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Abstract

Cell polarity and movement are fundamental to many biological functions. Experimental and
theoretical studies have indicated that interactions of certain proteins lead to the cell polarization
which plays a key role in controlling the cell movement. We study the cell polarity and movement
based on a class of biophysical models that consist of reaction-diffusion equations for different
proteins and the dynamics of moving cell boundary. Such a moving boundary is often simulated
by a phase-field model. We first apply the matched asymptotic analysis to give a rigorous
derivation of the sharp-interface model of the cell boundary from a phase-field model. We
then develop a robust numerical approach that combines the level-set method to track the
sharp boundary of a moving cell and accurate discretization techniques for solving the reaction-
diffusion equations on the moving cell region. Our extensive numerical simulations predict
the cell polarization under various kinds of stimulus, and capture both the linear and circular
trajectories of a moving cell for a long period of time. In particular, we have identified some key
parameters controlling different cell trajectories that are less accurately predicted by reduced
models. Our work has linked different models and also developed tools that can be adapted for
the challenging three-dimensional simulations.

Key words and phrases: cell polarity, cell movement, reaction-diffusion equations, interface
dynamics, matched asymptotic analysis, the level-set method.

1 Introduction

Cell motility is fundamental to many biological functions such as immune response, morphogenesis,
cancer metastasis, and wound healing, and yet it is extremely complicated [7]. The movement of
a eukaryotic cell crawling on a surface is a complex process, involving protrusion, retraction, and
adhesion, exhibiting complex geometrical shapes and motion trajectories. Cell polarity, the spatially
inhomogeneous distribution of different biomolecules such as proteins Rho GTPases inside a cell,
resulting from biochemical interactions of biomolecules inside the cell, plays a crucial role in the cell
movement [24, 32, 40]. As cell polarity and movement involve multiple spatio-temporal scales and
many-body interactions, understanding rigorously such complex processes is challenging.
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Recent years have seen the theoretical and computational developments in studying cell polarity
and motility [8,31,32]. Among different approaches, continuum models with reaction-diffusion equa-
tions and moving boundaries provide efficient simulation tools to understand the key mechanisms in
cell polarity and movement [9–11,15,34,41,43–45,45,52,54]. An advantage of such modeling is that
the motion of cell boundary, which is directly connected to the reaction and diffusion of different
biomolecules inside the cell, can be simulated and analyzed to link the molecular basis for the cell
polarity to the macroscopic cell movement, and to identify the key parameters that control the cell
polarization and movement.

In this work, we study the cell polarity and movement with a class of models that have been
proposed in Mori et al. [33, 34], Shao et al. [44], and Camley et al. [10, 11, 45]. In such models,
the boundary of a moving cell is determined completely by its normal velocity, i.e., the normal
component of the velocity. In addition to geometrical effects, such normal velocity is controlled by
the biochemical interactions of different proteins such as Rho GTPases. For many different types of
cells, each Rho GTPase cycles between an active, membrane-bound form and an inactive, cytosolic
GDP-bound form; cf. Figure 1.1. The concentration of the active Rho GTPases is high in the
front of a moving cell, while the inactive Rho GTPases diffuse fast and tend to be homogeneously
distributed. Mori et al. [33] propose the wave-pinning mechanism for the cell polarization: the
reaction and diffusion of the active and inactive Rho GTPases with bistable kinetics and the mass
conservation of these proteins lead to the formation of an interface inside a cell. The interface
separates a high from a low concentration of active Rho-GTPase proteins, and the propagation
of such interface drives the cell polarization that reaches a steady state eventually, as the wave is
pinned down. Camley et al. [11, 45] reduce the two-species (active form and inactive form of Rho
GTPase proteins) model proposed in [33] to a single-species model, and also numerically simulated
the cell polarization and movement using a phase-field method, but carried out analysis with a
sharp-interface description of the cell boundary motion. Simulations by Camley et al. [11] predict
linear and circular trajectories as a result of the wave-pinning dynamics.

Figure 1.1: Schematic view of a cell moving on a substrate. The active Rho GTPase is rich in
the front, while the inactive GDP-bound Rho GTPases diffuse fast and are more homogeneously
distributed. The concentrations of these proteins are denoted by u and v, respectively.

To be specific, let us consider a moving cell confined spatially in a bounded region Ω ⊂ Rd

(d = 2 or 3). Let us denote the cell boundary by Γ(t) at time t and assume it moves with the
normal velocity V = V (x, t) for each point x ∈ Γ(t), where the normal direction points from the
interior to the exterior of the cell. The cell boundary Γ(t) separates the region Ω into the cell region,
denoted Ω+(t), from the outer region, denoted Ω−(t). We denote by u = u(x, t) and v = v(x, t) the
concentrations of the active and inactive Rho GTPases, respectively, inside the cell. Extended from
the one-dimensional model [33] (cf. also [44]), our model of an underlying moving cell is governed
by the following system of equations and boundary conditions:

τV = αu− β − γH for x ∈ Γ(t) and t > 0, (1.1)

∂tu = Du∆u+ f(u, v) for x ∈ Ω+(t) and t > 0, (1.2)
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∂tv = Dv∆v − f(u, v) for x ∈ Ω+(t) and t > 0, (1.3)

∂nu = ∂nv = 0 for x ∈ Γ(t) and t > 0, (1.4)

where
f(u, v) = −ku(u− 0.5c)(u− Cv). (1.5)

In (1.1), τ is the friction coefficient, α and β are the coefficients of F-actin extension and myosin
retraction, respectively, γ is the surface tension constant, and H is the mean curvature of the cell
boundary Γ(t) (positive for a spherical boundary). In (1.2) and (1.3), Du and Dv are the diffusion
constants for u and v, respectively. We shall consider the regime that Dv ≫ Du. In the reaction term
f(u, v) defined in (1.5), k is the reaction rate relative to an average cell motility, c is a constant value
of concentration u, and C is a unitless conversion parameter. Note that our 0.5c is the quantity h
in [11, 33]. It represents an unstable state of concentration u whose kinetics is governed by f(u, v)
with a constant v value. As u increases or decreases across this value 0.5c, the region of the cell front
decreases or increases in size (cf. Figure 1.1) due to the mass conservation and fast diffusion of v,
and hence the speed of the moving front changes, providing possibility of cell rotation; cf. [11,33,34]
for more details. Estimated values of these parameters are given in Table 3 in section 4. Note that
the total mass

M =

∫
Ω+(t)

[u(x, t) + v(x, t)] dx (1.6)

is a constant with respect to time t.
Assuming that Dv ≫ Du and hence that approximately v = v(t) is spatially homogeneous,

Camley et al. [11] propose and study the following single-species model, reduced from the two-
species model (1.1)–(1.4):

τV = αu− β − γH for x ∈ Γ(t) and t > 0, (1.7)

∂tu = Du∆u+ f(u, v̄) for x ∈ Ω+(t) and t > 0, (1.8)

∂nu = 0 for x ∈ Γ(t) and t > 0, (1.9)

where v̄ = v̄(t) is determined by the mass conservation (1.6), given by

v̄(t) =
1

Area (Ω+(t))

(
M −

∫
Ω+(t)

u(x, t) dx

)
.

To efficiently track the moving cell boundary in computer simulations, Shao et al. [43, 44] and
Camley et al. [9–11] have developed a phase-field model. In such a model, the moving cell boundary
is described by a continuous function, often called a phase field, that takes the value 1 in the cell
region and 0 otherwise, and smoothly changes its value from 0 to 1 in a thin transition layer,
representing a diffuse cell boundary. Let us denote by ϕε = ϕε(x, t) (x ∈ Ω, t ≥ 0) such a phase-
field function, where ε ∈ (0, 1) is a small parameter and t represents time. Let us also denote by
uε = uε(x, t) and vε = vε(x, t) the concentrations of the two different proteins, respectively, as
described in (1.2) and (1.3). Note that these functions are now extended to the entire region Ω. The
phase-field model that corresponds to the system of equations (1.1)–(1.4), which shall be called a
sharp-interface model, is then given by

τ∂tϕε = (αuε − β)|∇ϕε|+ γ

[
∆ϕε −

1

ε2
W ′(ϕε)

]
in Ω× (0,∞), (1.10)

∂t(ϕεuε) = ∇ ·Du(ϕε∇uε) + f(uε, vε) in Ω× (0,∞), (1.11)

∂t(ϕεvε) = ∇ ·Dv(ϕε∇vε)− f(uε, vε) in Ω× (0,∞), (1.12)

3



ϕε = uε = vε = 0 in ∂Ω× [0,∞), (1.13)

where all the parameters and the function f are the same as above, and W = W (u) is a double-well
potential given specifically by

W (u) = 18u2(1− u)2 ∀u ∈ R. (1.14)

We remark that the phase-field modeling approach has been widely used to study many inter-
facial problems arising from various scientific areas, such as materials physics, complex fluids, and
biomembranes; cf. e.g., [2–6, 13, 19, 23, 25, 48] and the references therein. In such an approach, a
phase field ϕ that minimizes the energy

Eε[ϕ] =

∫ [
ε

2
|∇ϕ|2 + 1

ε
W (ϕ)

]
dx,

with W given in (1.14) and 0 < ε ≪ 1, approximates the characteristic function of the region
interior to an underlying closed, sharp interface, and the corresponding value Eε[ϕ] approximates
the surface area [30, 47]. Note that the γ-term in (1.10) is the surface tension force, given exactly
by −γδϕEε[ϕ], where δϕEε denotes the first variation of the functional Eε. The phase-field or
diffuse-interface approach has been used to study numerically problems with moving boundaries of
complex geometries or with singularities; cf. e.g., [1,14,27,50]. While such an approach can handle
topological changes (such as breaking up and merging) of interfaces, care needs to be taken in the
choice of the modeling parameter ε that characterizes the width of the diffuse interface and the size
h of an underlying finite element mesh or finite difference grid to achieve optimal convergence rate.

In this work, we study the reaction-diffusion moving boundary model to understand the mech-
anisms of cell polarization and movement, and the cooperation of these two processes. Our goal is
twofold. One is to understand the differences between some of the existing models and make con-
nections of such models. The other is to develop robust computational tools for long-time accurate
and efficient simulations of cell movement. Specifically:
(1) We derive rigorously the sharp-interface, reaction-diffusion moving boundary model (1.1)–

(1.4) from the phase-field model (1.10)–(1.13), using the matched asymptotic analysis. Our
derivation justifies the phase-field model, though it does not prove the convergence as the
parameter ε → 0 due to the assumptions made in the analysis on the phase-field profile.

(2) We develop a robust computational program that combines the level-set method and high-
accurate discretization method for solving reaction-diffusion equations on a moving cell region
and for tracking the moving cell boundary. We test our numerical methods. Our level-set
method is based on the sharp-interface formulation (cf. (1.1)–(1.4) and (1.7)–(1.9)). It avoids
the use of a very fine grid necessary to resolve a fine interfacial structure as in the phase-field
method.

(3) We apply our numerical methods and algorithms to conduct a series of computer simulations
for the cell polarization and movement. We try to answer several questions: How does a cell
respond to an external stimulus to polarize itself and then to move around? How does a cell
keep different kinds of trajectories, such as a linear or a circular trajectory, for a very long
time? Our computational analysis predicts several important parameters, such as a finite
diffusion constant (instead of taking it to be infinite in a reduced model), the surface tension
constant, and the threshold concentration of an active Rho GTPase protein, control partially
the cell movement.

Our computational tools prepare us well for future, large-scale three-dimensional simulations of the
cell movement, which are currently lacking in the field.
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The paper is organized as follows. In section 2, we use the method of matched asymptotic
analysis to derive the sharp-interface limit, the system (1.1)–(1.4), from the phase-field reaction-
diffusion moving boundary model (1.10)–(1.13). In section 3, we describe a robust and accurate
numerical method that combines a high-order finite difference discretization technique and a level-
set method for the simulation of a moving cell. In section 4, we show our numerical simulations and
analyze our results with various settings. Finally, in section 5, we draw our conclusions and discuss
several issues for further studies.

2 From Phase-Field to Sharp-Interface Model

In this section, we carry out the matched asymptotic analysis [16–18,26,39,42] to derive the sharp-
interface model (1.1)–(1.4) from the phase-field model (1.10)–(1.13). Specifically, we show that as
ε → 0 the solution ϕε converges to the characteristic function of the cell region Ω+(t), the normal
velocity of the cell boundary Γ(t) = ∂Ω+(t) is given by (1.1), and the solutions uε and εε converge
to the solutions to (1.2)–(1.4).

We shall analyze the following more general phase-field model in the setting of three-dimensional
space:

∂tϕε = h(uε, vε)|∇ϕε|+ γ

[
∆ϕε −

1

ε2
W ′(ϕε)

]
in Ω× (0,∞), (2.1)

∂t(ϕεuε) = ∇ ·D1(ϕε∇uε) + f(uε, vε) in Ω× (0,∞), (2.2)

∂t(ϕεvε) = ∇ ·D2(ϕε∇vε) + g(uε, vε) in Ω× (0,∞), (2.3)

ϕε = uε = vε = 0 in ∂Ω× [0,∞). (2.4)

Here, Ω ⊂ R3 is a smooth and bounded domain, ε ∈ (0, 1) is a small parameter, γ > 0, D1 > 0, and
D2 > 0 are all constants, and f , g, and h are all smooth and bounded two-variable functions. The
double-well function W is defined in (1.14). Note that the analysis for the single-species system
(1.7)–(1.9) or for a two-dimensional setting is similar.

Initial formation of a diffuse cell boundary. We assume the following expansions:

ϕε(x, t) = ϕ0(x, τ) + εϕ1(x, τ) + ε2ϕ2(x, τ) + · · · ,
uε(x, t) = u0(x, τ) + εu1(x, τ) + ε2u2(x, τ) + · · · ,
vε(x, t) = v0(x, τ) + εv1(x, τ) + ε2v2(x, τ) + · · · ,

where τ = τ(t, ε) is a time variable that can be different from the regular time variable t, and all
the functions ϕi = ϕi(x, τ), ui = ui(x, τ), and vi = vi(x, τ) (i = 0, 1, . . . ) are smooth and bounded
in Ω, satisfying the boundary conditions ϕi = ui = vi = 0 on ∂Ω; cf. (2.4).

Considering a fast time scale τ = t/ε2, we have ∂t = ε−2∂τ . Plugging the above expressions
of ϕε, uε, and vε into (2.1), using Taylor’s expansion, and comparing terms of the leading orders
O(ε−2) and O(ε−1), respectively, we obtain that

O(ε−2) : ∂τϕ0 = −γW ′(ϕ0) and O(ε−1) : ∂τϕ1 = −γW ′′(ϕ0)ϕ1.

Since W ′(s) = 0 if and only if s = 0, 1/2, or 1, with 0 and 1 being local minima of W and 1/2 being
a local maximum of W , given any point x ∈ Ω and any initial data ϕ0(x, 0) ̸= 1/2, ϕ0(x, τ) → 0 or
1 exponentially as τ → ∞. Once ϕ0 falls into (−∞, (3−

√
3)/6)∪ ((3+

√
3)/6,∞), the convex region

of W , then ϕ1(x, τ) → 0 exponentially as τ → ∞. If we consider the next fast time scale τ = t/ε,
then we have ∂t = ε−1∂τ . Similar calculations lead to the leading-order equations

O(ε−2) : W ′(ϕ0) = 0 and O(ε−1) : ∂τϕ0 = −γW ′′(ϕ0)ϕ1.
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Again, we see that ϕ0 = 0, 1/2, or 1, and since W ′′(ϕ0) ̸= 0, we have ϕ1 = 0. Results are the same
if we consider the regular time scale τ = t.

We can therefore assume that the region Ω is divided by the phase-field function ϕε into an
outer region Oε(t) := Ω−

ε (t) ∪ Ω+
ε (t), where

Ω−
ε (t) = {x ∈ Ω : ϕε(x, t) = O(ε2)} and Ω+

ε (t) = {x ∈ Ω : ϕε(x, t) = 1 +O(ε2)},

and an inner region Iε(t) := Ω \ Oε(t), where ϕε changes from 0 to 1, representing the diffuse cell
boundary. The region Ω+

ε (t) is the cell region at t. Note that, by the imposed boundary conditions
uε = 0 on ∂Ω, the boundary ∂Ω is included in the closure of Ω−

ε (t). We further assume that the
inner region Iε(t) is an O(ε)-neighborhood of a closed and smooth surface Γ(t), independent of ε,
that is the limit of {x ∈ Ω : ϕε(x, t) = 1/2} as ε → 0. Moreover, the interior and exterior of Γ(t),
denoted Ω+(t) and Ω−(t), are the limit as ε → 0 of Ω+

ε (t) and Ω−
ε (t), respectively, with Ω+(t) being

the cell region. We note that the terms inner region and outer region are defined with respect to an
interface. They are commonly used in matched asymptotic analysis for the passage of a phase-field
model to its sharp-interface limit; cf. [39] and the references therein.

Outer expansions. We assume the following expansions in the outer region Oε(t):

ϕε(x, t) = ϕ0(x, t) + εϕ1(x, t) + ε2ϕ2(x, t) + · · · ,
uε(x, t) = u0(x, t) + εu1(x, t) + ε2u2(x, t) + · · · ,
vε(x, t) = v0(x, t) + εv1(x, t) + ε2v2(x, t) + · · · ,

where the functions ϕi(x, t), ui(x, t), and vi(x, t) (i = 0, 1, . . . ) are smooth and bounded, and are
independent of ε. They also satisfy the boundary conditions ϕi = ui = vi = 0 on ∂Ω. Note that these
functions are different from those in the expansions with a different time scale τ. Since ϕ0 = O(ε2)
in Ω−

ε (t), there will be no equations for uε and vε at leading order O(1), we shall assume that uε = 0
and vε = 0 in Ω−

ε (t). If we plug the above expansion of ϕε, uε, and vε into (2.1), (2.2), and (2.3),
we obtain that, up to the leading order O(1),

∂tu0 = D1∆u0 + f(u0, v0) in Ω+(t)× (0,∞), (2.5)

∂tv0 = D2∆v0 + g(u0, v0) in Ω+(t)× (0,∞). (2.6)

Local coordinates for the inner region. Let x ∈ Iε(t) and denote by s(x, t) the signed distance
from x to Γ(t), with s(x, t) > 0 if x is inside Γ(t) and s(x, t) < 0 otherwise. Note that s(x, t) = O(ε)
and |∇s(x, t)| = 1. Now, let y = P (x, t) ∈ Γ(t) be the projection of x onto Γ(t), defined by
|x−P (x, t)| = |s(x, t)|. (We use | · | to denote both the absolute value of a number and the Euclidean
norm of a vector.) For 0 < ε ≪ 1, the projection y = P (x, t) ∈ Γ(t) is unique, and the vector
x−P (x, t) is normal to the surface Γ(t) at y = P (x, t). Let z = s(x, t)/ε. Let n = n(y, t) = ∇s(y, t)
be the unit normal at y ∈ Γ(t) pointing from the exterior to the interior of Γ(t). Then we have a
unique expression of x ∈ Iε(t) as

x = y + εzn. (2.7)

We call (y, z) the local coordinate of x ∈ Iε(t) with respect to the surface Γ(t).We have for 0 < ε ≪ 1
that [16,18,26,39,42]

∇xz = ε−1n(y, t) +O(1), (2.8)

∆xz = 2ε−1H(y, t) +O(1), (2.9)

∂tz = −ε−1V (y, t), (2.10)
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∇xyj(x, t) · n(y, t) = 0 (j = 1, 2, 3), (2.11)

where H(y, t) is the mean curvature of the surface Γ(t) at the point y = P (x, t), V (y, t) is the
normal velocity of the point y = P (x, t) ∈ Γ(t) defined by

V (y, t) = ∂ty · n(y, t) = ∂tP (x, t) · n(y, t), (2.12)

and yj (j = 1, 2, 3) are the components of y = y(x, t). Let f = f(x, t) and f̃ = f̃(z, y, t) be
smooth functions such that f(x, t) = f̃(z, y, t) with x ∈ Iε(t) and (y, z) related by (2.7). Then, by
(2.8)–(2.12) and the chain rule, we obtain for 0 < ε ≪ 1 that [16,18,26,39,42]

∇xf(x, t) = ε−1n∂z f̃(y, z, t) +O(1), (2.13)

∆xf(x, t) =
(
ε−12H(y, t)∂z + ε−2∂2

zz

)
f̃(y, z, t) +O(1), (2.14)

∂tf(x, t) = −ε−1V (y, t) ∂z f̃(y, z, t) +O(1). (2.15)

Inner expansions. We now assume the following expansions in the inner region Iε(t):

ϕε(x, t) = ϕ̃0(y, z, t) + εϕ̃1(y, z, t) + ε2ϕ̃2(y, z, t) + · · · ,
uε(x, t) = ũ0(y, z, t) + εũ1(y, z, t) + ε2ũ2(y, z, t) + · · · ,
vε(x, t) = ṽ0(y, z, t) + εṽ1(y, z, t) + ε2ṽ2(y, z, t) + · · · ,

where x ∈ Iε(t) and (y, z) are related by (2.7), and all ϕ̃i = ϕ̃i(y, z, t), ũi = ũi(y, z, t), and ṽi =
ṽi(y, z, t) (i = 0, 1, . . . ) are smooth and bounded functions. Let us substitute ϕε, uε, and vε in
(2.1)–(2.3) with these expansions. By (2.13)–(2.15) and a series of calculations, we obtain

−ε−1V ∂zϕ̃0 = ε−1h(u0, v0)
∣∣∣∂zϕ̃0

∣∣∣+ ε−2γ
[
∂zzϕ̃0 −W ′(ϕ̃0)

]
+ ε−1γ

[
2H∂zϕ̃0 + ∂zzϕ̃1 −W ′′(ϕ̃0)ϕ̃1

]
+O(1),

where V = V (y, t) and H = H(y, t) are the normal velocity and mean curvature, respectively, at
y = P (x, t). Note that, unlike ϕε which varies from 0 to 1, the concentration fields uε and vε should
not vary largely, in the inner region. In particular, we have ũ0(y, z, t) = ũ0(y, 0, t) + O(ε) and
ṽ0(y, z, t) = ṽ0(y, 0, t) + O(ε), as |x − y| = |x − P (x, t)| = O(ε) for any x ∈ Iε(t) with the local
coordinate (y, z). Therefore, we obtain from the above equation that

−ε−1V ∂zϕ̃0 = ε−1h(ũ0(y, 0, t), ṽ0(y, 0, t))
∣∣∣∂zϕ̃0

∣∣∣+ ε−2γ
[
∂zzϕ̃0 −W ′(ϕ̃0)

]
+ ε−1γ

[
2H∂zϕ̃0 + ∂zzϕ̃1 −W ′′(ϕ̃0)ϕ̃1

]
+O(1).

Now, equating the terms with the same order O(ε−2) and O(ε−1), respectively, we get

O(ε−2) : 0 = ∂zzϕ̃0 −W ′(ϕ̃0), (2.16)

O(ε−1) : −V ∂zϕ̃0 = h(ũ0(y, 0, t), ṽ0(y, 0, t))
∣∣∣∂zϕ̃0

∣∣∣
+ γ

[
2H∂zϕ̃0 + ∂zzϕ̃1 −W ′′(ϕ̃0)ϕ̃1

]
. (2.17)

Similarly, we can plug the inner expansions of ϕε, uε, and vε into (2.2) and (2.3) to get in the leading
order that

O
(
ε−2
)
: 0 = D1

(
∂zϕ̃0∂zũ0 + ϕ̃0∂zzũ0

)
, (2.18)
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O
(
ε−2
)
: 0 = D2

(
∂zϕ̃0∂z ṽ0 + ϕ̃0∂zz ṽ0

)
. (2.19)

Inner-outer matching and the sharp-interface limit. Since in the outer region ϕε = O(ε2) in
Ω−
ε (t) and ϕε = 1+O(ε2) in Ω+

ε (t), we have the following matching conditions for the leading-order
terms of the inner and outer solutions of the phase field ϕε:

lim
z→−∞

ϕ̃0(y, z, t) = 0 and lim
z→∞

ϕ̃0(y, z, t) = 1. (2.20)

These, together with (2.16), determine completely ϕ̃0 to be

ϕ̃0(y, z, t) =
1

2
+

e3z − e−3z

2(e3z + e−3z)
∀z ∈ R.

In particular, ϕ̃0 does not depend on y and t. One can verify that ∂zϕ̃0 > 0 and that∫ ∞

−∞
(∂zϕ̃0)

2dz = 1. (2.21)

By matching the inner expansion and outer expansion, we have ∂zϕ̃0(±∞) = ∂zzϕ̃0(±∞) = 0.
Thus, by integration by parts and (2.16), we have∫ ∞

−∞
∂zϕ̃0

[
∂zzϕ̃1 −W ′′(ϕ̃0)ϕ̃1

]
dz =

∫ ∞

−∞
∂z

[
∂zzϕ̃0 −W ′(ϕ̃0)

]
ϕ̃1 dz = 0. (2.22)

Now, by multiplying both sides of (2.17) by ∂zϕ̃0 and then integrating the resulting equation over
z ∈ (−∞,∞), we have by (2.21) and (2.22) that

V (y, t) = −h(u0(y, 0, t), v0(y, 0, t))− 2γH(y, t) ∀y ∈ Γ(t). (2.23)

It follows from (2.18) and (2.19) that ∂z(ϕ̃0∂zũ0) = ∂zϕ̃0∂zũ0 + ϕ̃0∂zzũ0 = 0 and similarly
∂z(ϕ̃0∂z ṽ0) = 0 for all z ∈ R. These and the matching conditions (2.20) imply that

0 = lim
z→−∞

ϕ̃0(y, z, t)∂zũ0(y, z, t) = lim
z→∞

ϕ̃0(y, z, t)∂zũ0(y, z, t) = lim
z→∞

∂zũ0(y, z, t),

0 = lim
z→−∞

ϕ̃0(y, z, t)∂z ṽ0(y, z, t) = lim
z→∞

ϕ̃0(y, z, t)∂z ṽ0(y, z, t) = lim
z→∞

∂z ṽ0(y, z, t).

Matching the inner expansions and outer expansions, we thus have

∂nu0(x, t) = lim
z→∞

∂zũ0(y, z, t) = 0 ∀x ∈ Γ(t), (2.24)

∂nv0(x, t) = lim
z→∞

∂zũ0(y, z, t) = 0 ∀x ∈ Γ(t), (2.25)

where u0 and v0 are the leading-order terms in the outer expansion of uε and vε, and satisfy (2.5)
and (2.6), respectively.

We summarize our analysis in the following:

Theorem 2.1. Under the assumption that there exists a closed and smooth interface Γ(t), the
outer and inner expansions above for the solutions ϕε, uε, and vε are valid, and the corresponding
matching conditions are satisfied, the following hold true in the limit ε → 0:
(1) The phase-field function ϕε converges to 1 in Ω+(t) and 0 in Ω−(t), respectively;
(2) The concentrations uε and vε converge to the solution to the boundary-value problem of the

reaction-diffusion equations (2.5) and (2.6), and (2.24) and (2.25);
(3) The normal velocity V = V (x, t) of the sharp cell boundary Γ(t) is given by (2.23).
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3 Numerical Methods

We describe our numerical methods for solving the system of equations (1.1)–(1.4) in the two-
dimensional setting in the following non-dimensionalized form for the rescaled normal velocity V =
V (x, y, t) on the rescaled cell boundary Γ(t) at time t, rescaled concentrations u = u(x, y, t) and
v = v(x, y, t) defined on the cell region Ω+(t), respectively:

V = u− u∗ − χH for (x, y) ∈ Γ(t) and t > 0, (3.1)

∂tu = Du∆u+ f(u, v) for (x, y) ∈ Ω+(t) and t > 0, (3.2)

∂tv = Dv∆v − f(u, v) for (x, y) ∈ Ω+(t) and t > 0, (3.3)

∂nu = ∂nv = 0 for (x, y) ∈ Γ(t) and t > 0, (3.4)

where H is the rescaled curvature, all u∗, χ, Du, Dv, K, and C are positive constants, and

f(u, v) = −Ku(u− 0.5)(u− Cv).

Details of the non-dimensionalization are given in section 4.1 below. Our numerical methods for
the one-species system, which is the sharp-interface limit of the system (1.7)–(1.9), are similar.

We set our computational box to be Ω = (−L,L)2 for some L > 0 and cover it with a uniform
finite-difference grid with step size h in each dimension. We discretize a time interval [0, T ] with
T > 0 the final time of interest by tm = m∆t (m = 0, 1, . . . ) with time step ∆t > 0. We
denote by Γm, Ω+

m, and Ω−
m the approximation of Γ(tm), Ω+(tm), and Ω−(tm), respectively, where

Ω−(t) = Ω\Ω+(t) (an overline denotes the closure). For a function w = w(x, y, t) with (x, y) ∈ Ω and
t ≥ 0, we denote by wm = wm(x, y) the approximation of w(x, y, tm), and by wm

i,j the approximation
of wm(xi, yj) for a grid point (xi, yj) or the center (xi, yj) of a grid cell. Note that we approximate
the level-set function ϕ at grid points while we approximate the concentrations u and v at the
centers of grid cells; see below.

The Level-set method for the moving cell boundary. We capture the cell boundary Γ(t)
at time t by using the level-set method [35, 36], with level-set function ϕ = ϕ(x, y, t), i.e., Γ(t) =
{(x, y) ∈ Ω : ϕ(x, y, t) = 0}. The level-set function is determined by the evolution equation ∂tϕ +
V |∇ϕ| = 0, where V = V (x, y, t) is given in (3.1) that needs to be extended from Γ(t) to the entire
computational domain Ω. The first part of our normal velocity is u(x, y, t)− u∗. We keep the value
of u = u(x, y, t) in Ω+(t) and additionally extend it from Γ(t) to Ω−(t) numerically in each step of
time iteration. Note, for convenience, we continue to denote the result by u = u(x, y, t), now for
(x, y) ∈ Ω. (Details of such extension are given below.) The curvature H can be extended simply
by using H = ∇ · (∇ϕ/|∇ϕ|) for all (x, y) ∈ Ω. Note that implicitly we require that the level-set
function to be close to the signed distance to the interface Γ(t) with ϕ < 0 in Ω+(t) (the cell region)
and ϕ > 0 in Ω−(t), at least near Γ(t). Therefore, the level-set equation and boundary conditions
become now

∂tϕ = −(u− u∗)|∇ϕ|+ χ
(
∇ · ∇ϕ

|∇ϕ|
)
|∇ϕ| for (x, y) ∈ Ω and t > 0, (3.5)

∂nϕ = 0 for (x, y) ∈ ∂Ω and t > 0. (3.6)

Following [46], we rewrite the curvature part of the normal velocity as

∇ ·
(

∇ϕ

|∇ϕ|

)
|∇ϕ| = ∆ϕ−N(ϕ),

N(ϕ) =
∇ϕ

|∇ϕ|
· ∇(|∇ϕ|) =

ϕ2
xϕxx + 2ϕxϕyϕxy + ϕ2

yϕyy

ϕ2
x + ϕ2

y

.
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With a given initial level-set function ϕ(x, y, 0) for all (x, y) ∈ Ω, we can solve (3.5) and (3.6)
numerically with finite difference schemes in time and over the uniform grid.

Specifically, starting from umi,j at centers of grid cells, we first use polynomial interpolation or
extrapolation to approximate u at points where the interface intersects grid lines. Such intersection
points are located by the linear interpolation of the values of ϕ at grid points. We then extend these
approximate u-values from the points on the interface to all the grid points in the outer region Ω+

m,
constant in the normal direction, by the fast sweeping method [51, 53]. We continue to denote the
extended function by um. To get ϕm+1, we then use the semi-implicit scheme

ϕm+1 − ϕm

∆t
= −(um − u∗)|∇ϕm|+ χ∆ϕm+1 − χNϵ(ϕ

m), (3.7)

where Nϵ(ϕ) is the same as N(ϕ) except the denominator ϕ2
x+ϕ2

y in N(ϕ) is replaced by ϕ2
x+ϕ2

y+ ϵ
in Nϵ(ϕ) for a small enough ϵ > 0, to avoid singularities at ∇ϕ = 0 while keeping an accurate
approximation away from them. We use ϵ = 10−12 in all of our simulations. We discretize |∇ϕm| by
fifth-order WENO [20] within Godunov’s scheme [37], and discretize ∆ϕ and Nϵ(ϕ) by second-order
central differencing.

At the boundary of the computational domain Ω, we use a second-order scheme to discretize
the Neumann boundary conditions (3.6). The coefficient matrix of the resulting system of linear
equations for all ϕm+1

i,j is sparse and nonsymmetric, with the nonsymmetry due mainly to the chosen
treatment of the boundary conditions. We solve the linear system of equations using the biconjugate
gradient stabilized method preconditioned with the incomplete LU decomposition. Finally, we
reinitialize the level-set function ϕm+1, performing a few iterations of the algorithm of redistancing
to signed distance function [49], and continue to denote the result by ϕm+1.

Discretization of the reaction-diffusion equations on a moving cell region. Given Γm+1,
Ω+
m+1, and Ω−

m+1, all specified by the level-set function ϕm+1 on all the grid points, and also given
the concentrations um and vm on all the centers in Ω+

m of grid cells, we need to find the approximate
solution um+1 and vm+1 on all the centers of grid cells that overlap with Ω+

m+1 by the equations and
boundary conditions (3.2)–(3.4). To do so, we first employ a second-order extrapolation method
proposed in [22] to extend um and vm to the centers of grid cells that overlap with the new cell
region Ω+

m+1 but are not in Ω+
m; cf. black solid dotes in Figure 3.1. We denote by ũmi,j and ṽmi,j the

extended u-value and v-value, or the original values um and vm if they are not extended, at the
center of a grid cell in Ω+

m+1 labelled by (i, j). Note by (3.2)–(3.4) that the integral of u+v over Ω is
a constant with respect to time t (cf. (1.6)), and its value is determined by the initial concentrations
u and v at t = 0. We shall still denote this constant by M . To enforce this conservation of the total
mass, we modify the value ṽmi,j to get vmi,j at centers of all the grid cells overlapping with Ω+

m+1 by

vmi,j =
1

Area (Ω+
m+1)

[
M −

∫
Ω+

m+1

(ũm + ṽm) dA

]
+ ṽmi,j .

Note that we only correct the v-values as v is the fast diffusion component. The finally extended u
and v values are now denoted by umi,j and vmi,j ; they are defined on centers labelled by (i, j) of grid

cells overlapping with Ω+
m+1.
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Γm+1

Γm

III

II

I

Figure 3.1: Illustration of two consecutive cell regions Ω+
m and Ω+

m+1. The cell region Ω+
m is the

union of part II and part III, enclosed by the cell boundary Γm (blue curve). The cell region Ω+
m+1

is the union of part I and part II, marked by red. Black solid dots mark those centers of grid cells
that are in Ω+

m+1 but not in Ω+
m.

We now focus on um+1 as vm+1 is similar. We use the semi-implicit scheme

um+1 − um

∆t
= Du∆um+1 + f(um, vm) for (x, y) ∈ Ω+

m+1.

Since the interface Γm+1 cuts through grid cells, we employ an embedded boundary method devel-
oped in [38] to discretize the Laplacian operator. Fix a grid cell Ci,j that overlaps with Ω+

m+1 and
that is centered at (xi, yj). Integrating both sides of the above equation over Ci,j ∩ Ω+

m+1, we have
by the divergence theorem that∫

Ci,j∩Ω+
m+1

um+1 − um

∆t
dA = Du

∫
∂(Ci,j∩Ω+

m+1)
∇um+1 · ν dl +

∫
Ci,j∩Ω+

m+1

f(um, vm) dA, (3.8)

where ν is the unit vector normal to the boundary ∂(Ci,j ∩ Ω+
m+1). The two area integrals can be

approximated by ∫
Ci,j∩Ω+

m+1

um+1 − um

∆t
dA ≈

um+1
i,j − umi,j

∆t
Area (Ci,j ∩ Ω+

m+1), (3.9)∫
Ci,j∩Ω+

m+1

f(um, vm) dA ≈ f(umi,j , v
m
i,j)Area (Ci,j ∩ Ω+

m+1). (3.10)

The area can be calculated using the level-set function ϕm+1 [28]. Whether or not the interface
Γm+1 cuts through the grid cell Ci,j , by the boundary condition ∂nu

m+1 = 0 on Γm+1, we can
approximate the line integral in (3.8) by [38]∫

∂(Ci,j∩Ω+
m+1)

∇um+1 · ν dl ≈
um+1
i+1,j − um+1

i,j

h
Li+1/2,j −

um+1
i,j − um+1

i−1,j

h
Li−1/2,j

+
um+1
i,j+1 − um+1

i,j

h
Li,j+1/2 −

um+1
i,j − um+1

i,j−1

h
Li,j−1/2, (3.11)

where Li±1/2,j ∈ [0, h] and Li,j±1/2 ∈ [0, h] refer to the length of the corresponding edge of the grid

cell Ci,j inside Ω+
m+1. These lengths can be calculated using the level-set function ϕm+1 that defines

the interface Γm+1 [28].
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The coefficient matrix of the resulting system of linear equations is symmetric positive definite
[38], and the system can be solved by the conjugate gradient method with an incomplete Cholesky
preconditioner or by an algebraic multigrid method.

Algorithm.
Step 0. Input all the parameters. Set the computational box Ω = (−L,L)2 ⊂ R2 and cover it with

a uniform finite-difference grid with grid size h. Discretize the time interval [0, T ] of interest
with time step ∆t. Initialize the level-set function ϕ0 and the concentrations u0 and v0. Set
m = 0.

Step 1. Extend the normal velocity from the interface to the entire computational box. Solve
the semi-implicit discretization equation (3.7) to get the updated level-set function ϕm+1.
Reinitialize the level-set function and still denote it by ϕm+1.

Step 2. Extend um and vm to centers of grid cells overlapping with Ω+
m+1 defined by ϕm+1. Solving

the semi-implicit discretization equations (cf. (3.8)–(3.11)) to obtain um+1 and vm+1.
Step 3. Check if the cell region Ω+

m+1 touches the boundary ∂Ω. If so, shift the computational box
so that the cell is centered in the new computational box, still denoted Ω.

Step 4. Set m := m+ 1. Repeat Steps 1–3 until the final simulation time is reached.

Convergence test. We have tested our numerical methods and code. In Figure 3.2, we show that
the total mass conservation is captured numerically in a long time simulation. We have also used
our numerical methods to simulate a moving cell with the final (rescaled) time being T = 10, using
different time steps and different spatial grid sizes. Figure 3.3 shows our simulation results. They
indicate that our numerical method and algorithm converge both in time and space.

Figure 3.2: Numerical conservation of total mass. Here U = U(t) and V = V (t) at time t are
defined as the integral of u(x, y, t) and v(x, y, t), respectively, over the cell region Ω+(t), and the
total mass is defined to be the sum U + V .

To further test the convergence rate of our method, we solve numerically the following moving
boundary problem: 

∂tu = ∆u− u− 4 + x2 + y2 in Ω+(t),

∂nu = 2
√
x2 + y2 on Γ(t) = ∂(Ω+(t)),

V = −H +
√
u on Γ(t),

where Γ(t) is the moving boundary, Ω+(t) is the interior region of Γ(t), V is the normal velocity
on Γ(t), H is the curvature of Γ(t), and u = u(x, y, t) with (x, y) ∈ Ω+(t). This system has a
radially symmetric solution: the boundary Γ(t) is a circle of radius R(t) and u(x, y, t) = ũ(r, t) with
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Figure 3.3: Simulated cell shapes with the final simulation time T = 10. The initial simulation box
Ω = (−3, 3)2 is shifted during the simulation. Left: Simulation results with the grid size h = 0.05
and different time steps ∆t. Right: Simulation results with the time step ∆t = 1.25 × 10−3 and
with different number of grid points.

r =
√
x2 + y2, given by (dropping the tilde){

u(r, t) = r2 for r < R(t),

R(t) =
√
1 + (R2

0 − 1)e−2t for t > 0.

For our level-set numerical simulations, the initial boundary is set to be a circle of radius R0 = 1.3
centered at the origin. To show the error between the simulated and exact boundary location at
a final time T of simulation, we locate numerically a set of intersection points {P1, · · · , PN} of the
numerical level-set ϕappr = 0 at T and the grid lines using linear interpolation [29], where ϕappr

denotes our numerical level-set function at T. We also denote by ϕexact the signed distance function
of the boundary Γ(T ) which is the circle of radius R(T ), and further define

ϕ1
err =

1

N

N∑
i=1

|ϕexact(Pi)− ϕappr(Pi)| =
1

N

N∑
i=1

|ϕexact(Pi)|,

ϕ∞
err = max

1≤i≤N
|ϕexact(Pi)− ϕappr(Pi)| = max

1≤i≤N
|ϕexact(Pi)|.

In Table 1, we compare our numerical and exact solutions at the final time T = 0.4 with
varying grid sizes and time steps for the approximation of the concentration u inside the simulated
boundary defined by ϕappr = 0. In the table, uappr and uexact denote the numerical and exact
solutions, respectively, and ∥ · ∥2 and ∥ · ∥∞ denote the L2 and L∞ norms, respectively. In Table
2, we compare our numerical and exact solutions at the final time T = 0.4 with varying grid sizes
and time steps for the approximation of the boundary. In both tables, h and ∆t are the grid size
of a uniform spatial grid and the step size of time discretization, respectively. We observe that
the convergence rate for the approximation of u is of the second order in both space and time,
better than the expected second-order in space and first-order in time. Similarly, our numerical
approximation of the boundary location is between the first and the second order in both space and
time, again better than the expected first-order in space. These better convergence results are due
to the fact that in our test problem u = u(r, t) is independent of t.
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Table 1: Numerical accuracy for u.

h ∆t ∥uappr − uexact∥2 Order ∥uappr − uexact∥∞ Order

0.15 0.15 1.600× 10−3 - 2.200× 10−3 -

7.500× 10−2 7.500× 10−2 3.190× 10−4 2.33 5.135× 10−4 2.10

3.750× 10−2 3.750× 10−2 1.435× 10−4 1.15 1.640× 10−4 1.64

1.875× 10−2 1.875× 10−2 3.295× 10−5 2.12 3.944× 10−5 2.06

9.375× 10−3 9.375× 10−3 6.85× 10−6 2.27 8.943× 10−6 2.14

Table 2: Numerical accuracy for the boundary.

h ∆t ϕ1
err Order ϕ∞

err Order

0.15 0.15 9.030× 10−2 - 1.073× 10−1 -

7.500× 10−2 7.500× 10−2 2.970× 10−2 1.60 3.540× 10−2 1.60

3.750× 10−2 3.750× 10−2 8.600× 10−3 1.79 1.040× 10−2 1.77

1.875× 10−2 1.875× 10−2 2.500× 10−3 1.78 3.100× 10−3 1.75

9.375× 10−3 9.375× 10−3 1.100× 10−3 1.18 1.500× 10−3 1.05

4 Simulation Results and Analysis

We perform numerical simulations to study the cell polarization in response to various external
stimulus and the trajectory of a moving cell, and analyze these simulation results in terms of the
modeling and parameters.

4.1 Parameters and Non-dimensionalization

In Table 3, we collect all the parameters in the original model (1.1)–(1.4), and describe their
meanings and units. We also provide their estimated values following [11,44]. To non-dimensionalize
our equations (1.1)–(1.4), we follow [11] to introduce two parameters. One is the typical cell speed
V0 which is in the range ∼ 0.1µm/s. The other is the typical radius of a cell R which is in the
range ∼10µm. We then introduce non-dimensionalized parameters according to Table 4. We then
define x̂ = x/R, t̂ = (V0/R)t, û = u/c, v̂ = v/c, and V̂ = V/V0, and convert the original system of
equations (1.1)–(1.4) into the non-dimensionalized system of equations for V̂ , û, and v̂, which is,
after dropping all the hat, the system (3.1)–(3.4).

4.2 Cell Polarization

Inspired by the one-dimensional simulations of the wave-pinning mechanism [33], we consider a
non-moving or stationary cell that occupies the fixed region Ω+ whose boundary is the curve

x = (1− 0.3 cos 2θ) cos θ, y = (1− 0.3 cos 2θ) sin θ ∀ θ ∈ [0, 2π).

We set K = 500, M = 6, C = 0.8, Du = 0.3, and Dv = 30. (Note that χ and µ∗ are not needed,
since the boundary is fixed.) The computational box is Ω = (−2.5, 2.5) × (−2.5, 2.5). Note that
Ω+ ⊂ Ω. We cover Ω by a uniform finite-difference grid of grid size h = 0.05 and set △t = 0.001.

Random initial value. We choose the initial value u0 to be a random variable defined on all the
grid centers. The values are generated uniformly at random from [0, 0.8].We also set the initial value
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Table 3: Model Parameters

Parameters Description Estimated Values Units

Du diffusion coefficient of u 0.1 ∼ 0.5 µm2/s
Dv diffusion coefficient of v 10 ∼ 50 µm2/s
α coefficient of F-actin extension 0.1 pN/µm
β coefficient for myosin retraction 0.2 pN/µm
τ friction coefficient 2.62 pNs/µm2

γ surface tension 1 pN
k relative reaction rate ∼ 0.01 s−1

c concentration of u at the cell front 1 ∼ 10 concentration unit
C interconversion parameter 0.5 ∼ 0.8 unitless

Table 4: Nondimensionalized Parameters

Parameters Description Estimated Values

D̂u = Du
V0R

Rescaled diffusive coefficient of u 0.1 ∼ 0.5

D̂v = Dv
V0R

Rescaled diffusive coefficient of v 10 ∼ 50

K = kRc2

V0
Rescaled reaction rate compared to motility 100 ∼ 500

χ = γ
V0τR

Relative strength of surface tension 0.1 ∼ 0.3

û∗ = β
cα Rescaled contractility 0.2 ∼ 0.45

M̂ = Ntot
cR2 Rescaled total amount of protein u and v 6 ∼ 8

C interconversion parameter 0.5 ∼ 0.8

v0 to be a constant: v0 = 1.342. We then solve numerically the reaction-diffusion equations with
the zero Neumann boundary conditions. Figure 4.1 (a) shows the cell region bounded by the blue
curve. The red region inside the cell is the set of points at which the initial random concentration
value u0 ≥ 0.5. Figure 4.1 (b) shows the part of the cell region, marked by the closed red curve,
at which the concentration u ≥ 0.5. This shows that the cell is polarized at this (rescaled) time
t = 0.5. As discussed in [11, 21], the reaction-diffusion system tends to minimize the length of the
interface that separates the high and low u-concentration regions. Figure 4.1 (c) shows that at t = 2
the interface between the high and low u-concentration regions does not change, indicating the cell
polarization reaches an equilibrium [33].

External stimulus. We introduce an external stimulus and solve the system of equations

∂tu = Du∆u+ f(u, v) + Sv in Ω+ × (0, T ],

∂tv = Dv∆v − f(u, v)− Sv in Ω+ × (0, T ],

with the same boundary conditions ∂nu = ∂nv = 0 on ∂Ω+ and a final simulation time T . The
stimulus function is Sv with S defined on Ω+ × [0, T ] by

S = S(x, y, t) =


s1(t)(x− 0.7)(y − 1.3) if (x, y, t) ∈ Ω+ × [0, 1],

s2(t)(x+ 0.7)(y + 1.3) if (x, y, t) ∈ Ω+ × [10, 11],

0 elsewhere,
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Figure 4.1: Cell polarization with a random initial value u0. (a) Cell region bounded by the blue
curve. A random initial concentration field u0 is distributed at grid points inside the cell region.
Red spot is the set of points at which u0 ≥ 0.5. (b) At t = 0.5, the region of u ≥ 0.5, bounded by
the red curves, is located in the front of the cell, showing a polarized cell. (c) At t = 2, the cell
polarization has reached an equilibrium.

where

s1(t) =


0.07 if 0 ≤ t ≤ 0.5,

0.07(1− t−0.5
0.5 ) if 0.5 < t ≤ 1,

0 elsewhere,

and s2(t) =

{
s1(t− 10) if 10 ≤ t ≤ 11,

0 elsewhere.

Note that the stimulus is turned on (i.e., S(x, y, t) ̸= 0) for 0 ≤ t ≤ 1, spatially weak around
(x, y) = (0.7, 1.3), and for 10 ≤ t ≤ 11, spatially weak around (x, y) = (−0.7,−1.3), but is turned
off (i.e., S(x, y, t) = 0) for a longer period 1 < t < 10.

We set the initial values of u and v to be constant and solve the reaction-diffusion equations
with the stimulus up to the final simulation time T = 20. When the locally strong stimulus is
turned on from t = 0 to t = 1, the active form u increases locally near the south-west corner.
Such increase then leads to the formation of a spatial interface in the cell, separating the high and
low concentrations of the active form u, that propagates inside the cell region. Meanwhile, the
concentration v of the inactive form decreases, leading accordingly to the decreasing of u+ = Cv
in the kinetic form of f . As a result, the motion of the internal interface slows down, and is finally
pinned down, and the cell reaches a polarized steady state [33]. Figure 4.2 (a) shows such a polarized
state at t = 10. The cell is re-polarized, with a reversed orientation, after the stimulus is turned on
again during 10 ≤ t ≤ 11 but strong in a different spatial region of the cell; cf. Figure 4.2 (b).

Figure 4.2: Simulation of the cell polarization with stimulus from the initial time t = 0 to the final
simulation time T = 20. (a) At t = 10, the cell is polarized. (b) At t = 20, the cell is polarized
again but with a reversed orientation.
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4.3 Cell Trajectory

We define the cell trajectory of a moving cell to be the time trajectory of the geometrical center of
the cell (Xc(t), Yc(t)), which is defined by

Xc(t) =
1

Area (Ω+(t))

∫
Ω+(t)

x dxdy and Yc(t) =
1

Area (Ω+(t))

∫
Ω+(t)

y dxdy.

We study two typical types of trajectories, straight and circular trajectories, aiming at a qualitative
understanding of controlling parameters for such trajectories. We shall also compare the two-species
and one-species models in terms of the prediction of different trajectories.

In all the simulations reported below, K = 100, M = 6, C = 0.8, and all Du, Dv, χ, and µ∗ are
varied. The computational box is Ω = (−3, 3)× (−3, 3) but it will be shifted during the simulation
of cell movement; cf. the algorithm in section 3. The grid size is h = 0.06 and the time step size
is ∆t = 0.005. The initial cell boundary is a circle of radius 1.3 centered at (0,−1), The cell is
polarized with the concentration of u to be 0.8, where y ≥ −0.8, and u = 0 in the remaining part,
while v is uniformly distributed on the cell domain.

Long-time trajectories. We simulate a moving cell with two different sets of parameters Du,
Dv, χ, and µ∗, and plot the cell trajectories in Figure 4.3. We observe clearly a straight trajectory
(cf. Figure 4.3 (a) and (b)) and a circular trajectory (cf. Figure 4.3 (c) and (d)). Note that the
parameters we use in these simulations are similar to those used in [11] to capture both the straight
and circular trajectories as in Figure 4.3 with the final time t = 40 while here we have simulated
the cell movement up to t = 150, indicating that the two patterns are persistent, and the model
and our methods are robust.

Effects of diffusion. We now set χ = 0.1 and u∗ = 0.4, and vary the diffusion constants Du and
Dv to study how the diffusion can affect the cell movement. In Figure 4.4, we plot our simulation
results for three sets of diffusion constants: case 1: Du = 0.1 and Dv = 10; case 2: Du = 0.3 and
Dv = 30; case 3: Du = 0.5 and Dv = 50. In Figure 4.4 (a), we observe that the cell trajectory is
linear (i.e., straight) for case 1, while it is circular for case 2 and case 3. Note that the plot in the
window is the zoom-in of the long-time trajectories for case 2 and case 3. In all the three cases,
there is a preparation time before the cell starts to move in a straight line for case 1 or in a circular
pattern for case 2 and case 3. In Figure 4.4 (b1)–(b3), we plot the x and y components of the
velocity at the geometrical center of the moving cell corresponding to the three cases, respectively.
We observe that larger diffusion constants correspond to a shorter preparation time before the
onset of the linear or circular trajectory. Moreover, fast diffusion is correlated to a smaller circular
trajectory.

17



Figure 4.3: Long-time cell movement simulations. In (a) and (b), Du = 0.1, Dv = 10, χ = 0.2,
and u∗ = 0.2. In (c) and (d), Du = 0.5, Dv = 50, χ = 0.1, and u∗ = 0.25. The sequence
of snapshots of cells in (a) are taken at t = 0, 10, 20, 30, 40 and those in (c) are taken at
t = 0, 5, 10, 15, 20, 25, 30, 35, 40, 45. The blue line or curve in (b) or (d) is the space-time cell
trajectory, while the red line or curve in (b) or (d), marked “projection” is the (two-dimensional)
space trajectory of the moving cell.

Figure 4.4: (a) Cell trajectories predicted with three different sets of diffusion constants Du and Dv.
The small window is the zoom-in of the two circular trajectories. (b1)–(b3) The x and y components
of the velocity at the center of a moving cell predicted by our numerical simulations corresponding
to the three sets of Du and Dv values marked in (a).

Contractility. This refers to the cell contraction due to the decreasing of concentration u the rear
part of the cell. In the model, the cell contractility is determined by the threshold concentration
u∗. To study how the variation of u∗ can affect the cell trajectory, we fix the diffusion constants
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Du = 0.4 and Dv = 40 and the rescaled surface tension constant χ = 0.1, and simulate the cell
movement with different values of u∗: 0.25, 0.3, and 0.4. Figure 4.5 (a) shows the three circular
trajectories corresponding to the three u∗ values. We observe that a larger value of u∗ corresponds
to an earlier onset of the circular mode and the circle is smaller. Figure 4.5 (b1)–(b3) show the area
of the moving cell vs. time for the three sets of u∗ values as marked in Figure 4.5 (a). We observe
again that a larger value of u∗ takes a shorter period of time before the cell circulates.

Figure 4.5: (a) Cell trajectories corresponding to the three values of u∗. (b1)–(b3) The area of the
moving cell vs. time t corresponding to the three values of u∗.

Two-species model vs. one-species model. We simulate the cell movement with both the two-
species model and the one-species model, in non-dimensionalized forms. The non-dimensionalized
two-species model consists of Eq. (3.1)–(3.4). The non-dmensionalized one-species model consists of
Eq. (1.7)–(1.9) with γ = 1, α = 1, and β and γ replaced by u∗ and χ, respectively. The function f is
given by (1.5) with c = 1 and k replaced by K. We set Du = 0.1, Dv = 10 (only for the two-species
model), u∗ = 0.4, and χ = 0.1. In Figure 4.6, we plot the center of mass of the cell simulated with
the two-species model (left), which predicts a a linear trajectory, and the one-species model (right),
which predicts a circular trajectory.

Figure 4.6: The trajectory of the center of mass of a simulated cell. (Left) A linear trajectory
predicted by the two-species model. (Right) A circular trajectory predicted by the one-species
model.

To see how some of the key parameters can control cell trajectories, we have simulated the cell
movement with different values of the (rescaled) diffusion coefficients Du and Dv (Dv is only for
the two-species model), and the (rescaled) surface tension parameter χ. All the other parameters
are the same. Our results are summarized in Table 5.
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Table 5: Comparison of cell trajectories simulated by one-species (indicated by 1s) and two-species
(indicated by 2s) models. The symbol “⃝” represents a circular trajectory, “|” represents a linear
trajectory, and “×” means that cell loses polarity and stays still during the movement.

Diffusion Coefficients
χ=0.1 χ=0.15 χ=0.2 χ=0.25 χ=0.3
1s 2s 1s 2s 1s 2s 1s 2s 1s 2s

Du = 0.10, and Dv = 10 for 2s ⃝ | | | | | | | | |
Du = 0.15, and Dv = 15 for 2s ⃝ ⃝ ⃝ | ⃝ | | | × ×
Du = 0.20, and Dv = 20 for 2s ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ | × ×

It is clear that the combination of the diffusion of active Rho GTPase proteins with the con-
centration u and the surface tension with the parameter χ controls the trajectory pattern, linear or
circular. A large value of χ corresponds to a large surface tension and small friction, suppressing the
boundary instability during the cell movement, while a larger value of the diffusion coefficient Du

causes more likely the cell circular motion. Similarly, the one-species model with the infinitely fast
diffusion of the inactive Rho GTPase proteins predicts more likely a circular than a linear trajectory
of the cell motion.

5 Conclusions

We have studied the cell polarity and movement within the modeling framework of reaction-diffusion
equations and a moving cell boundary. In particular, we have carefully examined the wave-pinning
model, both the two-species and the reduced one-species model.

Early studies included the one-dimensional analysis of the wave pinning mechanism [33,34] and
the two-dimensional phase-field simulation and the sharp-interface analysis with a reduced model
for cell polarization and movement [11]. Here, we have derived the sharp-interface model as the
limit of the phase-field model as the small parameter ε → 0 with a general two or three-dimensional
setting. Our rigorous analysis provides a close link between these two types of models.

We have also developed and implemented a robust numerical method for the simulation of cell
polarization and movement using the derived sharp-interface model in two-dimensional space. Our
approach combines the level-set method for the moving cell boundary and accurate discretization
techniques for solving the reaction-diffusion equations on the moving cell region. The method and
algorithm pass the convergence test.

We have done extensive numerical simulations using the full, two-species reaction-diffusion mov-
ing cell boundary model as well as its reduced one-species model in two-dimensional space. We find
that the cell polarization is a robust process that can be triggered by various external stimulus
with a large set of parameters, confirming the wave-pinning mechanism as proposed in [33, 34].
We have also traced the cell trajectory during long-time simulations. By choosing different set of
parameters of the diffusion constants and the threshold value of the concentration of an active Rho
GTPase protein in the normal velocity, we have been able to capture both the linear and circular
trajectories. It is consistently observed that a larger value of the (rescaled) diffusion constant leads
more likely to a circular motion of the cell, and a larger value of the (rescaled) surface tension leads
more likely to a linear motion of the cell. These agree with the qualitative analysis by Camley et
al. [11]. For a circular trajectory, a period of preparation time is observed. The full, two-species
model and the reduced, single-species model predict different such preparation times. Therefore,
the infinite diffusion of the second species which is the assumption of the reduced model, may need
to be corrected for quantitative predictions of different complex processes of cell motility.
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In our simulations we have observed that the cell area and the x and y components of the
velocity at center of mass of the cell to be oscillatory during the period of preparation time before
the cell starts to rotate completely; cf. Figure 4.4 and Figure 4.5. These are unlikely caused by
numerical errors and instabilities as no such oscillations occur once the cell starts to rotate. We will
investigate such oscillations further in our subsequent works.

With our analytical tools, robust numerical methods, and computer code, we can study further
the cell polarity and movement in several directions.
(1) We can include many more biological components in our models and simulations. The first of

them is the fluid flow which can be modeled by Stokes flow [43,52]. The boundary velocity of
a cell moving around within such a flow can be determined by the force balance. The second
component is the combination of attachment to and detachment from a substrate of a moving
cell [43].

(2) With a similar approach and simulation method, we can study the interaction and movement
of a cluster of cells, where the cell coordination and cooperation will be crucial [8,40]. Likely,
such studies can help understand better the molecular basis as well as mechanical forces that
determine such an important collective biological process.

(3) With our current work on the model analysis and the development of robust numerical methods
for two-dimensional simulations, it is possible now for us to simulate the cell movement in a
full, three-dimensional setting, with an extended model that include more biological effects,
particularly those, such as cell-substrate interactions, that are not easily described by a two-
dimensional model [12,45].
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