shape
changes that violate user intent.

To address the gap in CAD manipulation, this paper aims to
automatically construct a reparametrization of CAD models, in-
troducing what we refer to as manipulation parameters. The pa-
rameters generated by sequences of constructive CAD operations
will be referred to as constructive parameters to differentiate them
from the proposed abstraction. We observe that CAD programs are
typically overparameterized, as multiple constructive operations
may be required to create structurally related geometries. However,
constraints across constructive parameters are frequently absent
or underspecified during the CAD modeling sequence, and feasible
ranges for constructive parameters are not exposed. Consequently,
modifying a single CAD constructive parameter can lead to shapes
that lack the essential structure, such as a chair with its legs discon-
nected from its base. Thus, to achieve meaningful design variations,
users often must simultaneously and consistently modify multiple
constructive parameters [Yares 2013]. Essentially, the space of shape
variations defined by constructive parameters predominantly con-
sists of irrelevant outcomes, rendering the extraction of meaningful
design variations from this space an arduous and time-consuming
process. This work explores the possibility of automatically identi-
fying a constrained subspace within a CAD program that reflects
meaningful shape variations. We frame this as a reparametrization
problem from constructive to manipulation parameters.

On one hand, we anticipate that program analysis will shed light
on the constraints to consider when constructing this subspace. On
the other, this problem is inherently ambiguous: meaningful design
variations are ultimately derived from what the designer is trying
to model, rather than how they are modeling it. Any synthetic
analysis would inevitably fail to infer semantic meaning. Our key
insight is to first develop an understanding of how we may want
to manipulate the shape and subsequently conducting an analysis
based on that understanding to derive a constrained shape space. We
note that establishing this understanding is now possible because
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of novel pre-trained large foundational models [Rombach et al.
2022] that have learned the space of reasonable shapes. Building
upon this insight, our neurosymbolic approach combines Al-driven
induction for discovering shape variations with symbolic-driven
deductive reasoning for identifying shape constraints. Most notably,
our approach operates in a ‘zero-shot’ manner, eliminating the
reliance on large categorical shape datasets. As such, our method is
applicable beyond the sparse shape categories covered by existing
datasets.

Our novel system ReparamCAD, illustrated in Figure 1, takes a
parametric model expressed in a simplified CAD language, along
with a concise text description of the model. It generates a re-
parameterized version of the input CAD model, accompanied by
an intuitive slider-based interfaceallowing users to vary the manip-
ulation parameters introduced in the revised CAD program, and
empowering them to easily explore meaningful design variations.

The re-parameterization process begins by generating text prompts
describing variations of the model using a large language model
and user guidance. Next, we apply our novel method to automati-
cally adjust the parameters of the input model, aligning it with each
text prompt by comparing the rendered images of the model with
images from a pre-trained stable diffusion text-to-image model. The
design variations generated by matching the input model to vari-
ous text prompts are then fed into our constraint discovery system.
This identifies geometric constraints that are common across all
variations, accounting for noise. The discovered constraints are
used to construct a subspace of the original CAD parameter space,
automatically imposing semantically meaningful constraints. Fi-
nally, we project the generated variations into this subspace and
use them as the basis for a new parameterization of the constrained
space along semantic lines.

We demonstrate the efficacy of our approach in generating vari-
ations for five distinct models of varying complexity. We conduct
a comparative analysis between our neurosymbolic approach and
purely symbolic or purely neural-driven methods to underscore the
advantages inherent in our approach; the former creates uninterest-
ing variations and the latter can produce incoherent geometry, but
our approach produces interesting variations while adhering to se-
mantically meaningful constraints. Furthermore, we conduct a user
study and show that our approach discovers similar constraints to
what our participants have specified.

2 RELATED WORK

Our work builds upon a rich body of work on CAD manipulation as
well as structure-preserving shape manipulation. This includes algo-
rithms that operate on input shape collections of a specific class, as
well as methods for manipulating individual models. Furthermore,
our work builds on text-driven shape generation algorithms.

2.1 Parametric CAD Manipulation

Parametric CAD systems represent designs as programs that ex-
pose constructive parameters. Manipulating CAD models solely by
adjusting these parameters can be challenging due to the need for
coordinated changes across multiple parameters to achieve specific
design goals [Yares 2013]. This has encouraged efforts that diverge
from the parametric modeling paradigm, proposing interfaces that
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allow direct manipulation instead (e.g. SpaceClaim, KeyCreator, and
Rhino). Nevertheless, most CAD systems prioritize preserving pro-
gram information as it enables the preservation and control of
global structures (e.g., Solidworks, Onshape, Catia, Creo and NX).

Recent efforts have focused on exploring hybrid techniques that
aim to bridge the gap between the parametric programming para-
digm and direct manipulation approaches. This includes commer-
cial systems like Siemens’ Synchronous Technology and IronCAD,
which aim to facilitate direct manipulation by utilizing complex
algorithms to maintain synchronization with the program repre-
sentation. Efforts within the computer graphics community have
made advancements in enabling program updates based on user
interactions [Cascaval et al. 2021; Michel and Boubekeur 2021],
optimizing program parameters to align with user manipulation.
The fundamental challenge with these approaches is that they rely
on hand-crafted heuristics to resolve the inherent ambiguities in
the system. There are often multiple viable constraints that can
be imposed over the program parameters to achieve the edits that
adhere to users’ manipulation. To eliminate the need for hand-
crafted heuristics, we propose leveraging semantic understanding
extracted from large pre-trained foundational models. By utilizing
these models, we can uncover a meaningful set of potential varia-
tions for a CAD model and derive constraints directly from those
examples.

2.2 Enabling Manipulation from Large Shape
Collections

A considerable body of research explores methods for understand-
ing the meaningful space of variations within categorical shape
collections. These approaches either create an abstraction for a
collection of shapes belonging to a specific category or enable ma-
nipulation of an image based on a collection of models within that
category.

Early approaches combine statistical models, with label-driven
shape decomposition [Chaudhuri et al. 2013; Fish et al. 2014; Ovs-
janikov et al. 2011]. Additionally, labels have been used to learn
semantic abstractions from shape collections [Yumer et al. 2015].

More recently, neural networks have been used to learn em-
beddings that enable design exploration. These approaches do not
require segmented labels, but the learned embeddings are not easy
for a user to explore [Chen and Zhang 2019; Zheng et al. 2022]. To
enable user control, several approaches have integrated learning
with structural, compositional, and symbolic abstractions. This in-
cludes efforts focused on learning abstractions [Jones et al. 2022;
Tulsiani et al. 2017], fitting shapes to categorical abstractions [Pearl
etal. 2022; Wei et al. 2020], enabling structure manipulation through
handles or mixing and matching [Hao et al. 2020; Hertz et al. 2022;
Jiang et al. 2020; Liu et al. 2021; Mo et al. 2019; Yin et al. 2020], and
text-driven variations [Achlioptas et al. 2022].

Closest to our approach are methods that infer higher-level ab-
stractions that preserve program structure [Jones et al. 2021, 2023a].
Library learning techniques, based on machine learning [Ellis et al.
2021] or anti-unification [Cao et al. 2023], can extract common
structure from a corpus of CAD programs into reusable functions
that expose more semantically meaningful parameters.
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The fundamental limitation of these approaches is that they
require a large dataset of models belonging to a specific class, from
which meaningful space of variations can be inferred. Rather than
being confined to specific classes of objects that are covered by
existing datasets, we leverage the much broader understanding
embedded in foundational models to infer meaningful variations
from a single input model.

2.3 Structured Manipulation from Single Input
Shapes

Past research has also devised methods for structure-preserving
shape manipulation when only a single input shape is available.
Earlier methods used hand-crafted heuristics with numerical opti-
mization to enable shape deformation (see [Mitra et al. 2014; Sorkine
and Botsch 2009] for a more complete overview). While some geo-
metric and physics-inspired heuristics are well suited for organic
shapes [Igarashi et al. 2005; Sorkine et al. 2004], heuristics based on
geometric-semantic constraints such as symmetry, coplanarity, and
replicable patterns have been shown to work well on man-made
shapes [Bokeloh et al. 2012; Gal et al. 2009b]. These heuristics have
been used in two types of editing systems: 1) variational methods,
where optimization is used to compute a deformation that adheres
to the user manipulation [Sumner et al. 2007]; and 2) direct meth-
ods where the computation is done in advance to generate a set of
exposed controls [Jacobson et al. 2011]. Such controls can be in the
form of parameter sliders, cages, skeletons, or compositions thereof.
Essentially, direct methods generate a type of reparametrization, as
we describe in this work.

More recent approaches apply learning approaches for manipu-
lating shapes. However, while approaches that assume categorical
data sets can use learning to replace heuristics [Sung et al. 2020], as
discussed above, efforts that take a single shape as input are more
restricted. Most successful efforts focus on a constrained task of
matching the input model to a target shape or image [Wang et al.
2018, 2019]. Some efforts have been made on learning abstractions
that are category independent, such as learning to fit cages [Yifan
et al. 2020] and inferring 3D shape programs from a target image or
3D geometry [Du et al. 2018; Jones et al. 2020; Nandi et al. 2018; Yu
et al. 2022] (see [Ritchie et al. 2023] for a complete overview). Simi-
larly, domain-specific compilers have been developed that strive to
reduce the number of parameters in the model by re-writing CAD
programs concisely using looping constructs [Nandi et al. 2020].
Such methods still focus on lower-level abstractions, essentially
producing the types of programs we take as input.

2.4 Text-conditioned 3D generation

Several studies have explored text-conditioned 3D generative mod-
els trained directly on text-3D pairs. Most of these approaches rely
on learning 3D latent representations and establishing associations
between text and 3D embeddings [Chen et al. 2019; Fu et al. 2023;
Liu et al. 2022; Mittal et al. 2023; Sanghi et al. 2022, 2023; zeng et al.
2022]. However, scaling these methods to accommodate diverse
text prompts is difficult due to the lack of large-scale 3D datasets.
A growing body of research focuses on text-conditioned 3D gen-
eration, using pretrained text-to-image models like CLIP [Radford
et al. 2021], as well as diffusion-based models [Nichol et al. 2022a;
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Rombach et al. 2022; Saharia et al. 2022]. Differentiable rendering
techniques are also used to optimize 3D representations such as
meshes [Khalid et al. 2022] and NeRFs [Jain et al. 2022; Lin et al.
2023; Poole et al. 2022]. These methods tend to struggle to gen-
erate coherent 3D objects due to lack of strong 3D priors. Recent
approaches attempt to solve this problem by generating a synthetic
dataset of image-3D pairs. These methods use learning to generate
the initial coarse 3D objects from images, which then serve as a
starting point for further refinement through fine-grained 3D shape
optimization [Nichol et al. 2022b; Seo et al. 2023; Xu et al. 2023].
To the best of our knowledge, our work is the first to tackle
text-conditioned 3D synthesis within the domain of CAD programs.
While we also leverages differentiable rendering and diffusion-
based models, our focus lies on the problem of distilling the inherent
constraints on CAD parameters from a large pretrained model.

3 METHODS

Given a well-formed CAD model represented as a simplified con-
structive solid geometry (CSG) and a categorical description of
the model (“chair”), our system synthesizes a new CAD program
with fewer parameters capable of reproducing the input space and
expressing meaningful semantic variations. We first use a large
language model to generate text description of variations of the
given object (“bench”, “stool”, etc.). We then optimize the parame-
ters of the input CAD program to fit these variation prompts using
diffusion-generated images as a guidance to a differentiable ren-
derer. From these instances of model variations, we infer constraints
and reparameterize to a CAD program that exposes meaningful
manipulation parameters to the users.

3.1 Simplified CAD Language

Our simplified CAD language is built upon Constructive Solid Ge-
ometry (CSG), which forms the basis of popular software like Open-
SCAD, and is a supported mode of operation in most commercial
CAD systems. While modern CAD systems predominantly employ
B-rep history-based languages, the essential boolean operations
of CSG persist. To simplify the implementation of a differentiable
renderer, we have opted to include only union operators in our
language, excluding intersections and subtractions. Despite this re-
striction, our language still allows for a wide range of CAD designs,
showcasing the capabilities of our method. Specifically, we have
implemented operators for three primitives (cubes, cylinders, cylin-
ders with changing top radius) and two transformation operators
(translation and scale) that can be applied to any primitives .

The constructive parameters of the language include transfor-
mation parameters and primitive-dependent parameters (e.g., the
top radius of a cylinder). It is worth mentioning that numerous
CAD systems allow users to expose high-level variables and define
constructive parameters as functions of these variables. However,
in our approach, we do not assume the presence of such variables
in the input. Instead, we focus on learning high-level abstractions
directly from the constructive parameters themselves, highlighting
the effectiveness of our method in uncovering meaningful con-
straints.
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3.2 Variation Prompts Generation

We leverage a pre-trained LLM (ChatGPT) to generate text prompts
that describe variations of the given model by using the following
formulaic query: “What are different types of [object]?”. This gen-
erally outputs an itemized list of prompts which we can extract. A
user can then select a subset of these prompts or add additional
prompts that the user cares about.

3.3 Text-Conditioned Variation Generation

In this section, our goal is to generate variations of the initial
CAD model to serve as examples to discover constraints and re-
parameterize the CAD program in a semantically meaningful way.
For each text prompt, we follow a general framework to generate
3D shapes from a pre-trained text-image model where it uses a
differentiable pipeline to bridge a 3D representation to an image.

A fundamental challenge for our domain is that the space of pos-
sible variation of a CAD program is highly constrained compared
to meshes or neural radiance fields (NeRFs). Therefore, to optimize
a CAD program’s parameters from text-driven image guidance, we
constantly need to project the target variations back to the feasible
space. We notice that losses used in prior work such as ClipMesh
[Khalid et al. 2022] and DreamFusion [Poole et al. 2022] create arti-
facts in our application, essentially disconnecting CAD primitives
(see discussion in Section 4.5). We attribute these errors to the chal-
lenges of finding the proper projection back to the CAD domain.
To overcome this challenge, we propose to use an image-space loss
because the transformations between CAD parameters, meshes,
and images are more straightforward, facilitating the projection
process. We consistently observe that this approach significantly
improves the overall results.

Our generation algorithm (Figure 2) iteratively generates images
using stable diffusion [Rombach et al. 2022] conditioned on the
input prompt and the current rendering of the CAD model. After
each sample, it projects back to the CAD parameters by fitting our
input model to the sampled image using gradient descent on pixel
loss from a differentiable renderer [Laine et al. 2020].

In generating the image guidance, we randomly sample 5 camera
angles from which we render each image and run the image-to-
image diffusion. Similarly to DreamFusion [Poole et al. 2022], we
also append a viewpoint description to the prompt, e.g., “chair,
(front|side|rear) view” as a proxy to condition camera angles.

In the gradient descent steps, we use an SGD optimizer with
a learning rate of 0.05 for 30 iterations where we minimize the
following loss:

L(x) = ZHsharpen(Ra(x)) — sharpen(I) |12 + Allx — x|
a

where x is the CAD parameters, a is a camera angle, R, (+) is the
renderer, I, is the image from the diffusion process, sharpen(I) :=
I—-0.2-blur(l), and A = 0.001 is the regularization term towards
the original parameters xg. We repeat the process of diffusion and
gradient descent 400 times.

A final fundamental challenge we encounter is that diffusion
models can produce images with diverse styles and conflicting ge-
ometries across different views. This can lead to degenerate results,
such as a table with thin metal legs disappearing because when
the legs appear at different positions in the generated images, the
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Figure 2: Text-conditioned design variation. We iteratively
generates images using stable diffusion and refine our model
to match the sampled image.

optimizer does not know which legs to follow and so makes it in-
visible instead (also see Section 4.5). To overcome this, we employ a
selection process where we run diffusion three times to generate a
set of images and then choose the one that aligns best with the ini-
tial rendered image to help improve geometric consistency across
views. This selection is performed at each step to provide effective
image guidance. We have observed that this approach consistently
produces favorable outcomes.

3.4 Constraint Discovery

Our generative model produces a collection of examples in the
design space we wish to explore. We want to use these examples
to provide structure and constraints on that design space to aid in
exploration by discovering constraints on the CAD model param-
eters that are common to the discovered variations. While there
are many existing methods for constraint discovery [Bessiere et al.
2004; Fajemisin et al. 2023; Fedyukovich and Bodik 2018], most of
these methods require noise-free examples, which we do not have,
except for on our input model. For this reason, we propose algo-
rithms for selecting among possible constraints under the presence
of noise.

3.4.1 Discovering Geometric-Semantic Constraints. Because we have
only a single model with clean geometry, our initial input, we pro-
pose to discover common geometric relationships — coplanarity,
coaxiality, keypoint coincidence, and dimensionaly equality — present
within the initial model, represented as conjunctions of linear con-
straints. The subspace these induce is too specific to the input
model, so we would like to find a subset of these constraints that
is common (in approximation to handle noise) to all discovered
variations.

SA Conference Papers "23, December 12-15, 2023, Sydney, NSW, Australia

When dealing with constraints, it is crucial to consider their
potential interactions. Ideally, we would rank all possible com-
binations of constraints; however, this combinatorial problem is
computationally intractable, so we propose a greedy strategy in-
stead. Using a distortion metric (described below), we score every
individual constraint and initialize our constraint set with the best
one. We iteratively add to this set by scoring each of the remaining
unused constraints unioned with the constraints already chosen.
The result of this process is an ordered set of constraints from first
to last picked. Plotting the distortion over number of constraints,
we observe that there is usually a point where the distortion in-
creases drastically and we have observed that this jump in the graph
typically correlates to visual artifacts in the shape. We use this to
compute the cutoff of which constraints to impose. We can find
the jump in the graph using a linear change point detection algo-
rithm [Killick et al. 2012] on the derivative of this curve (computed
as a central difference).

To score a candidate constraint set, we would ideally measure
the distance in pixel space to the diffusion images from the final
stage of generation. This requires solving an optimization problem
to find the minimizer of that distance over the CAD parameter
space, which is too slow to be tractable with the greedy strategy
described above. We also observe that pixel space differences can
be unreliable for very small variations arising from small constraint
sets because capturing them in an image is highly dependent on
viewing angle. To overcome both of these issues, we propose to
instead use a volumetric score, intersection over union (IoU), when
initially sorting constraints, and only use pixel space loss when
computing the final cutoff. Because we do not have a way to dif-
ferentiably compute shape booleans, and to gain computational
efficiency by avoiding gradient descent entirely, we developed a
linear cuboid approximation to IoU which, in conjunction with our
linear constraint sets, allows us to minimize the IoU with a single
linear least squares step (see supplemental material for details). In
cases where the IoU simplification does not generalize (cones with
variable half-angle) we fall back to image loss for the full pipeline
and avoid the additional check for constraint combinations due to
its computational complexity.

3.4.2 Discovering Discrete Variations. Not all examples of the same
kind of object have the same parts; for example some cameras have
flash bulbs while some do not, and chairs can be armless. We dis-
cover these discrete parameters by looking for primitives effectively
missing from variations. We iteratively remove one primitive from
each variation and compute the pixel loss described above. If this
loss is below a threshold (107 in our experiments), we mark that
primitive as optional for that variation. We then group parts that
are always optional together across variations (e.g. chair legs are
added or removed as a set) and include these as binary variables on
top of our continuous reparameterization.

3.5 Re-Parameterization

Our generation and constraint discovery algorithms find a set of
linear constraints which restrict the construction parameters to
semantically appropriate values, as well as a set of semantically
labeled variations that obey these constraints. The constraints give
us a lower dimensional subspace that maintains object coherence.
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Figure 3: ReparamCAD’s user interface. Users are presented
with two complimentary views of the constrained reparame-
terization space. The sliders on the left interpolate between
discovered variations as a weighted average, while those
on the right control the free variables after reparameteriza-
tion. Checkboxes allow toggling of discrete sets of removable
parts.

Using Gauss-Jordan elimination we can construct a basis for this
subspace that retains parameter identity for free variables under the
constraints. We construct a second parameterization of this space
centered at the initial model’s parameters within the subspace that
allows these shapes to be mixed and interpolated.

Our user interface (Figure 3) allows for exploration in both con-
structive parameters and manipulation parameters, but because we
only found linear equality constraints, we do not have bounds on
this space. We use examples as lower bounds on the feasible region
by taking a normalized sum of manipulation parameters, restrict-
ing semantic variations to be interpolations between variations,
and optionally restricting constructive parameter exploration to
the extreme values of the discovered variations. In this bounded
subspace, the user can freely and safely explore. Additionally, we
add the discrete optional degrees of freedom found in constraint
discovery.

4 RESULTS

We evaluate ReparamCAD in two key aspects: its ability to generate
compelling and valid design variations guided by text prompts, and
its ability to infer semantic and geometric constraints that define
the family of shapes both qualitatively and quantitatively.

We show the results of running our pipeline on five initial models:
chair, table, car, camera, and bottle in Figure 7. For each model, we
handpicked five prompts from a list generated by ChatGPT and
manually added a “bench” prompt for the chair example. For the
differentiable renderer, we use Nvdiffrast [Laine et al. 2020]. We use
stable diffusion model v1.4 from Rombach et al. [2022], and we use
the mesh boolean algorithm from Cherchi et al. [2022] to compute
the IoU. All experiments were conducted on a machine with a 40-
core CPU and an NVIDIA A40 GPU. On average, generating a CAD
variation takes 6.5 hours per prompt; and discovering constraints
takes from 4 to 35 minutes per model depending on the complexity.

4.1 Generating CAD Variations

In Figure 5, we demonstrate our method’s ability to generate varia-
tions of the input model that are coherent with the text prompt with
varying geometry and complexity. For example, we can observe
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Figure 4: (a) Applying an extrapolative edit to a model can
lead to broken geometry, but the constraints we discover
prevent this and result in meaningful global edits from lo-
cal changes. (b) A selection of random extrapolative edits
without ReparamCAD (left) and with (right). ReparamCAD
maintains geometric coherence.

that the bench is wider and has no arms while the chaise lounge has
arms and is bulkier, and that the SUV has a tall back section while
the pickup truck has a low back section. The method is also able
to discover part of the program that can be removed, for example,
the arms of the chair for “stool” and the camera grip for “action
camera” disappear by shrinking and blending into the rest of the
shape.

The method’s inclination of staying close to the input model and
within the parameter space leads to some intriguing results. For
example, the “rocking chair” prompt produces a model resembling
a nursing glider, which belongs to the same category and can be
represented using the input program. Similarly, the generated
“dining table” exhibits a surprising square shape and middle shelf.
While these may not conform to the conventional idea of a dining
table, such dinning tables exist in reality, making them more likely
to be chosen due to their proximity to the input model (see Fig. 8
().

Overall, our method performs well in maintaining the overall
structure of the shapes while allowing unique changes that define
each of the variations. We notice, however, that due to stochasticity
of the diffusion process, these generated models contain imper-
fections on primitive alignment (see corners of the chairs or table
where the legs do not perfectly line up with the seat). These imper-
fections must be captured and cleaned up by our symbolic approach.

4.2 Inferring Constraints and
Reparameterization

Running our constraint discovery algorithm on the input models
resulted in a dimensionality reduction from 19-48 parameters to
9-15, summarized in Table 1. We find semantically meaningful
constraints; for example, car wheels are co-axial, chair arms stay
at the sides of the seat, and table and chair legs are all the same
height. Our algorithm also rejects overly specific constraints such
as the chair’s seat being square and the same thickness as the
arms and legs, which would overly constrain the design space as



ReparamCAD: Zero-shot CAD Program Re-Parameterization for Interactive Manipulation

seen in Figure 8 (c). The variety and quality of generated models
in Figure 7 show that our constraints strike a balance between
restriction and expression. They also have the effect of removing
noise present in the generated variations, which propagates to
the interpolated results as shown in Figure 8 (a). In addition, we
also support extrapolation by direct control of free construction
variables. As Figure 4 shows, extrapolation without constraints
often produce incoherent geometry, but ReparamCAD’s constraints
can prevent this.

4.3 Quantitative Evaluation and Robustness

We asked four CAD users with 2-14 years experience (mean 6.25)
to select constraints for each base model from the set our system
considers, given the variation names. We evaluated precision and
recall of our system, computed by subspace inclusion because the
constraints are non-orthogonal. Macro-averaged across users, mod-
els, repeated 4 times to test robustness, our method achieves 76.7%
precision and 88% recall. To quantify robustness, we computed the
standard deviation in average precision and recall between runs
of our system for each model: 2.4 pp for precision and 6.8 pp for
recall. Finally, to quantify the effect of regularization, we compared
precision and recall across models and users for a run with and
without regularization using a related samples t-test and found no
significant difference for either (p = .38, .29).

4.4 Ablations of our Neurosymbolic Approach

We formalize the need for our neurosymbolic approach by com-
paring it to pure neural and symbolic techniques. A purely neural
approach only considers the generated model without any con-
straints. As seen in Figure 8 (a), this results in many artifacts.

On the other hand, if we apply all the geometric-semantic con-
straints inferred from the original model without using the gener-
ated images as input, we would end up with a more constrained
space, as shown in Figure 8 (c); most of the chairs are simply scaling
variations that can appear overly boxy or skewed. We note that the
variations we shown in Figure 8 (c) are still leveraging the bounds
that we have discovered with our technique. In practice just impos-
ing constraint does not define a bounded space for direct manipu-
lation, and infinitely large boxy results can be generated—indeed
these methods are used in companion with variational techniques
for interaction [Gal et al. 2009a].

4.5 Ablations of our Text-Conditioned Variation
Generation

Figure 8 (b) shows optimized CAD models using different loss
functions: (1) CLIP similarity loss; (2) distillation scores, where the
gradient is the difference between the added noise and predicted
noise in latent space; (3) L2 difference in the image latent by the
autoencoder; and (4) our image-space loss. For CLIP, we believe
the unfavorable results are due to how the gradient is propagating
back to the low-dimensionality of the CAD parameters. For stable
diffusion, we observe that a full generation process is necessary to
get an effective image guidance as oppose to using the difference
between a single denoise step as seen with the distillation score.
Using the full diffusion process, whether using the image similarity
or its latent, better preserves the overall structure and connectivity
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and converges to a desirable shape variation. We decide to use the
image difference to avoid having to backpropagate to the image
encoder.

In Figure 6, we show the optimization process of methods using
different number of diffusion-generated images per camera pose.
Since stable diffusion generates slight different images every time,
thin parts like the legs of the table is more susceptible to disap-
pearance because they are more likely to not overlap and end up
confusing the differentiable renderer. We observe that using only
the generated image that is the closest to the rendering reduces this
effect and helps maintain thin structures.

Table 1: Number of parameters, number of constraints in
the base model, number of inferred constraints, number of
reparameterized dimensions for each model

Base Common Constraint

Model P t . ) . . .
ode ATAMELELS  Constraints  Constraints Dimensionality

Bottle 19 20 8 9
Camera 24 21 9 15
Chair 48 172 37 11
Table 36 90 22 14
Car 42 94 26 13

5 LIMITATIONS AND FUTURE WORK

Extending CAD Language Support. Our current implementation
of ReparamCAD is limited to a subset of the full CAD language. This
limitation carries over from mesh differentiable renderer that we
build upon. It is worth noting that differentiable CAD rendering and
kernels is an active area of research that is complementary to our
work [Cascaval et al. 2021; Gaillard et al. 2022; Jones et al. 2023b].
Our fundamental idea would still apply as these new differentiable
operators could substitute for the differentiable mesh renderer as
they become available.

Generating Complex 3D Geometries. Vanilla stable diffusion mod-
els suffer from generating inconsistent 3D geometries due to lack of
3D prior and limitations in view conditioning. Incorporating recent
advances that tackle this problem [Nichol et al. 2022b; Seo et al.
2023; Xu et al. 2023] could enhance the generation of complex and
consistent 3D geometries in our approach. Furthermore, the com-
putational cost associated with this step is considerable, and further
efforts to reduce computational overhead would be valuable.

Handling Noise in Design Variations. A fundamental challenge
during constraint discovery lies in distinguishing noise and mis-
alignment of parts from intentional design variations. Incorporating
additional considerations, such as physical understanding or using
foundational models, can aid in tackling this issue. Finally, our
algorithms for constraint discovery and re-parametrization rely
on the linearity of constraints. Extending our method to discover
non-linear constraints would require addressing the additional com-
putation cost associated with non-linearity.

Quality of Text Prompts. The quality of our generated results
depends on the quality of the available text prompts. When they
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exceed the capabilities of the model, performance may be subpar
or lead to unexpected outcomes. Since ChatGPT does not know
the input shape, it may generate unreasonable variations or miss
some that the user wants to explore requiring a user guidance.
Incorporating multi-modal LLMs could potentially automate this
process. Furthermore, we observe that prompts containing descrip-
tive adjectives like "tall" or "wide" yielded minimal variations, while
specifying object types proved to be more effective in generating
diverse outcomes. Future efforts in prompt engineering and condi-
tioning the diffusion model using phrases can greatly improve the
generation of meaningful variations and enable re-parameterization
with higher semantic relevance.

Fixed Program Structure. Our current implementation of Reparam-
CAD adheres to the structure found in the input CAD program, lim-
iting design variations to those that can be realized solely through
parameter tweaking. However, the input model may not necessarily
represent the ideal base model for exploring the shape class. Recent
advancements in program synthesis techniques have opened the
door to complex automatic program transformations guided by
semantics [Ahmad et al. 2019; Ellis et al. 2019] or examples [Cam-
bronero et al. 2023]. Integrating these techniques into our system
would enable us to not only modify parameters but also adjust the
program structure itself to better align with user intent.

Validation. We created a small and targeted set of test models to
validate our approach, but progress in new task of CAD reparame-
terization could be bolstered by the development of more diverse
and robust validation metrics to facilitate comparison between
methods.

6 CONCLUSION

In this paper, we present ReparamCAD, a novel approach that lever-
ages foundational models to facilitate CAD program manipulation.
While prior applications of foundational models have focused on au-
tomatic 3D shape generation, our approach breaks new ground by
utilizing them for structural shape representations. Our approach
demonstrates the potential of integrating AI models with symbolic
program analysis techniques and opens up exciting avenues for
future research in the CAD design domain.
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Figure 5: A gallery of text-condition CAD parameter optimization of different input models (first column) towards varying
prompts.
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Figure 6: Rendered and diffusion-generated images at different iterations during optimization using (top) one diffusion-
generated image per camera pose; (middle) three images; and (bottom) three images and select one image that is closest to the
rendering. Note that the camera angles for the diffusion-generated images are random.
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Figure 7: A gallery of design variations using the constrained inferred from our pipeline.
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(a) Imperfections on interpolated results without the constraints ‘ ‘ h ‘ . h ‘ ‘
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(b) Comparison against different loss functions and methods and “dining table” (left). Image guidance (right).

Figure 8: (a) Imperfections on interpolated results without the constraints. (b) Generation results using different loss functions:
CLIP similarity, distillation score, L2 difference of the image latent of the rendered and diffusion-generated images, and L2
difference in the images (c) A gallery of chairs when all constraints of the base model are imposed. (d) Peculiar shape of
generated “rocking chair” and “dining table” (left) and the image guidance (right).
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