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A B S T R A C T   

Administrative errors in unemployment insurance (UI) decisions give rise to a public values con昀氀ict between 
ef昀椀ciency and ef昀椀cacy. We analyze whether arti昀椀cial intelligence (AI) – in particular, methods in machine 
learning (ML) – can be used to detect administrative errors in UI claims decisions, both in terms of accuracy and 
normative tradeoffs. We use 16 years of US Department of Labor audit and policy data on UI claims to analyze 
the accuracy of 7 different random forest and deep learning models. We further test weighting schemas and 
synthetic data approaches to correcting imbalances in the training data. A random forest model using gradient 
descent boosting is more accurate, along several measures, and preferable in terms of public values, than every 
deep learning model tested. Adjusting model weights produces signi昀椀cant recall improvements for low-n out-
comes, at the expense of precision. Synthetic data produces attenuated improvements and drawbacks relative to 
weights.   

1. Introduction 

Public organizations, especially welfare agencies, regularly make 
decisions affecting how scarce goods are distributed. Some of these 
decisions are administrative errors—decisions that will turn out to have 
been wrong or mistaken. Detecting and reducing such administrative 
errors is central to quality control in the public sector. As the scale and 
speed of administrative decisions outstrips the capacity of human agents 
to manage, many organizations are adopting arti昀椀cial intelligence (AI) 
to quickly audit large volumes of administrative data. Adopting AI for 
this purpose enjoys bipartisan support in the United States; in reviewing 
the IRS’ use of AI one Republican member of congress referred to AI as 
“the ultimate auditor” (Heckman, 2020). Yet little is known about the 
true performance of these systems, or the distributive consequences of 
their use in auditing public spending and services. 

This article examines the use of AI to support the identi昀椀cation of 
administrative errors. We concentrate on the case of US State workforce 
agencies and their decisions of Unemployment Insurance (UI) claims. In 
deciding claims, mistakes consist in over- or under-paying claimants. For 
example, claims that should be approved but are wrongfully denied 

constitute underpayments of the full dollar amount claimed. We use data 
collected by the US Department of Labor (DOL) to train different Ma-
chine Learning (ML) based AI systems to predict administrative errors in 
this setting and analyze their performance. We then discuss whether 
such algorithms can and should be used to effectively detect mistaken 
decisions. 

We are motivated by the question of whether AI can and should be 
used to detect administrative errors. The article makes 昀椀rst steps to-
wards answering this question and improving AI-driven decision-mak-
ing in government by examining prominent ML-based AI technologies1 

for a speci昀椀c task currently performed by human agents (auditors). We 
use labeled audit data that are similar to those that are likely employed 
in developing such systems in practice. The article compares the per-
formance of these different techniques and discusses their goodness of 昀椀t 
relative to these data. We thus contribute to the literature on techno-
logical innovation in the public sector, as well as administrative errors 
and improper payments. 

AI holds out the promise to further a classic public value: ef昀椀ciency. 
But greater ef昀椀ciency, such as reducing costs, may come at the expense 
of at least one other important public value: ef昀椀cacy, that is, making sure 
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1 Machine learning is the current dominant paradigm of AI architectures. Its successes across a variety of task domains has leant it something like an aura of 
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that those who are eligible for services receive them. Administrative 
errors hence have a public values con昀氀ict at their center. We argue that 
reducing administrative errors helps to overcome this con昀氀ict — but only 
when the objective function is to identify and minimize all error types, not just 
politically salient ones. With greater accuracy in decision making, mul-
tiple public values can be furthered at the same time. 

This is particularly important today. UI fraud has long been a topic of 
attention and concern. In the US, 296,749 cases of fraud were identi昀椀ed 
in 2019, amounting to $366.8 million (Pallasch, 2020). During the 
COVID-19 pandemic the number of fraudulent claims has increased 
signi昀椀cantly (FBI National Press Of昀椀ce, 2020), resulting in “tens of bil-
lions of dollars in payments” to illegal claimants (Cowley, 2022). At the 
same time, the pandemic has brought attention to non–fraudulent over- 
and underpayments of UI bene昀椀ts and to insuf昀椀cient timeliness with 
which UI claims are decided (De La Garza, 2020). For example, Bank of 
America, which in 12 states delivers bene昀椀ts payments as prepaid debit 
cards, underpaid around 100,000 people a total amount of several 
hundred million USD over 2020–21 (Cowley, 2022). 

The importance of recognizing systemic administrative errors in 
programs like UI has long been emphasized (Kingson & Levin, 1984). 
That AI could be used to identify administrative errors is also well- 
known (Bullock, Young, & Wang, 2020; Charette, 2018). Some classi-
昀椀ers have been used in other studies to detect fraud in Medicare pay-
ments (Bauder & Khoshgoftaar, 2017; Farbmacher, Löw, & Spindler, 
2020; Juan Liu et al., 2016). But the question of which concrete AI- 
technologies can and should be used to address administrative errors 
in a given application domain has not been answered in full. 

We answer this question in three ways. First, we analyze the 
normative considerations involved in using AI to audit administrative 
performance in social bene昀椀ts programs. Second, we test the effect of 
adjusting the decision weights of our best-performing classi昀椀er on its 
ability to correctly identify under-payments in particular. Third, we test 
whether generating and training the model on synthetic data improves 
or otherwise affects system performance. 

Brie昀氀y stated, we 昀椀nd that a random forest classi昀椀er using gradient 
descent boosting, CatBoost, is superior to several different deep 
learning-based classi昀椀ers both for accuracy and explainability. 
Furthermore, while all of the classi昀椀ers tested perform relatively poorly 
on classifying underpayment errors, CatBoost’s performance was sub-
stantially improved by using an alternative decision weight scheme, as 
well as by generating and training the model on synthetic data. These 
performance improvements, however, came at a cost to performance on 
predicting error-free claims as well as overpayments. Both the im-
provements and the losses were signi昀椀cantly more pronounced for 
weighting adjustments than for synthetic data. Our 昀椀ndings suggest that 
the use of AI for auditing UI claims can satisfy multiple public values, but 
this requires particular attention when evaluating alternative technol-
ogies before adoption and implementation. 

2. Background 

The potential for Machine Learning-based Arti昀椀cial Intelligence (AI) 
to transform economic and social activity has captured the world’s 
attention over the past several years. Despite its reputation as a laggard 
with respect to innovation, the public sector has also embraced the 
promise of AI (Glaze, Ho, Ray, & Tsang, 2022). Governments are 
investing heavily in research and development of AI and deploying 
autonomous and intelligent tools and systems (Perrault et al., 2019). 
These investments have led in turn to AI’s use in various areas of public 
service, including the use of facial recognition and predictive analytics 
(i.e., predictive policing) in law enforcement; virtual assistants in human 
services and military recruiting; detecting improper payments and fraud 
in social services; optimizing food safety inspections and discovering 
new drugs in public health; and cybersecurity (Eggers, Schatsky, & 
Viechnicki, 2017; Engstrom, Ho, Sharkey, & Cuéllar, 2020; Wirtz, 
Weyerer, & Geyer, 2019). The use of AI in government decision-making, 

however, is contested: optimism about the technology’s ability to 
improve ef昀椀ciency and reduce administrative burdens is tempered by 
evidence of systematic harmful discrimination in system outputs, the 
inability to adequately explain how some of the most powerful AI ar-
chitectures arrive at their decision outputs, and the risk of serious wrong 
to individuals and societies (Buolamwini & Gebru, 2018; Byrnes, 2016; 
Courtland, 2018; Levy, Chasalow, & Riley, 2021; Young, Himmelreich, 
Bullock, & Kim, 2021). 

2.1. Conceptualizing arti昀椀cial intelligence 

It is necessary to unpack “AI” as a term before proceeding further, 
because its capabilities are distinct from other forms of algorithmic 
governance in profound ways. This is not a straightforward task, how-
ever, because “AI” is an amorphous term. In the broadest sense, “AI” 

includes systems designed to think or act either like rational human 
beings (Russell & Norvig, 2015). For the purposes of this article, we use 
“AI” to refer speci昀椀cally to systems that employ machine learning (ML) 
approaches to make inferences — decisions — from data without explicit 
programming (Witten, Frank, Hall, & Pal, 2016). There are numerous 
different ML architectures, each with their own advantages and disad-
vantages. Two of the most widely adopted and well-known ML archi-
tectures are support vector machines and arti昀椀cial neural networks; 
complex variants of the latter are also known as “deep learning” systems 
(Le et al., 2013). Although our empirical analysis concentrates on the ML 
paradigm in AI in particular, we talk about “AI” more generally in this 
paper (a) because “AI” is the term typically used in public administration 
for this topic, even if ML is meant; (b) because much of our normative 
contribution applies not only to ML but to AI generally, regardless of the 
speci昀椀c paradigm; and (c) our normative contributions also overlap with 
research on “Explainable AI" (XAI) which deals with the tradeoff be-
tween complexity and performance in machine learning-based AI deci-
sion-making.2 

Machine learning has three important dimensions. The 昀椀rst is its 
reliance on data that can be read, manipulated, and processed by stan-
dard computational methods, also known as “machine readable” data. 
Access to machine readable data is of such fundamental importance to 
AI that data digitization and operation efforts account for more than half 
of all AI-related investment (The Economist, 2020). The second 
dimension of ML is its learning process. This process takes three general 
forms: supervised, unsupervised, and reinforcement (Russell & Norvig, 
2015). ML’s 昀椀nal dimension is the use of stochastic learning and opti-
mization techniques in many of its functional forms. This introduces 
inherent uncertainty in ML processes in exchange for signi昀椀cant per-
formance increases. 

These features differentiate AI as used here from other approaches to 
arti昀椀cial intelligence such as “expert systems.” Expert systems use pre-
determined criteria to analyze structured data. Except for “edge case” 

inputs that result in system failure, any output can be used to determine 
the initial input factors through reverse process engineering. Unlike 
expert systems, most modern AI applications — and all of the more 
powerful, complex forms, such as neural networks — are stochastic. This 
means that AI is not deterministic in the same way as expert systems; you 
cannot reverse engineer a decision reached by an AI with certainty 
despite having complete knowledge of all available input variables/ 
features. This is re昀氀ected in how computer scientists evaluate AI deci-
sion performance: AI is evaluated probabilistically (e.g., a 93% success 
rate at making the correct classi昀椀cation decision), rather than in terms of 
absolute 昀椀delity. Moreover, the 昀椀nal architecture of any AI system after 
it has been trained is fundamentally unique — even when the trainer 
uses identical initial architectures and training data. This critical 
distinction makes the use of AI in administrative decision-making more 

2 See e.g., https://www.darpa.mil/program/explainable-arti昀椀cial-intellig 
ence 
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like the use of human labor in real time: just as human agents will sys-
tematically differ — even slightly — in their weighing of identical de-
cision criteria, so too will AI. 

2.2. Arti昀椀cial intelligence in public administration and management 

The theoretical and practical implications of this technology have 
not gone unnoticed in the research community. Public administration 
scholarship has seen a marked increase over the last several years in the 
attention paid to public sector AI implementation. Theoretically driven 
work has identi昀椀ed different conceptual approaches for understanding 
and governing public sector AI. These include networked, intersectoral 
approaches (Wirtz & Müller, 2019; Wirtz, Weyerer, & Sturm, 2020); 
those using a systems engineering approach to understand the rela-
tionship between social and technological characteristics and relations 
(Janssen, Brous, Estevez, Barbosa, & Janowski, 2020; Janssen & Kuk, 
2016); and approaches that focus on the type of task, its associated in-
formation requirements, and the level of discretion required (Bullock, 
2019; van der Voort, Klievink, Arnaboldi, & Meijer, 2019; Young, 
Bullock, & Lecy, 2019). 

Other theoretical, and often normative, work considers some of the 
particular challenges governments face when using AI. One of these is 
AI’s inverse relationship between analytic power and explainability. As 
the dimensionality of analysis increases, it becomes correspondingly 
harder to explain the decision process developed by the AI in ways 
intelligible to humans (Danks, 2022). A speci昀椀c sub-domain of AI 
research — Explainable AI (XAI) — focuses on this problem (de Bruijn, 
Warnier, & Janssen, 2021). The second challenge is AI’s proclivity for 
optimizing its decision approach in ways contrary to the user’s broader 
values. Harmless examples include AI systems trained to beat speed or 
score records in video games, succeeding by effectively hacking the 
game instead of playing it (Amodei et al., 2016). In public organizations, 
however, AI can optimize around systematic biases embedded in 
training and reinforcement data, harming vulnerable individuals and 
populations, or violating legal statute and ethical norms on equality 
under the law (Janssen & Kuk, 2016; Young, Himmelreich, Bullock, & 
Kim, 2021). As with explainability, this problem motivates active 
research on data governance and bias minimization in AI (Janssen et al., 
2020). 

Empirical work on public sector AI is similarly multifaceted. Some 
seek to understand the factors in昀氀uencing the implementation decision 
(Alshahrani, Dennehy, & Mäntymäki, 2021; Mikalef et al., 2021). 
Another vein of empirical research focuses on the individuals and their 
experience with public sector AI. These include studies of individuals’ 

acceptance of being subject to AI-enabled processes, and citizens’ level 
of trust in AI-mediated interactions with government (Doberstein, 
Charbonneau, Morin, & Despatie, 2021; Huang, Kim, Young, & Bullock, 
2021; Ingrams, Kaufmann, & Jacobs, 2021). Others examine the effect of 
AI implementation on the exercise of discretion — the latitude indi-
vidual agents have to shape administrative decisions and tasks –within 
public organizations (Bullock et al., 2020; Criado, Valero, & Villodre, 
2020; Flügge, Hildebrandt, & Møller, 2021). Another branch of 
organizational-level research includes studies of AI’s potential to 
improve public sector organizational processes, such as optimizing 
public transportation in response to citizen requests (Kim & Hong, 
2021). 

This research contributes to this latter line of empirical inquiry by 
simulating the use of AI as an audit support tool. Because administrative 
decisions regarding program eligibility and appropriate bene昀椀t levels 
carry signi昀椀cant distributional consequences at both the individual and 
social level, we also contribute to the normative debates on government 
use of AI. 

AI and algorithmic decision making play an increasingly prominent 
role in the public sector. It has been used to con昀椀rm the identity of 
taxpayers online, to enforce regulations at the SEC, and to determine 
whether a suspect is granted bail, and whether an immigrant is detained. 

AI is used in criminal justice, public health, child-welfare, education, 
policing, and regulatory enforcement (Bullock et al., 2020; Engstrom 
et al., 2020; Levy et al., 2021). One example: As the COVID-19 pandemic 
ravaged prisons, who had to stay in prison and who was released to 
shelter at home was determined by predictions of inmates’ recidivism 
risk.3 

In each decision, the stakes are high and the impacts are profound 
(Eubanks, 2018; O’Neil, 2017). Thus, general theoretical frameworks 
are being developed to guide the development and deployment of AI in 
the public sector (Young et al., 2019). In the next section, we lay out the 
normative issues embedded in our study before turning to the empirical 
policy context and data generative process. 

2.3. Public values of unemployment insurance 

This article has not only a descriptive but also an evaluative aim, 
namely, to provide a normative lens on the use of AI for unemployment 
insurance (UI) and improper payments. In the following, we draw on the 
well-known approach of public values to present a way of evaluating the 
use of AI to detect improper payments in UI (Fukumoto & Bozeman, 
2019; Jørgensen & Bozeman, 2007; Nabatchi, 2018). We 昀椀rst offer an 
analysis of what values UI should further. This clari昀椀es the dimensions 
of the normative assessment. We then, in a second step, defend the 
plausibility of three propositions on when and how AI should be used to 
detect improper payments in UI. 

For this analysis, we need to step back from our focus on adminis-
trative errors and consider the larger process of UI claims. For simplicity, 
we model the UI claim application process as two-stage selection oper-
ating on an initial set of individuals, the population. Each individual in 
the population is either eligible or ineligible for UI. The 昀椀rst stage — 

which cannot be observed in our data — consists in individuals’ de-
cisions to 昀椀le an UI claim. Presumably, most of those who decide to 昀椀le a 
UI claim are in fact eligible, but some are not — some might think that 
they are eligible although they are not, and some of those who 昀椀le might 
attempt to defraud UI. Likewise, most of those who decide not to 昀椀le a UI 
claim are ineligible, but some eligible individuals do not 昀椀le either 
because they might not know that they are eligible for UI or they decide 
against 昀椀ling for other reasons. From the 昀椀rst stage, we concentrate on 
those individuals who 昀椀led claims for UI, some of which are ineligible. 

The second stage, from which our data are sampled, consists in the 
eligibility determination and claims decision by state workforce 
agencies. Again, presumably most of those who are deemed eligible are 
in fact eligible, but some are not. And most of those who are deemed 
ineligible are truly ineligible, but some are not. Errors can be over-
payments, that is, individuals who were deemed eligible although they 
are in fact not eligible, as well as underpayments, that is, individuals who 
were deemed ineligible although they are in fact eligible.4 

This is, of course, a vastly simpli昀椀ed and highly schematic model of 
how UI works. For example, decisions about eligibility and fraud are not 
all made at the same time — but we collapsed these processes into the 
second stage. Moreover, determinations are not a binary classi昀椀cation, 
as we assume here. Yet, despite these simpli昀椀cations, this model allows 
us to bring out some of the normatively relevant features of UI. The 
model allows us to approach the questions of when and how AI should be 
used to detect improper payments. 

A prominent method for normative analysis in public administration 
is the public values approach. Questions around ethical and professional 

3 The CARES Act of 2020 extended the maximum time of existing home 
con昀椀nement rules, which already require a risk assessment. This risk assess-
ment is performed by PATTERN (Prisoner Assessment Tool Targeting Estimated 
Risk and Need) which was created in response to the First Step Act of 2018.  

4 Under- and over-payments can also occur when claimants were both duly 
eligible to receive bene昀椀ts and received them; some receive more than they 
were supposed to, and some less. 
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values are fundamental to the 昀椀eld of public administration. They have 
played a prominent role in the 昀椀eld’s history — from Frank Goodnow’s 
and Leonard White’s views on managerialism vs. legalism, via the 
Simon–Waldo debate, to the Minnowbrook conferences — and such 
discussions play an increasingly prominent role today (van der Wal, 
Graaf, & Lawton, 2011; Van der Wal, Nabatchi, & Graaf, 2015). In 
addition to debating the inventory of values, their content, and their 
importance in the abstract, value analyses have been used to develop 
sector- or service-speci昀椀c normative frameworks, for example for public 
infrastructure and utilities in the face of privatization (De Bruijn & 
Dicke, 2006). Our contribution here aims to likewise offer an 
application-speci昀椀c value-based evaluative framework. At the same 
time, however, it should be acknowledged that the approach of public 
values has serious potential limitations: The collection of values can 
seem arbitrary, values are seen as exogenous to public administration 
such as originating from branches of government, the law, politics, or 
democratic ideals, and “laundry lists” insuf昀椀ciently arbitrate value 
con昀氀icts (Heath, 2020, 51–53). 

We place our normative contribution within the recent literature on 
public values (Fukumoto & Bozeman, 2019; Jørgensen & Bozeman, 
2007; Nabatchi, 2018). Drawing on such existing inventories of public 
values, we argue that at least four values are relevant to UI. We argue 
that UI should simultaneously further ef昀椀ciency, ef昀椀cacy, integrity, and 
equity. Each of these values has different dimensions or aspects that we 
articulate below. Our focus is not on the values themselves nor on their 
foundations, but on con昀氀icts between them. That is, we contend neither 
that the following values are exhaustive of the values relevant to UI, nor 
do we suggest that these four values are more important than other 
values not mentioned here. Instead, the following four values are 
noteworthy for UI because they tend to con昀氀ict with one another, 
especially in con昀氀icts that manifest in policies that govern agency de-
cisions. AI embodies such policies and centralizes them at scale. The 
con昀氀icts between the four values are thus central to evaluate the use of 
AI in supporting agency decision-making. In the interest of ecumenism, 
we articulate the values in a way that should be acceptable to many 
without relying on any particular moral or political theory. As such, UI 
should further at least the following four principal values:  

1. Ef昀椀cacy: provide insurance payments to those who are eligible in a 
convenient and timely manner.  
a. Opportunity: enable individuals who are likely eligible to apply, e. 

g., offer an application process that is convenient for eligible 
claimants.  

b. Payment: render goods/services for eligible claims to claimants 
quickly.  

c. Avoid underpayment: minimize under-payment, i.e., reduce false 
negative eligibility.  

2. Ef昀椀ciency: reduce unnecessary monetary cost.  
a. Cost: minimize cost of administering insurance claims.  
b. Avoid overpayment: minimize sum of overpayment amounts, i.e., 

reduce false positive eligibility.  
3. Integrity: make determinations based on consistent policy; ensure 

quality and safety of both model and data.  
a. Audit: audit and assess quality of the training data.  
b. Privacy: protect sensitive claimant data; avoid data breaches.  
c. Explainability: Provide explanations of how eligibility decisions 

are made (i) in general, and/or (ii) in any particular case.  
d. Agency: at least at high-stakes decisions, retain the authority and 

agency to decide what data, methods, and modeling techniques 
are used. 

4. Equity: avoid that protected groups are disadvantaged or discrimi-
nated against.  
a. Error Parity: the false negative rate, i.e., rate of underpayment, in 

determining eligibility should be the same across all protected 
groups.  

b. Predictive Parity: the probability that an individual, who was 
determined to be ineligible, is actually ineligible should be the 
same across all protected groups. 

Ef昀椀cacy formulates one central aim of UI, namely, to provide insur-
ance payments. This value is fundamental and intrinsic to the very idea 
of UI. Notable, given our two-stage model of the process, the value of 
ef昀椀cacy is relevant already at the point at which individuals decide 
whether or not to claim UI — what we called the 昀椀rst stage (opportunity). 
In the second stage, when workforce agencies make claim decisions, 
ef昀椀cacy demands that underpayments are avoided and that payments 
are made quickly (payment and avoid underpayment). 

Ef昀椀cacy is grounded in widely recognized public values. Insofar as 
the workforce agencies carry out existing law, “ef昀椀cacy” refers to the 
satisfaction of individual legal rights and procedural due process. Ef昀椀-
cacy is hence rooted in a legal value frame (Nabatchi, 2018). In the case 
of UI speci昀椀cally, ef昀椀cacy moreover rests on public values in the cate-
gory “public sector’s contribution to society” (Jørgensen & Bozeman, 
2007), such as social cohesion, altruism, and human dignity. This is 
because the administration of UI — supporting those eligible for un-
employment bene昀椀ts — is arguably a form of altruistic cooperation that 
furthers social cohesion and ought to respect human dignity. 

However, although the public values to which “ef昀椀cacy” refers are 
widely recognized, the name “ef昀椀cacy” is not often used in the public 
values literature.5 This might be because ef昀椀cacy is implied by ef昀椀-
ciency, at least on one de昀椀nition of “ef昀椀ciency”.6 Moreover, this might 
be because of a difference in topical focus: Ef昀椀cacy is a property of a 
concrete government program, such as our topic here. By contrast, it 
seems less natural to speak of the “ef昀椀cacy of public administration” as a 
whole, which is the topic of the public values literature. 

Ef昀椀ciency, the second principal value, re昀氀ects a 昀椀duciary obligation 
to avoid unnecessary costs. It means cost-savings and cost-ef昀椀ciency 
(cost) and is hence rooted in a market-based value frame (Nabatchi, 
2018; Stone, 2011), and in long-standing discussions in public admin-
istration around the role of managerial and business values (Bozeman, 
2007). Beyond administrative expenses, ef昀椀ciency is increased with the 
accuracy of claim decisions. Speci昀椀cally, unnecessary costs are reduced 
when overpayments are reduced (avoid overpayment). 

Third, the value of integrity re昀氀ects a different kind of due process 
consideration. If a workforce agency had an AI model that is highly 
accurate in determining eligibility determinations, this model could still 
be lacking in public values, despite its good performance. Integrity refers 
to concerns about auditability, privacy, explainability, as well as agency 
or sovereignty over central modeling choices. 

One important dimension of integrity is explainability. When AI is 
used for decision-making, explainability requires that this use of AI is 
both scrutable (in some sense) as well as intuitive. ML models often fail 
on both counts (Selbst & Barocas, 2018). This distinction is important: 
an explanation might be correct but hard to understand for anyone but 
experts. The question of what makes a “good” explanation thus raises 
substantive, dif昀椀cult, and relevant issues of ethics, philosophy, and 
policy (Danks, 2022). 

Explainability is an important value for intrinsic as well as for 
instrumental reasons. Intrinsically, the idea that a government agency 
can explain its decisions, even when they are made by AI, is rooted in 
democratic theory (Binns, 2022). Instrumentally, explainability, 昀椀rstly, 
could help prevent future mistakes — assuming that it allows that causes 
of administrative errors are recognized, understood, and recti昀椀ed faster 
(Young, Himmelreich, Bullock, & Kim, 2021). Secondly, explainability 

5 Pugh (1991, p. 10), however, lists “ef昀椀cacy” as one of the main content 
values of the bureaucratic ethos.  

6 When “ef昀椀ciency” is de昀椀ned as a ratio of output to input that is to be 
maximized, then this implies both ef昀椀cacy (i.e. increase “output”) as well as 
cost-savings (i.e. decrease “input”). 
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is instrumentally valuable insofar as it allows to document reasons for 
which decisions were reached. In this way, explainability instrumentally 
promotes the public value of procedural due process or rule of law 
(Jørgensen & Bozeman, 2007; Nabatchi, 2018). Thirdly, explainability is 
necessary to protect citizens’ means for self-advocacy (Vredenburgh, 
2022). Finally, explainability might be a central tool for AI governance 
(Danks, 2022). 

Fourth, eligibility determinations for UI should also be non- 
discriminatory. This is re昀氀ected in the value of equity. We operation-
alize “equity” using two well-known de昀椀nitions of statistical fairness. On 
one de昀椀nition, error parity, fairness is achieved just in case the rate of 
underpayments is the same across all protected groups. On another 
de昀椀nition, predictive parity, fairness is achieved just in case the proba-
bility that an individual, who was determined to be ineligible for UI, is in 
fact ineligible should be the same across all protected groups. 

This, in sum, gives us a public values framework for a normative 
evaluation of UI. Ef昀椀ciency and ef昀椀cacy arguably conceptualize what 
motivated the creation of the UI system, what informs its legal back-
ground, what shapes how UI is administered, and what the public ex-
pects of UI. Integrity and equity are crucial public values that have their 
origin variably in constitutional law, administrative law, deliberative 
democracy, theories of citizenship, and, again, legitimate expectations 
towards UI. 

2.4. Con昀氀icts between public values of unemployment insurance 

Con昀氀icts between public values are a foundational topic in public 
administration (van der Wal et al., 2011). The public values of UI can 
con昀氀ict insofar as they require policy makers and administrators to 
make choices that further one value at the expense of another and vice 
versa. For example, the application process could be automated further 
to reduce costs — in line with the value that we call cost above — but this 
might diminish the quality of service that claimants experience and 
hence be a reduction of what we call above the value of opportunity. This 
is a clear con昀氀ict of public values in the 昀椀rst stage of the claims process. 

2.4.1. The ef昀椀ciency–ef昀椀cacy con昀氀ict in claims decisions 
Ef昀椀ciency and ef昀椀cacy likewise con昀氀ict in the second stage, when 

claims are decided. Ef昀椀ciency demands to avoid overpayment, whereas 
ef昀椀cacy demands to avoid underpayment. An increase in one value leads 
to a decrease in the other. This con昀氀ict arises because claim eligibility is 
hard to measure. Eligibility is estimated and mistakes happen. Work-
force agencies estimate whether a submitted claim is eligible, but these 
estimates are not perfectly accurate. We call their estimates the “eligi-
bility score.” 

The public values con昀氀ict consists in the fact that, in terms of this 
eligibility score, the distributions of claims that are in fact eligible and 
those that are not, overlap. This is a form of uncertainty. In the worst 
case, for any given eligibility score, a claim may be eligible, or it may not 
be. To deal with this uncertainty, workforce agencies hence need to 
decide whether to accept a claim, given a certain eligibility score. Where 
should they draw the line so that all claims with an eligibility score that 
is below this point are rejected and all claims with an eligibility score 
that is above this line are accepted? Fig. 1, adapted from Young, Him-
melreich, Honcharov, and Soundarajan (2021) illustrates this con昀氀ict. 

This con昀氀ict between ef昀椀ciency and ef昀椀cacy arises even when no 
eligibility scores are used explicitly. Classical statistical hypothesis 
testing teaches that efforts to reduce the odds of doing the wrong thing 
(a Type I error) generally increase the odds of not doing the right thing 
(a Type II error). It is therefore reasonable to assume that efforts to 
prevent improper overpayments correspondingly make it more likely 
that improper underpayments will occur. 

This con昀氀ict can play out along multiple causal pathways. For 
example, fraud might be reduced by requiring claimants to prove having 
quali昀椀ed dependents in triplicate instead of a single source. This 
requirement may cause some recipients to become ineligible even 

though they are, in fact, eligible. Underpayment errors would result on 
the margin for the appropriate dependent allowance, or in full if the 
recipient’s claim is placed on administrative hold pending determina-
tion or if a claimant elects to not to complete their application or appeal 
in light of the additional documentation required. 

It should be noted that different errors are associated with vastly 
different practical results. Failing to detect an underpayment is different 
from failing to detect an overpayment, both from ethical and economic 
perspectives. From the claimants perspective, failing to detect an un-
derpayment is usually worse than failing to detect an overpayment. The 
practical consequences of not receiving claims because an agency 
mistakenly determined them to be ineligible are severe (De La Garza, 
2020; Eubanks, 2018). 

This con昀氀ict between ef昀椀ciency and ef昀椀cacy is relevant for two 
reasons. First, the con昀氀ict can inform an analysis of the legal and policy 
history. We argue in the next section that social insurance programs in 
the US tend to focus on ef昀椀ciency. Second, the con昀氀ict motivates our 
investigation into the use of AI to identify administrative errors, which 
we undertake in the subsequent sections. Avoiding under- and over- 
payment is immediately relevant to automatic classi昀椀cation (because 
these two values are related to avoiding false negatives and positives 
respectively). AI could be a way of partially overcoming the con昀氀ict 
between ef昀椀ciency and ef昀椀cacy. 

2.4.2. Con昀氀icts of integrity and equity 
Two further con昀氀icts within these public values should be mentioned 

— very brie昀氀y since in the literature on the ethics of AI, both are 
considered rather general and well-known tradeoffs (Andrus, Spitzer, 
Brown, & Xiang, 2021; Kleinberg, Lakkaraju, Leskovec, Ludwig, & 
Mullainathan, 2018; Kleinberg, Mullainathan, & Raghavan, 2016). First, 
equity and privacy (a dimension of integrity) might con昀氀ict. To check 
whether a system upholds equity, one might need to reduce privacy. 
Speci昀椀cally, to check that a system does not discriminate based on 
protected characteristics—such as gender, age, sexual orientation, or 
race—one needs data on these protected characteristics, which, 
depending on the nature of the data, can be a signi昀椀cant privacy risk. 

Second, there is a public values con昀氀ict internal to equity. The two 
dimensions of equity, error parity and predictive parity, are themselves in 
tension with one another under realistic conditions (Kleinberg et al., 
2016). This is a so-far under-investigated and un-addressed challenge for 
equity in welfare systems. Some contend that this con昀氀ict can be seen as 
a con昀氀ict between procedural fairness (such as equal treatment, here: 
predictive parity) and reasons of justice (here: error parity), similarly to 
how af昀椀rmative action furthers justice at the expense of procedural 
fairness (Vrendenburgh, 2022). 

Fig. 1. Illustrated con昀氀ict between avoiding over- and under-payments by 
decision policy. 
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2.5. Empirical context 

Unemployment Insurance in the United States was created by the 
1935 Social Security Act. Employees who meet eligibility criteria can 
apply to receive these bene昀椀ts if their current employment tenure ends. 
It is a devolved program; the federal government covers overhead costs 
and provides broad-based oversight, while State governments 昀椀nance 
and implement the program individually. This devolution also applies to 
eligibility and bene昀椀t amount criteria, which can vary substantially 
across States and within any given State over time. Such changes are 
frequent, because UI is both a primary tool for countercyclical economic 
stimulus in recessionary periods when unemployment increases, and a 
highly visible and politicized program at both the state and national 
level. This combination of institutional variation and high political 
salience makes UI a highly complex administrative program. Its 
complexity, in turn, increases the risk of administrative errors — mis-
takes in determining the eligibility status of a claim and/or the amount 
of bene昀椀t the claimant is entitled to receive. When such errors occur 
frequently enough in programs that are as large as welfare, Medicare, or 
UI, the result is a signi昀椀cant misallocation of public money. 

2.5.1. Institutional history: focus on overpayments 
The US federal government began to take a hardline approach on 

combating administrative errors in UI during the 1970s in a “war on 
fraud and error” (Brodkin & Lipsky, 1983; Matt & Cook, 1993). As the 
name of this ‘war’ would suggest, the political goal of reducing or 
eliminating UI payments made to individuals who were not only 
receiving bene昀椀ts they were statutorily ineligible for, but were actively 
defrauding the government in the process (Mendeloff, 1977). 

The current process for auditing unemployment insurance claims is 
known as the Bene昀椀ts Accuracy Measurement (BAM) program. BAM 
auditors take a statistically representative, randomized sample of all 
claims submitted to each State unemployment agency and audit this 
sample to 昀椀nd errors in both claimant data and administrative decisions 
on eligibility and bene昀椀t level determination. Over the past 20 years 
federal oversight has increasingly focused on the identi昀椀cation and re-
covery of improper payments — particularly overpayments — made 
through social insurance policies, including unemployment insurance. 
As part of this focus Congress has passed several laws producing per-
formance management requirements for State unemployment adminis-
trators to demonstrate that they are proactively seeking, identifying, and 
correcting overpayments in their unemployment insurance programs. 
However, no such statutory focus exists with respect to the underpay-
ment of unemployment insurance bene昀椀ts. This discrepancy recently 
came to the fore during the COVID-19 induced unemployment surge in 
the United States during 2020. Individual and collective harms from 
systematic wrongful denial and underpayment of unemployment in-
surance bene昀椀ts proved to be substantial. At the same time, little has 
been done at the policy level to identify solutions for this problem going 
forward. 

This research tests whether AI systems can help administrators 
identify all types of administrative errors in unemployment claim de-
cisions — both overpayments and underpayments, as well as any other 
systematized errors. This is particularly relevant for practitioners 
because unemployment insurance is such a highly complex and 
complicated bene昀椀t program. The high level of variation between States 
and within States over time suggests that the underlying error rate of UI 
administration is high. To the extent that AI-based automation can both 
increase the scope and scale while decreasing the time and labor costs 
required to perform such audits, there are strong normative claims for 
using this technology on ef昀椀ciency as well as ef昀椀cacy grounds. But we 
argue that a more complete normative consideration also requires an 
empirical assessment of whether such AI systems may also improve our 
ability to identify and correct underpayments to eligible bene昀椀ciaries. 

3. Methods 

3.1. Data 

The dataset used in this analysis was sampled from the Bene昀椀ts Ac-
curacy Measurement system of the Department of Labor. This dataset 
contains information about randomly sampled investigations into UI 
claims: speci昀椀cally, federally-collected information of improper UI 
payments. There are 785,159 observations in the 昀椀nal, analysis-ready 
dataset. Each observation contains information about one unemploy-
ment bene昀椀ts claim made during the years 2002–2018 in the form of 
228 features (variables). These features contain personal information of 
the claimant (date of birth, gender, race, etc), information about the last 
employment of the claimant (occupation code, salary, etc), information 
about the interaction between the claimant and agency (how the claim 
was 昀椀led, whether it was submitted on time or not, etc.), as well as other 
information. Additionally, we include data on state-level policy differ-
ences in UI eligibility requirements and bene昀椀t determination criteria, 
merged by State and corresponding year. 

3.2. Analytic strategy 

In this work we treat the problem of detecting administrative errors 
as a classi昀椀cation problem. Classi昀椀cation (sometimes called categori-
zation) is one of the most fundamental problems in machine learning. It 
assumes that all observations or datapoints (sometimes called data 
samples) belong to a limited set of categories or classes, and the goal is to 
predict the category of the datapoint from its features. A simple example 
of a classi昀椀cation problem is spam detection, in which new incoming 
emails should be categorized into two categories: “spam” and “non- 
spam.” Each email has a set of features, such as its content, its length and 
the words used, as well as from where the email was sent. To solve the 
classi昀椀cation problem, an algorithm uses these features of past emails 
together with each email’s known category — spam or non-spam — to 
train a new algorithm, a model, that describes those features that 
distinguish spam emails from non-spam emails. This new algorithm is 
then applied to incoming emails to determine whether they are spam or 
not. 

In this work, we similarly use a supervised learning approach. Such 
an approach assumes that the categories, denoted by labels (such as 
“spam” and “non-spam”), are given for the sample, so that patterns 
between features and labels can be learned. In this work, we use ma-
chine learning algorithms to predict administrative errors. Thus, the 
features in our data describe various pieces of information about UI 
claims and class labels describe the types of possible errors (e.g., “No 
error,” “Underpayment,” etc). Different methods are available to train a 
model with the labeled samples in order to predict labels on the unla-
beled instances. Next, we describe the various machine learning ap-
proaches that we used and their obtained results. 

3.2.1. Overview of machine learning classi昀椀cation 
As discussed above, classi昀椀cation in machine learning can be de昀椀ned 

as a problem of predicting labels of the data points (data samples). Each 
data point has a corresponding vector of the features, which describe 
that sample. For example, for the spam detection problem, possible 
features include the number of words in the text, speci昀椀c words (or their 
combinations) used in the email, url addresses in the email (which can 
be used to detect suspicious websites), time of the email, etc. Features 
can appear in different formats: categorical features, which have values 
drawn from a limited set of possible values (for example, dog vs. cat); 
numerical features, which take on a numerical value; text features; 
image-based features; and others. Many machine learning algorithms 
expect input features to be in numerical form, and various approaches 
exist to convert non-numerical features into numerical features. 

In addition to these features, a machine learning algorithm also 
needs a subset of data for which samples are labeled with their category 
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or class. Ultimately, the machine learning model will be trained on this 
subset, and patterns connecting the features to the class label will be 
extracted. In supervised machine learning, these categories are assumed 
to be known — for example, they could be annotated manually by 
humans, or the process of data collection may be such that categories are 
obtained alongside data, and so on. 

These labeled samples are used to train the model. During the 
training process, the machine learning algorithm tries to infer patterns 
in the features to distinguish different categories — for example, “spam” 

emails may have some speci昀椀c words that are rarely used in the usual 
emails, or they may be sent from some speci昀椀c set of domains. In 
contrast, “non-spam” emails may be more likely to come from the same 
domain as the recipient of the email, or sent from addresses that have 
already been replied to by the recipient. The trained model is used to 
predict categories of non-labeled samples in an automated way. In 
addition to making predictions about unlabeled data points, ML algo-
rithms can be used to better understand the data. For instance, algo-
rithms can identify those features that are most important for 
classi昀椀cation, giving the analyst insight into properties distinguishing 
between classes of data points. 

For certain classes of algorithms (e.g., those based on decision trees), 
feature importance can be extracted directly from the model. For other 
algorithms, it is possible to infer the most important features through 
local permutation of the samples (i.e., make slight modi昀椀cations to 
feature values and observe how the predicted label changes) (Baehrens 
et al., 2010). In the case of longitudinal data, such algorithms may help 
to identify changes over time. Additionally, as different ML models 
operate under speci昀椀c assumptions about structure of the patterns that 
may exist in the data, even the performance of various algorithms may 
reveal additional information, leading to better understanding of the 
dataset. 

The choice of a classi昀椀cation algorithm gives rise to public values 
con昀氀icts. Insofar as different machine learning algorithms are better or 
worse at enabling an increased understanding of the data or of the 
classi昀椀cation, as described here, the algorithms ful昀椀ll the public values 
of integrity, especially its dimensions of audit and explanation, to 
different degrees. Some algorithms might be more accurate at the 
expense of fewer insights into feature importance. Or some algorithms 
might be more accurate at the expense of needing more, and perhaps 
more sensitive data — a potential privacy risk. The choice of a classi昀椀-
cation algorithm thus may give rise to con昀氀icts between ef昀椀cacy and 
ef昀椀ciency on the one hand and integrity on the other. 

3.2.2. CatBoost: decision tree-based classi昀椀cation 
For the sake of performing a thorough analysis, we use several 

classi昀椀cation algorithms, which are listed in the Experimental Setup 
section. Here, for purposes of illustration, we describe one of them: the 
CatBoost algorithm. CatBoost belongs to the family of gradient boosting 
classi昀椀ers. This type of model combines multiple decision trees into a 
single model. A decision tree is a 昀氀owchart-like object in which feature 
values are used to determine which branch in the 昀氀owchart to take, until 
a prediction is arrived at (Jain & Srivastava, 2013). During construction 
of the decision tree, the algorithm iteratively selects the feature that is 
the most useful for predicting the label, and builds a corresponding 
branch of the tree, thus splitting the dataset according to the selected 
feature. 

CatBoost (and gradient boosting models in general) are based on an 
important observation: combining predictions of multiple simple models 
is better than using a single model. An entire class of models builds a set 
of decision trees such that every new tree is trained to correct errors of 
previously trained trees. Several models operate under this general 
framework, including XGBoost (eXtreme Gradient Boosting (Chen, He, 
Benesty, Khotilovich, & Tang, 2015)), LightGBM (Ke et al., 2017), 
AdaBoost (Friedman, Hastie, & Tibshirani, 2000), and CatBoost. 

Although these algorithms often perform similarly, the main 
advantage of CatBoost over other algorithms from the family of gradient 

boosting models is that it was created to address a problem known as 
prediction shift. Prediction shift can be de昀椀ned as a variation of target 
leakage, which happens when classi昀椀ers during training implicitly get 
access to the information about the label of the sample in the way that is 
impossible for unlabeled data during prediction. This happens because 
when trees are trained iteratively, the gradients of the error reveal in-
formation about the target variables. 

CatBoost addresses prediction shift with ordered boosting (a 
weighted sampling method). In this work, we use the “MultiClass” 

optimization from the original CatBoost implementation, which uses a 
Multiclass Cross-Entropy Loss (log-loss) function given by: 

MCE =

3N
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where aij represents the predicted probability that element i belongs to 
class j and the wi values represent weights associated with each element. 

Additionally, CatBoost generates new features during the training 
process. These features are de昀椀ned as a combination of existing features. 
As the number of possible combinations of features on the big dataset is 
huge, CatBoost constructs new features according to a greedy heuristic 
to approximate the true global optima. 

3.3. Experimental setup 

3.3.1. Preprocessing of the dataset 
To prepare the dataset for analysis, we 昀椀rst removed all features that 

could act as a direct proxy to the target variables. Next, for all models 
except CatBoost, all non-numeric features were converted to a cate-
gorical binary representation (one-hot encoding). As this representation 
is very sparse, some of the features were removed to reduce dimen-
sionality of the data. CatBoost is able to work with some non-numeric (e. 
g., text features) features by design, assuming their categorical type. 

3.3.2. Algorithms tested 
We evaluated several different ML classi昀椀er algorithms to test for 

variation in performance against the audit data. These include:  

1. Logistic regression (LR). This algorithm is simple, but is commonly 
used for classi昀椀cation problems. While originally designed for the 
binary classi昀椀cation, it can be used for multi-class classi昀椀cation with 
one-vs-all scheme (where a different LR model is trained for each 
class).  

2. Random Forests (RF). This algorithm is an ensemble-based algorithm 
which uses multiple decision trees trained on the different subsets of 
the data.  

3. CatBoost. This algorithm, described in more detail above, is based on 
the idea of Gradient Boosting.  

4. Several deep learning-based models:  
a. TabNet (Arik & P昀椀ster, 2019). This DL model was created by 

Google for neural network learning on tabular data. It uses 
sequential attention and, similarly to the Gradient Boosting 
models, allows insight into structural patterns in the data.  

b. DeepFM (Guo et al., 2018). This model was created for use in 
recommender systems and uses factorization machines together 
with neural networks. While it was not created for tabular data 
speci昀椀cally, it may be used with this type of data, and we include 
it for completeness.  

c. WideDeep (Cheng et al., 2016). This neural network was created 
by Google for recommender systems. It combines “wide” linear 
models and “deep” neural networks. Similarly to DeepFM, it can 
be used for the tabular data.  

d. Deep & Cross Network (DCN) (Wang, Fu, Fu, & Wang, 2017). This 
model is based on the idea of feature crossing (generation of new 
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features based on existing ones). This model also works well for 
the tabular data. 

To evaluate the performance of a model, we need to compare pre-
dictions on a subset of data with known labels. This subset of data is 
usually referred to as a “test” set or “holdout” set. This data should be 
excluded from the training process, as it is important that the model is 
not familiar with the testing data. 

Two scenarios were considered. In the 昀椀rst scenario the whole 
dataset was split into two parts — the “training” set and the “test” set, 
consisting of 80% and 20% of the data, respectively. The “training” set 
was used for the training of the model and the “test” set was used for the 
evaluation. In the second scenario, dataset models were evaluated only 
on one speci昀椀c year of claims and trained on the data from one (a) or 
three (b) previous years. This setting is more realistic, as in this case the 
model is not able to utilize patterns observable in the current year and 
has to rely only on previous observations. 

3.4. Evaluation metrics 

Each sample of the dataset is a UI claim that was randomly selected 
to be investigated for incorrect payments. There are several different 
categories that datapoint can belong to: “No error,” “Overpayment,” 

“Underpayment,” or “Wrong issue.” A “No error” label means that the 
claim was processed without any errors, “Overpayment” denotes a claim 
with excessively paid bene昀椀ts, and “Underpayment” labels claims with 
incorrectly low bene昀椀ts. “Wrong issue” means that an error unrelated to 
payment in the claim was made. 

The dataset is highly imbalanced, as shown in Table 1. Most of the 
claims belong to the “No Error” class. This fact needs to be accounted for 
during model evaluation. To understand why, suppose that we evaluate 
the model just by percentage of claims with correctly inferred class. In 
this case a simple classi昀椀er that makes the “No Error” prediction every 
time would have a relatively high accuracy of 80%, while being abso-
lutely useless at the same time. To address this, one can use the F1-score 
to evaluate accuracy. To de昀椀ne F1-score we need to de昀椀ne some other 
metrics that are commonly used in evaluation of ML models:  

1. Precision: The fraction of the correctly predicted instances from a 
class over all predicted instances of the class. In other words, preci-
sion with respect to a particular class is de昀椀ned as the number of true 
positives divided by sum of true positives and false positives 
P = TP/(TP+ TN).

2. Recall: The fraction of the relevant instances which were correctly 
predicted. This can also be de昀椀ned as the number of true positives 
divided by the sum of true positives and false negatives 
R = TP/(TP+FN).

The F1-score is the harmonic mean of these two measures: 

F1 =
2P*R

P + R 

For the multi-class setting there are two ways to compute the F1- 
score:  

1. Precision, recall, and F1-score may be computed separately for each 
class. The macro-F1 score is then computed as the unweighted mean 
of these class F1-scores.  

2. Precision and recall may be computed globally for all classes at the 
same time. The micro-F1 score is computed from this single precision 
and recall value. 

3.5. Addressing imbalances in the dataset 

As the dataset is very imbalanced, each model tends to predict most 
of the claims as belonging to the “No error” class. This leads to low recall 
performance of less frequent classes (i.e., many members of these classes 
are not identi昀椀ed). 

Such an imbalanced dataset is typical for any empirical context that 
involves the identi昀椀cation of administrative errors, insofar as errors are 
the exception. How such imbalances can be addressed is thus a relevant 
question for any context where AI is used to detect administrative errors. 

The issue of low recall performance can be addressed in different 
ways; for example, by using different weighting schemes or employing 
techniques aimed to rebalance dataset (undersampling, oversampling, 
generation of balanced synthetic data). Most of these approaches exhibit 
a tradeoff between precision and recall. Precision may be sacri昀椀ced in 
order to obtain higher recall. 

This tradeoff affects public values. It constitutes another instance of 
the con昀氀ict between ef昀椀cacy and ef昀椀ciency. On the one hand, reducing 
precision for detecting over- and underpayment reduces ef昀椀ciency. 
More claims are 昀氀agged as administrative errors by mistake, and 
investigated without 昀椀nding an error (cost). On the other hand, 
increasing recall for underpayment errors is a matter or ef昀椀cacy. It 
means that more of the underpayment errors, which might otherwise go 
unnoticed, are detected by the algorithm (avoid underpayment). 

At the same time, increasing recall for overpayment, however, in-
creases ef昀椀ciency again, since more of the true overpayments errors are 
detected as such (avoid overpayment). Given the normative and empirical 
relevance of imbalanced datasets, we explore different methods, we 
perform two experiments, described next. 

3.5.1. Weighting schemes 
The simplest way to increase recall of the minority classes is to 

change class weights in the model (for those algorithms that support 
class weights). Intuitively, class weights affect the penalty for misclas-
si昀椀cation of different classes. The higher class weight is comparatively to 
the weights of other classes, the higher is the expected penalty for 
misclassi昀椀cation for this category. 

There are multiple different ways to set class weights. In our exper-
iments, we set weights according to the “balanced” heuristics suggested 
by (King & Zeng, 2001): 
wc = N/( k*|c|) ,

where wc denotes the weight of class c, N stands for the size of the 
dataset, k denotes the number of classes in the dataset, and ∣c ∣ denotes 
the number of samples that belong to class c. 

3.5.2. Synthetic data 
Another common technique for addressing the problem of an 

imbalanced dataset is to generate synthetic data which follows a similar 
distribution as samples from the minority classes. This synthetic data is 
merged into the training set to make proportions of the classes balanced. 
Ultimately, the model is evaluated on the test set (which does not have 
any synthetic samples). For this experiment, we used the SMOTENC 
(Chawla, Bowyer, Hall, & Kegelmeyer, 2011) algorithm for generating 
synthetic data, which operates under the following general principle: 

Table 1 
Audit determination outcomes in the data.  

Outcome Count Proportion 
No Error 629,445 0.807 
Overpayment 74,983 0.096 
Underpayment 59,080 0.076 
Wrong Issue 16,090 0.021 
Total 779,598 1  
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1. Select a random sample from the least frequent class;  
2. Find the k most similar samples in the dataset (in our experiments k 

was set to 5; similarity between samples is de昀椀ned as Value Differ-
ence Function (Cost & Salzberg, 1993); and  

3. Generate a new sample in the next fashion: sample numeric features 
between values of random neighbor and the features original 
example. Set categorical features to be equal to the most common 
category from the neighbors of the same class. 

4. Results 

4.1. Descriptive statistics 

Administrative politics and economic situations change over time, 
which affects patterns of administrative errors as well. Fig. 2 shows the 
trend of increasing overpayment error rates with an approximately 25% 
increase from 2002 to 2018. The rate of underpayment was slowly 
decreasing over the period of observation. 

This descriptive statistic can be evaluated with the public values 
framework outlined above. Insofar as underpayment errors are trending 
downward and overpayment errors upward over time, the UI system 
would have improved over time in ef昀椀cacy (avoid underpayment) but 
worsened in ef昀椀ciency (avoid overpayment). 

The error types also vary by State, as seen in Fig. 3, which shows 
aggregated results for all years. These differences may be explainable by 
differences in State policies. For example, Ohio has a high rate of un-
derpayment errors (one of the highest in the country), but a compara-
tively low rate of fraud. Non payment-related errors appear to be 
particularly clustered in the New England region of the Northeast, 
particularly in New Hampshire. Across all states and outlying territories, 
the total cost of overpayments across all years of observation is $69 
million. Total underpayments are approximately $5 million. This vari-
ance might also be indicative of different decisions in resolving public 
values con昀氀icts. 

4.2. Classi昀椀cation analysis 

In this section we report our estimates of whether machine learning 
can be used to predict administrative errors made in processing claims 
using features of the claim and prior information on administrative 
error, and utilize trained models to obtain better understanding of the 
data. Our goal is to predict the class (category) of the claim. Recall from 
Section 3 that we considered two experimental settings. In the 昀椀rst 
setting, we combined all years of data and performed a randomized split 
of the data into training and test sets. Results of this setup can be found 
in Tables 2 and 3. The best-performing classi昀椀er’s score for both preci-
sion and recall by each class of outcome are bolded. As can be seen, the 
performance of the CatBoost is the highest, with Random Forest in 
second place. Logistic Regression failed to generalize and performed 
poorly. 

In the second experimental setting, the dataset was split in a 

temporal fashion. The model was trained only on the data from the 
previous one or three years and evaluated only on the next year. Results 
for CatBoost (which performed the best) can be found in Fig. 4. 

As part of its output, CatBoost is able to provide a ranking of the 
features based on how important they were to the classi昀椀cation. Fea-
tures which were identi昀椀ed as especially important can be found in 
Fig. 5. A description of these features can be found in Table 4. Most of 
these important features can be grouped into one of these three sets:  

1. Features which describe the individual’s previous occupation, 
including salary;  

2. Features related to time (year of the claim, etc); and  
3. Features with information about administrative decisions made prior 

to the bene昀椀t audit. 

4.3. Weighting schemes and synthetic data 

Results for CatBoost, trained with the “balanced” heuristic weight 
scheme can be found in Table 5. There is signi昀椀cant improvement of the 
recall of minority classes at the expense of precision. At the same time 
recall of the “No errors” class dropped. 

Results for the model, trained on the mix of real data and synthetic 
samples can be found in Table 6. Compared to the results for CatBoost 
reported in Table 3, one can notice a small average boost in recall for the 
“underpayment” and “wrong issue” classes. From the experimental 
setup, we can see that the greatest bene昀椀t from the synthetic data gen-
eration model is for recall on the smallest classes. 

5. Discussion 

This article is motivated by the question of whether public managers 
could and should use AI to support auditing decision making in social 
service provision. We believe that the evidence from our experiments 
suggests a conditional “yes” to both questions. It is clear that even using 
limited publicly accessible data one can train classi昀椀ers that are capable 
of performing fairly well in identifying potential administrative errors. It 
would, however, be unwise and potentially wrongful to use such a sys-
tem as we have simulated, as a “human-out-of-the-loop” decision 
automation system. Instead, the focus of our investigation is auditing 
and quality control: the detection of administrative errors, not the use of 
AI to make UI claims decisions. It would perhaps be best to consider 
implementing AI as a basic decision support system that assists human 
auditors. Instead of relying on random sampling to audit claims de-
cisions, AI could help auditors in identifying the subset of data where 
they are most likely to 昀椀nd problematic claims. This recommendation of 
a limited role of AI as a decision support system can also be rooted in the 
public value of integrity and, more speci昀椀cally, agency, which cautions 
against a transfer of authority and decision-making power to automated 
systems (Young et al., 2019). 

Our results suggest several implications for the use of arti昀椀cial in-
telligence in the public sector. First, the overall classi昀椀er performance 
suggests that CatBoost is, among the set of classi昀椀ers we evaluate, the 
best for the BAM audit data. For now, let us concentrate on the public 
values of avoiding overpayments (a dimension of ef昀椀ciency) and un-
derpayments (a dimension of ef昀椀cacy). CatBoost performs better than 
other algorithms we tested in either of these dimensions, as operation-
alized using the accuracy measures. 

In some ways the result that CatBoost performs so well is counter-
intuitive; CatBoost uses decision trees and not the arti昀椀cial neural net-
works that have captured most of the media and prior research interest 
with respect to modern AI. Of particular note is the fact that CatBoost 
dominated every other classi昀椀er with respect to precision and recall for 
underpayment errors as well as recall for overpayment errors, and is 
relatively closely matched with random forest for overpayment preci-
sion. But random forest also performs relatively poorly in most other 
error types; CatBoost is clearly a better algorithm across all decision Fig. 2. Improper payment error trends over the sample period.  
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outcomes. 
The higher performance of the CatBoost in comparison to the DL 

models is, however, in line with other 昀椀ndings in computer science 
research. Gradient Boosting-based models (e.g. CatBoost, XGBoost or 
LightGBM) are known to often outperform neural networks on classi-
fying tabular data (Borisov et al., 2021; Shwartz-Ziv & Armon, 2022). 
Existing Deep Learning models for the tabular data tend to surpass GBM- 
based methods mainly on big datasets with predominantly continuous 
features (Borisov et al., 2021), which is not the case for the BAM dataset. 

It is also worth noting that CatBoost’s performance tends to improve 
over time. This could indicate gradual improvement of the administra-
tive procedures, and investigating the causes of this behavior is an 
avenue for future research. Taken as a whole, this is further evidence 
that public managers looking to implement AI in their organizational 
decision-making need to pay particularly close attention to the full 
spectrum of decision outcomes and their possible implications. 

However, there is a risk that, if the public value of ef昀椀cacy is not kept 
in view, an AI classi昀椀cation algorithm might be chosen that focuses only 
on ef昀椀ciency, and might even be better than CatBoost in this regard. 
Speci昀椀cally, in our empirical context, if decision makers were only 
focusing on overpayments when evaluating model performance, they 
might be inclined to select an algorithm — or proprietary, “black box” 

system developed by a private vendor — that would lead to substantive 
underperformance for identifying other types of administrative errors. 

Next, CatBoost also has an added normative bene昀椀t from the 
perspective of the public value of integrity, especially in the dimensions 
of audit and explainability. Because CatBoost is able to provide some 
clarity on the relative weighting or importance of different variables or 
features within the data, public managers, politicians, and the public all 
have a chance to make more informed decisions about whether the use 

Fig. 3. Relative rate of improper payment errors by type of error across states.  

Table 2 
F-Scores (micro/macro) by classi昀椀er type by class using data from all time 
periods.  

Classi昀椀er F1-score (macro) F1-score (micro) 
LR 0.230 0.721 
RF 0.452 0.805 
CatBoost 0.491 0.823 
TabNet 0.366 0.781 
DeepFM 0.274 0.730 
Wide & Deep 0.271 0.733 
DCN 0.384 0.777  

Table 3 
Recall and precision by classi昀椀er type by class using data from all time periods.  

Classi昀椀er No errors Overpayment Underpayment Wrong Issue 
Pr. Rec. Pr. Rec. Pr. Rec. Pr. Rec. 

Logistic Reg. 0.807 0.995 0.250 0.015 0.061 0.001 0.000 0.000 
Random Forest 0.851 0.986 0.756 0.374 0.651 0.113 0.702 0.119 
CatBoost 0.865 0.980 0.739 0.486 0.686 0.171 0.745 0.106 
TabNet 0.842 0.975 0.627 0.404 0.605 0.036 0.500 0.001 
DeepFM 0.818 0.952 0.277 0.168 0.071 0.003 0.000 0.000 
Wide & Deep 0.815 0.971 0.394 0.122 0.044 0.006 0.000 0.000 
DCN 0.835 0.983 0.710 0.290 0.438 0.039 0.475 0.090  
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of such an automated classi昀椀er is both of suf昀椀cient value to justify its use 
and does not make tradeoffs that violate either legal or normative ob-
ligations. CatBoost thus performs well in terms of the public values of 
auditability and explainability. 

Furthermore, our experiments also provide novel evidence for re-
searchers and practitioners with respect to different ways of addressing 
data set imbalance and the related public values con昀氀icts. Table 7 re-
ports the relative changes in performance metrics across different 

outcome classes as well as for micro- and macro-F1 scores for the two 
alternative training methods employed: changes to the weighting 
schema and the use of synthetic data. The difference between each of 
these alternatives is striking. Adjusting the weighting schema produced 
strong substantive changes particularly with respect to the recall capa-
bilities for overpayments but also underpayments and wrong issue er-
rors. However, this came at signi昀椀cant cost to precision for 
overpayments underpayments and wrong issue errors and this penalty is 

Fig. 4. F1 scores for CatBoost trained on data from prior year (a) or prior 3 years (b). 
(a) F1 score for CatBoost model trained on data from 1 previous year and evaluated on the next year. 
(b) F1 score for CatBoost model trained on the data from 3 previous years and evaluated on the next year. 

Fig. 5. CatBoost feature importance.  
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further evident in the harmonic mean scores for F1 macro and F1 micro. 
This happens because the algorithm is attempting to avoid misclassi昀椀-
cation of less frequent classes, and thus acts with more “suspicion.” 

These results hence quantify the public values con昀氀ict between ef昀椀-
ciency and ef昀椀cacy described earlier. 

For the synthetic data approach, however, the differences are still 
present but signi昀椀cantly attenuated. In particular, the improvements to 
recall for underpayments as well as for wrong issues are signi昀椀cantly 
reduced but still positive. On the other hand, the synthetic data 
approach led to an overall reduction in both precision and recall for 
overpayment errors — although this change is signi昀椀cantly smaller in 
magnitude than for changes to the weighting schema. Similarly, both the 
F1 macro and F1 microscores are reduced as they are with the weighting 

schema changes but signi昀椀cantly less so in terms of magnitude. Another 
important point is that the simulated or synthetic data, in addition to 
producing some modest performance gains in recall for underpayments 
and wrong issue errors, also have an important role to play from the 
point of enacting privacy preserving methods for training public sector 
AI classi昀椀ers. 

As a whole our results suggest that there are substantive impacts to 
be had from making different design choices with respect to model 
training parameters and correcting for highly imbalanced training data. 
This is particularly salient for public sector use of AI for decision making. 
The choices at hand are technical — e.g. how to adjust the weights in the 
training algorithm to address the issue of imbalanced data? — but the 
choices also concern public values. Since this kind of con昀氀ict will arise 
for any highly imbalanced dataset, and since all observational data 
about administrative errors is usually highly imbalanced, and since AI 
systems will likely be trained on these data, our experiments highlight 
the importance of critically attending to technical decisions: Seemingly 
technical decisions in model selection and training carry substantive impli-
cations for public values. 

This also calls to attention the nature of the data used in this analysis. 
These data are very noisy across different classes. One potential expla-
nation for this noise is a limitation to this article: we might not have 
enough information in the publicly accessible unemployment insurance 
audit data to have a true understanding of the underlying data genera-
tive process (DGP). Underpayment errors in particular are very dif昀椀cult 
to distinguish from no error classes in our sampling data. These errors 
may have no systemic cause; they may just be a product of a stochastic 
underlying error rate in the UI claims process. An alternative explana-
tion is that the data generative process that stems from the BAM audit 
rules and how they systematically differ between searches for over-
payment and as particularly fraudulent errors and underpayments may 
in fact systematically bias the audit data towards 昀椀nding overpayment 
errors at the expense of underpayments. The effect of historical 
embedding of different normative, political priorities in public sector 
DGPs on present-day efforts to implement AI in these contexts is an 
under-examined problem in the public administration and policy liter-
ature, making it a strong candidate for future research. 

It is important to note that this dimensionality limitation, owing to 
the public facing nature of our training data, may also be arti昀椀cially 
limiting the performance of neural net-based classi昀椀ers such as TabNet. 
Future research that can leverage secure micro level data employed by 
state workforce agencies in their more thorough audits and reviews of 
unemployment insurance claims would be a necessary and useful next 
step to continue to improve our understanding of the value and potential 
of AI-based decision support in public sector environments. 

Table 4 
Description of important features.  

Feature name Feature description 
High quarter wages Highest wages reported in the 昀椀scal quarter before 

investigation. 
Remaining Balance Remaining Balance (RB) of claim as of key week ending 

date. 
Base period wage Base period wage before the investigation. 
Monetary 

redetermination 
Whether the State redetermined claimant’s monetary 
eligibility. 

Last tax rate Last tax rate for the claimant. 
Occupation code Occupation code of the claimant’s last employment. 
Claim was paid Money was paid for the claim (claim was not denied). 
Reason for monetary 

denial 
Reason for monetary denial before investigation. 

# Job Contacts Number of Job Contacts Listed from any source. 
Determination Appeal 

results 
Results of Appeal of Initial Determination that denied 
eligibility. 

Nonseparation Determ. 
Reason 

Reason for Nonseparation Determination Before 
Investigation. 

Filling method for KW 
claim 

Filing method for claim 

Bene昀椀t Year Beginning Effective date of most recent new or transitional (not 
reopened or additional) claim. 

Date of 昀椀rst comp. wek Date of 昀椀rst compensable week. 
Most recent ERP date Date of claimant’s most recent eligibility review up to 

Key Week. 
Week of claim 昀椀led Week in which claim was 昀椀led (beginning date). 
Numeric State identi昀椀er State 
Work Search 

Requirements 
Subject to Work Search Requirements 

# of Labor Exchange 
Referrals 

Number of times Employment Services referred claimant 
for employment during the current bene昀椀t year. 

Separation Determ. 
Reason 

Reason for Separation Determination Before 
Investigation.  

Table 5 
Results for CatBoost using ‘balanced’ weighting scheme.  

Metric Audit outcome class 
No errors Overpayment Underpayment Wrong issue 

Precision 0.944 0.342 0.236 0.110 
Recall 0.532 0.815 0.502 0.773 
F-1 score (macro) 0.419 
F-1 score (micro) 0.624  

Table 6 
Results for CatBoost model trained on synthetic data.  

Metric Audit outcome class 
No errors Overpayment Underpayment Wrong issue 

Precision 0.862 0.678 0.554 0.491 
Recall 0.967 0.446 0.180 0.150 
F-1 score (macro) 0.488 
F-1 score (micro) 0.813  

Table 7 
Percent change in CatBoost performance relative to naive training on all data.  

Alternative 
training 
method 

Metric Outcome Class 
No 
errors 

Overpayment Underpayment Wrong 
issue 

Weighting 
schema 

Precision 9% −54% −66% −85% 
Recall −46% 68% 194% 629% 
F-1 score 
(macro) 

−15% 

F-1 score 
(micro) 

−24% 

Synthetic 
data 

Precision 0% −8% −19% −34% 
Recall −1% −8% 5% 42% 
F − 1 
score 
(macro) 

−1% 

F-1 score 
(micro) 

-1%  
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6. Conclusion 

In this paper, we have investigated the potential of Arti昀椀cial Intel-
ligence (AI) to identify administrative errors in the empirical context of 
Unemployment Insurance (UI) claims decisions. This investigation is 
motivated by the joint questions: Can AI be used to detect administrative 
errors and, if so, should it? Our answer is a quali昀椀ed “yes.” 

We compared the performance of seven different random forest and 
deep learning models, we addressed the highly imbalanced data using 
weighting schemas and synthetic data, and we evaluated the models 
using different accuracy measures, as well as a public values framework. 
We found that CatBoost, a random forest model using gradient descent 
boosting, is more accurate along several measures, and preferable in 
terms of public values — since its classi昀椀cations are not only more ac-
curate across different error types but are also in a limited sense 
explainable — than every deep learning model we tested. 

Future research should seek opportunities to overcome the data 
limitations we faced in this work. This would require partnerships with 
government agencies to secure access to restricted data not available to 
the public (or researchers). Additionally, future extensions could 
experiment with additional and more sophisticated optimization tech-
niques, e.g. identifying pareto frontiers in multi-objective optimization. 
Finally, there is a need for additional empirical research on how AI is 
already used or being prepared for implementation by state workforce 
agencies. 

Detecting administrative errors in UI, and prominently in public 
organizations and welfare systems generally, gives rise to a con昀氀ict 
between ef昀椀ciency and ef昀椀cacy. When it comes to AI, this con昀氀ict bot-
toms out in tradeoffs of recall and precision in AI training methods. 
When the objective function is to minimize all error types — not just 
politically salient ones such as avoiding overpayment — AI can help to 
overcome this con昀氀ict. Our recommendation is that AI can be used to 
support audits of administrative decisions. AI can be used to prioritize 
quality control to detect and reduce administrative errors. 

This article provides insights on what problems need to be addressed 
along the way and which AI methods can and should be used. Given the 
limits of our analysis, we provided a public values framework that can 
support deliberations about the use of AI to detect administrative errors 
beyond the con昀椀nes of the analyses of this article. There has been a 
historical and institutional emphasis on minimizing overpayments to the 
frequent exclusion of investments in making UI more accessible and 
timelier for those who qualify. Using AI to audit claims data both 
highlights the need to explicitly balance the desire for ef昀椀ciency with a 
need for ef昀椀cacy and can serve as a tool towards that end. 
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algorithm: Arti昀椀cial intelligence in federal administrative agencies (Administrative 
Conference of the United States). 

Eubanks, V. (2018). Automating inequality: How high-tech tools pro昀椀le, police, and punish 
the poor. St. Martin’s Press.  
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