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Abstract—Hyperdimensional computing (HDC) is an emerging
paradigm that employs hypervectors (HVs) to emulate cognitive
tasks. In HDC, the most time-consuming and power-hungry
process is encoding, the first step that maps raw data into HVs.
There have been non-volatile memory (NVM) based computing-
in-memory (CiM) HDC encoding designs, which exploit the in-
trinsic HDC characteristics of high parallelism, massive data, and
robustness. These NVM-based CiMs have shown great potential
in reducing encoding time and power consumption. Among them,
the ferroelectric field-effect transistor (FeFET) based designs
show ultra-high energy efficiency. However, existing FeFET-based
HDC encoding designs face the challenges of energy-consuming
current-mode addition, inefficient HV storage, limited endurance,
and single encoding method support. These challenges limit the
energy efficiency, lifetime, and versatility of the designs.

This work proposes an energy-efficient charge-domain FeFET-
based in-memory HDC encoder, i.e., CafeHD, with extended
lifetime, good versatility, and comparable accuracy. Area-efficient
charge-domain computing is proposed in HDC encoding for the
first time, which enables CafeHD with ultra-low power and high
scalability. An HV merging technique is explored to improve the
performance. A low-cost partial MAJ interface is also proposed
to reduce writes. Besides, CafeHD also supports two widely used
encoding methods. Results show that CafeHD on average achieves
10.9×/12.7×/3.5× speedup and 103.3×/21.9×/6.3× energy effi-
ciency with ∼84% write times reduction and similar accuracy
compared with the state-of-the-art ReRAM/PCM/FeFET-based
CiM design for HDC encoding, respectively.

Index Terms—hyperdimensional computing, computing-in-
memory, charge-domain computing, ferroelectric transistors

I. INTRODUCTION
Hyperdimensional computing (HDC) is an emerging com-

putational framework that imitates the behavior of hu-
man brains by high-dimensional vectors, i.e., hypervectors
(HVs) [1]. HVs are random and holographic vectors with
thousands of independent and identically distributed (i.i.d.)
elements. With only one or few shots and unidirectional
dataflow in the training process, HDC is lightweight and
energy-efficient, and has shown potential in many applications,
such as language classification [2], speech recognition [3], etc.

Fig. 1(a) shows the widely used HDC framework. The first
step is HDC encoding that maps the input raw data into HVs.
It is a very compute-intensive and energy-consuming process,
and can take about 99.9% and 94.6% of the training and
inference time on average across four HDC-related datasets,
respectively, as shown in Fig. 1(b). This is because the bit-wise
operations in HDC encoding, such as binding (XOR), bundling
(e.g., majority vote, MAJ), and permutation, are highly parallel
and induce intensive memory access due to the high HV
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Fig. 1. Hyperdimensional computing (HDC): (a) Basic framework. (b) Time-
consuming encoding. (c) Comparison with SOTA CiM-based encoders [6]–[9].

dimensionality [1]. Moreover, all elements are holographic
and equally weighted in HVs, which enhances the robustness
of HDC [4]. Therefore, non-volatile memory (NVM) based
computing-in-memory (CiM) becomes a desirable candidate,
which can perform in-situ operations in memory and signifi-
cantly reduce data movement.

There have been several energy-efficient NVM-based CiMs
for HDC encoding with impressive speedup based on var-
ious devices, such as resistive random access memories
(ReRAMs) [5], [6], phase change memories (PCMs) [7], fer-
roelectric field-effect transistors (FeFETs) [8], [9], etc. Among
these devices, FeFETs exploit lower power consumption and
good CMOS compatibility thanks to the physical structure,
voltage-driven write mechanism, and relatively high ON/OFF
ratio. Therefore, the FeFET-based CiM has shown the promise
of higher performance and energy efficiency compared with
the current-driven NVM-based CiMs [8], [9].

However, the existing FeFET-based CiMs for HDC en-
coding [8], [9] perform bundling through current summation,
heavily degrading energy efficiency. Besides, HVs are directly
stored in memory for these designs, which occupies large
memory footprints and limits performance. These designs also
require costly interfaces (e.g., analog-to-digital converters [8])
or frequent writes [9] to handle massive intermediate data,
causing large overheads or reliability issues [10]. Moreover,
record-based encoding [11] and N-gram encoding [12] are two
widely adopted encoding methods for different applications,
but most existing designs support only one of them [5]–[9].

To cope with the above challenges, we propose CafeHD,
a charge-domain FeFET-based in-memory HDC encoder with
HV merging to achieve high energy efficiency, extended life-
time, good versatility, and comparable accuracy. The detailed
contributions are summarized as follows:
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Fig. 2. FeFET: (a) Planar physical structure. (b) ID-VG curve [13], [14].

• We propose an energy-efficient charge-domain FeFET-
based hardware architecture with improved lifetime and
versatility including three highlighted modules: (i) A
NAND-type charge-domain XOR array that supports both
record-based and N-gram encoding; (ii) A low-cost par-
tial MAJ interface for write times reduction to achieve
extended lifetime; (iii) A charge-domain MAJ array with
local computing units (LCUs) to achieve both high energy
efficiency and low area cost.

• We propose an HV merging technique instead of storing
HVs directly to improve energy efficiency and perfor-
mance with negligible accuracy loss.

• We perform extensive experiments and explore the opti-
mal tradeoff between efficiency, accuracy, and reliability.
Results show that CafeHD achieves 10.9×/12.7×/3.5×
speedup and 103.3×/21.9×/6.3× energy efficiency with
∼84% write times reduction and similar accuracy com-
pared with the state-of-the-art ReRAM/PCM/FeFET-
based CiM for HDC encoding, respectively.

II. BACKGROUND AND RELATED WORKS

This section introduces the basics of FeFETs and HDC
encoding, and analyzes the bottlenecks of the related works.
A. FeFET Basics

FeFET is a MOSFET with the insertion of a ferroelectric
layer in the gate stack, as shown in Fig. 2(a) [13], [14]. The
recent discovery of ferroelectricity in doped HfO2 enables
FeFETs with smaller sizes and lower operating voltage, which
facilitates the integration of FeFETs into advanced technology
platforms such as 28nm bulk [13] and 22nm FDSOI [14].

The FeFET memory states are controlled by the FE layer
polarization. During the write operation, if a high positive
write voltage is applied to the FeFET gate, the domains in the
FE layer will switch to the positive state, which reduces the
FeFET threshold voltage (Vth). Similarly, if a high negative
write voltage is applied, the FeFET Vth will increase. The
resulting hysteretic characteristic of the FeFET ID-VG curves
are shown in Fig. 2(b). During the read operation, the read
voltage (VR) within the memory window can distinguish the
ID difference between two memory states.

Despite high energy efficiency and CMOS compatibility,
HfO2-based FeFETs still suffer from low endurance [10].
Although high-endurance FeFETs are being developed [15],
frequent writes should be avoided in FeFET-based designs.
B. HDC Encoding

Encoding is the first step in HDC, which encodes the
input raw data into high-dimensional space. Given an input
feature vector F⃗ = {f1, f2, . . . , fn}, HDC encoding maps it

to a D-dimensional HV (H⃗ ∈ {0, 1}D) that can reserve the
information of feature values with their positions in F⃗ . There
are two widely used encoding methods, including record-based
encoding and N-gram encoding. In general, N-gram encoding
is more suitable for consecutive information such as texts,
while record-based encoding can cover other tasks.

The record-based encoding [11] first generates two binary
HV sets: (i) the position HV set {P⃗1, P⃗2, . . . , P⃗n}, where P⃗i ∈
{0, 1}D, and (ii) the level HV set obtained by quantizing the
feature values into Q levels {L⃗1, L⃗2, . . . , L⃗Q}, where L⃗i ∈
{0, 1}D. Then, for each fi in F , there is a corresponding L⃗′

i

based on the fi value. Finally, XOR operations are performed
between each L⃗′

i and P⃗i, and all XOR results are summed and
then binarized by comparing each summed element value with
n
2 . The above process can be formulated as Eq. 1:

H⃗ = P⃗1 ⊕ L⃗′
1 + P⃗2 ⊕ L⃗′

2 + · · ·+ P⃗n ⊕ L⃗′
n (1)

The N-gram encoding [12] uses permutation instead of
position HVs to indicate feature positions. Every N adjacent
level HVs, i.e., {L⃗′

i, L⃗
′
i+1, . . . , L⃗

′
i+N−1}, are first encoded

to G⃗i using Eq. 2. In this step, the kth level HV L⃗′
i+k is

permutated (usually shifted, ρ) for k − 1 times before being
combined to G⃗i by XOR operations. N is a preset parameter
whose values are typically 3, 4, or 5 (tri-gram, quad-gram, or
penta-gram). Then all the obtained n − N + 1 N-gram HVs
are summed and binarized, which can be formulated as Eq. 3.

G⃗i = L⃗′
i ⊕ ρL⃗′

i+1 ⊕ ρ2L⃗′
i+2 ⊕ · · · ⊕ ρN−1L⃗′

i+N−1 (2)

H⃗ = G⃗1 + G⃗2 + · · ·+ G⃗n−N+1 (3)
C. Related Works

For both record-based and N-gram encoding, XOR and
addition are two key operations. There have been several
NVM-based CiM designs. SearcHD [5] and FELIX [6] exploit
ReRAM crossbars to implement logic-in-memory (LiM) op-
erations, achieving significant energy efficiency improvement
compared with the digital solutions. However, the ReRAM
current-driven write scheme makes the writes in these designs
extremely energy-consuming. [7] presents a PCM-based CiM
where XOR is approximated by AND operations performed
within the PCM array. MIMHD [8] leverages multi-level Fe-
FETs for XOR operations. However, addition and comparison
in both [7] and [8] are implemented by the costly peripherals.

Recently, [9] proposes an energy-efficient FeFET-based
CiM design, which performs in-memory XOR and utilizes
MAJ as efficient addition and comparison implementations.
However, the data transfer between the XOR and MAJ array
involves frequent writes and may induce reliability issues.
Meanwhile, [9] uses the summed current for addition. This
computation mode is highly energy-consuming and unreliable
when adding hundreds of currents considering the FeFET
device variation. Moreover, the above designs mainly focus
on one single encoding method and lack versatility due to the
different applications of record-based and N-gram encoding.

III. HARDWARE DESIGN

This section presents the proposed hardware architecture
with three highlighted modules to significantly improve energy
efficiency, lifetime, and versatility.
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Fig. 3. Overview of the proposed hardware architecture in CafeHD.

A. Overall Architecture
Fig. 3 shows the proposed hardware architecture containing

an XOR array, an interface, and an MAJ array. To support
high-dimensional HV storage, HVs are partitioned into slices
and mapped into multiple subarrays. Each feature dimension is
quantized and input to the row decoder in the XOR array. The
row decoder then selects the corresponding HVs and performs
the XOR operations. A certain number of XOR results are
summed on the capacitors in the interface and bundled to
HVs by MAJ operations using sense amplifiers (SAs). After
the partial MAJ HVs are written into the MAJ array, MAJ
operations are carried out to output the final encoded HV.

The proposed design significantly improves performance
thanks to three highlighted modules: (i) The proposed XOR
array leverages a novel NAND-type structure to allow multiple
input selections and thus support both record-based and N-
gram encoding; (ii) The proposed partial MAJ interface can
partially sum the HVs before the MAJ array, which avoids both
costly peripherals and frequent writes in prior FeFET-based
designs; (iii) The proposed MAJ array utilizes charge-domain
computing for higher energy efficiency and exploits LCUs to
lower the area cost, which provides better energy efficiency
and scalability than existing current-domain MAJ CiMs.
B. NAND-Type In-Memory XOR Array

The in-memory XOR arrays in existing designs either select
two rows as input or compute between a selected row and an
external input. However, for the arrays where two rows are
XORed, it is impractical to store all the shifted level HVs
for N-gram encoding. Meanwhile, in record-based encoding,
arrays with external inputs need to fetch position HVs from
other memories, which severely degrades energy efficiency.

To address this issue, we propose the NAND-type charge-
domain XOR array that supports both encoding methods by
providing various input selections, as shown in Fig. 4. The
HVs are pre-stored in the NAND-type FeFET array. Each cell
contains two FeFETs controlled by the wordline (WL) to store
complementary states. The top cells are connected to the mode
selection units (MSUs) via the bitlines (BLs). The sourcelines
(SLs) connect the bottom cells, the PMOS transistors for pre-
charging, and the capacitors for storing the XOR results.

For record-based encoding, the two rows storing the position
HV and level HV are selected as input. Both BLs are grounded
through the turned-on Tra and Trb controlled by the control
signal (Ctrl). To perform the XOR operation, SLs are first
precharged to VDD and then floating. The two selected rows
are activated by applying a read voltage (VR) to the WLs.
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TABLE I
CELL MODE FOR RECORD-BASED AND N-GRAM ENCODING

Method Ctrl Input 1
(level HV)

Input 2
(position/shifted HV)

Pull-
down
path

SL
(XOR)

Record-
based VDD

Logic Ma Mb Logic Ma Mb / /

’0’ high-Vth low-Vth
’0’ high-Vth low-Vth Right ’0’

’1’ low-Vth high-Vth OFF ’1’

’1’ low-Vth high-Vth
’0’ high-Vth low-Vth OFF ’1’

’1’ low-Vth high-Vth Left ’0’

N-gram GND

Logic Ma Mb Logic Tna (Q) Tnb (Q) / /

’0’ high-Vth low-Vth
’0’ OFF (GND) ON (VDD) Right ’0’

’1’ ON (VDD) OFF (GND) OFF ’1’

’1’ low-Vth high-Vth
’0’ OFF (GND) ON (VDD) OFF ’1’

’1’ ON (VDD) OFF (GND) Left ’0’

Meanwhile, the unselected WLs are set to a positive voltage
(Vopen) to turn on all FeFETs. If the two cells store the same
bit, the FeFETs on one side are all ON and form a pull-down
path to discharge SL. Otherwise, each pull-down path has at
least one OFF-state FeFET in series, and SL remains at VDD.
Therefore, the XOR results are represented by the SL voltage.

N-gram encoding performs the XOR operation between the
level HV and the shifted partial result from the MSU. Ctrl is
grounded, and the pull-down path is controlled by both Q and
Q. Therefore, Q can be XORed with the state of the selected
cell by similar XOR operations. In the first cycle, SLs are
initially grounded. With Q set to GND, the level HV can be
read out and shifted to Q and Q of the next column by buffers
and inverters. The following N − 1 cycles repeat the above
process to generate the N-gram HV. Table I shows the detailed
cell mode for the two encoding methods. The custom NAND
structure combined with the novel MSU design achieves in-
memory XOR support for both two encoding methods.
C. Partial MAJ Interface

The output HVs from the XOR array are transferred to the
MAJ array for MAJ computation. However, frequent FeFET
writes induce severe endurance degradation. Moreover, the
write process is much slower and energy-consuming compared
with XOR, which becomes the performance bottleneck of the
encoding process. Therefore, we propose a low-cost partial
MAJ interface that partially sums the HVs to reduce the
memory writes and the speed mismatch.

Fig. 5(a) illustrates the workflow of the proposed interface.
In the first k cycles, once the HVs are output from the XOR
array, the capacitors are charged or discharged according to the
XOR results. In this way, the accumulated charges and Vsum
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represent the summed results. Afterward, Vsum is compared
with a reference voltage (Vref ) to perform the MAJ operation
with a batch size of k and output the partial MAJ HV.

Fig. 5(b) shows the interface circuit design. With the XORed
HV indicated as the SL voltage, charge redistribution is
performed between Cxor and Cacc once the transmission gate
is turned on. As shown in Fig. 5(c), if the SL voltage is VDD,
Cacc is charged, and Vsum increases. Otherwise, charges flow
from Cacc to Cxor, causing Vsum to drop. After k iterations,
Vsum higher than Vref implies more 1’s in the sum, so the
SA outputs ’1’. Similarly, the MAJ result is ’0’ if Vsum is
lower than Vref . By bundling every k HVs through the charge
redistribution, memory writes are significantly reduced to 1

k ,
which alleviates the speed mismatch between the write process
and the XOR computation at low cost. Moreover, Cacc can be
achieved by top-level metal layers above the array to save area.

We analyze the impact of k on the required capacitance of
Cacc, the accuracy in applications, and write times reduction,
and select the optimal k value in Section V-B and V-C.
D. Charge-Domain In-Memory MAJ Array

Conventional in-memory MAJ operations are implemented
by activating multiple rows and sensing the summed cur-
rents [7], [9]. However, this process imposes high power
consumption and poor accuracy. Here we propose a charge-
domain MAJ array with LCUs to tackle these challenges.

Fig. 6(a) shows the proposed MAJ array with LCUs. The
basic cell is the 1T AND-type FeFET, and each LCU contains
4 rows of FeFETs. To read out the data in the selected row,
SL is first precharged to VDD. Then, WL, BL, and SL are set
to VR, GND, and floating, respectively. If the FeFET in the
selected row is in a high-Vth state, SL will be pulled down.
Otherwise, SL will stay at VDD. The inverter sets the voltage
of node X consistent with the FeFET state, and the feedback
loop accelerates the charging and discharging of the capacitor.

Fig. 6(b) shows the MAJ workflow. The output HVs from
the interface are written into different LCUs sequentially.
Afterward, all LCUs simultaneously read out the HVs to node
X. The identical capacitors in the LCUs are connected so
the readout results can be averaged by capacitor coupling
and obtained on CBL. The CBL voltage is further compared
with a reference voltage to perform MAJ upon r HVs. The
intermediate MAJ HV is written back, and the encoded HV is
produced by iterative MAJ upon all the intermediate HVs. The
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charge-domain computing offers high energy efficiency and
scalability, while LCUs reduce the capacitor area overheads.

The selection of r (the batch size for each MAJ operation) is
further optimized to provide better tradeoff between accuracy
and extra writebacks in Section V-B and V-C.

IV. SOFTWARE OPTIMIZATION

This section introduces the proposed HV merging tech-
nique, including the generation strategy and data mapping of
level HVs, which is critical to performance improvement in
CafeHD. This is because the level HVs are conventionally
generated by repeatedly flipping a small number of random
bits and directly pre-stored in memory, which induces high
memory redundancy and further degrades performance.

Fig. 7(a) shows the proposed level HV generation strategy.
L⃗1 with D dimensions is initialized and partitioned into m
slices. L⃗2 is then generated by flipping random bits in the
first slice. Based on L⃗2, flipping random bits in the second
slice can obtain L⃗3. The similar process continues until L⃗m.
Considering the quasi-orthogonality required for character
representation, L⃗m+1 is generated by bit flips in all partitions.
Thereafter, the above operations are repeated continuously.

Fig. 7(b) shows the proposed data mapping of the level
HVs. Similar to HVs, the memory array is partitioned into
m independent subarrays. Row 1 and Row 2 store L⃗1 and
L⃗m, respectively, and so on. Therefore, only 2Q

m+1 rows are
required to store Q level HVs. The non-directly stored HVs
are obtained by reading different rows. For example, to get
L⃗2, Subarray 1 reads Row 2, while other subarrays read Row
1. With the location constraint of bit flips, the HV merging
technique significantly reduces the redundancy of storing level
HVs and further improves the performance of CafeHD.
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TABLE II
BASIC DATASET SETTINGS

Dataset Feature
size Classes Encoding

method Applications

ISOLET 617 26 record-based Speech recognition [16]
UCIHAR 561 6 record-based Activity recognition [17]
Language 1521 21 N-gram Language recognition [18]

News2 7181 10 N-gram News classification [19]
1 Average feature size.
2 Pre-processed from Reuters-21578 by removing classes with little data.
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Fig. 8. Accuracy analysis of the proposed HV merging on four datasets.

The value of m affects the performance improvement and
the accuracy in applications. Both effects are evaluated to
select the optimal m in Section V-B and V-D.

V. EVALUATION AND DISCUSSION

A. Experimental Setup
We evaluate the proposed CafeHD at both hardware and

software levels. For hardware-level evaluation, the array-level
SPICE simulations are carried out. A widely used FeFET
model in [20] and a 45nm CMOS process are utilized. The
FeFET write pulse is ±4V, and the pulse width is 10ns. VR

and Vopen are set to 1V and 2.5V, respectively. The capacitors
in the XOR and MAJ array are set to 1fF with 2.6% variation
and 2fF with 1.4% variation, respectively [21]. A parasitic
capacitance scaled by the array size is added for each line.

For software-level evaluation, CafeHD is benchmarked on
four popular classification tasks, and Table II shows the dataset
parameters. All HV dimensionality is 10000. Device variations
and SA offsets are considered in the accuracy evaluation.

Four state-of-the-art NVM-based in-memory HDC encoding
designs, including a ReRAM-based design (i.e., FELIX [6]),
a PCM-based design [7], and two FeFET-based designs (i.e.,
MIMHD [8] and [9]), are compared as the baselines. FE-
LIX [6] and MIMHD [8] are mainly designed for record-based
encoding, while [7] and [9] are designed for N-gram encoding.
B. Accuracy Analysis

Here we evaluate the impact of the proposed level HV
generation strategy for the HV merging technique. Fig. 8
shows the accuracy under different quantization levels (Q)
and number of partitions (m). On the ISOLET and UCIHAR
datasets, accuracy shows a falling trend as Q increases, while
m has a small impact. Note that there is even a ∼0.5%
accuracy improvement when m = Q−1 in the ISOLET dataset
or m = Q

2 −1 in the UCIHAR dataset. This is because L⃗1 and
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Fig. 9. Accuracy evaluation of the partial MAJ operations on four datasets.

L⃗Q are almost orthogonal when m = Q − 1, thus achieving
the best quantization. Besides, when m = Q

2 − 1, L⃗1 ∼ L⃗Q/2

shows a symmetrical relationship with L⃗Q/2+1 ∼ L⃗Q, which
exactly maps the data symmetry in the UCIHAR dataset. On
the Language and News datasets, any two level HVs should be
quasi-orthogonal to represent characters. Therefore, accuracy
drops with more partitions due to the decrease in orthogonality.

Fig. 9 shows the accuracy for different MAJ batch sizes in
the interface (k) and MAJ array (r). In all datasets, accuracy
decreases when k and r increase. Since the data in the
UCIHAR dataset are initially grouped, partial MAJ operations
can provide >0.8% improved accuracy for this dataset.
C. Reliability Evaluation

To optimize the MAJ batch size k and r, we evaluate the
tradeoff between reliability and efficiency. Fig. 10(a) shows the
impact of k in the proposed partial MAJ interface. More writes
can be reduced as k increases. However, when k exceeds 7, the
write times reduction becomes insignificant, while the required
capacitance of Cacc becomes intolerable. Hence we select
k = 7 as the sweet spot with 85.7% write times reduction
and ∼2 Cacc

Cxor
. Fig. 10(b) shows the impact of r in the MAJ

array. Smaller r induces more extra writebacks to the LCUs.
Meanwhile, thanks to the charge-domain computing, the noise
margin is still large when r reaches 15. Therefore, we consider
to set r as large as possible while maintaining high accuracy.
These optimizations in total reduce ∼84% writes on average.
D. Energy and Latency Evaluation

Fig. 11(a) shows the energy and latency of the proposed
XOR array, which increases with more rows due to the
parasitic capacitance. Writing and reading an LCU consume
40.7fJ/bit and 5.1fJ/bit, respectively. The charge distribution
in the interface and MAJ array costs <1fJ energy per cell and
<0.5ns latency. These low-power operations are attributed to
the charge-domain computing throughout CafeHD.

Fig. 11(b) analyzes the impact of the HV merging on the
performance of the XOR array. By reducing the required
rows of the XOR array for HDC encoding, the HV merging
technique brings 41%-170% energy and 39%-133% latency
reduction on the four datasets. Therefore, the combination of
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charge-domain computing and HV merging enables CafeHD
with ultra-high energy efficiency.
E. Overall Comparison with SOTA Designs

Table III shows the performance and accuracy comparison
between the proposed CafeHD and existing NVM-based in-
memory HDC encoding designs on the four datasets. On
the ISOLET and UCIHAR datasets, CafeHD is compared
with FELIX [6] and MIMHD [8]. The energy efficiency
improvement is 101.1-105.5× and 7.4-7.9×, and the speedup
is 10.3-11.4× and 1.7-1.9×, respectively. On the Language
and News datasets, the energy efficiency is raised by 21.9×
and 4.9×, and the latency is reduced by 12.7× and 5.1× on
average compared with [7] and [9], respectively. Thanks to the
charge-domain computing, the proposed interface, and the HV
merging technique, CafeHD takes an all-around advantage of
performance compared with all the existing designs.

For accuracy, it is seen that CafeHD shows the highest
accuracy for all datasets except News thanks to reliable charge-
domain computing and the proposed HV merging technique.
F. More Discussions and Future Work

CafeHD is mainly optimized for energy-efficient HDC en-
coding design. Although LCUs have been adopted in CafeHD
to reduce the capacitor area overheads, lower parallelism and
extra writebacks still may affect performance. More designs
for a better balance between area and performance can be
explored. Besides, the multi-level FeFET-based HDC encoders
can be also designed to improve accuracy in the future.

VI. CONCLUSION

This paper proposes CafeHD, a charge-domain FeFET-
based in-memory HDC encoder that achieves the highest
reported energy efficiency. The proposed charge-domain in-
memory design significantly improves energy efficiency at low
area cost. Through the proposed XOR array with multiple
input selections and partial MAJ interface, CafeHD reduces
memory writes and supports two widely used encoding meth-
ods. We further propose an HV merging technique to bring ex-
tra improvement in energy efficiency and performance. Results

TABLE III
ENERGY PER INPUT VECTOR, LATENCY PER INPUT VECTOR, AND

ACCURACY COMPARED WITH EXISTING IN-MEMORY HDC ENCODERS

Dataset
FELIX [6] MIMHD [8] [7] [9] CafeHD

NVM type ReRAM FeFET PCM FeFET FeFET

ISOLET
Energy (nJ) 3900 274.8 / / 36.97
Latency (ns) 2200 360.0 / / 193.4

Accuracy 92.3% 91.8% / / 93.3%

UCIHAR
Energy (nJ) 3400 266.7 / / 33.62
Latency (ns) 2000 327.4 / / 193.4

Accuracy 91.2% 92.2% / / 93.8%

Language
Energy (nJ) / / 430.3 85.39 15.05
Latency (ns) / / 1702 479.6 114.2

Accuracy / / 92.8% 93.8% 96.9%

News
Energy (nJ) / / 1853 511.3 121.7
Latency (ns) / / 10052 5863 963.0

Accuracy / / 87.3% / 86.3%

show that CafeHD achieves extraordinary energy efficiency,
speedup, and write times reduction compared with the state-
of-the-art NVM-based CiMs for HDC encoding.

ACKNOWLEDGMENT

This work is supported in part by NSFC (U21B2030,
92264204), in part by the National Key R&D Program of
China (No. 2019YFA0706100), and in part by NSF (2008365,
2312866, 2235366).

REFERENCES

[1] P. Kanerva, “Hyperdimensional computing: An introduction to comput-
ing in distributed representation with high-dimensional random vectors,”
Cognitive computation, vol. 1, pp. 139–159, 2009.

[2] A. Rahimi et al., “A robust and energy-efficient classifier using brain-
inspired hyperdimensional computing,” in ISLPED, 2016, pp. 64–69.

[3] M. Imani, D. Kong, A. Rahimi et al., “Voicehd: Hyperdimensional
computing for efficient speech recognition,” in ICRC, 2017, pp. 1–8.

[4] A. Rahimi et al., “High-dimensional computing as a nanoscalable
paradigm,” TCAS-I, vol. 64, no. 9, pp. 2508–2521, 2017.

[5] M. Imani, X. Yin, J. Messerly et al., “Searchd: A memory-centric
hyperdimensional computing with stochastic training,” TCAD, 2019.

[6] S. Gupta et al., “Felix: Fast and energy-efficient logic in memory,” in
International Conference on Computer-Aided Design, 2018, pp. 1–7.

[7] G. Karunaratne, M. Le Gallo et al., “In-memory hyperdimensional
computing,” Nature Electronics, vol. 3, no. 6, pp. 327–337, 2020.

[8] A. Kazemi et al., “Mimhd: Accurate and efficient hyperdimensional
inference using multi-bit in-memory computing,” in ISLPED, 2021.

[9] Q. Huang, Z. Yang, K. Ni, M. Imani, C. Zhuo et al., “FeFET Based
In-Memory Hyperdimensional Encoding Design,” TCAD, 2023.

[10] A. Keshavarzi, K. Ni, W. Van Den Hoek et al., “Ferroelectronics for
edge intelligence,” IEEE Micro, vol. 40, no. 6, pp. 33–48, 2020.

[11] M. Imani, C. Huang et al., “Hierarchical hyperdimensional computing
for energy efficient classification,” in DAC, 2018, pp. 1–6.

[12] L. Ge and K. K. Parhi, “Classification using hyperdimensional comput-
ing: A review,” IEEE Circuits and Systems Magazine, 2020.

[13] M. Trentzsch et al., “A 28nm HKMG super low power embedded NVM
technology based on ferroelectric FETs,” in IEDM, 2016, pp. 11–5.

[14] S. Dünkel et al., “A FeFET based super-low-power ultra-fast embedded
NVM technology for 22nm FDSOI and beyond,” in IEDM, 2017.

[15] A. A. Sharma et al., “High speed memory operation in channel-last,
back-gated ferroelectric transistors,” in IEDM, 2020, pp. 18–5.

[16] R. Cole et al., “ISOLET,” UCI Machine Learning Repository, 1994.
[17] J. Reyes-Ortiz et al., “Human Activity Recognition Using Smartphones,”

UCI Machine Learning Repository, 2012.
[18] A. Rahimi et al., “A robust and energy-efficient classifier using brain-

inspired hyperdimensional computing,” in ISLPED, 2016, pp. 64–69.
[19] D. Lewis, “Reuters-21578 Text Categorization Collection,” UCI Ma-

chine Learning Repository, 1997.
[20] S. Deng et al., “A Comprehensive Model for Ferroelectric FET Cap-

turing the Key Behaviors: Scalability, Variation, Stochasticity, and
Accumulation,” in IEEE Symposium on VLSI Technology, 2020, pp. 1–2.

[21] X. Ma et al., “CapCAM: A Multilevel Capacitive Content Addressable
Memory for High-Accuracy and High-Scalability Search and Compute
Applications,” TVLSI, vol. 30, no. 11, pp. 1770–1782, 2022.

Authorized licensed use limited to: Penn State University. Downloaded on September 25,2024 at 18:38:05 UTC from IEEE Xplore.  Restrictions apply. 


