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In this work, we show that collisions of one type of nonlinear wave can lead to generation of a
different kind of nonlinear wave. Specifically, we demonstrate the formation of topological solitons
(or transition waves) via collisions of elastic vector solitons, another type of nonlinear wave, in a
multistable mechanical system with coupling between translational and rotational degrees of free-
dom. We experimentally observe the nucleation of a phase transformation arising from colliding
waves, and we numerically investigate head-on and overtaking collisions of solitary waves with vec-
torial properties (i.e., elastic vector solitons). Unlike KdV-type solitons, which maintain their shape
despite collisions, our system shows that collisions of two vector solitons can cause nucleation of
a new phase via annihilation of the vector solitons, triggering the propagation of transition waves.
The propagation of these depends both on the amount of energy carried by the vector solitons and
on their respective rotational directions. The observation of the initiation of transition waves with
collisions of vector solitons in multistable mechanical systems is an unexplored area of fundamen-
tal nonlinear wave interactions, and could also prove useful in applications involving reconfigurable
structures.

PACS numbers:

Nonlinear wave phenomena have long been of signif-
icant interest among researchers, both as an object of
fundamental curiosity and for their potential in a variety
of applications. Solitons, in particular, have long been
studied in contexts ranging from the Fermi-Pasta-Ulam-
Tsingou lattice and KdV equation [1–3] to granular me-
dia [4–7], soft matter (e.g., liquid crystals) [8, 9], etc.
Generally, solitons are characterized as localized wave
packets propagating with a constant speed and shape in
the presence of nonlinearity and dispersion. Moreover,
solitons keep their shape even if they collide with other
solitons, analogous to the behavior of particles.

More recently, flexible mechanical metamaterials have
been designed that derive their nonlinearity from large
internal rotations [10], enabling previously unexplored
nonlinear wave phenomena. For example, unlike solitons
in classical 1D systems (e.g., granular crystals [4, 7]), a
system of rotating squares, in which each element has
translational and rotational degrees of freedom (DOF),
can exhibit the propagation of vector solitons with cou-
pling between these DOFs [10–12] (i.e., vectorial nature),
cnoidal waves [13], and “sound bullets” [14]. The cou-
pling of multiple DOFs also enables rich collision behav-
ior, including collisions analogous to classical soliton col-
lisions, but also repelling, destruction, etc. [15].

Moreover, multistable versions of these systems can
support propagation of transition waves (or topological
solitons), an effect that may be introduced via geomet-
ric constraints, permanent magnets, etc. [16–24]. Tran-
sition waves are propagating nonlinear wave fronts that
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sequentially switch the structural elements from one sta-
ble state to another [10, 16]. Recent research efforts on
the observation, manipulation, and applications of tran-
sition waves in mechanical systems [22, 25] provide a
macroscopic analogy with the fundamental processes of
dynamic phase transitions [26, 27], phase transformations
in crystalline materials [28, 29], and damage propagation
in solids [30, 31].

In this work, we demonstrate that colliding vector soli-
tons can annihilate to nucleate a phase transition in mul-
tistable mechanical systems (i.e., the vector solitons cease
to exist when the new phase is nucleated). The new
phase can subsequently propagate outward in the form
of a transition wave. While transition waves have been
previously triggered at the edge of multistable mechan-
ical metamaterials [16, 18, 32, 33], we demonstrate here
that soliton collisions can effectively initiate transition
waves at arbitrary locations in the structure (governed
by the timing and amplitude of impulses at the ends of
the structure). Our findings provide insight about the
fundamental interactions between different types of non-
linear waves, and may in the future be relevant to en-
gineering applications related to deployable structures,
reconfigurable robots, etc.

We start by experimentally exploring wave interactions
in a multistable system by employing a 1D chain proto-
type composed of rotating squares and hinges (Fig. 1(a)).
Since, in the experiments, damping and friction hinder
the propagation of energy carried from the initial pulses,
we have adjusted the energy landscape through a pre-
rotation of 15◦ to reduce the energy required to induce
nucleation of the new phase (Fig. 1(b)) [17]. We define un
and θn as the relative displacement and rotational angle
of the squares in the nth column (corresponding to the
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FIG. 1: (a) Schematic illustration of a chain of rotating
squares with multistability (in the experiments, this is ob-
tained via embedded magnets). (b) Multistable energy po-
tential for a single complete unit of the chain (comprising two

columns of squares that are pre-rotated by θ(0) = 15◦) show-
ing three energy minima (θ = −60◦, 0◦, and 30◦). (c) Optical
images taken with a high-speed camera at times t = 0 s,
0.05 s, and 0.11 s. (d) Spatiotemporal plot extracted from
the experimental video, showing the rotational angle θn for
each column n as a function of time.

translational and rotational DOF), which are measured
from their (initial) equilibrium state. Here, the initial
equilibrium angle is expressed as θ(0). We 3D print a 32-
column chain made of a silicone elastomer using direct
ink writing [34]. To achieve multistable behavior, we
embed a magnet in each square, resulting in an energy
landscape with multiple equilibrium angles (Fig. 1(b)).

To examine the wave interactions, we excite both sides
of the chain simultaneously with two impactors. Fig-
ure 1(c) shows optical images obtained experimentally
via a high-speed camera (Movie 1). We track the angles
of each square (θn) and plot the results as a function
of the column index n and time t, as shown in Fig. 1(d).
Initially, the two pulses generated by the impactors prop-
agate inward, toward the center of the chain (see the
arrows in Fig. 1(d)). Then, once they meet in the mid-
dle of the chain, the collision induces larger rotations of
the squares, leading to a phase transformation to an-
other stable state (i.e., the system moves to a different

energy minimum in the multistable energy landscape of
Fig. 1(b)). Eventually, we observe a phase transforma-
tion that grows outward in the form of transition waves.
While the propagation of transition waves in mechanical
systems has been demonstrated previously, the initiation
of these has been restricted to a direct excitation at the
boundaries, and never (to our knowledge) via collisions
of solitons. Our experimental observation suggests the
possibility of controllable nucleation of transition waves
at arbitrary locations within the system.

To better understand the experimental observations,
we introduce a numerical model and use it to investigate
the nonlinear dynamics of colliding waves in this multi-
stable system. First, to describe the interactions between
neighboring squares, we model the hinges as a nonlinear
spring element composed of axial and torsional springs,
expressing the potential function of each hinge element
as [17]:

U (∆l,∆θ) =
1

2
ku|∆l|2 + Eθ (∆θ) , (1)

where ∆l is the deformation of a linear axial spring with
spring constant ku, and ∆θ = 2θ is the rotational angle
of a torsional spring element with energy expressed by
the Morse potential function (VMorse) as:

Eθ (∆θ) =
1

2
kθ(∆θ)

2
+ VMorse (∆θ) , (2)

VMorse (∆θ)

= A
{
e2α(∆θ−2θM ) − 2eα(∆θ−2θM )

}
+A

{
e−2α(∆θ−2θM ) − 2e−α(∆θn−2θM )

}
. (3)

Here, kθ is a linear spring constant. Also A and α are pa-
rameters that alter the depth and width of the potential,
respectively, and θM is a parameter that alters the equi-
librium points. Figure 2(a) shows the energy landscape
of a single torsional spring element (Eθ) as a function of a
hinge rotational angle (∆θ = 2θ) with three energy min-
ima. Here, we denote the energy barrier and its location
as Eb and θb.

We first consider the propagation of vector solitons in
our multistable system by introducing several approxi-
mations and taking the continuum limit to derive the
nonlinear Klein-Gordon equation. The wave forms of the
derived solitary solutions are then compared with those
of our numerical simulations. We approximate the po-
tential energy landscape of the rotational spring element
by using a 6th-order polynomial (the φ6 model). Then,
by employing the traveling coordinate (X = an − V t)
and expressing the translational and rotational variables
as Bu(X) = un(t)/a and Bθ(X) = θn(t), respectively, we
obtain the following nonlinear Klein-Gordon equation for
traveling waves:

∂2Bθ
∂X2

= η1Bθ − η3B
3
θ − η5B

5
θ (4)
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FIG. 2: (a) Multistable energy landscape. Eb indicates the height of the energy barrier that the system needs to overcome
to transition from the center energy well to the right one. (b) Angle profiles of solitary waves for three different wave speeds.
(c) Snapshots of three-dimensional reconstructions of the numerical simulation at t = 0.00, 0.22, and 2.00 s. The insets show
the magnified views of a vector soliton propagating in the chain and the center part of the chain after the collision. (d) The
spatiotemporal evolution of the propagating waves, shown as the rotational angle of each column of squares as a function of
time. (e) Waveforms of colliding waves at i) t = 0.183, ii) 0.220, and iii) 0.770 s, plotted as a function of energy and column
index.

Note that a relationship between Bu and Bθ (the sub-
scripts u and θ denote translational and rotational mo-
tions) holds for traveling waves, i.e., coupling behavior
(Note 5 in the Supplemental Material). This nonlinear
Klein-Gordon equation supports a soliton solution [35]:

Bθ =
Aθsech(

√
η1X)√

1−D tanh2(
√
η1X)

, (5)

where A2
θ = 2η1(1 + D)/η3 and (1 + D)2/D =

3η2
3/(4η1η5). Note that η1, η3, and η5 are determined

by the wave speed and axial/torsional spring constants,
which alter both the amplitude Aθ and characteristic
width 1/

√
η1.

Figure 2(b) shows the rotational angle profiles ob-
tained from the numerical simulation for a chain with
802 columns (green markers) and the soliton solution
(solid line) for three different (normalized) wave speeds:
Vs/c0 = 0.49, 0.62, and 0.80. The soliton solution based
on the potential energy φ6 approximation agrees well
with the numerical simulations. Since the rotational
DOF is coupled with the translational motion, this soli-
tary wave possesses a vectorial nature.

Next, we study how multiple vector solitons inter-
act with each other. To start, we consider the behav-
ior of vector solitons colliding head-on. We inject two
vector solitons with Vs/c0 = ±0.56 (i.e., two solitary
waves propagating inward) at each end of a chain of 202
columns, and we solve the equations of motion using the

fourth-order Runge-Kutta method. Figure 2(c) shows
numerically simulated spatiotemporal collision events in
the chain (Movie 2). Figure 2(d) plots the extracted ro-
tation of each square, showing two vector solitons ini-
tially propagating inward with amplitudes smaller than
θb (i.e., each remains in the first stable state) and annihi-
lating once they collide at the center of the chain. Several
columns show larger rotations than θb (i.e., θn/θb > 1).
The merging solitons thereby form a quasi-static distur-
bance, nucleating a phase transformation. Immediately
after this, transition waves propagate outward from the
site of collision, similar to the experimental observations
(Fig. 1). Note, the propagation of such transition waves
can be altered by tailoring the energy landscape [17].

In addition to the rotational angle profiles, we analyze
the collision behavior by considering the energy of each
unit. Here, the total energy of the upper-half of the nth
square element (Tn) is calculated as Tn = Kn+En, where
Kn is the kinetic energy

Kn =
1

2
Mnu̇

2
n +

1

2
Jnθ̇

2
n,

En = Un,1 (∆ln,1,∆θn,1) +
1

2
Un,2 (∆ln,2,∆θn,2) .

(6)

Note that for the right-most column, Un,1 = 0. Fig-
ure 2(e) shows the energy profiles consisting of total (Tn),
elastic (En), and kinetic (Kn) energy components for
three different time frames (Movie 3). Before the col-
lision, the vector solitons have kinetic energy equivalent
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to their elastic energy. However, during the collision,
the kinetic energy of several central units is fully trans-
ferred to elastic energy of neighboring units, such that the
energy barrier is overcome and the corresponding units
jump to another stable state. This triggers the formation
of transition waves, in which the elastic energy becomes
dominant.

(a) Final configuration

(b)

No transition waves

FIG. 3: (a) Collisions of vector solitons with various wave
speeds. The surface plot represents the final configurations of
the chain at t = 1.5 s. The color denotes the normalized angle
θn/θb of each unit cell. (b) Summation of the total energy of
a single vector soliton. The insets show the magnified view of
the collision.

Next, we analyze the process of transition wave nucle-
ation by varying the amplitude (or equivalently the width
or the wave speed) of colliding vector solitons. Note, due
to the properties of the vector solitons in this system,
specifically their subsonic nature, increasing the soliton
velocity is equivalent to decreasing its amplitude, width,
and energy. Numerical simulations are performed to ex-
amine the final chain configuration at t = 1.5 s and to
determine whether transition waves are formed or not.
Results are plotted as a function of the wave speed Vs/c0
of the two identical colliding solitons (Fig. 3(a)). Colli-
sions of solitons with wave speeds Vs/c0 . 0.6 form tran-
sition waves, as indicated by the red region in the figure,
whereas collisions of faster vector solitons Vs/c0 & 0.6
(lower amplitude) do not trigger transition waves. Fig-
ure 3(b) shows the total energy carried by a single soli-
tary wave for different wave speeds, which shows an en-

ergy threshold corresponding to a total soliton energy
of ∼ 16.6Eb. The existence of this threshold indicates
that while most of the kinetic energy is converted into
elastic potential energy at the collision location, a mini-
mum number of torsional springs within several units of
the collision site need to be “pushed” over the potential
barrier separating the stable states in order to induce
nucleation.

The inset magnified views of the site of collision in
Fig. 3(b) show split energy peaks instead of two waves
merging into a single peak, which is a different picture
from the superposition of linear waves or even from the
classical soliton collision. These features arise from the
multistable character of the metamaterial, allowing the
colliding solitons to convert into quasi-static transition
wave fronts, initially slow and carrying mostly poten-
tial elastic energy. Note that wave packets with smaller
amplitudes (larger velocity) also emerge from the colli-
sion point, as do even smaller amplitude linear waves
(Fig. S8).

We also numerically explore other collision scenarios,
including head-on and overtaking collisions of vector soli-
tons with distinct wave speeds/amplitudes and rotational
directions (or chirality). Similar to Fig. 3(a), we examine
the formation of transition waves from two vector solitons
propagating from both ends of the chain, with the same
chirality but with distinct wave speeds Vs1 6= Vs2 (and,
hence, amplitudes). The results are shown in Fig. 4(a),
with the red and blue regions indicating that transition
waves have or have not nucleated, respectively. Although
two colliding solitary waves carry different amounts of en-
ergy before the collision, nucleation and propagation of
transition waves can be observed (red region). In par-
ticular, nucleation takes place easily as we decrease the
wave speed of (at least one of) the vector solitons (i.e.,
larger amplitude).

We also consider different chiralities and propagation
directions. For example, vector solitons with opposite
rotational directions can propagate simultaneously. The
head-on collision of two vector solitons (Vs1/c0 = 0.49
and Vs2/c0 = 0.60) with the same rotational direc-
tion creates transition waves, as we discussed previously
(Movie 4). In contrast, if two solitons with opposite rota-
tion collide, the one with larger energy breaks into several
components that propagate outward instead of merging
or repelling (Fig. 4(b) and Movie 5). Note, if two solitons
with opposite rotation propagate at identical (absolute)
wave speed, they repel each other (see Fig.S10 in the
Supplementary Materials).

Figure 4(c) shows the simulation results for the case
in which two vector solitons propagate in the same di-
rection, with the faster soliton (Vs2/c0 = 0.60) catching
up to the slower soliton. If the rotational directions of
the two vector solitons are identical, the overtaking in-
teraction only leads to a shift in phase (Movie 6), similar
to classical KdV-type soliton collisions. However, if the
vector solitons have opposite rotational directions, the
overtaking interaction can lead to the formation of transi-
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FIG. 4: (a) Collisions of vector solitons with distinct wave speeds (VS1 6= VS2, with VS1 being the wave speed for the soliton
propagating towards n = 300 and VS2 being the wave speed for the soliton propagating in the opposite direction). Due to
symmetry, we investigate only the upper left region. (b) Head-on collision of two vector solitons for the opposite rotation case.
We also consider overtaking collisions for (c) same rotation and (d) opposite rotation.

tion waves (Fig. 4(d) and Movie 7), which is the opposite
phenomenon than that observed for head-on collisions.

In conclusion, we have studied collisions of elastic vec-
tor solitons in a multistable mechanical metamaterial and
the process by which these collisions can nucleate phase
transitions. Our experimental observations and numer-
ical analyses suggest that there is a threshold of vector
soliton amplitude/energy, above which colliding vector
solitons will cause nucleation and propagation of transi-
tion waves, and below which they will not. Using the
validated numerical model, we have also explored dif-
ferent types of nonlinear wave interactions in the multi-
stable system, such as head-on collisions of vector solitons
possessing different amplitudes or chiralities (direction of
rotation), or collisions of co-propagating solitons. De-
pending on the specific interaction, the results of these
collisions can lead or not lead to conversion to transition
waves, demonstrating the richness of this multistable me-
chanical platform for studying nonlinear waves. Further-
more, we note that this system shows signs of integra-
bility for a range of soliton amplitudes below the energy
barrier (KdV soliton-like vector solitons with expected
collisional behavior) but also exhibits characteristics of
non-integrability when the full tristable multistable po-
tential is explored, as illustrated by the collision of soli-
tons of sufficiently large amplitude, leading to the nu-
cleation of transition waves. Although we have mainly
considered the symmetric tristable potential function in
this study (in part, because it matches most closely the
experimental realization), any asymmetric energy land-
scapes, including bistable potentials, would also be com-
patible with collision-induced phase transitions. These
additional cases are of interest for exploring more diverse
collision scenarios in the future. Such a wide array of
effects opens up additional possibilities for fundamen-
tal research, by raising questions related to the trans-
position of these nonlinear processes into higher dimen-
sions, into inhomogeneous or graded metamaterials, or
for other nonlinear wave manifestations. Also, our re-

sults may be relevant to topological metamaterials (such
as twisted structures, graphene [36], etc.), where mul-
tistability and the ability to control morphology could
allow control of wave propagation (e.g., [37]). One can,
in addition, foresee possible future applications of this
remote control of transition waves in, e.g., reconfigurable
system design in robotics, space structures, medical de-
vices, or in advanced materials for vibration damping,
mechanical logic devices, and other emerging areas.

Supplementary Material

Supplemental discussion, figures, and videos available
as Supplementary Material online.
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