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Administrative errors in unemployment insurance (UI) decisions give rise to a public values conflict between
efficiency and efficacy. We analyze whether artificial intelligence (AI) — in particular, methods in machine
learning (ML) - can be used to detect administrative errors in UI claims decisions, both in terms of accuracy and
normative tradeoffs. We use 16 years of US Department of Labor audit and policy data on UI claims to analyze
the accuracy of 7 different random forest and deep learning models. We further test weighting schemas and

synthetic data approaches to correcting imbalances in the training data. A random forest model using gradient
descent boosting is more accurate, along several measures, and preferable in terms of public values, than every
deep learning model tested. Adjusting model weights produces significant recall improvements for low-n out-
comes, at the expense of precision. Synthetic data produces attenuated improvements and drawbacks relative to

weights.

1. Introduction

Public organizations, especially welfare agencies, regularly make
decisions affecting how scarce goods are distributed. Some of these
decisions are administrative errors—decisions that will turn out to have
been wrong or mistaken. Detecting and reducing such administrative
errors is central to quality control in the public sector. As the scale and
speed of administrative decisions outstrips the capacity of human agents
to manage, many organizations are adopting artificial intelligence (AI)
to quickly audit large volumes of administrative data. Adopting Al for
this purpose enjoys bipartisan support in the United States; in reviewing
the IRS’ use of Al one Republican member of congress referred to Al as
“the ultimate auditor” (Heckman, 2020). Yet little is known about the
true performance of these systems, or the distributive consequences of
their use in auditing public spending and services.

This article examines the use of Al to support the identification of
administrative errors. We concentrate on the case of US State workforce
agencies and their decisions of Unemployment Insurance (UI) claims. In
deciding claims, mistakes consist in over- or under-paying claimants. For
example, claims that should be approved but are wrongfully denied
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constitute underpayments of the full dollar amount claimed. We use data
collected by the US Department of Labor (DOL) to train different Ma-
chine Learning (ML) based Al systems to predict administrative errors in
this setting and analyze their performance. We then discuss whether
such algorithms can and should be used to effectively detect mistaken
decisions.

We are motivated by the question of whether Al can and should be
used to detect administrative errors. The article makes first steps to-
wards answering this question and improving Al-driven decision-mak-
ing in government by examining prominent ML-based AI technologies'
for a specific task currently performed by human agents (auditors). We
use labeled audit data that are similar to those that are likely employed
in developing such systems in practice. The article compares the per-
formance of these different techniques and discusses their goodness of fit
relative to these data. We thus contribute to the literature on techno-
logical innovation in the public sector, as well as administrative errors
and improper payments.

Al holds out the promise to further a classic public value: efficiency.
But greater efficiency, such as reducing costs, may come at the expense
of at least one other important public value: efficacy, that is, making sure

1 Machine learning is the current dominant paradigm of Al architectures. Its successes across a variety of task domains has leant it something like an aura of
omnipotence in media and marketing, and as a result ‘ML’ is often interchangeably used with ‘Al.” We explain our use of these terms in Section 2.1 below.
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that those who are eligible for services receive them. Administrative
errors hence have a public values conflict at their center. We argue that
reducing administrative errors helps to overcome this conflict — but only
when the objective function is to identify and minimize all error types, not just
politically salient ones. With greater accuracy in decision making, mul-
tiple public values can be furthered at the same time.

This is particularly important today. UI fraud has long been a topic of
attention and concern. In the US, 296,749 cases of fraud were identified
in 2019, amounting to $366.8 million (Pallasch, 2020). During the
COVID-19 pandemic the number of fraudulent claims has increased
significantly (FBI National Press Office, 2020), resulting in “tens of bil-
lions of dollars in payments” to illegal claimants (Cowley, 2022). At the
same time, the pandemic has brought attention to non—fraudulent over-
and underpayments of UI benefits and to insufficient timeliness with
which UI claims are decided (De La Garza, 2020). For example, Bank of
America, which in 12 states delivers benefits payments as prepaid debit
cards, underpaid around 100,000 people a total amount of several
hundred million USD over 2020-21 (Cowley, 2022).

The importance of recognizing systemic administrative errors in
programs like UI has long been emphasized (Kingson & Levin, 1984).
That AI could be used to identify administrative errors is also well-
known (Bullock, Young, & Wang, 2020; Charette, 2018). Some classi-
fiers have been used in other studies to detect fraud in Medicare pay-
ments (Bauder & Khoshgoftaar, 2017; Farbmacher, Low, & Spindler,
2020; Juan Liu et al., 2016). But the question of which concrete Al-
technologies can and should be used to address administrative errors
in a given application domain has not been answered in full.

We answer this question in three ways. First, we analyze the
normative considerations involved in using Al to audit administrative
performance in social benefits programs. Second, we test the effect of
adjusting the decision weights of our best-performing classifier on its
ability to correctly identify under-payments in particular. Third, we test
whether generating and training the model on synthetic data improves
or otherwise affects system performance.

Briefly stated, we find that a random forest classifier using gradient
descent boosting, CatBoost, is superior to several different deep
learning-based classifiers both for accuracy and explainability.
Furthermore, while all of the classifiers tested perform relatively poorly
on classifying underpayment errors, CatBoost’s performance was sub-
stantially improved by using an alternative decision weight scheme, as
well as by generating and training the model on synthetic data. These
performance improvements, however, came at a cost to performance on
predicting error-free claims as well as overpayments. Both the im-
provements and the losses were significantly more pronounced for
weighting adjustments than for synthetic data. Our findings suggest that
the use of Al for auditing UI claims can satisfy multiple public values, but
this requires particular attention when evaluating alternative technol-
ogies before adoption and implementation.

2. Background

The potential for Machine Learning-based Artificial Intelligence (AI)
to transform economic and social activity has captured the world’s
attention over the past several years. Despite its reputation as a laggard
with respect to innovation, the public sector has also embraced the
promise of Al (Glaze, Ho, Ray, & Tsang, 2022). Governments are
investing heavily in research and development of Al and deploying
autonomous and intelligent tools and systems (Perrault et al., 2019).
These investments have led in turn to AI’s use in various areas of public
service, including the use of facial recognition and predictive analytics
(i.e., predictive policing) in law enforcement; virtual assistants in human
services and military recruiting; detecting improper payments and fraud
in social services; optimizing food safety inspections and discovering
new drugs in public health; and cybersecurity (Eggers, Schatsky, &
Viechnicki, 2017; Engstrom, Ho, Sharkey, & Cuéllar, 2020; Wirtz,
Weyerer, & Geyer, 2019). The use of Al in government decision-making,

Government Information Quarterly 39 (2022) 101758

however, is contested: optimism about the technology’s ability to
improve efficiency and reduce administrative burdens is tempered by
evidence of systematic harmful discrimination in system outputs, the
inability to adequately explain how some of the most powerful Al ar-
chitectures arrive at their decision outputs, and the risk of serious wrong
to individuals and societies (Buolamwini & Gebru, 2018; Byrnes, 2016;
Courtland, 2018; Levy, Chasalow, & Riley, 2021; Young, Himmelreich,
Bullock, & Kim, 2021).

2.1. Conceptualizing artificial intelligence

It is necessary to unpack “AI” as a term before proceeding further,
because its capabilities are distinct from other forms of algorithmic
governance in profound ways. This is not a straightforward task, how-
ever, because “Al” is an amorphous term. In the broadest sense, “AI”
includes systems designed to think or act either like rational human
beings (Russell & Norvig, 2015). For the purposes of this article, we use
“AI” to refer specifically to systems that employ machine learning (ML)
approaches to make inferences — decisions — from data without explicit
programming (Witten, Frank, Hall, & Pal, 2016). There are numerous
different ML architectures, each with their own advantages and disad-
vantages. Two of the most widely adopted and well-known ML archi-
tectures are support vector machines and artificial neural networks;
complex variants of the latter are also known as “deep learning” systems
(Le et al., 2013). Although our empirical analysis concentrates on the ML
paradigm in Al in particular, we talk about “AI” more generally in this
paper (a) because “Al” is the term typically used in public administration
for this topic, even if ML is meant; (b) because much of our normative
contribution applies not only to ML but to Al generally, regardless of the
specific paradigm; and (c) our normative contributions also overlap with
research on “Explainable AI" (XAI) which deals with the tradeoff be-
tween complexity and performance in machine learning-based Al deci-
sion-making.’

Machine learning has three important dimensions. The first is its
reliance on data that can be read, manipulated, and processed by stan-
dard computational methods, also known as “machine readable” data.
Access to machine readable data is of such fundamental importance to
Al that data digitization and operation efforts account for more than half
of all Al-related investment (The Economist, 2020). The second
dimension of ML is its learning process. This process takes three general
forms: supervised, unsupervised, and reinforcement (Russell & Norvig,
2015). ML’s final dimension is the use of stochastic learning and opti-
mization techniques in many of its functional forms. This introduces
inherent uncertainty in ML processes in exchange for significant per-
formance increases.

These features differentiate Al as used here from other approaches to
artificial intelligence such as “expert systems.” Expert systems use pre-
determined criteria to analyze structured data. Except for “edge case”
inputs that result in system failure, any output can be used to determine
the initial input factors through reverse process engineering. Unlike
expert systems, most modern Al applications — and all of the more
powerful, complex forms, such as neural networks — are stochastic. This
means that Al is not deterministic in the same way as expert systems; you
cannot reverse engineer a decision reached by an AI with certainty
despite having complete knowledge of all available input variables/
features. This is reflected in how computer scientists evaluate Al deci-
sion performance: Al is evaluated probabilistically (e.g., a 93% success
rate at making the correct classification decision), rather than in terms of
absolute fidelity. Moreover, the final architecture of any Al system after
it has been trained is fundamentally unique — even when the trainer
uses identical initial architectures and training data. This critical
distinction makes the use of Al in administrative decision-making more

2 See e.g.,
ence
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like the use of human labor in real time: just as human agents will sys-
tematically differ — even slightly — in their weighing of identical de-
cision criteria, so too will Al

2.2. Artificial intelligence in public administration and management

The theoretical and practical implications of this technology have
not gone unnoticed in the research community. Public administration
scholarship has seen a marked increase over the last several years in the
attention paid to public sector AI implementation. Theoretically driven
work has identified different conceptual approaches for understanding
and governing public sector Al These include networked, intersectoral
approaches (Wirtz & Miiller, 2019; Wirtz, Weyerer, & Sturm, 2020);
those using a systems engineering approach to understand the rela-
tionship between social and technological characteristics and relations
(Janssen, Brous, Estevez, Barbosa, & Janowski, 2020; Janssen & Kuk,
2016); and approaches that focus on the type of task, its associated in-
formation requirements, and the level of discretion required (Bullock,
2019; van der Voort, Klievink, Arnaboldi, & Meijer, 2019; Young,
Bullock, & Lecy, 2019).

Other theoretical, and often normative, work considers some of the
particular challenges governments face when using Al One of these is
AI’s inverse relationship between analytic power and explainability. As
the dimensionality of analysis increases, it becomes correspondingly
harder to explain the decision process developed by the Al in ways
intelligible to humans (Danks, 2022). A specific sub-domain of Al
research — Explainable AI (XAI) — focuses on this problem (de Bruijn,
Warnier, & Janssen, 2021). The second challenge is AI's proclivity for
optimizing its decision approach in ways contrary to the user’s broader
values. Harmless examples include Al systems trained to beat speed or
score records in video games, succeeding by effectively hacking the
game instead of playing it (Amodei et al., 2016). In public organizations,
however, Al can optimize around systematic biases embedded in
training and reinforcement data, harming vulnerable individuals and
populations, or violating legal statute and ethical norms on equality
under the law (Janssen & Kuk, 2016; Young, Himmelreich, Bullock, &
Kim, 2021). As with explainability, this problem motivates active
research on data governance and bias minimization in AI (Janssen et al.,
2020).

Empirical work on public sector Al is similarly multifaceted. Some
seek to understand the factors influencing the implementation decision
(Alshahrani, Dennehy, & Mantymaki, 2021; Mikalef et al., 2021).
Another vein of empirical research focuses on the individuals and their
experience with public sector Al These include studies of individuals’
acceptance of being subject to Al-enabled processes, and citizens’ level
of trust in Al-mediated interactions with government (Doberstein,
Charbonneau, Morin, & Despatie, 2021; Huang, Kim, Young, & Bullock,
2021; Ingrams, Kaufmann, & Jacobs, 2021). Others examine the effect of
Al implementation on the exercise of discretion — the latitude indi-
vidual agents have to shape administrative decisions and tasks —within
public organizations (Bullock et al., 2020; Criado, Valero, & Villodre,
2020; Fliigge, Hildebrandt, & Mgller, 2021). Another branch of
organizational-level research includes studies of AI's potential to
improve public sector organizational processes, such as optimizing
public transportation in response to citizen requests (Kim & Hong,
2021).

This research contributes to this latter line of empirical inquiry by
simulating the use of Al as an audit support tool. Because administrative
decisions regarding program eligibility and appropriate benefit levels
carry significant distributional consequences at both the individual and
social level, we also contribute to the normative debates on government
use of Al

Al and algorithmic decision making play an increasingly prominent
role in the public sector. It has been used to confirm the identity of
taxpayers online, to enforce regulations at the SEC, and to determine
whether a suspect is granted bail, and whether an immigrant is detained.
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Al is used in criminal justice, public health, child-welfare, education,
policing, and regulatory enforcement (Bullock et al., 2020; Engstrom
etal., 2020; Levy et al., 2021). One example: As the COVID-19 pandemic
ravaged prisons, who had to stay in prison and who was released to
shelter at home was determined by predictions of inmates’ recidivism
risk.’

In each decision, the stakes are high and the impacts are profound
(Eubanks, 2018; O’Neil, 2017). Thus, general theoretical frameworks
are being developed to guide the development and deployment of Al in
the public sector (Young et al., 2019). In the next section, we lay out the
normative issues embedded in our study before turning to the empirical
policy context and data generative process.

2.3. Public values of unemployment insurance

This article has not only a descriptive but also an evaluative aim,
namely, to provide a normative lens on the use of Al for unemployment
insurance (UI) and improper payments. In the following, we draw on the
well-known approach of public values to present a way of evaluating the
use of Al to detect improper payments in Ul (Fukumoto & Bozeman,
2019; Jgrgensen & Bozeman, 2007; Nabatchi, 2018). We first offer an
analysis of what values UI should further. This clarifies the dimensions
of the normative assessment. We then, in a second step, defend the
plausibility of three propositions on when and how AI should be used to
detect improper payments in UL

For this analysis, we need to step back from our focus on adminis-
trative errors and consider the larger process of UI claims. For simplicity,
we model the UI claim application process as two-stage selection oper-
ating on an initial set of individuals, the population. Each individual in
the population is either eligible or ineligible for UL The first stage —
which cannot be observed in our data — consists in individuals’ de-
cisions to file an Ul claim. Presumably, most of those who decide to file a
Ul claim are in fact eligible, but some are not — some might think that
they are eligible although they are not, and some of those who file might
attempt to defraud UL Likewise, most of those who decide not to file a UI
claim are ineligible, but some eligible individuals do not file either
because they might not know that they are eligible for Ul or they decide
against filing for other reasons. From the first stage, we concentrate on
those individuals who filed claims for Ul, some of which are ineligible.

The second stage, from which our data are sampled, consists in the
eligibility determination and claims decision by state workforce
agencies. Again, presumably most of those who are deemed eligible are
in fact eligible, but some are not. And most of those who are deemed
ineligible are truly ineligible, but some are not. Errors can be over-
payments, that is, individuals who were deemed eligible although they
are in fact not eligible, as well as underpayments, that is, individuals who
were deemed ineligible although they are in fact eligible.”

This is, of course, a vastly simplified and highly schematic model of
how UI works. For example, decisions about eligibility and fraud are not
all made at the same time — but we collapsed these processes into the
second stage. Moreover, determinations are not a binary classification,
as we assume here. Yet, despite these simplifications, this model allows
us to bring out some of the normatively relevant features of UI. The
model allows us to approach the questions of when and how Al should be
used to detect improper payments.

A prominent method for normative analysis in public administration
is the public values approach. Questions around ethical and professional

3 The CARES Act of 2020 extended the maximum time of existing home
confinement rules, which already require a risk assessment. This risk assess-
ment is performed by PATTERN (Prisoner Assessment Tool Targeting Estimated
Risk and Need) which was created in response to the First Step Act of 2018.

4 Under- and over-payments can also occur when claimants were both duly
eligible to receive benefits and received them; some receive more than they
were supposed to, and some less.
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values are fundamental to the field of public administration. They have
played a prominent role in the field’s history — from Frank Goodnow’s
and Leonard White’s views on managerialism vs. legalism, via the
Simon-Waldo debate, to the Minnowbrook conferences — and such
discussions play an increasingly prominent role today (van der Wal,
Graaf, & Lawton, 2011; Van der Wal, Nabatchi, & Graaf, 2015). In
addition to debating the inventory of values, their content, and their
importance in the abstract, value analyses have been used to develop
sector- or service-specific normative frameworks, for example for public
infrastructure and utilities in the face of privatization (De Bruijn &
Dicke, 2006). Our contribution here aims to likewise offer an
application-specific value-based evaluative framework. At the same
time, however, it should be acknowledged that the approach of public
values has serious potential limitations: The collection of values can
seem arbitrary, values are seen as exogenous to public administration
such as originating from branches of government, the law, politics, or
democratic ideals, and “laundry lists” insufficiently arbitrate value
conflicts (Heath, 2020, 51-53).

We place our normative contribution within the recent literature on
public values (Fukumoto & Bozeman, 2019; Jgrgensen & Bozeman,
2007; Nabatchi, 2018). Drawing on such existing inventories of public
values, we argue that at least four values are relevant to UL. We argue
that UI should simultaneously further efficiency, efficacy, integrity, and
equity. Each of these values has different dimensions or aspects that we
articulate below. Our focus is not on the values themselves nor on their
foundations, but on conflicts between them. That is, we contend neither
that the following values are exhaustive of the values relevant to UI, nor
do we suggest that these four values are more important than other
values not mentioned here. Instead, the following four values are
noteworthy for UI because they tend to conflict with one another,
especially in conflicts that manifest in policies that govern agency de-
cisions. AI embodies such policies and centralizes them at scale. The
conflicts between the four values are thus central to evaluate the use of
Al in supporting agency decision-making. In the interest of ecumenism,
we articulate the values in a way that should be acceptable to many
without relying on any particular moral or political theory. As such, UL
should further at least the following four principal values:

1. Efficacy: provide insurance payments to those who are eligible in a
convenient and timely manner.

a. Opportunity: enable individuals who are likely eligible to apply, e.
g., offer an application process that is convenient for eligible
claimants.

b. Payment: render goods/services for eligible claims to claimants
quickly.

c. Avoid underpayment: minimize under-payment, i.e., reduce false
negative eligibility.

2. Efficiency: reduce unnecessary monetary cost.

a. Cost: minimize cost of administering insurance claims.

b. Avoid overpayment: minimize sum of overpayment amounts, i.e.,
reduce false positive eligibility.

3. Integrity: make determinations based on consistent policy; ensure
quality and safety of both model and data.

a. Audit: audit and assess quality of the training data.

b. Privacy: protect sensitive claimant data; avoid data breaches.

c. Explainability: Provide explanations of how eligibility decisions
are made (i) in general, and/or (ii) in any particular case.

d. Agency: at least at high-stakes decisions, retain the authority and
agency to decide what data, methods, and modeling techniques
are used.

4. Equity: avoid that protected groups are disadvantaged or discrimi-
nated against.

a. Error Parity: the false negative rate, i.e., rate of underpayment, in
determining eligibility should be the same across all protected
groups.
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b. Predictive Parity: the probability that an individual, who was
determined to be ineligible, is actually ineligible should be the
same across all protected groups.

Efficacy formulates one central aim of Ul, namely, to provide insur-
ance payments. This value is fundamental and intrinsic to the very idea
of UL Notable, given our two-stage model of the process, the value of
efficacy is relevant already at the point at which individuals decide
whether or not to claim UI — what we called the first stage (opportunity).
In the second stage, when workforce agencies make claim decisions,
efficacy demands that underpayments are avoided and that payments
are made quickly (payment and avoid underpayment).

Efficacy is grounded in widely recognized public values. Insofar as
the workforce agencies carry out existing law, “efficacy” refers to the
satisfaction of individual legal rights and procedural due process. Effi-
cacy is hence rooted in a legal value frame (Nabatchi, 2018). In the case
of UI specifically, efficacy moreover rests on public values in the cate-
gory “public sector’s contribution to society” (Jorgensen & Bozeman,
2007), such as social cohesion, altruism, and human dignity. This is
because the administration of Ul — supporting those eligible for un-
employment benefits — is arguably a form of altruistic cooperation that
furthers social cohesion and ought to respect human dignity.

However, although the public values to which “efficacy” refers are
widely recognized, the name “efficacy” is not often used in the public
values literature.” This might be because efficacy is implied by effi-
ciency, at least on one definition of “efficiency”.® Moreover, this might
be because of a difference in topical focus: Efficacy is a property of a
concrete government program, such as our topic here. By contrast, it
seems less natural to speak of the “efficacy of public administration” as a
whole, which is the topic of the public values literature.

Efficiency, the second principal value, reflects a fiduciary obligation
to avoid unnecessary costs. It means cost-savings and cost-efficiency
(cost) and is hence rooted in a market-based value frame (Nabatchi,
2018; Stone, 2011), and in long-standing discussions in public admin-
istration around the role of managerial and business values (Bozeman,
2007). Beyond administrative expenses, efficiency is increased with the
accuracy of claim decisions. Specifically, unnecessary costs are reduced
when overpayments are reduced (avoid overpayment).

Third, the value of integrity reflects a different kind of due process
consideration. If a workforce agency had an AI model that is highly
accurate in determining eligibility determinations, this model could still
be lacking in public values, despite its good performance. Integrity refers
to concerns about auditability, privacy, explainability, as well as agency
or sovereignty over central modeling choices.

One important dimension of integrity is explainability. When Al is
used for decision-making, explainability requires that this use of Al is
both scrutable (in some sense) as well as intuitive. ML models often fail
on both counts (Selbst & Barocas, 2018). This distinction is important:
an explanation might be correct but hard to understand for anyone but
experts. The question of what makes a “good” explanation thus raises
substantive, difficult, and relevant issues of ethics, philosophy, and
policy (Danks, 2022).

Explainability is an important value for intrinsic as well as for
instrumental reasons. Intrinsically, the idea that a government agency
can explain its decisions, even when they are made by Al, is rooted in
democratic theory (Binns, 2022). Instrumentally, explainability, firstly,
could help prevent future mistakes — assuming that it allows that causes
of administrative errors are recognized, understood, and rectified faster
(Young, Himmelreich, Bullock, & Kim, 2021). Secondly, explainability

5 Pugh (1991, p. 10), however, lists “efficacy” as one of the main content
values of the bureaucratic ethos.

6 When “efficiency” is defined as a ratio of output to input that is to be
maximized, then this implies both efficacy (i.e. increase “output™ as well as
cost-savings (i.e. decrease “input”).
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is instrumentally valuable insofar as it allows to document reasons for
which decisions were reached. In this way, explainability instrumentally
promotes the public value of procedural due process or rule of law
(Jorgensen & Bozeman, 2007; Nabatchi, 2018). Thirdly, explainability is
necessary to protect citizens’ means for self-advocacy (Vredenburgh,
2022). Finally, explainability might be a central tool for Al governance
(Danks, 2022).

Fourth, eligibility determinations for UI should also be non-
discriminatory. This is reflected in the value of equity. We operation-
alize “equity” using two well-known definitions of statistical fairness. On
one definition, error parity, fairness is achieved just in case the rate of
underpayments is the same across all protected groups. On another
definition, predictive parity, fairness is achieved just in case the proba-
bility that an individual, who was determined to be ineligible for U, is in
fact ineligible should be the same across all protected groups.

This, in sum, gives us a public values framework for a normative
evaluation of UL Efficiency and efficacy arguably conceptualize what
motivated the creation of the UI system, what informs its legal back-
ground, what shapes how UI is administered, and what the public ex-
pects of UL Integrity and equity are crucial public values that have their
origin variably in constitutional law, administrative law, deliberative
democracy, theories of citizenship, and, again, legitimate expectations
towards UL

2.4. Conflicts between public values of unemployment insurance

Conflicts between public values are a foundational topic in public
administration (van der Wal et al., 2011). The public values of UI can
conflict insofar as they require policy makers and administrators to
make choices that further one value at the expense of another and vice
versa. For example, the application process could be automated further
to reduce costs — in line with the value that we call cost above — but this
might diminish the quality of service that claimants experience and
hence be a reduction of what we call above the value of opportunity. This
is a clear conflict of public values in the first stage of the claims process.

2.4.1. The efficiency—efficacy conflict in claims decisions

Efficiency and efficacy likewise conflict in the second stage, when
claims are decided. Efficiency demands to avoid overpayment, whereas
efficacy demands to avoid underpayment. An increase in one value leads
to a decrease in the other. This conflict arises because claim eligibility is
hard to measure. Eligibility is estimated and mistakes happen. Work-
force agencies estimate whether a submitted claim is eligible, but these
estimates are not perfectly accurate. We call their estimates the “eligi-
bility score.”

The public values conflict consists in the fact that, in terms of this
eligibility score, the distributions of claims that are in fact eligible and
those that are not, overlap. This is a form of uncertainty. In the worst
case, for any given eligibility score, a claim may be eligible, or it may not
be. To deal with this uncertainty, workforce agencies hence need to
decide whether to accept a claim, given a certain eligibility score. Where
should they draw the line so that all claims with an eligibility score that
is below this point are rejected and all claims with an eligibility score
that is above this line are accepted? Fig. 1, adapted from Young, Him-
melreich, Honcharov, and Soundarajan (2021) illustrates this conflict.

This conflict between efficiency and efficacy arises even when no
eligibility scores are used explicitly. Classical statistical hypothesis
testing teaches that efforts to reduce the odds of doing the wrong thing
(a Type I error) generally increase the odds of not doing the right thing
(a Type II error). It is therefore reasonable to assume that efforts to
prevent improper overpayments correspondingly make it more likely
that improper underpayments will occur.

This conflict can play out along multiple causal pathways. For
example, fraud might be reduced by requiring claimants to prove having
qualified dependents in triplicate instead of a single source. This
requirement may cause some recipients to become ineligible even
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Policy,
high overpayment,
low underpayment

Policy,
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very high underpayment
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1 Eligibility Score 10

Fig. 1. Illustrated conflict between avoiding over- and under-payments by
decision policy.

though they are, in fact, eligible. Underpayment errors would result on
the margin for the appropriate dependent allowance, or in full if the
recipient’s claim is placed on administrative hold pending determina-
tion or if a claimant elects to not to complete their application or appeal
in light of the additional documentation required.

It should be noted that different errors are associated with vastly
different practical results. Failing to detect an underpayment is different
from failing to detect an overpayment, both from ethical and economic
perspectives. From the claimants perspective, failing to detect an un-
derpayment is usually worse than failing to detect an overpayment. The
practical consequences of not receiving claims because an agency
mistakenly determined them to be ineligible are severe (De La Garza,
2020; Eubanks, 2018).

This conflict between efficiency and efficacy is relevant for two
reasons. First, the conflict can inform an analysis of the legal and policy
history. We argue in the next section that social insurance programs in
the US tend to focus on efficiency. Second, the conflict motivates our
investigation into the use of Al to identify administrative errors, which
we undertake in the subsequent sections. Avoiding under- and over-
payment is immediately relevant to automatic classification (because
these two values are related to avoiding false negatives and positives
respectively). Al could be a way of partially overcoming the conflict
between efficiency and efficacy.

2.4.2. Conflicts of integrity and equity

Two further conflicts within these public values should be mentioned
— very briefly since in the literature on the ethics of Al both are
considered rather general and well-known tradeoffs (Andrus, Spitzer,
Brown, & Xiang, 2021; Kleinberg, Lakkaraju, Leskovec, Ludwig, &
Mullainathan, 2018; Kleinberg, Mullainathan, & Raghavan, 2016). First,
equity and privacy (a dimension of integrity) might conflict. To check
whether a system upholds equity, one might need to reduce privacy.
Specifically, to check that a system does not discriminate based on
protected characteristics—such as gender, age, sexual orientation, or
race—one needs data on these protected characteristics, which,
depending on the nature of the data, can be a significant privacy risk.

Second, there is a public values conflict internal to equity. The two
dimensions of equity, error parity and predictive parity, are themselves in
tension with one another under realistic conditions (Kleinberg et al.,
2016). This is a so-far under-investigated and un-addressed challenge for
equity in welfare systems. Some contend that this conflict can be seen as
a conflict between procedural fairness (such as equal treatment, here:
predictive parity) and reasons of justice (here: error parity), similarly to
how affirmative action furthers justice at the expense of procedural
fairness (Vrendenburgh, 2022).
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2.5. Empirical context

Unemployment Insurance in the United States was created by the
1935 Social Security Act. Employees who meet eligibility criteria can
apply to receive these benefits if their current employment tenure ends.
It is a devolved program; the federal government covers overhead costs
and provides broad-based oversight, while State governments finance
and implement the program individually. This devolution also applies to
eligibility and benefit amount criteria, which can vary substantially
across States and within any given State over time. Such changes are
frequent, because Ul is both a primary tool for countercyclical economic
stimulus in recessionary periods when unemployment increases, and a
highly visible and politicized program at both the state and national
level. This combination of institutional variation and high political
salience makes UI a highly complex administrative program. Its
complexity, in turn, increases the risk of administrative errors — mis-
takes in determining the eligibility status of a claim and/or the amount
of benefit the claimant is entitled to receive. When such errors occur
frequently enough in programs that are as large as welfare, Medicare, or
UL, the result is a significant misallocation of public money.

2.5.1. Institutional history: focus on overpayments

The US federal government began to take a hardline approach on
combating administrative errors in UI during the 1970s in a “war on
fraud and error” (Brodkin & Lipsky, 1983; Matt & Cook, 1993). As the
name of this ‘war’ would suggest, the political goal of reducing or
eliminating Ul payments made to individuals who were not only
receiving benefits they were statutorily ineligible for, but were actively
defrauding the government in the process (Mendeloff, 1977).

The current process for auditing unemployment insurance claims is
known as the Benefits Accuracy Measurement (BAM) program. BAM
auditors take a statistically representative, randomized sample of all
claims submitted to each State unemployment agency and audit this
sample to find errors in both claimant data and administrative decisions
on eligibility and benefit level determination. Over the past 20 years
federal oversight has increasingly focused on the identification and re-
covery of improper payments — particularly overpayments — made
through social insurance policies, including unemployment insurance.
As part of this focus Congress has passed several laws producing per-
formance management requirements for State unemployment adminis-
trators to demonstrate that they are proactively seeking, identifying, and
correcting overpayments in their unemployment insurance programs.
However, no such statutory focus exists with respect to the underpay-
ment of unemployment insurance benefits. This discrepancy recently
came to the fore during the COVID-19 induced unemployment surge in
the United States during 2020. Individual and collective harms from
systematic wrongful denial and underpayment of unemployment in-
surance benefits proved to be substantial. At the same time, little has
been done at the policy level to identify solutions for this problem going
forward.

This research tests whether Al systems can help administrators
identify all types of administrative errors in unemployment claim de-
cisions — both overpayments and underpayments, as well as any other
systematized errors. This is particularly relevant for practitioners
because unemployment insurance is such a highly complex and
complicated benefit program. The high level of variation between States
and within States over time suggests that the underlying error rate of UI
administration is high. To the extent that Al-based automation can both
increase the scope and scale while decreasing the time and labor costs
required to perform such audits, there are strong normative claims for
using this technology on efficiency as well as efficacy grounds. But we
argue that a more complete normative consideration also requires an
empirical assessment of whether such Al systems may also improve our
ability to identify and correct underpayments to eligible beneficiaries.
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3. Methods
3.1. Data

The dataset used in this analysis was sampled from the Benefits Ac-
curacy Measurement system of the Department of Labor. This dataset
contains information about randomly sampled investigations into UI
claims: specifically, federally-collected information of improper UI
payments. There are 785,159 observations in the final, analysis-ready
dataset. Each observation contains information about one unemploy-
ment benefits claim made during the years 2002-2018 in the form of
228 features (variables). These features contain personal information of
the claimant (date of birth, gender, race, etc), information about the last
employment of the claimant (occupation code, salary, etc), information
about the interaction between the claimant and agency (how the claim
was filed, whether it was submitted on time or not, etc.), as well as other
information. Additionally, we include data on state-level policy differ-
ences in Ul eligibility requirements and benefit determination criteria,
merged by State and corresponding year.

3.2. Analytic strategy

In this work we treat the problem of detecting administrative errors
as a classification problem. Classification (sometimes called categori-
zation) is one of the most fundamental problems in machine learning. It
assumes that all observations or datapoints (sometimes called data
samples) belong to a limited set of categories or classes, and the goal is to
predict the category of the datapoint from its features. A simple example
of a classification problem is spam detection, in which new incoming
emails should be categorized into two categories: “spam” and “non-
spam.” Each email has a set of features, such as its content, its length and
the words used, as well as from where the email was sent. To solve the
classification problem, an algorithm uses these features of past emails
together with each email’s known category — spam or non-spam — to
train a new algorithm, a model, that describes those features that
distinguish spam emails from non-spam emails. This new algorithm is
then applied to incoming emails to determine whether they are spam or
not.

In this work, we similarly use a supervised learning approach. Such
an approach assumes that the categories, denoted by labels (such as
“spam” and “non-spam”), are given for the sample, so that patterns
between features and labels can be learned. In this work, we use ma-
chine learning algorithms to predict administrative errors. Thus, the
features in our data describe various pieces of information about UI
claims and class labels describe the types of possible errors (e.g., “No
error,” “Underpayment,” etc). Different methods are available to train a
model with the labeled samples in order to predict labels on the unla-
beled instances. Next, we describe the various machine learning ap-
proaches that we used and their obtained results.

3.2.1. Overview of machine learning classification

As discussed above, classification in machine learning can be defined
as a problem of predicting labels of the data points (data samples). Each
data point has a corresponding vector of the features, which describe
that sample. For example, for the spam detection problem, possible
features include the number of words in the text, specific words (or their
combinations) used in the email, url addresses in the email (which can
be used to detect suspicious websites), time of the email, etc. Features
can appear in different formats: categorical features, which have values
drawn from a limited set of possible values (for example, dog vs. cat);
numerical features, which take on a numerical value; text features;
image-based features; and others. Many machine learning algorithms
expect input features to be in numerical form, and various approaches
exist to convert non-numerical features into numerical features.

In addition to these features, a machine learning algorithm also
needs a subset of data for which samples are labeled with their category
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or class. Ultimately, the machine learning model will be trained on this
subset, and patterns connecting the features to the class label will be
extracted. In supervised machine learning, these categories are assumed
to be known — for example, they could be annotated manually by
humans, or the process of data collection may be such that categories are
obtained alongside data, and so on.

These labeled samples are used to train the model. During the
training process, the machine learning algorithm tries to infer patterns
in the features to distinguish different categories — for example, “spam”
emails may have some specific words that are rarely used in the usual
emails, or they may be sent from some specific set of domains. In
contrast, “non-spam” emails may be more likely to come from the same
domain as the recipient of the email, or sent from addresses that have
already been replied to by the recipient. The trained model is used to
predict categories of non-labeled samples in an automated way. In
addition to making predictions about unlabeled data points, ML algo-
rithms can be used to better understand the data. For instance, algo-
rithms can identify those features that are most important for
classification, giving the analyst insight into properties distinguishing
between classes of data points.

For certain classes of algorithms (e.g., those based on decision trees),
feature importance can be extracted directly from the model. For other
algorithms, it is possible to infer the most important features through
local permutation of the samples (i.e., make slight modifications to
feature values and observe how the predicted label changes) (Baehrens
et al., 2010). In the case of longitudinal data, such algorithms may help
to identify changes over time. Additionally, as different ML models
operate under specific assumptions about structure of the patterns that
may exist in the data, even the performance of various algorithms may
reveal additional information, leading to better understanding of the
dataset.

The choice of a classification algorithm gives rise to public values
conflicts. Insofar as different machine learning algorithms are better or
worse at enabling an increased understanding of the data or of the
classification, as described here, the algorithms fulfill the public values
of integrity, especially its dimensions of audit and explanation, to
different degrees. Some algorithms might be more accurate at the
expense of fewer insights into feature importance. Or some algorithms
might be more accurate at the expense of needing more, and perhaps
more sensitive data — a potential privacy risk. The choice of a classifi-
cation algorithm thus may give rise to conflicts between efficacy and
efficiency on the one hand and integrity on the other.

3.2.2. CatBoost: decision tree-based classification

For the sake of performing a thorough analysis, we use several
classification algorithms, which are listed in the Experimental Setup
section. Here, for purposes of illustration, we describe one of them: the
CatBoost algorithm. CatBoost belongs to the family of gradient boosting
classifiers. This type of model combines multiple decision trees into a
single model. A decision tree is a flowchart-like object in which feature
values are used to determine which branch in the flowchart to take, until
a prediction is arrived at (Jain & Srivastava, 2013). During construction
of the decision tree, the algorithm iteratively selects the feature that is
the most useful for predicting the label, and builds a corresponding
branch of the tree, thus splitting the dataset according to the selected
feature.

CatBoost (and gradient boosting models in general) are based on an
important observation: combining predictions of multiple simple models
is better than using a single model. An entire class of models builds a set
of decision trees such that every new tree is trained to correct errors of
previously trained trees. Several models operate under this general
framework, including XGBoost (eXtreme Gradient Boosting (Chen, He,
Benesty, Khotilovich, & Tang, 2015)), LightGBM (Ke et al., 2017),
AdaBoost (Friedman, Hastie, & Tibshirani, 2000), and CatBoost.

Although these algorithms often perform similarly, the main
advantage of CatBoost over other algorithms from the family of gradient
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boosting models is that it was created to address a problem known as
prediction shift. Prediction shift can be defined as a variation of target
leakage, which happens when classifiers during training implicitly get
access to the information about the label of the sample in the way that is
impossible for unlabeled data during prediction. This happens because
when trees are trained iteratively, the gradients of the error reveal in-
formation about the target variables.

CatBoost addresses prediction shift with ordered boosting (a
weighted sampling method). In this work, we use the “MultiClass”
optimization from the original CatBoost implementation, which uses a
Multiclass Cross-Entropy Loss (log-loss) function given by:
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where a;; represents the predicted probability that element i belongs to
class j and the w; values represent weights associated with each element.

Additionally, CatBoost generates new features during the training
process. These features are defined as a combination of existing features.
As the number of possible combinations of features on the big dataset is
huge, CatBoost constructs new features according to a greedy heuristic
to approximate the true global optima.

3.3. Experimental setup

3.3.1. Preprocessing of the dataset

To prepare the dataset for analysis, we first removed all features that
could act as a direct proxy to the target variables. Next, for all models
except CatBoost, all non-numeric features were converted to a cate-
gorical binary representation (one-hot encoding). As this representation
is very sparse, some of the features were removed to reduce dimen-
sionality of the data. CatBoost is able to work with some non-numeric (e.
g., text features) features by design, assuming their categorical type.

3.3.2. Algorithms tested
We evaluated several different ML classifier algorithms to test for
variation in performance against the audit data. These include:

1. Logistic regression (LR). This algorithm is simple, but is commonly
used for classification problems. While originally designed for the
binary classification, it can be used for multi-class classification with
one-vs-all scheme (where a different LR model is trained for each
class).

2. Random Forests (RF). This algorithm is an ensemble-based algorithm
which uses multiple decision trees trained on the different subsets of
the data.

3. CatBoost. This algorithm, described in more detail above, is based on
the idea of Gradient Boosting.

4. Several deep learning-based models:

a. TabNet (Arik & Pfister, 2019). This DL model was created by
Google for neural network learning on tabular data. It uses
sequential attention and, similarly to the Gradient Boosting
models, allows insight into structural patterns in the data.

b. DeepFM (Guo et al., 2018). This model was created for use in
recommender systems and uses factorization machines together
with neural networks. While it was not created for tabular data
specifically, it may be used with this type of data, and we include
it for completeness.

c. WideDeep (Cheng et al., 2016). This neural network was created
by Google for recommender systems. It combines “wide” linear
models and “deep” neural networks. Similarly to DeepFM, it can
be used for the tabular data.

d. Deep & Cross Network (DCN) (Wang, Fu, Fu, & Wang, 2017). This
model is based on the idea of feature crossing (generation of new
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features based on existing ones). This model also works well for
the tabular data.

To evaluate the performance of a model, we need to compare pre-
dictions on a subset of data with known labels. This subset of data is
usually referred to as a “test” set or “holdout” set. This data should be
excluded from the training process, as it is important that the model is
not familiar with the testing data.

Two scenarios were considered. In the first scenario the whole
dataset was split into two parts — the “training” set and the “test” set,
consisting of 80% and 20% of the data, respectively. The “training” set
was used for the training of the model and the “test” set was used for the
evaluation. In the second scenario, dataset models were evaluated only
on one specific year of claims and trained on the data from one (a) or
three (b) previous years. This setting is more realistic, as in this case the
model is not able to utilize patterns observable in the current year and
has to rely only on previous observations.

3.4. Evaluation metrics

Each sample of the dataset is a UI claim that was randomly selected
to be investigated for incorrect payments. There are several different
categories that datapoint can belong to: “No error,” “Overpayment,”
“Underpayment,” or “Wrong issue.” A “No error” label means that the
claim was processed without any errors, “Overpayment” denotes a claim
with excessively paid benefits, and “Underpayment” labels claims with
incorrectly low benefits. “Wrong issue” means that an error unrelated to
payment in the claim was made.

The dataset is highly imbalanced, as shown in Table 1. Most of the
claims belong to the “No Error” class. This fact needs to be accounted for
during model evaluation. To understand why, suppose that we evaluate
the model just by percentage of claims with correctly inferred class. In
this case a simple classifier that makes the “No Error” prediction every
time would have a relatively high accuracy of 80%, while being abso-
lutely useless at the same time. To address this, one can use the F1-score
to evaluate accuracy. To define F1-score we need to define some other
metrics that are commonly used in evaluation of ML models:

1. Precision: The fraction of the correctly predicted instances from a
class over all predicted instances of the class. In other words, preci-
sion with respect to a particular class is defined as the number of true
positives divided by sum of true positives and false positives

P =TP/(TP+1N).

2. Recall: The fraction of the relevant instances which were correctly
predicted. This can also be defined as the number of true positives
divided by the sum of true positives and false negatives

R=TP/(TP+FN).

The F1-score is the harmonic mean of these two measures:

2P*R
F, =
P-+R
Table 1
Audit determination outcomes in the data.
Outcome Count Proportion
No Error 629,445 0.807
Overpayment 74,983 0.096
Underpayment 59,080 0.076
Wrong Issue 16,090 0.021
Total 779,598 1
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For the multi-class setting there are two ways to compute the F1-
score:

1. Precision, recall, and F1-score may be computed separately for each
class. The macro-F1 score is then computed as the unweighted mean
of these class F1-scores.

2. Precision and recall may be computed globally for all classes at the
same time. The micro-F1 score is computed from this single precision
and recall value.

3.5. Addressing imbalances in the dataset

As the dataset is very imbalanced, each model tends to predict most
of the claims as belonging to the “No error” class. This leads to low recall
performance of less frequent classes (i.e., many members of these classes
are not identified).

Such an imbalanced dataset is typical for any empirical context that
involves the identification of administrative errors, insofar as errors are
the exception. How such imbalances can be addressed is thus a relevant
question for any context where Al is used to detect administrative errors.

The issue of low recall performance can be addressed in different
ways; for example, by using different weighting schemes or employing
techniques aimed to rebalance dataset (undersampling, oversampling,
generation of balanced synthetic data). Most of these approaches exhibit
a tradeoff between precision and recall. Precision may be sacrificed in
order to obtain higher recall.

This tradeoff affects public values. It constitutes another instance of
the conflict between efficacy and efficiency. On the one hand, reducing
precision for detecting over- and underpayment reduces efficiency.
More claims are flagged as administrative errors by mistake, and
investigated without finding an error (cost). On the other hand,
increasing recall for underpayment errors is a matter or efficacy. It
means that more of the underpayment errors, which might otherwise go
unnoticed, are detected by the algorithm (avoid underpayment).

At the same time, increasing recall for overpayment, however, in-
creases efficiency again, since more of the true overpayments errors are
detected as such (avoid overpayment). Given the normative and empirical
relevance of imbalanced datasets, we explore different methods, we
perform two experiments, described next.

3.5.1. Weighting schemes

The simplest way to increase recall of the minority classes is to
change class weights in the model (for those algorithms that support
class weights). Intuitively, class weights affect the penalty for misclas-
sification of different classes. The higher class weight is comparatively to
the weights of other classes, the higher is the expected penalty for
misclassification for this category.

There are multiple different ways to set class weights. In our exper-
iments, we set weights according to the “balanced” heuristics suggested
by (King & Zeng, 2001):

we = N/(k*c[) ,

where w, denotes the weight of class ¢, N stands for the size of the
dataset, k denotes the number of classes in the dataset, and |c | denotes
the number of samples that belong to class c.

3.5.2. Synthetic data

Another common technique for addressing the problem of an
imbalanced dataset is to generate synthetic data which follows a similar
distribution as samples from the minority classes. This synthetic data is
merged into the training set to make proportions of the classes balanced.
Ultimately, the model is evaluated on the test set (which does not have
any synthetic samples). For this experiment, we used the SMOTENC
(Chawla, Bowyer, Hall, & Kegelmeyer, 2011) algorithm for generating
synthetic data, which operates under the following general principle:
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1. Select a random sample from the least frequent class;

2. Find the k most similar samples in the dataset (in our experiments k
was set to 5; similarity between samples is defined as Value Differ-
ence Function (Cost & Salzberg, 1993); and

3. Generate a new sample in the next fashion: sample numeric features
between values of random neighbor and the features original
example. Set categorical features to be equal to the most common
category from the neighbors of the same class.

4. Results
4.1. Descriptive statistics

Administrative politics and economic situations change over time,
which affects patterns of administrative errors as well. Fig. 2 shows the
trend of increasing overpayment error rates with an approximately 25%
increase from 2002 to 2018. The rate of underpayment was slowly
decreasing over the period of observation.

This descriptive statistic can be evaluated with the public values
framework outlined above. Insofar as underpayment errors are trending
downward and overpayment errors upward over time, the UI system
would have improved over time in efficacy (avoid underpayment) but
worsened in efficiency (avoid overpayment).

The error types also vary by State, as seen in Fig. 3, which shows
aggregated results for all years. These differences may be explainable by
differences in State policies. For example, Ohio has a high rate of un-
derpayment errors (one of the highest in the country), but a compara-
tively low rate of fraud. Non payment-related errors appear to be
particularly clustered in the New England region of the Northeast,
particularly in New Hampshire. Across all states and outlying territories,
the total cost of overpayments across all years of observation is $69
million. Total underpayments are approximately $5 million. This vari-
ance might also be indicative of different decisions in resolving public
values conflicts.

4.2. Classification analysis

In this section we report our estimates of whether machine learning
can be used to predict administrative errors made in processing claims
using features of the claim and prior information on administrative
error, and utilize trained models to obtain better understanding of the
data. Our goal is to predict the class (category) of the claim. Recall from
Section 3 that we considered two experimental settings. In the first
setting, we combined all years of data and performed a randomized split
of the data into training and test sets. Results of this setup can be found
in Tables 2 and 3. The best-performing classifier’s score for both preci-
sion and recall by each class of outcome are bolded. As can be seen, the
performance of the CatBoost is the highest, with Random Forest in
second place. Logistic Regression failed to generalize and performed
poorly.

In the second experimental setting, the dataset was split in a
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Fig. 2. Improper payment error trends over the sample period.
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temporal fashion. The model was trained only on the data from the
previous one or three years and evaluated only on the next year. Results
for CatBoost (which performed the best) can be found in Fig. 4.

As part of its output, CatBoost is able to provide a ranking of the
features based on how important they were to the classification. Fea-
tures which were identified as especially important can be found in
Fig. 5. A description of these features can be found in Table 4. Most of
these important features can be grouped into one of these three sets:

1. Features which describe the individual’s previous occupation,
including salary;

2. Features related to time (year of the claim, etc); and

3. Features with information about administrative decisions made prior
to the benefit audit.

4.3. Weighting schemes and synthetic data

Results for CatBoost, trained with the “balanced” heuristic weight
scheme can be found in Table 5. There is significant improvement of the
recall of minority classes at the expense of precision. At the same time
recall of the “No errors” class dropped.

Results for the model, trained on the mix of real data and synthetic
samples can be found in Table 6. Compared to the results for CatBoost
reported in Table 3, one can notice a small average boost in recall for the
“underpayment” and “wrong issue” classes. From the experimental
setup, we can see that the greatest benefit from the synthetic data gen-
eration model is for recall on the smallest classes.

5. Discussion

This article is motivated by the question of whether public managers
could and should use AI to support auditing decision making in social
service provision. We believe that the evidence from our experiments
suggests a conditional “yes” to both questions. It is clear that even using
limited publicly accessible data one can train classifiers that are capable
of performing fairly well in identifying potential administrative errors. It
would, however, be unwise and potentially wrongful to use such a sys-
tem as we have simulated, as a “human-out-of-the-loop” decision
automation system. Instead, the focus of our investigation is auditing
and quality control: the detection of administrative errors, not the use of
Al to make UI claims decisions. It would perhaps be best to consider
implementing Al as a basic decision support system that assists human
auditors. Instead of relying on random sampling to audit claims de-
cisions, Al could help auditors in identifying the subset of data where
they are most likely to find problematic claims. This recommendation of
a limited role of Al as a decision support system can also be rooted in the
public value of integrity and, more specifically, agency, which cautions
against a transfer of authority and decision-making power to automated
systems (Young et al., 2019).

Our results suggest several implications for the use of artificial in-
telligence in the public sector. First, the overall classifier performance
suggests that CatBoost is, among the set of classifiers we evaluate, the
best for the BAM audit data. For now, let us concentrate on the public
values of avoiding overpayments (a dimension of efficiency) and un-
derpayments (a dimension of efficacy). CatBoost performs better than
other algorithms we tested in either of these dimensions, as operation-
alized using the accuracy measures.

In some ways the result that CatBoost performs so well is counter-
intuitive; CatBoost uses decision trees and not the artificial neural net-
works that have captured most of the media and prior research interest
with respect to modern Al Of particular note is the fact that CatBoost
dominated every other classifier with respect to precision and recall for
underpayment errors as well as recall for overpayment errors, and is
relatively closely matched with random forest for overpayment preci-
sion. But random forest also performs relatively poorly in most other
error types; CatBoost is clearly a better algorithm across all decision
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Percentage of claims with an underpayment error

Percentage of claims with no error

Percentage of claims with an overrpayment error

Percentage of “wrong issue” claims

Fig. 3. Relative rate of improper payment errors by type of error across states.

Table 2
F-Scores (micro/macro) by classifier type by class using data from all time
periods.

Classifier F1-score (macro) F1-score (micro)
LR 0.230 0.721
RF 0.452 0.805
CatBoost 0.491 0.823
TabNet 0.366 0.781
DeepFM 0.274 0.730
Wide & Deep 0.271 0.733
DCN 0.384 0.777
outcomes.

The higher performance of the CatBoost in comparison to the DL
models is, however, in line with other findings in computer science
research. Gradient Boosting-based models (e.g. CatBoost, XGBoost or
LightGBM) are known to often outperform neural networks on classi-
fying tabular data (Borisov et al., 2021; Shwartz-Ziv & Armon, 2022).
Existing Deep Learning models for the tabular data tend to surpass GBM-
based methods mainly on big datasets with predominantly continuous
features (Borisov et al., 2021), which is not the case for the BAM dataset.

Table 3

Recall and precision by classifier type by class using data from all time periods.

It is also worth noting that CatBoost’s performance tends to improve
over time. This could indicate gradual improvement of the administra-
tive procedures, and investigating the causes of this behavior is an
avenue for future research. Taken as a whole, this is further evidence
that public managers looking to implement Al in their organizational
decision-making need to pay particularly close attention to the full
spectrum of decision outcomes and their possible implications.

However, there is a risk that, if the public value of efficacy is not kept
in view, an Al classification algorithm might be chosen that focuses only
on efficiency, and might even be better than CatBoost in this regard.
Specifically, in our empirical context, if decision makers were only
focusing on overpayments when evaluating model performance, they
might be inclined to select an algorithm — or proprietary, “black box”
system developed by a private vendor — that would lead to substantive
underperformance for identifying other types of administrative errors.

Next, CatBoost also has an added normative benefit from the
perspective of the public value of integrity, especially in the dimensions
of audit and explainability. Because CatBoost is able to provide some
clarity on the relative weighting or importance of different variables or
features within the data, public managers, politicians, and the public all
have a chance to make more informed decisions about whether the use

Classifier No errors Overpayment Underpayment Wrong Issue
Pr. Rec. Pr. Rec. Pr. Rec. Pr. Rec

Logistic Reg. 0.807 0.995 0.250 0.015 0.061 0.001 0.000 0.000
Random Forest 0.851 0.986 0.756 0.374 0.651 0.113 0.702 0.119
CatBoost 0.865 0.980 0.739 0.486 0.686 0.171 0.745 0.106
TabNet 0.842 0.975 0.627 0.404 0.605 0.036 0.500 0.001
DeepFM 0.818 0.952 0.277 0.168 0.071 0.003 0.000 0.000
Wide & Deep 0.815 0.971 0.394 0.122 0.044 0.006 0.000 0.000
DCN 0.835 0.983 0.710 0.290 0.438 0.039 0.475 0.090
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(a) F1 score for CatBoost model trained on
data from 1 previous year and evaluated on
the next year.

(b) F1 score for CatBoost model trained on
the data from 3 previous years and evaluated
on the next year.

Fig. 4. F1 scores for CatBoost trained on data from prior year (a) or prior 3 years (b).
(a) F1 score for CatBoost model trained on data from 1 previous year and evaluated on the next year.
(b) F1 score for CatBoost model trained on the data from 3 previous years and evaluated on the next year.
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Fig. 5. CatBoost feature importance.

of such an automated classifier is both of sufficient value to justify its use
and does not make tradeoffs that violate either legal or normative ob-
ligations. CatBoost thus performs well in terms of the public values of
auditability and explainability.

Furthermore, our experiments also provide novel evidence for re-
searchers and practitioners with respect to different ways of addressing
data set imbalance and the related public values conflicts. Table 7 re-
ports the relative changes in performance metrics across different
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outcome classes as well as for micro- and macro-F1 scores for the two
alternative training methods employed: changes to the weighting
schema and the use of synthetic data. The difference between each of
these alternatives is striking. Adjusting the weighting schema produced
strong substantive changes particularly with respect to the recall capa-
bilities for overpayments but also underpayments and wrong issue er-
rors. However, this came at significant cost to precision for
overpayments underpayments and wrong issue errors and this penalty is
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Table 4

Description of important features.
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Table 7
Percent change in CatBoost performance relative to naive training on all data.

Feature name

Feature description

High quarter wages
Remaining Balance

Base period wage

Monetary
redetermination

Last tax rate

Occupation code

Claim was paid

Reason for monetary
denial

# Job Contacts

Determination Appeal
results

Nonseparation Determ.
Reason

Filling method for KW
claim

Benefit Year Beginning

Date of first comp. wek
Most recent ERP date

Week of claim filed
Numeric State identifier

Highest wages reported in the fiscal quarter before
investigation.

Remaining Balance (RB) of claim as of key week ending
date.

Base period wage before the investigation.

Whether the State redetermined claimant’s monetary
eligibility.

Last tax rate for the claimant.

Occupation code of the claimant’s last employment.
Money was paid for the claim (claim was not denied).
Reason for monetary denial before investigation.

Number of Job Contacts Listed from any source.
Results of Appeal of Initial Determination that denied
eligibility.

Reason for Nonseparation Determination Before
Investigation.

Filing method for claim

Effective date of most recent new or transitional (not
reopened or additional) claim.

Date of first compensable week.

Date of claimant’s most recent eligibility review up to
Key Week.

Week in which claim was filed (beginning date).
State

Work Search Subject to Work Search Requirements
Requirements
# of Labor Exchange Number of times Employment Services referred claimant
Referrals for employment during the current benefit year.
Separation Determ. Reason for Separation Determination Before
Reason Investigation.
Table 5

Results for CatBoost using ‘balanced’ weighting scheme.

Metric Audit outcome class

No errors Overpayment Underpayment Wrong issue
Precision 0.944 0.342 0.236 0.110
Recall 0.532 0.815 0.502 0.773
F-1 score (macro) 0.419
F-1 score (micro) 0.624

Table 6

Results for CatBoost model trained on synthetic data.

Metric Audit outcome class

No errors ~ Overpayment  Underpayment  Wrong issue
Precision 0.862 0.678 0.554 0.491
Recall 0.967 0.446 0.180 0.150
F-1 score (macro) 0.488
F-1 score (micro) 0.813

further evident in the harmonic mean scores for F1 macro and F1 micro.
This happens because the algorithm is attempting to avoid misclassifi-
cation of less frequent classes, and thus acts with more “suspicion.”
These results hence quantify the public values conflict between effi-
ciency and efficacy described earlier.

For the synthetic data approach, however, the differences are still
present but significantly attenuated. In particular, the improvements to
recall for underpayments as well as for wrong issues are significantly
reduced but still positive. On the other hand, the synthetic data
approach led to an overall reduction in both precision and recall for
overpayment errors — although this change is significantly smaller in
magnitude than for changes to the weighting schema. Similarly, both the
F1 macro and F1 microscores are reduced as they are with the weighting
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Alternative Metric Outcome Class
training No Overpayment  Underpayment  Wrong
method .
errors issue
Weighting Precision 9% —54% —66% —85%
schema Recall —46%  68% 194% 629%
F-1 score —15%
(macro)
F-1 score —24%
(micro)
Synthetic Precision 0% —8% —-19% —34%
data Recall —1% —8% 5% 42%
F-1 —1%
score
(macro)
F-1 score -1%
(micro)

schema changes but significantly less so in terms of magnitude. Another
important point is that the simulated or synthetic data, in addition to
producing some modest performance gains in recall for underpayments
and wrong issue errors, also have an important role to play from the
point of enacting privacy preserving methods for training public sector
Al classifiers.

As a whole our results suggest that there are substantive impacts to
be had from making different design choices with respect to model
training parameters and correcting for highly imbalanced training data.
This is particularly salient for public sector use of Al for decision making.
The choices at hand are technical — e.g. how to adjust the weights in the
training algorithm to address the issue of imbalanced data? — but the
choices also concern public values. Since this kind of conflict will arise
for any highly imbalanced dataset, and since all observational data
about administrative errors is usually highly imbalanced, and since Al
systems will likely be trained on these data, our experiments highlight
the importance of critically attending to technical decisions: Seemingly
technical decisions in model selection and training carry substantive impli-
cations for public values.

This also calls to attention the nature of the data used in this analysis.
These data are very noisy across different classes. One potential expla-
nation for this noise is a limitation to this article: we might not have
enough information in the publicly accessible unemployment insurance
audit data to have a true understanding of the underlying data genera-
tive process (DGP). Underpayment errors in particular are very difficult
to distinguish from no error classes in our sampling data. These errors
may have no systemic cause; they may just be a product of a stochastic
underlying error rate in the UI claims process. An alternative explana-
tion is that the data generative process that stems from the BAM audit
rules and how they systematically differ between searches for over-
payment and as particularly fraudulent errors and underpayments may
in fact systematically bias the audit data towards finding overpayment
errors at the expense of underpayments. The effect of historical
embedding of different normative, political priorities in public sector
DGPs on present-day efforts to implement AI in these contexts is an
under-examined problem in the public administration and policy liter-
ature, making it a strong candidate for future research.

It is important to note that this dimensionality limitation, owing to
the public facing nature of our training data, may also be artificially
limiting the performance of neural net-based classifiers such as TabNet.
Future research that can leverage secure micro level data employed by
state workforce agencies in their more thorough audits and reviews of
unemployment insurance claims would be a necessary and useful next
step to continue to improve our understanding of the value and potential
of Al-based decision support in public sector environments.
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6. Conclusion

In this paper, we have investigated the potential of Artificial Intel-
ligence (AI) to identify administrative errors in the empirical context of
Unemployment Insurance (UI) claims decisions. This investigation is
motivated by the joint questions: Can Al be used to detect administrative
errors and, if so, should it? Our answer is a qualified “yes.”

We compared the performance of seven different random forest and
deep learning models, we addressed the highly imbalanced data using
weighting schemas and synthetic data, and we evaluated the models
using different accuracy measures, as well as a public values framework.
We found that CatBoost, a random forest model using gradient descent
boosting, is more accurate along several measures, and preferable in
terms of public values — since its classifications are not only more ac-
curate across different error types but are also in a limited sense
explainable — than every deep learning model we tested.

Future research should seek opportunities to overcome the data
limitations we faced in this work. This would require partnerships with
government agencies to secure access to restricted data not available to
the public (or researchers). Additionally, future extensions could
experiment with additional and more sophisticated optimization tech-
niques, e.g. identifying pareto frontiers in multi-objective optimization.
Finally, there is a need for additional empirical research on how Al is
already used or being prepared for implementation by state workforce
agencies.

Detecting administrative errors in Ul, and prominently in public
organizations and welfare systems generally, gives rise to a conflict
between efficiency and efficacy. When it comes to Al, this conflict bot-
toms out in tradeoffs of recall and precision in Al training methods.
When the objective function is to minimize all error types — not just
politically salient ones such as avoiding overpayment — Al can help to
overcome this conflict. Our recommendation is that Al can be used to
support audits of administrative decisions. Al can be used to prioritize
quality control to detect and reduce administrative errors.

This article provides insights on what problems need to be addressed
along the way and which Al methods can and should be used. Given the
limits of our analysis, we provided a public values framework that can
support deliberations about the use of Al to detect administrative errors
beyond the confines of the analyses of this article. There has been a
historical and institutional emphasis on minimizing overpayments to the
frequent exclusion of investments in making UI more accessible and
timelier for those who qualify. Using Al to audit claims data both
highlights the need to explicitly balance the desire for efficiency with a
need for efficacy and can serve as a tool towards that end.
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