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Abstract

The variational implicit-solvent model (VISM) is an efficient approach to biomolecu-
lar interactions, where electrostatic interactions are crucial. The total VISM free energy
of a dielectric boundary (i.e., solute-solvent interface) consists of the interfacial energy,
solute-solvent interaction energy, and dielectric electrostatic energy. The last part is
the maximum value of the classical and concave Poisson-Boltzmann (PB) energy func-
tional of electrostatic potentials, with the maximizer being the equilibrium electrostatic
potential governed by the PB equation. For the consistency of energy minimization and
computational stability, here we propose alternatively to minimize the convex Legendre-
transformed Poisson—Boltzmann (LTPB) electrostatic energy functional of all dielectric
displacements constrained by Gauss’ law in the solute region. Both integrable and
discrete solute charge densities are treated, and the duality of the LTPB and PB func-
tionals is established. A penalty method is designed for the constrained minimization
of the LTPB functional. In application to biomolecular interactions, we minimize the
total VISM free energy iteratively, while in each step of such iteration, minimize the
LTPB energy. Convergence of such a min-min algorithm is shown. Our numerical re-
sults on the solvation of a single ion indicate that the LTPB performs better than the
PB formulation, providing possibilities for efficient biomolecular simulations.
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theory, Legendre transform, dielectric boundary force, penalty method, a min-min op-
timization algorithm.
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1 Introduction

In a variational implicit-solvent model (VISM) [10, 11, 35, 40] (cf. also related models |2, 26,
31]), one minimizes a solvation free-energy functional of all possible solute-solvent interfaces
(i.e., dielectric boundaries) to determine an equilibrium system of charged molecules (such



as proteins) immersed in an aqueous solvent (i.e., water or salted water) and estimate the
solvation free energy. The VISM free energy consists of the solute-solvent interfacial energy,
the solute-solvent interaction energy, and the electrostatic energy. The last part is often
described through the equilibrium electrostatic potential ¢r : 2 — R which is governed by
the dielectric boundary Poisson-Boltzmann (PB) equation (PBE) [1, 6, 9, 14, 34, 40]

V-erVer — xo+B'(ér) = —f  in Q, (1.1)

together with some boundary conditions. Here, Q C R? is the underlying solvation region, I
is the dielectric boundary that divides {2 into the solute region {2_ and the solvent region €2,
X+ = Xa, is the characteristic function of 2, and &p : 2 — R is the dielectric coefficient

defined by
e- itz efl,
= 1.2
r(2) {€+ if z € Q. (1.2)

where £_ and £, are the dielectric permittivities for the solute and solvent, respectively.
(Typically, e ~ g5 and £, ~ 80gy with &y the vacuum permittivity.) See Figure 1. The
function f : 2 — R represents the charge density of solute molecules, while the term —B’(¢r)
describes the ensemble-averaged charge density of mobile ions in the solvent. The function
B : R — R is given by

B(¢) = B! Zc;?o (e7Pud — 1), (1.3)

Jj=1

where M > 1 is the number of ionic species, 87! = kgT with kp the Boltzmann constant
and T temperature, q; = Zje with e the elementary charge, and ¢f° and Z; are the bulk
ionic concentration and valence of ions of the jth species. We note that different forms of
the function B can be used for different models; cf. e.g., [5, 17, 18, 19]. The equilibrium
electrostatic potential ¢, the optimal boundary I', and the VISM free energy depend on the
form of B and the parameters used in defining B. A commonly used boundary condition for

the electrostatic potentials is ¢ = g on 0€) with g : 92 — R a given function.

n
I‘fr') .
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Figure 1: A schematic diagram of charged molecules immersed in an aqueous solvent. The
region of solvation {2 is divided by the solute-solvent interface (i.e., dielectric boundary) T’
into the solute region 2_ and the solvent region €2, . The solute region €2_, which can have
multiple connected subregions, contains all the solute atoms x; carrying partial charges Q);
(i=1,...,N). The unit normal n at T points from _ to €2,.



The PBE (1.1) is the Euler-Lagrange equation of the classical PB electrostatic energy
functional applied to the continuum solvation [6, 13, 14, 19, 20, 23, 32]

ol = [ [F5IV0R + fo-xuBlo)|de voe Hy@) (1.4

where

Hy(Q)={¢ € H'(Q): ¢ = g on 6Q}.

This functional is concave and maximized to yield the equilibrium electrostatic potential
¢r, which is the solution to the PBE, and the corresponding electrostatic energy Fe[l'] =
Ir[¢r]. We refer to [6, 8] for discussions on the maximization instead of minimization of the
electrostatic energy functional for equilibrium electrostatics.

An iterative method is often used to minimize numerically the VISM solvation free-energy
functional. In each step of the iteration, one solves the PBE (1.1) or maximizes the PB
functional (1.4). Maximizing the electrostatic energy and then minimizing the total VISM
solvation free energy may possibly develop instabilities if there are not enough steps for such
maximization or minimization. It is therefore natural to ask if the electrostatics can be
determined by minimizing a convex energy functional. Motivated by such a question, here
we develop an alternative approach to the electrostatics for VISM, based on the concept
of the Legendre-transformed Poisson-Boltzmann (LTPB) electrostatic energy [27] (cf. also
[4, 8, 28, 30]). For a given dielectric boundary T, the LTPB energy functional is given by [§]

JF[D]:/Q {i|D\2+X+B*(f—V~D)1 dx+/mg(D-n)dS (1.5)

for all dielectric displacements D : ©Q — R? that are constrained by Gauss’ law (in the

differential form)
V-D=Ff in ©_, (1.6)

where B* is the Legendre transform of B and n is the unit exterior normal at 0€2. We recall
for £ € R that [33, 42]

B*(&) = sup [a& — B(a)] = s¢ — B(s) with B'(s) =¢, and BY(¢) = s. (1.7)
a€R

Our main results are the following:

(1) We construct the LTPB electrostatic energy functional with the constraint for both
the case of a continuum solute charge density represented by an integrable function (cf. (1.5))
and that of a discrete charge density (or point charges) described by a linear combination of
Dirac masses. We prove the duality between the classical PB and the LTPB functionals. For
a continuum charge density f € L?*(f2), this duality is

max Ir[¢] = min Jp[D],
pEHL(Q) DeVr ¢
and the unique maximizer ¢r of Ir over H, ;(Q) and the unique minimizer Dr of Jr over Vp ¢
are related by Dr = —eprV¢r, where

Wr={D € H(div,Q):V-D = fin Q_}, (1.8)
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H(div,Q) = {D € [L}Q)P : V- D € L*(Q)}. (1.9)

(2) To minimize numerically the LTPB functional, we propose a penalty method. For
the case of a continuum charge density f € L?(Q), this method amounts minimizing the
penalized functional

Jr D] = Jr[D] + i/ IV-D— f’dxe VD € H(div,Q), (1.10)

without the constraint, where p > 0 is a penalty parameter and y_ is the characteristic
function of 2_. We prove that, as gy — 0, the minimizer and minimum value of the penal-
ized functional Jr, converge to those for the functional Jr : Vr y — R, respectively. Such
convergence is numerically verified.

(3) We incorporate the LTPB electrostatics into the VISM, and derive the dielectric
boundary force —dr(minp Jr[D]) using the minimizing dielectric displacement Dr € Vr ;. We
also construct a min-min algorithm and a max-min algorithm to minimize numerically the
total VISM free energy with the LTPB and PB electrostatics, respectively. The convergence
of the min-min optimization algorithm is shown.

(4) We present an analysis of the duality and the penalty method for a simplified radially
symmetric system resulting from the application of VISM to the solvation of a single ion.
We also provide a new and direct derivation of the dielectric boundary force for a similar
and reduced one-dimensional system. Moreover, we report extensive numerical results on
the solvation of a single ion to show that the LTPB formulation with the min-min algorithm
performs better than the PB formulation with the max-min algorithm and that the VISM-
LTPB predicts accurately the solvation free energy of single ions.

We remark that our results can be directly extended to some size-modified PB and LTPB
electrostatics with a general convex function B [3, 5, 12, 15, 16, 17, 18, 19, 21, 25, 37, 41].

The rest of this paper is organized as follows: In section 2, we construct the LTPB
electrostatic functionals and prove the duality of the LTPB and the PB functionals. We also
propose and prove the convergence of a penalty method for minimizing the LTPB energy
functional and present some numerical results. In section 3, we apply the LTPB theory to
the variational implicit solvation and derive the dielectric boundary force. We also design
a min-min algorithm and prove its convergence for minimizing the VISM-LTPB functional.
Numerical results for the solvation of an ion are presented. Finally, in section 4, we draw
conclusions of our findings. In Appendix, we give a new and direct derivation of the dielectric
boundary force for a one-dimensional model system.

2 The LTPB Electrostatics with a Dielectric Boundary

We assume the following:

(A1) Al Q, Q_, 2, are smooth and bounded open sets in R3, T' = 9Q_, and all z; € Q_ and
Q:eR (i=1,...,N) are given; cf. Figure 1;

(A2) Both e_ and e, are given, distinct positive numbers, and er is defined by er = e in
Oy



(A3) The function B : R — R is smooth, strictly convex, and uniquely minimized at 0
with B(0) = 0. Moreover, B(£o0) = 00; (An example of such a function is B(s) =
cosh(s) — 1.)

(A4) The function f € L?(Q) is given, and is smooth, e.g., f € H'(Q). The boundary value
g : 00 — R (cf. (1.4) and (1.5)) is the trace of some function, also denoted g, in
Whee(Q).

We note that the function B : R — R defined in (1.3) and those model the ionic size effect

in the size-modified PB theory [18, 19, 21, 41] all satisfy the assumption (A3). We also recall

that the space H(div,$2) (cf. (1.9)) is a Hilbert space with respect to the inner product

(Dy, Dy) = / Dy - Dy + (V- Dy)(V - Dy)] da.
Q
Moreover, D -n € L*(09Q) if D € H(div,Q) and [36]

/Q(V-D)udx:—/QD-Vudx—f—/aﬂ(D-n)udS Yu e H (). (2.1)

2.1 The electrostatic energy functionals and the duality

Case 1. A continuum charge density. For this case, the Poisson—Boltzmann (PB) and
the Legendre-transformd Poisson-Boltzmann (LTPB) functionals It : H,(€2) — R U {—o0}
and Jp : Vo = RU{oo} are defined in (1.4) and (1.5), respectively, and their properties are
summarized in the next theorem. We denote [u]r = u|q, —u|o_ on I' for any u : @ — R
when the traces are defined.

Theorem 2.1. (1) The PB functional It : Hy(2) — RU{—00} admits a unique mazimizer
¢r € H(Q). Moreover,

¢r € L™(Q), ¢rlo, € H (), and [erOn¢r]r =0,

and ¢ is the unique weak solution in H () to the PB equation (1.1).
(2) Let Dr = —eprVer. Then, Dr € Vpy and it is the unique minimizer of the LTPB
functional Jr : Vi — RU {oo}. Moreover,

[[DF : n]][* =0 and B*/(f -V DF) = ¢F m Q+.
(3) Dualzty max¢eH;(Q) Ip [¢] = minDve JF [D]

Proof. (1) By Poincaré’s inequality, we have sup ¢ HI(Q) Ir[¢] < oo. The existence and unique-
ness of a maximizer ¢ for Ip : H;(€2) — RU {—oc} can be obtained by the direct method
in the calculus of variations, using the strict convexity of B. A comparison argument leads
to ¢r € L>(Q) [20]. Routine calculations then imply that the maximizer ¢r satisfies the PB
equation (PBE) (1.1), which is the Euler-Lagrange equation for the functional I, and that
[erdnor]r = 0. The regularity of ¢r follows from existing results of solution regularity for
elliptic equations; cf. [20, 23].



(2) For any ¢ € H,(2) and any D € Vp y, we have by (2.1) that
) < [ [-SE1960 + Fo - B(@) + lerVo+ DF | da
Q er
D 2
:/Q |2€| 46— X B(d) + V- D] de
2
— [V ettt = V-0 = By do [ g-n)as

g/g_%erB*(f—v.D)} dx+/mg(D~n)dS
= Jr[D]

Note by (1.1) that Dr = —erV¢r € Vi s. Setting ¢ = ¢r and D = Dr and noting by (1.1)
that

f—=V-Dr = B(¢r)
and hence
B*(f =V -Dr)=¢r(f —=V-Dr) = B(¢r) iny,

we have Iv[¢r| = Jr[Dr|. Thus, Dr is a minimizer of Jr over Vr ;. It is unique since Jp is
strictly convex over Vr ¢. Since [erd,¢r]|r = 0, we have [Dr - n]r = 0. By the PBE (1.1), we
also have

f—=V-Dr=x:B(¢r) in Q.
Hence, by the property of Legendre transforms,

B*,(f -V DF) = QSr in Q+.
(3) This follows from Ip[gbp] = mangeH;(Q) ]F [¢] S minDve JF[D] = JF[DF] = Ip[¢p] ]

Case 2. A discrete charge density. The equilibrium electrostatic potential, now denoted
¢r, is the weak solution to the boundary-value problem of the PBE with point charges
[19, 23, 38, 40]

V- erVor — x+B'(ér) = ZQ 0, inQ
(2.2)
br=g onoQ,
where §, denotes the Dirac mass concentrated on a € R3. The electrostatic energy is given
by [19, 23, 40]

N

Buell] = 5> @il — de)(a) + |

i=1 0+

B&FBI@F) - B(Qgr) dzx, (2.3)

where ¢¢ is the Coulomb potential: ¢c(z) = SN | Q;/(4me_|x — x4]). Note that we do not
include an extra term in B as we can derive the energy form by minimizing a continuum
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electrostatic free-energy functional of ionic concentrations using different boundary condi-
tions (e.g., the homogeneous Neumann boundary condition) for electrostatic potentials. The
boundary value ¢ in (2.2) is an approximation of that of the equilibrium electrostatic po-
tential; cf. [19, 22, 23, 24, 40]. Following [19, 23|, we express the electrostatic energy using
integrals that are mathematically more convenient to handle:

Eele[r] - _/g; [%|V($F - qgl",oo)|2 + X—l—B(QAﬁF)] dz + AF7 (24)
_ . . 1.
Ap = > £+ 5 Voro - Vouda + ;Qi(% — do) (@) (2.5)

Here, QZBF’OO is defined by
~ N ~
—V-erVore =Y Qid,, nQ  and  ¢re=g on o,
and both (/50 and ngﬁoo are solutions to
N ~ ~
—e_Au = Z Qi0,, in Q with ¢o=0 and ¢ =g on 0f),

respectively; cf. [23]. Note that ¢o — ¢ is harmonic in Q_ so each (¢os — ¢c)(;) (1 < i < N)
is well defined as the limit as z — ;.

We define the PB energy functional for the case of point charges Ir le"’m + H}(Q) —
R U {—o00} by

ivl6) = = [ [FIV6 = +0:B@)]dot A Vo€ bra+ HY). (26

Note that Ip[gbp] Ee.[T] is the electrostatic energy. Note also that ¢ € ¢r o + HE(Q) if and
only if ¢ € d¢ + H;(Q) with h = g — ¢c. Let Vi g be defined by (1.8) with f = 0. We define
the Legendre-transformed PB (LTPB) functional Jr : Vp g — R U {oo} by

. 1 .
JF[D]:/{E\D\?dazﬂ(+ [B*(—V-D)Jrqﬁnoov-D]}derAp VD € Vig. (2.7)
Q

Theorem 2.2. (1) The PB functional It : ¢r o + HL(Q) — RU {—oc} admits a unique
mazimizer ¢r. Moreover, ¢r— QASFOO e L=(Q), (or— QASFOO)|Qi € H*(Q), and [[epan([ﬁp]]p =
0, and (bp is the unique weak solution to the boundary-value problem of the PBE (2.2).
(2) Let Dr = —€FV(¢F — ¢p ). Then, Dr € Vo and it is the umque minimizer of the
LTPB functional Jr : Vg — RU {co}. Moreover, B*'(=V - Dr) = ¢r in Q.
(3) Duality: max,es. . mq) Ir[¢] = minpevr , Jr[D].



Proof. The proof of part (1) and part (3) is similar to that for Theorem 2.1. So, we only
prove part (2). Let ¢ € ¢r o + Hg(Q2) and D € Vi g. Then,

~ I Er ~ 9 1 N 2
Ir[¢] < /Q 5 V(9= dreo)l” + 5er )epV(aS — froo) + D‘ - X+B(¢)} dr + Ar

= [[BE 49 (6= ) - D= B0 i

-/ @_(qb_(gm)v-za—mw)] do+ Ar

2€r

G4 [6(-V D) = B() + dr¥ D] | o+ ¢

\D|2 Ty [B*( VD) + droV - D] } dr + Ar

By (2.2) and the definition of ngﬁp,oo, we have Dp = —epV(¢r — quvoo) € Vro. Setting ¢ = or
and D = Dy and noting that A—Vf)p = Q’(QBF) and hence B*(—AVIA)p) = (=V-Dr)¢r—B(ér)
in Q, we have Ir[¢r] = Jr[Dr]. Thus, Dr is a minimizer of Jp over V. It is unique since
Jr is strictly convex over Vro. Finally, it follows from the property of Legendre transforms
that B*(—=V - Dr) = ¢ in Q. O

2.2 A penalty method
Let ¢ > 0. Recall that Jp, is defined in (1.10). Similarly, we define Jp, : H(div,Q) —
R U {400} by

Jra[D] = JelD] + - / (V- D)2 ds. (2.8)

Theorem 2.3. For each > 0, the functional Jr ,(resp. JAF,H) : H(div, Q) — R U {+o0}
admits a unique minimizer Dy, (resp. Dr ) € H(div,). Moreover,

Dr, — Dp (resp. Dr, — Dr) in H(div, Q)

and

A

i D in Jp[D . mi D in Jp[D
pehtiney TP g, FlPLresp i o) ralPL = g, JrlP)

as p — 0, where Dr = argminpey, Jr[D] (resp. Dr = argminDevrlojp[D]).

Proof. We only consider Jr, and Jr as the proof for jp# and Jr is similar. Let u > 0. We
define I, : Hy(Q) — RU {—o0} by

Teplol =1l =5 [ o= [ [FFIV0P + fo—xaB(0) = S dn. (29)
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Similar to the proof of Theorem 2.1, the functional Ip, : H, () = RU{—o00} admits a unique
maximizer ¢p,, € L>(2) and it is the unique weak solution in Hj(Q) to the Euler-Lagrange
equation

~V -erVor, +x+B'(¢ru) + px-¢r,=f  in (2.10)

We show that ¢r, — ¢r in H'(Q2) and Ir ,[ér ] — Ir[¢r] as p — 0, where ¢r is the unique
maximizer of Iy : H,(Q) — RU{—oo}. It suffices to show that for any sequence p, \, 0, there
is a subsequence, not relabelled, such that ¢r,, — ¢r in H'(Q) and Ir ,, [¢r..] — Ir[¢r] as
k — oo.

Let g € Hy(2) be such that g = 0in Q_. Then It ,[¢r ] = maxgem (o) Ir u[¢] > Ir (9] =
Ir[g] > —oo. It then follows from the definition of I, and Poincaré’s inequality that

sup ||, g o) < oo. (2.11)
n>0

Now for any puy ™\ 0, there exists a subsequence of {¢r,,}, not relabelled, and some @p €
H*(Q) such that ¢r,, — ¢r in H'(Q2). (— denotes the weak convergence.) Clearly, ¢r €
H,;(Q). By the convexity of —Ir,

hm sup [F[¢F:Nk] S [p[(z_bp]

k—o0

This and the fact
IR/% [¢F] < [F#k [QSF?}’L]C] < IF[¢R/%]

imply that

< limsup Ir[¢r ] < Ir[or] < Ir[er].

k—o00

Thus, Ir[¢r] = Ir[ér] and ¢r = ¢r by the uniqueness of maximizer of Ir. Hence, It lor ] —

Ir[¢r].

We now prove the strong convergence ¢r , — ¢r in H'(Q). Denote for each k > 1

ay, = / SV l? = IVor| o and b = / [B(ér,,) — B(r)) da.
Q Oy
Passing to a further subsequence if necessary, we have by the weak convergence ¢r ,, — ¢r
in H'(Q2) that ¢r,, — ér in L*(Q) and ¢r ,, — ¢r a.e. in Q. These, together with the energy
convergence Ip ,, [¢r ] — Ir[¢r] as k — oo and the bound (2.11), imply that aj, + b, — 0
as k — oo. But liminfy oo ap > 0 as ¢r,, — ¢r in H1(Q) and liminf, . by > 0 by Fatou’s
lemma. Therefore,
0 = lim (ag + b)) > liminf a;, + liminf b, > 0.
k—o0 k—o0 k—o00

Hence liminf;_,,, ap = 0. Passing to a further subsequence if necessary and without rela-
belling, we have a; — 0 as k — oo. This and the weak convergence ¢r,, — ¢r in H*(Q),
together with the identity

IV, — Vorl? = Vol — [Vor]? — / Wér - V(or,, — ér) d.

9



imply that Vér,,, — Ver in L?(2) and consequently that ¢r, — ¢r in H'(Q).
Finally, set Dpﬂu = —ETFVQZﬁ[‘#. By (210), DF’# c H(le, Q) and V'D[‘# = f_X+B/(¢F,u)_
px—¢r, in Q. Moreover, since the Legendre transform of s — us?/2 is £ — £2/(2p), we see

that Dr, is the unique minimizer of Jr, over H(div,Q) and Jr,[Dr,| = I, [¢r,) (cf.
the proof of Theorem 2.1). Thus, Dr, — Dr in H(div,) and minpepgiv.0) Jru[D] —
minDve JF [D] ]

2.3 Numerical results

We choose Q = (=1,1)3, T'={x € R®: |z| = 1/2}, 6. = g, 64 = T8, f = 1 in Q, and
g =0on 99, and consider B(s) = s?/2 and B(s) = cosh(s) — 1. We cover Q = [~1,1] with
a uniform finite-difference grid of size h = 2L /N, where N + 1 is the number of grid points in
each coordinate direction, and use the central differencing and trapezoidal rule to discretize
the energy functionals. The nonlinear conjugate gradient method is used to minimize or
maximize numerically the resulting convex and concave functionals, respectively. We first
maximize the discretized functional It with a very fine grid to obtain a numerical maximizer
QDexact, and calculate Dgyact = —rVexact and use it as the “exact” solution. We then choose
several values of N and pu. For each pair of the chosen N and p, we minimize numerically the
discretized functional Jr , to obtain a numerical minimizer D, y. To test how the constraint
V-D = fin Q_ is satisfied, we define the penalty error

PE(u,N) :=||V-D,n — f||%2(sz_)-

Figure 2 (Top) shows that for a fixed > 0 the error decreases with the increase of N,
the number of grid points in one direction. For a large value of p > 0, such error decreasing
saturates as N increases due to the penalty error with the fixed pu. Moreover, for a fixed NV,
the error decreases as p decreases. Figure 2 (Bottom) indicates that (1/2u)PE(u, N) = O(u)
as u — 0, implying that

1
Jru[Dr,u) — Jr[Dr] = ﬂ”v Dr,, — fH2L2(Q_) —0 as p — 0,

as prediction by Theorem 2.3.

3 Application to Variational Implicit Solvation

3.1 Solvation free energy and the dielectric boundary force

In the variational implicit-solvent model (VISM) (cf. Figure 1), the solvation free-energy
functional of dielectric boundaries is given by [10, 11, 35, 40]

FIT] = PyVol(€2) + 76 /

(1 —2rH)dS + py / U(z)dV + EaelT). (3.1)

Q4

Here, P, is the difference between the pressure outside and inside the molecular region 2_,
Yo is the constant surface tension, 7 is the Tolman length, and p, is the bulk solvent density.
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Figure 2: The relative error || D, N — Dexact || £2(0)/ | Dexact || L2 () vs. N for several p-values (Top)
and the penalty error PE(u, N) vs. 1/(2u) for several values of N (Bottom) for B(s) = s2/2 (left)
and B(s) = cosh(s) — 1 (right).

All Py, v, 7, and py are given constants. In addition, H is the mean curvature (positive if
Q_ is a sphere), U(z) = 32N U&)(|x — x;|) with each UIEZJ) a Lennard-Jones (LJ) potential.
The last part F..[['] is the electrostatic energy. In the classical Poisson—Boltzmann (PB)
formulation, it is given by

ma:(xﬂ) Ir[¢] (for a continuum charge density; cf. (1.4)),
peH]
Eele[F] = A (32)
i for point charges; cf. (2.6)).
¢g}1{?€<ﬂ) r[¢] (for point charges; cf. (2.6))

The dielectric boundary force is the negative first variation of the total free energy with
respect to the variation of the boundary I'. This first variation is a function on I' and is given
by [7, 39, 40]

(5FF[F] = P() + ZVO(H — TK) + pWU + 5rEe1e[F].

For the case of a continuum charge density, the variation of the electrostatic energy r Egje|T']
is given by [20, 23]

S Eae[T] = (i _ gi) erdndr? + S (T —n@n)Vérl?+ B(ér),  (3.3)

2 E_ + 2

where ¢r is the equilibrium electrostatic potential, the solution to the boundary-value problem
of the PB equation (PBE) (1.1), and I is the 3 x 3 identity matrix. For the case of point
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charges, the formula is the same except ¢r should be replaced by (ZBI‘, the solution to the
boundary-value problem of PBE (2.2). Note that the force —dr Egc[I'] points from the higher
to lower dielectric region [20].

Here, we propose to use the LTPB formulation for the electrostatic energy

min Jpr[D] (for a continuum charge density; cf. (1.5)),
DeVr f

Drél‘l/lrr{o Jr[D]  (for point charges; cf. (2.7)).

Eqe[l'l = (3.4)

By Theorem 2.1 and Theorem 2.2, both the PB and LTPB formulations lead to the same
value of E,[I'] for a continuum charge density or for point charges. To numerically minimize
the total solvation energy, we use the penalized LTPB electrostatic energy functionals defined
in (1.10) and (2.8), respectively. Let us denote also by Eeje ,[I'] the minimum of Jr , or JAM
over H(div, Q).

Theorem 3.1. (1) A continuum charge density. Let Dy and Dr, be the minimizers of
Jr Vo g = RU{oo} and Jr,, : H(div,Q) = R U {oo}, respectively. We have

2

1 /1 1 9 €4 —E- Dr
orEgel) == (———)|Dr- I— —t
T 1[ ] 5 (8 €+)‘ T n| + 5 ‘( n®n) e
+ B (B"(f =V -Drla,)) onT,
1/1 1 s Ep—E_ Dr,.|?
rEee 1 ==(———||Dpr,- I— y
1 Lete,u 1] 2(5_ 8+)| v+ ’( n®n) -

2
1

o (f -V DF7#’Q_)2 on T,

+ B (B(f =V Dryla,)) —
(2) Point charges. Let Dy and Dy, be the minimizers of Jp = Vig — R U {oo} and
Jry o H(div, Q) — R U {oo}, respectively. Then, the above formulas in part (1) hold true
with Dy and Dy, replacing Dr and Dr ,, respectively, and f = 0.
Proof. We only prove part (1) as the proof of part (2) is similar. By Theorem 2.1, Dr =
—erVor, where ¢r = argmaxd)eH%(Q)Ip[(ﬁ], and B*(f —V - Dr) = ¢r in Q. Now the first
formula follows from (3.3). Set Ir,[¢] = Ir[¢] — (u/2)||¢||%2(97). Then Ir, : H;(Q) —
R U {—oo} admits a unique maximizer ¢r,. Moreover, Dp, = —erVe¢r, is the unique
minimizer of Jr, : H(div,Q) — R U {oo}, and maxgen(o) Iru[0] = min g, div o) Jr D] =
Eeeu[I']. With the same argument for deriving (3.3) (cf. [20, 23]), we obtain the formula for
Or Eeteu[l'] = 0rEee[l'] — (1/2)¢% .. Since the Legendre transform of the function s — ps*/2
is € — £2/(2u), we obtain the second formula by using the same argument. O

3.2 A min-min algorithm and a max-min algorithm

We apply the gradient descent method to minimize the total VISM free-energy functional
(3.1). Once I'y is given, we obtain the new boundary I'yy; := 'y — a0 F[Iy], i.e., a point
x € Ty is moved to xpy1 = xp — apdr F[Tg)(xk) € Ty, with a step size ap > 0. With the
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LTPB electrostatics, we propose a min-min algorithm for such minimization. For comparing
the LTPB and PB formulations, we also design a max-min algorithm for minimizing the total
free energy with the PB electrostatic energy. These algorithms are described only for the
continuum charge density as they are similar for point charges. Moreover, for the LTPB
formulation, we shall replace the LTPB functionals by their penalized versions. Note that
for large-scale simulations it is desirable to have only a few iterations to get the approximate
¢ry1 or Dy 1. Hence, in our numerical tests, we will choose small number of steps for such
iterations.

A min-min algorithm for minimizing the VISM-LTPB functional. Given I['; and
Dy,
e Minimize Jr, over Vp, r by an iteration method with Dy as the initial guess to obtain
an approximate minimizer Dy, q;
e Calculate dr Ege[I'x] using Dy, 1 and then calculate op F'[[y];
e Choose ayy1 and update T'yy1 = Ty — oy 100 F [Ty

A max-min algorithm for minimizing the VISM-PB functional. Given I';, and ¢.
e Maximize I, over H,(Q) by an iteration method with ¢ as the initial guess to obtain
an approximate maximizer @.i;
e Calculate dr Ege[I'x] using ¢y41 and then calculate op F/[I'];
e Choose ayy1 and update 'y = Ty — oy 100 F[Tg].

We now state the min-min algorithm and prove its convergence for a general optimization
problem. We assume:
(al) Both m and n are positive integers, and U C R™ and V' C R™ are open, bounded, and

convex;
(a2) The function f € C?(U) is convex, and the function g € C?(U x V) is strictly convex;
(a3) For each x € U, there exists a unique minimizer y, € V' (not on dV) of g(x,-) : V — R.
We define F': U — R and F : U x V — R, respectively, by
F(z) = f(z) + ming(z,y) Ve eU,

yeVv

F(z,y) = f(z) +g(z,y)  Y(z,y) €U xV.

Lemma 3.1. (1) The function F : U — R is Lipschitz-continuous. Moreover, there exists
a unique x* € U such that F(z*) = min, g F(z).
(2) The function F € C*(U x V) and is strictly convex. Moreover, there exists a unique
(z,y) € U x V such that F(Z,y) = mig(x’y)em F(x,y).
(3) We have min, g F'(z) = min, , g F'(2,y). Moreover, (z*,y.~) = (T,7).

Proof. (1) Let 2’,2" € U. Since min, .y, g(z”,y) = g(z", yz») by the assumption (a3), we have

min g(z',y) —min g(z",y) < (2, yor) — 9(a", yor) < K|z' — 2",
yev yeV

where K = max, , v | Vag(2,y)|. Switching z and 2" and noting that f € CY(U), we see

that F': U — R is Lipschitz-continuous. Since F is continuous on U and U is compact, there
exists * € U such that F'(z*) = min g F'(z). The uniqueness of z* follows from Part (3).
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(2) These follow from the assumptions on f and g, and the compactness of U x V.
(3) Clearly, F(z) = F(z,y,) > F(7,7) for any z € U (cf. the assumption (a3)). Hence,
min, g F'(x) > ming, 75y F(2,y). On the other hand,

L min_Flr,y) = F(@1) = () +9(7.7) > f(7) +9(F, ) = F(¥) > min F(x).

Thus, min, g F(z) = ming, gy F(,y). This also implies that F(z*,y,-) = F(z*) =
F(7,7). Since the minimizer of F is unique, we have (2*,1,-) = (Z, 7). O

A min-min algorithm for finding z* = argmin_;F(z).
Step 0. Choose z¢ € U. If xg = x* then stop. Otherwise, compute yy = argminyevg(xo,y).
Set k = 0.

Step 1. Compute

o = argminge o {F(x — aVoF(xe, ur), yk) }

where A, = {a > 0: 2 — aV, F(z, ) € U},

Tp1 = T — Vo F (Tk, Yk).-
Step 2. Compute yy11 = argmin, y:g(Txy1,9).
Step 3. If x5, 1 = 2* then stop. Otherwise, set k := k + 1 and repeat Steps 1-3.

Theorem 3.2. Assume x* = argmin, g F(x) € U. Let vg € U and yo = y,, € V. Assume
Wo = {(z,y) €U xV : F(x,y) < F(zo,90)} CU x V.

Let {x}32, be generated by the min-min algorithm. Then, x, = x* for some k > 0 or
T — x*.

Proof. Let us assume z; # z* for any £ > 0 and show that x; — 2*. Define for each k > 1
the set W}, the same as W, with (¢, o) replaced by (zx,yx). We first show the following
statement for each £ > 0: there exists a unique oy € A as defined in Step 1, the point
(zx, y) defined in the algorithm satisfies (zy,yx) € int(Wy) and d®) = V,F(xy,y:) # 0,
F(xps1, yer1) < Fxg, yg), and Wi C Wy

Consider k& = 0. Since yo = y,, = argmin,yg(zo,y) € V (cf. the assumption (a3)),
Vyf(xg,yo) = V,9(x0,y0) = 0. Since xy # z*, and since by Lemma 3.1 (z*,y,«) € U x V
is the unique minimizer of F over U x V, we have d®) := V,F(xq, o) # 0. It follows from
Taylor’s expansion that

F(zo — Oéd(o)wo) = F(20,90) — O‘Hd(O)H2 + 0(a®) < F(zo,0) ifo<a<1

By the assumption that the closed set W, C U x V and the strict convexity of F, there exists
a unique g € Ag such that

7(330 - Oéod(o), Yo) < F(SIIO - Oéd(o)7 Yo)
for all a € Ag. Now

11 = 20 — Vo F (z0,70) €U and F(z1,90) < F(xo0,%0)-
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By Step 2 of the algorithm and the assumption (a3), y; = y,, € V and

F(zy,y1) < F(z1,90) < F(z0,90)-

It then follows from the definition of Wy that (x1,y;) € int(Wy) C U x V. Clearly, Wy C W,
Thus, the statement is true for £k = 0. Suppose the statement is true for £ > 1. Using the
above argument with (o, yo) and Wy replaced by (z, yx) and Wy, respectively, we verify that
the statement is also true for k + 1. Therefore, the statement is true in general by induction.

We now prove z;, — x*. Since {z}} is bounded, it suffices to show the following: if a
subsequence of {x}, not relabeled converges to some & € U, then 2 = z*. First note that
F(zp,ys) — F for some F € R, as {F(xy,y)} is decreasing and bounded. Now, passing
to a further subsequence if necessary, we hvae (x,yx) — (2,79). By the above statement,
(zk,yr) € int(Wy) for all k. Hence (2,9) € Wy C U x V. Therefore, it follows from the
continuity of F that F' = F(, ). Note for each k that

VyF (x5, yi) = Vyg(zr, yi) = 0.

Consequently, V,F(2,9) = 0. We shall show that d:= V.F(Z,3) = 0. This would imply that
(#,9) € U x V is the unique minimizer of F over U x V, and hence # = 2* by Lemma 3.1
and z;, — x*.

Assume d # 0. Since (zy,yr) — (2,9) and d® = V,F(xy,yr) — d, it follows from
the same argument used above that there exists & > 0 and an integer kg > 1 such that
F(& — ad,5) < F(2,9), (& — ad,) € int(Wp), and (z — 6d®, ) € int(Wp) if k& > k.
Now, since F(zy,yr) decreases and converges to F = F(#,4) and y1 = Yy, (cf. the
assumption (a3) and Step 2 in the algorithm), we have by the definition of xj; (cf. Step 1
in the algorithm) that for all & > kg

F(jja g) S F($k+17 yk+1) S F(karla yk) = F(xk - akd(k)> yk) S F(xk - dd(k)? yk)

Taking £ — oo, we get

0

F(i,9) < F(& - ad,g) < F(#,9),
a contradiction. Thus, d=0. O

We remark that the proof of the convergence of the min-min algorithm relies on the fact
that min g F'() = min, , gxv F(x,y) and (2*,y,+) = (Z,7) as established in Lemma 3.1.
Such structure is lost for a max-min algorithm and therefore the method of proof of Theo-
rem 3.2 does not extend directly to the convergence of a max-min algorithm.

3.3 A radially symmetric system for the solvation of a single ion

We apply the variational implicit-solvent model (VISM) to the solvation of a single ion placed
at the origin (i.e., N = 1 in Figure 1). The resulting system is simplified to be radially
symmetric. Such a system is effectively one-dimensional for which we can obtain a very
accurate solution for testing our algorithms.

Weset Q. ={zeR:|z|<R},Q  ={reR:R<|z|]<A}),and T = {z € R®:
|z| = R}, where A, R € R with 0 < R < A, and denote x_ = x(o,r) and x4+ = X(r.4).- The
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dielectric coefficient is eg : [0, A] = R with eg(r) = e_ if r < R and eg(r) = e, if r > R.
The LJ parameters for the single ion are denoted by ¢ and o; cf. Figure 1 and (3.1). We
assume f : [0, A] — R is a smooth function, g € R, and p > 0. The electrostatic potential ¢
is assumed to be radially symmetric: ¢ = ¢(r) with r = |z|. The dielectric displacement D is
proportional to V,(¢(r)) = ¢'(r)(z/r). Thus, we assume D(z) = p(r)(z/r) for some radially
symmetric function p = p(r). Since |D(z)| = |p(r)| and

V. D(z) = %p(r) +p/(r) = 712(7‘21?(7“))':

we shall consider p = p(r) instead of D(z). We have p = —er¢’ if D = —erVo.
We denote w(r) = r? and define

A
HL(0,A) ={¢:(0,A) = R : ¢ is weakly differentiable and / (¢* + ¢*)r?dr < oo}, (3.5)
0

Xy ={p € H,(0,A): ¢(A) = g}, (3.6)
A
Y = {p : (0, A) — R : p is weakly differentiable and / [(r*p)? + ((rzp)’)Q]r—idr < oo} :
’ (3.7)
Yf:{pEngp—i-p/:fin(O,R)}. (3.8)

Both H!(0, A) and Y are Hilbert spaces with their inner products and norms given respec-
tively by

@)= [ @0+ ovitar amd Joll, = Vd.,
oy = [ 1000+ 020 (070 e and Iplly = VGl

If p € HL(0,A) and 0 < § < A, then ¢ € H'(5, A) and hence ¢ is absolutely continuous on
6, A], and the trace ¢(A) is well defined. One verifies that Y = H!(0, A)NL?(0,A). Ifp €Y,
then p € H'(§, A) for any 6 € (0, A), and hence the trace p(A) is well defined. The equation
in defining Y} is (r?p(r)) = 72f(r) for 0 < r < R, same as the constraint V-D = f in Q_ in
the cartesian coordinates for D(r) = p(r)(z/r).

To compare the min-min and max-min algorithms, we now express the VISM solvation
free energy with the classical PB and the penalized LTPB electrostatic energies in the radially
symmetric setting. The nonpolar part of the solvation free energy (i.e., the first three terms
of F[I'] defined in (3.1)) Fp : (0, A) — R and its boundary variation dgFp : (0, A) — R are

A7 3 9 o'? ot
Fo(R) = ?P()R + 47T’}/0R — 87T’}/07'R + 16’/pr€ @ — ﬁ s (39)
2% 27T o2 of
5RFO(R) = po + _R — R2 + 4pw€ (_R12 — E . (310)
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Note that the boundary variation dgFy differs from the derivative Fj(R) by the factor 47 R?;
cf. [6].

Case 1. A continuum charge density. The VISM-PB free-energy functional F' : (0, A) —
R with I : X, — R and the boundary variation dgF : (0, A) — R are now given by (cf. (1.4)
and (3.1)—(3.3))

F(R) = Fo(R) + max Inlo), (3.11)
A ER | 112 2

Inlo] =4 [ =10+ fo = B)] (3.12)

SrF(R) = SnFo(R) + 5 (} - i) endn(R) + B (6n(R)) (3.13)

where ¢p = argmingc x Ir [¢]; cf. Theorem 3.3. The penalized VISM-LTPB free-energy func-
tional F}, : (0, A) — R with Jg, : Y — R and its boundary variation ézF), : (0,A) — R are
given by (cf. (3.1), (3.4), (1.10), and part (1) of Theorem 3.1)

Fu(R) = Fo(R) + min Jr[p], (3.14)
Jrulp] = 47 /OA épQ + x4 B* (f - (%p +p’)) + ;C—M (f - (%p +p’))2] rdr (3.15)

+ 4mgp(A) A%, (3.16)
b (R) =onfa() + 5 = ) om0

B (B*' (f(R) — P (R4) — %m(RH))

1
2

(708 = pha(B) = FonslR)) 317

where pg, = argmin,cy Jg ,[p]; cf. Theorem 3.3.

Case 2. A single point charge. With the point charge ) at the origin, the VISM-
PB free-energy functional F' : (0,A) — R with Iz : X, — R and the boundary variation

SrF : (0,A) = R are given by (cf. (3.1), (3.2), (2.6), and (3.3))

P(R) = Fo(R) + max Ig[o], (3.18)
T A —c— / Q ? / Q ?
In[g) = 4= /0 - (¢ + 47r€r2> - (cb + 4@73) — .+ B(9) | rdr
Q*T/1 1\1 1
ro (&) el (19
SF(R) = bro(R) 4 5 (= =) lendhlRIF + B (0n(R), (3:20)



where ¢p = argmax ey In [¢]; cf. Theorem 3.3. The penalized VISM-LTPB energy functional

F,:(0,A) = R with Jg, : ¥ — R and the boundary variation 6zF), : (0, A) — R are now
given by (cf. (3.1), (3.4), (2.7), and part (2) of Theorem 3.1)

~

. A 1 /9 2 9 A 5
Jrulp] = 47/0 {Eﬁ + >2<_/ﬁ (;p +p') + X+ {B* (—;P - p/) + @r.co (;p +P’)] } r2dr

Q*M/1 1\1 1

*87[(2‘2)%‘@—,4]’ (3.22)
- 1/1 1 0\’

O0rFu(R) = OrFo(R) + 5 (5—_ - Z) (pR,u(R) + 47TR2)

+.8(57 (<plu 8 - Sy )

I 2 2
"o (pR,u(R—) T }—%PR,M(R—)> : (3.23)

where pgr, = argminpeyj rulp); cf. Theorem 3.3.

We note that, while the radial symmetry of functions simplifies our models and compu-
tations, the analysis in section 2 does not directly apply here due to possible singularities
at the origin. Thus, we present here a similar analysis for the radially symmetric system,
but only for the case of a continuum charge density, as the case of point charges is simi-
lar. In Appendix, we also provide a new and direct derivation of the boundary force in the
one-dimensional setting. Let us define Ip, : X, - RU{—o0} and Jr : Yy — R U {oo},
respectively, by

A
Tngld) =4 [ [P + o - B(0) - ] (3.24)

A
1 2
Jrlp] = 471/ {gpg + x.B” (f — (;p +p'>)] r2dr 4 4mgp(A) A2 (3.25)
0 R
Theorem 3.3. (1) Denote Ipy = Ig. For each pn > 0, there exists a unique ¢r, € X, such
that I, [¢r,.) = maxeex, Ir,u[¢]. Moreover, ¢r, € X, is the unique solution to

. € .

() —po=—f n(O,R) and —(*¢) —B'(6)=—f in(R,A),
and e_¢'(R—) = e4¢'(R+) and ¢(A) = g.

(2) Duality. We have Ig[¢] < Jg[p] for any ¢ € X, and p € Yy, and I ,[¢] < Jrup] for
any p >0, ¢ € Xy, andp €Y. Moreover, pr := —erd € Yy and pg,, = —erdy , €Y
(u > 0) are the unique minimizers of Jr over Yy and Jr, overY, respectively.

(3) Convergence. We have

|éru — ¢rllw — 0 and max Ip . l0] — max Ig[¢],
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PRy —pPrlly =0 and I;gl/l Jrulp) —>1101£;} Jr[p],

as p — 0.

To prove Theorem 3.3, we need the following lemma that summarizes some properties,
particularly the behavior near r = 0, of the functions in H}(0, A) (cf. (3.5)) and Y (cf. (3.7)):

Lemma 3.2. Let ¢ € H:(0,A) and p € Y. Define u(r) = ( ) and v(r) = r?¢(r)p(r) for
0 <r <A. Then, supy.,.4/7|¢(r)] < oo, u € H*(0 ,A) du(r) = o(r*?) asr — 0, and
ve W0, A) and v(r) = o(r) as r — 0.

Proof. Note for any § € (0, A) that ¢ € H'(5, A) and hence ¢ is absolutely continuous on

5, A]. Hence,
or? = ot - | ") dsr

< 2¢(A)* +2 (/A ¢'(s)ds)2
< 2¢(A)? +2 (/A 32¢’(3)2ds) (/A s—st)
= o2 ( [ o) (1-5)

<26(AV + 28I} Vr € (0,4)

Consequently, ré(r)? < 24¢(A)? + 2||(/§||H1 (0.4) if r € (0, A), and hence supg., .4 v7|0(r)| <

Q.

Since p € Y, we can directly verify that u € H'(0, A), and hence u is absolutely continuous
on [0, A]. We must have u(0) := lim,_,o u(r) = 0, since

/O L )2 i = /0 ! rp(r)dr < oo

Consequently,

u(r)? = (/0 W (s) ds>2 < </0 52d5> (/0 “/ij)st) - %7’30(1) as 7 0,

and hence u(r) = o(r*/?) as r — 0.
Since v(r) = r2¢(r)p(r) (0 < r < A), we have ||v]|110,4) < [|9]lullplly < oo. Consequently,

/0 o () dr = / 16 (0)p(r) + 6(r) (*p(r))'|dr
< [Tl eymfar + [ )

r
19

ro(r) dr




< ( /0 ’ r2¢'(r)2dr) b ( /0 ' r2p(7’)2dr) "
o ([Mrovrar)” ([Memoese)

< 2[¢lu[lplly < oo.
Hence, v € WH(0, A), it is absolutely continuous, and v(r) = /ro(r)u(r)/y/r = o(r) as
r— 0. [l

Proof of Theorem 3.3. (1) The proof of this part is standard; cf. [19, 20, 23].
(2) Let w > 0, ¢ € X, and p € Y. Since ¢(A) = g and lim, o+ 7?¢(r)p(r) = 0 by
Lemma 3.2,

A A , 479
/ pd'ridr = — / (r°p) ¢dr + gp(A)A® = — / <—p +p') ¢ridr + gp(A)A”.
0 0 0 "

Consequently, by the fact that the Legendre transform of s + (u/2)s? is & +— £2/(2u), we
obtain

A
1
Inl6) < Inylo) + 47 [ 5 lp+ el dr
0 4€R

A
—ax [ (0 to) - Gt Lyt )

:4w/j{ﬁp2+><+ Kf— (%pﬂ?’)) ¢—B(¢)}

+x- Kf - (%p + p’)) ¢ — gcﬂ } ridr + 4mgp(A)A?

4 1 2 2 / X— 2 / ’ 2
§47r/ 5P+ x+B <f—(—p+p))+ (f—(—p+p>) rodr
o |2¢er r 20 r

+ 4mgp(A) A
= Jrulp] (3:26)

The inequality Iz[¢] < Jg[p| for any ¢ € X, and p € Y can be proved similarly.
By part (1), pry = —€r¢f, satisfies

(r’pry) = (f — por,)r® in (0,R) and (r’pr,) = (f — B'(ér,))r® in (R, A). (3.27)

These and the fact that ¢, € X, imply that pg, € Y. Moreover, the first inequality in
(3.26) becomes an equality with ¢g, and pr, = _5R¢/R,u replacing ¢ and p, respectively.
The second inequality in (3.26) also becomes an equality by (3.27) and the definition of the
Legendre transform. Thus, by the convexity of Jg ,, pr,, is the unique minimizer of Jx , over
Y. Similarly, pg is the unique minimizer of Jg over Y;.

(3) By the same argument used in proving part (2) of Theorem 2.3, we have ||¢r ,— gl —
0 and maxgex, Ir,u 0] = maxysex, Ir[¢] as pp — 0. These and part (2) imply ||pr,,—prly — 0
and minyecy Jg ,[¢] — minyey, Jr[p] as p — 0. O
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3.4 Numerical results

In this section, we present numerical results of the solvation of a spherical molecule such as
a single ion. We first demonstrate that both the min-min algorithm for the VISM with the
LTPB formulation of electrostatics and the max-min algorithm for the VISM with the PB
formulation of electrostatics can achieve the same accuracy. Note that the two formulations
are equivalent (cf. Theorem 2.1, Theorem 2.2, and Theorem 3.3). But the penalty method
used to approximate the constraint by Gauss’ law lead to approximation errors. Such errors
converge to 0 as the penalty parameter g — 0 (cf. Theorem 2.3 and Theorem 3.3). We then
test and compare the two algorithms in terms of a small number of iteration steps that are
often designed for large-scale molecular simulations. We finally show that the VISM with
the LTPB electrostatics implemented with our min-min algorithm can predict accurately
the solvation free energy for a single ion. All the model parameters we use for numerical
simulations are taken from [40] and are summarized in Table 1.

Parameters Descriptions Estimated Values | Units
T temperature 300 K
Py pressure difference 0 bar
Yo constant surface tension 0.1315 kpT /A
T Tolman length 0.76 A
Pw bulk solvent density 0.0331 A3
length parameter in LJ potential 3.5 A
€ energy parameter in LJ potential 0.3 kgT
£_ relative dielectric permittivity in €2_ 1 no unit
€4 relative permittivity in 2 78 no unit

Table 1: Model parameters. LJ means Lennard-Jones.

3.4.1 Comparison of the min-min and max-min algorithms with given tolerance
to reach

We first consider a continuum charge density (cf. Case 1 in section 3.3) and compare the min-
min and max-min algorithms with a given tolerance. We set the continuum charge density
to be f(r) = (1000/v/873)e~5” and also set B(s) = s2/2 and g = 0. We minimize the
total solvation free energy functionals F, = F,(R) defined in (3.14) and F' = F'(R) defined in
(3.11) with minimizing the corresponding LTPB electrostatic energy functional Jg , = Jg .[p]
defined in (3.15) and maximizing the electrostatic energy functional I = Ig[¢] defined in
(3.12), respectively, to compare the minimized total free energy and the optimal radius. Three
values of the penalty parameter p and three different number N of grid points are tested. The
conjugate gradient method is used for minimizing the electrostatic energy functionals Jg,
and —Ig (equivalently maximizing Ir). The gradient descent method is used for minimizing
the total free-energy functionals F), = F,(R) and F(R) to get the minimum value of free
energy and also the minimizing radius. The initial guess of the radius is Ry = 2.5. The
tolerance for the L?-norm of the gradient is chosen to be 10™° and maximum iteration steps
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is set as 50, 000. The iteration of the conjugate gradient method is terminated if the tolerance
or the maximum number of steps is reached. Our results are shown in Table 2. We observe
that as g > 0 gets smaller the error between the min-min and max-min simulations also
gets smaller. This is expected by the duality of two formulations and the convergence of
our penalty method; cf. Theorem 3.3. Moreover, a moderate value of u leads to the best
performance of the min-min algorithm in terms of accuracy and efficiency.

o N min-min max-min
energy radius | time | energy | radius | time
250 | 1142.6829 | 3.1567 | 1s | 1480.0782 | 2.7998 | 2s
1073 | 500 | 1146.8355 | 3.1568 | 3s | 1480.1044 | 2.7994 | T7s
1000 | 1147.8738 | 3.1568 | 16s | 1480.1331 | 2.7960 | 170s
250 | 1465.6298 | 2.8307 | 2s | 1480.0782 | 2.7998 | 2s
1075 | 500 | 1470.5670 | 2.8158 | 12s | 1480.1044 | 2.7994 | Ts
1000 | 1471.8525 | 2.8196 | 82s | 1480.1331 | 2.7960 | 170s
250 | 1473.3953 | 2.7985 | 3s | 1480.0782 | 2.7998 | 2s
1077 | 500 | 1478.5664 | 2.8019 | 16s | 1480.1044 | 2.7994 | Ts
1000 | 1479.6485 | 2.8038 | 456s | 1480.1331 | 2.7960 | 170s

Table 2: Results of min-min and max-min simulations for the continuum charge density

f(r) = (1000/v/87%)e~"

We now consider a single point charge ) = 1 placed at the origin, and set B(s) =
cosh(s) — 1. We use the nonlinear conjugate gradient method for the first minimization or
maximization, and then the gradient descent method for the second minimization for updating
the radius R with initial guess Ry = 2. In the nonlinear conjugate gradient method, the
tolerance for the L?-norm of the gradient is chosen as 107° and maximum iteration steps is
set as 100,000. We test on three different values of the penalty parameter p and also three
different numbers of grid point. Our results are shown in Table 3. We again observe that
as 1 > 0 gets smaller the error between the min-min and max-min simulations also gets
smaller, verifying the duality and the convergence of our penalty method; cf. Theorem 3.3.
It is also clear that a moderate value of y again leads to the best performance of the min-min
algorithm in terms of accuracy and efficiency.

3.4.2 Comparison of the min-min and max-min algorithms with a few steps of
iterations

We set A = 4, B(s) = s%/2, f(r) = (1000/v/873)e 5 and g = 0. All the units are the
same as in [40]; cf. Table 1. We first minimize the total free energy F(R) with the initial
guess Ry = 2.5 and a very fine grid and many iteration steps to get an “exact” minimum
value Fl;, = 1480.1331 and an “exact” optimal radius R, = 2.7960. We then apply the
min-min algorithm to minimize the penalized VISM-LTPB functional and apply the max-
min algorithm to minimize the VISM-PB functional. The gradient descent method is used
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2% N min-min max-min
energy | radius | time | energy | radius | time
250 | -89.6644 | 2.7835 | 1s | -89.6230 | 2.8000 | 12s
1071 | 500 | -89.6164 | 2.7713 | 2s | -89.6215 | 2.7996 | 21s
1000 | -89.6009 | 2.7683 | 4s | -89.6208 | 2.7997 | 35s
250 | -89.6247 | 2.7951 | 4s | -89.6230 | 2.8000 | 12s
1073 | 500 | -89.6259 | 2.7984 | 9s | -89.6215 | 2.7996 | 21s
1000 | -89.6247 | 2.7955 | 18s | -89.6208 | 2.7997 | 35s
250 | -89.6229 | 2.7997 | 72s | -89.6230 | 2.8000 | 12s
107° | 500 | -89.6216 | 2.7995 | 189s | -89.6215 | 2.7996 | 21s
1000 | -89.6210 | 2.7999 | 707s | -89.6208 | 2.7997 | 35s

Table 3: Results of min-min and max-min simulations for a single point charge ) = 1 placed
at the origin.

to minimize the total energy with initial guess Ry = 2.5. The conjugate gradient method
with not so many iteration steps is used to minimize the LTPB energy and maximize the PB
energy. In Table 4, we show our numerical results. We observe that in general the min-min
algorithm performs much better than the max-min algorithm with a small value of u. For
2/t = 1073, the min-min algorithm does not converge due to the large penalty coefficient and
small number of iteration steps.

9 N | Ste min-min max-min
a p energy error | radius error | time | energy error | radius error | time
250 | 50 0.2280 0.1288 1s 0.7288 0.1376 1s
1073 | 500 | 200 0.2252 0.1290 1s 0.6976 0.1570 1s
1000 | 800 0.2245 0.1288 6s 0.5725 0.1380 13s
250 | 300 0.0098 0.0069 5s 0.4461 0.0430 2s
1075 | 500 | 600 0.0065 0.0070 14s 0.4999 0.0435 5s
1000 | 1500 0.0056 0.0085 72s 0.4661 0.0947 26s
250 | 500 0.0046 0.0043 6s 0.2984 0.0399 3s
1077 | 500 | 800 0.0012 0.0014 32s 0.4286 0.0261 6s
1000 | 2000 0.0002 0.0020 56s 0.4132 0.0152 34s

Table 4: Numerical results for f(r) = (1000/v/873)e=" and three p-values. The “Step”
means the number of steps in the conjugate gradient iteration for minimizing Jg , and —Ig.
The “energy error” and “radius error” are the relative error between the numerical approxi-
mations and the “exact” values Fj,;, and R;,, respectively.

We now compare the min-min and max-min algorithms for a single point charge. We set
the charge at the origin to be @) = 1 and consider B(s) = cosh(s) — 1. Other parameters are
the same as for the case of a continuum charge density. We use the gradient descent iteration
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to minimize the total free energy F (R) with the initial guess Ry = 2, and use the nonlinear
conjugate gradient method to maximize [ R, and minimize J Re.us Tespectively. The “exact”
minimum value me and the “exact” minimizer Rmm are found by a very fine grid and many
iteration steps to be me = —89.6208 and Rmm = 2.7997. Table 5 shows our numerical
results. We observe that in general the min-min algorithm performs much better than the
max-min algorithm in terms of the computational accuracy and efficency. With a small but
no so small p-value, such as 2 = 107! or 1073, and with any of the number of grid points
N, the min-min algorithm is more accurate than the max-min algorithm. For 2 = 1072, the
min-min and max-min algorithms perform compatibly in terms of the accuracy.

9 N Ste min-min max-min
H p energy error | radius error | time | energy error | radius error | time

250 ) 0.0028 0.0212 1s 0.0306 0.0302 1s

1071 | 500 ) 0.0032 0.0221 1s 0.0857 0.0416 1s
1000 5 0.0045 0.0239 1s 0.1317 0.0566 1s
250 10 0.0022 0.0018 1s 0.0058 0.0268 1s

1073 | 500 10 0.0032 0.0019 1s 0.0252 0.0272 1s
1000 | 10 0.0041 0.0021 1s 0.0333 0.0507 1s
250 30 0.0046 0.0010 3s 0.0032 0.0236 1s

1075 | 500 30 0.0088 0.0035 8s 0.0062 0.0336 1s
1000 | 30 0.0489 0.0027 12s 0.0259 0.0216 1s

Table 5: Numerical results for a single point charge () = 1 placed at the origin. The “Step”
means the number of steps in the nonlinear conjugate gradient iteration for minimizing J R
and —Ig. The * ‘energy error” is the relative error between the numerical minimum value of
F and the “exact” minimum value me The “radius error” is the relative error between the
numerical minimizer of F w and the “exact” minimizer Rmm.

3.4.3 Prediction of the solvation free energy for single ions

We apply our min-min algorithm to minimize the penalized total VISM-LTPB free energy
for the solvation of single ions K*, Nat, C1~ and F~. For comparison, we also minimized the
VISM-PB free energy for comparison. Here, the function B is the hyperbolic cosine function,
and all parameters are taken from [40] and are listed in Table 1. We set 2u = 1073. The
dielectric boundaries of the anion CI™ or F~ are obtained by shifting the VISM equilibrium
surface by € = 1A, which is the length of the water OH bond [40]. In Table 6, we present
our numerical results with comparison with the VISM-CFA and VISM-PB computational
results, and also with the experimental results. The CFA, the Coulomb-fild approximation,
is an approximation of the electrostatics with a dielectric boundary; cf. [39]. We see from
Table 6 that our numerical results fit well with the experimental data, and for some cases, are
better than those of the VISM-PB calculations. It is observed that the free energy predicted
by VISM-LTPB is always larger in magnitude than that by VISM-PB. This is due to the
extra penalty term in the penalty method that implements VISM-LTPB formulation.
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Tons |  (kgT) | o (A) | VISM-CFA | VISM-PB | VISM-LTPB | Experiment
K™ | 0.008 | 3.85 1117 | -112.5760 | -112.5854 1175
Na® | 0.008 | 3.49 1305 | -131.5733 | -131.5842 1454
ClI- | 021 | 378 1261 | -127.6528 | -127.7173 “135.4
F- | 0219 | 33 1716 | -173.0490 | -173.0998 -185.2

Table 6: The solvation free energy (in kpT) for each of the single ions K*,Na*, Cl~ and F~
modeled as a single point charge computed with the VISM-LTPB model. The computational
results based on the VISM-CFA and VISM-PB models and the experimental results are also
shown for comparison [29, 40].

4 Conclusions

We constructed the Legendre-transformed Poisson-Boltzmann (LTPB) electrostatic energy
functional of dielectric displacements with application to variational solvation of charged
molecules that are characterized by the dielectric boundary separating such solute molecules
from the solvent. The solvation free energy in the variational solvation model includes the
surface energy, electrostatic energy, and other energy terms. The convexity of the LTPB
energy functional makes it consistent with the minimization of the total solvation free-energy
functional.

We proved the duality between the convex LTPB functional and the classical concave
Poisson-Boltzmann (PB) electrostatic energy functional. With a fixed dielectric boundary,
we approximated our LTPB functional of the dielectric displacements constrained by Gauss’
law on the solute region by penalized LTPB functionals, removing the constraint. The con-
vergence of this penalty method was shown. Finally, we designed a min-min method for
minimizing the solvation free-energy functional of all dielectric boundaries: In each itera-
tion step of relaxing the dielectric boundary, we minimize iteratively the LTPB electrostatic
energy. The convergence of the min-min algorithm was proved. Numerical tests on the sol-
vation of single ions demonstrated the efficiency and accuracy of our method, and for many
cases, with suitably chosen penalty parameters and number of iteration steps, the LTPB
formulation was more stable than the classical PB formulation.

We now discuss some possible issues and point out possible improvements for future
studies. First, the explicit formula of the Legendre transform B* = B*(&) of a given convex
function B = B(s) is generally not available. One can, however, generate a table of values
B*(&) for selected values of & € [{min, Emax), Where the numbers &, and &,ax can be estimated
from an underlying system. Note that the function B = B(s) in the generalized PB theory
with ionic size effect is only implicitly defined [18, 21, 41]. One can, however, solve a system
of nonlinear algebraic equations to obtain B(s) for many selected s-values and then calculate
B*(&) to generate a table.

Second, while our initial numerical tests have indicated that the LTPB formulation is
better than the classical PB formulation, the constraint of the dielectric displacements slowed
down the computations. Therefore, there is a need to construct a more efficient LTPB
formulation for modeling the electrostatics in molecular solvation.
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Third, for large systems of molecular solvation, the level-set method can be used to
numerically relax the solvation free-energy functional with the LTPB formulation for the
electrostatic energy [40]. It will also be interesting to use the level-set method to minimize
the total solvation free energy of dielectric boundaries and compare the min-min and max-min
algorithms, and hence compare the LTPB and PB formulations.

Finally, our convergence analysis of the min-min algorithm points out a new scheme of
minimizing a free-energy functional of two variables with one depending on the other. One
can view the free-energy functional as a two-variable functional and minimize it with respect
to the two variables; cf. Lemma 3.1. In application to solvation, we can minimize the solvation
free energy with respect to both the dielectric boundary I' and the dielectric displacement D.

Appendix

We derive the formula of the dielectric boundary force as negative energy variation for a model
problem. Let e_, e, € (0,00) with e_ # €. For any v € [ := (0, 1), we define €, : [0,1] = R
by ey(x) = e_ if © <y and ey(z) = e if x > 7. Let f:[0,1] = R be a smooth function.
Define E, : H}(I) — R by

E,[¢] = /0 1 (502 - fo)dz o e H(I).

Let ¢, € Hg(I) be the unique minimizer of E, over H}(I) and denote e(y) := E,[¢,] =
minge g1 (7) B,[¢]. The minimizer ¢, is the unique function in Hg(I) such that

1
| e~ ryde =0 vne mi) (A1)
0
Equivalently, ¢, € H}(I) is the unique function satisfying ¢,|o. € C?(I+) and

—exd/ = f I and  [¢], = [5,¢], =0, (A.2)

where I_ = (0,v) and I} = (v,1), and [u], = u(y+) — u(y—) for a given function w.

The boundary force is defined as —e’(7y) if the derivative exits. Formulas for such forces
for more general problems in multi-dimensions and non-linear Euler-Lagrange equations have
been obtained in [20, 23]. Here, we give a totally different, direct, and self-closed derivation
of such a force.

Proposition A.1. We have

o) =3 (= - =) ol
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Proof. We first establish some bounds for ¢, and ¢, 1= ¢,45y — ¢y (0, € Rand 0 < y+07y <
1). Setting n = ¢, in (A.1), we have by Poincaré’s inequality that [|¢, || g1y < C forall y € I,
where C' > 0 is a constant independent of y € I. Since ¢,(0) = 0, we have ¢-(z) = [ ¢/ (t) dt
(x € I). Hence, (||| < C for all y € I.

Let 0 <y <7y <72 < 1. By (A.2) and the fact that ¢,(1) = 0, we have

— e dh0) +endi0) = [ "fd Vye (),

rs(0) + el 0 —a) = [ [T pody e (o)

These and the uniform bound on ||¢, ||z~ imply that [¢)(y+)] < C(v1,72), and hence
9L (y)| < C(71,72) for all y € [, 2], where C'(71,72) > 0 is a generic constant independent of

7 € [71,72)- Similarly, |¢, (y)| < C(1,72) for all y € [y1,7]. Thus, [[¢5[wree((i22)) < C(11,72)
for all v € [y1,72).

Let 6y € R be such that 0 < v < v — [dy] < v+ |07] < 72 < 1. We shall assume that
9y > 0 as the case ¢y < 0 is similar. Setting n = d¢, = @145y — ¢, in (A.1) for ¢, and in
(A.1) with ¢..s, replacing ¢., respectively, and subtracting one from the other, we obtain

1
/0 [e5464(065)" + (457 — 57)?%] (0¢,) dz = 0.

This, together with the bound ||@,|[w1.0((y,,42)) < C(71,72), implies that

1 1
/ Ey161(00,) dr = / (e = Extoy )05, (00,) da
0 0
Y+oy
= (&4 — 5)/ ¢, (00,) dz < C(y1,72) Vo1 (06:) |2y Vv € [l

where C'(71,72) > 0 is independent of v and d§v. Consequently,

160 [[53 ) < Clyisv2)V oy V7 € [, el (A.3)

We now calculate €'(). Denote de, = e(y + ) — e(y) with éy > 0 as assumed above.
By (A.1) with n = d¢, for ¢, and (A.1) with ¢4, replacing ¢, we obtain

de 1 (' 1

5—; = 5/, {557+6v¢/72+67 - 557¢/72 — fogy | dz
1
20y

1 1
= %/0 (574-57 - 57)¢fy+6~/¢lydx

E_ —¢ey y+oy . )
= 26~ L ¢7+57¢7dx

1
/0 [57+5v¢/72+67 - 57¢/72 — it or Py ( Py — D)) — €480 (B 15y — ¢lyﬂ dx
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- 1 [ ! (v+ Y8y
el / B, 0) = 0, (4o + S / 6,10 (0) ]
£

== SH( 4 D). (A.4)

It follows from (A.2), the Cauchy-Schwarz inequality, and the bound ||¢,| g1y < C that

|fl|:‘$/j+é7 Pyroy(2 (/ P(y dy) dx
_ %/¢< ([ L) as

< Cy/d7, (A.5)

where C' > 0 is a constant independent of v and d~.

We have
O (y+) [ [ o) [,
Iz = 767 /w P (@ / ¢ 757 [1—67 Hlo)de =i Dot b
(A.6)
Clearly,
o0+ [, : /
]2,2 - 757 5 ¢'y(x)d‘r — qb'y(’y-i-)gb'y(/y—) as 57 — 0. (A7)
=6y

By the change of variable, we get

! v
Iy = S0 [ sto+in—dw]dy
Y—oY

oy
- ¢/7(7+) 7 ¢;(7+) ¥ / /
= o /7_57 [QSH—M(Z/ + (57) ¢'y+67( )] dy + 5 /7—6«1 [d)’H_(s»Y(Z/) — ¢7(y)] dy
=:Iy11+ Iz10. (A.8)

It follows from (A.2) that

Y=y
) { ytéy p ] p
- 5,}/ /yéfy /y ¢'y+67( ) T\ ay
¢;(7+) v { 1 y+6vy }
= —— dx| d
5 [y N /y f(x)d| dy
— 0 as 0y — 0. (A.9)

By (A.2) again, we have
(00:)"(y) = @145, (y) — 5 (y) = —(1/e ) f(y) + (1 /e ) f(y) =0 Yy & (y—dv,7).
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Hence, (0¢,)" = a on (v — dv,7) for some constant a € R. By (A.3), a = 0. Therefore,

OB [ : _ %04 [ ) dy —
bio= "5 [ st - o)y ="02 [ @oywa=o (a0

It now follows from (A.4)—(A.10) and the jump condition in (A.2) that

o) =i 0 - e o =3 (S ) ol o
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