L))

Check for
Updates

Reward-Guided Synthesis of Intelligent Agents with Control
Structures

GUOFENG CUI, Rutgers University, USA
YUNING WANG, Rutgers University, USA
WENJIE QlU, Rutgers University, USA

HE ZHU, Rutgers University, USA

Deep reinforcement learning (RL) has led to encouraging successes in numerous challenging robotics applica-
tions. However, the lack of inductive biases to support logic deduction and generalization in the representation
of a deep RL model causes it less effective in exploring complex long-horizon robot-control tasks with sparse
reward signals. Existing program synthesis algorithms for RL problems inherit the same limitation, as they
either adapt conventional RL algorithms to guide program search or synthesize robot-control programs to imi-
tate an RL model. We propose ReGusS, a reward-guided synthesis paradigm, to unlock the potential of program
synthesis to overcome the exploration challenges. We develop a novel hierarchical synthesis algorithm with
decomposed search space for loops, on-demand synthesis of conditional statements, and curriculum synthesis
for procedure calls, to effectively compress the exploration space for long-horizon, multi-stage, and procedural
robot-control tasks that are difficult to address by conventional RL techniques. Experiment results demonstrate
that ReGusS significantly outperforms state-of-the-art RL algorithms and standard program synthesis baselines
on challenging robot tasks including autonomous driving, locomotion control, and object manipulation.

CCS Concepts: » Software and its engineering — Automatic programming.
Additional Key Words and Phrases: Program Synthesis, Sequential Decision Making

ACM Reference Format:

Guofeng Cui, Yuning Wang, Wenjie Qiu, and He Zhu. 2024. Reward-Guided Synthesis of Intelligent Agents
with Control Structures. Proc. ACM Program. Lang. 8, PLDI, Article 217 (June 2024), 25 pages. https://doi.org/
10.1145/3656447

1 INTRODUCTION

Inspired by the success of program synthesis in various applications, a growing body of research has
explored programmatic reinforcement learning [3, 26, 42, 45,49-51, 55] that harnesses domain-specific
programs as the representation of reinforcement learning (RL) models for robot learning. These
methods either adapt existing deep RL algorithms to guide the search of robot-control programs or
synthesize a program to mimic a trained RL agent in a robot environment. Unfortunately, while
these methods have made significant strides in improving the interpretability of learned robot
controllers, they are limited by the capabilities of existing RL algorithms. Consequently, they are
unable to effectively handle tasks that prove challenging for conventional RL approaches.

Authors’ addresses: Guofeng Cui, gc669@cs.rutgers.edu, Rutgers University, USA; Yuning Wang, yw895@rutgers.edu,
Rutgers University, USA; Wenjie Qiu, wenjie.qiu@rutgers.edu, Rutgers University, USA; He Zhu, hz375@cs.rutgers.edu,
Rutgers University, USA.

This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2024 Copyright held by the owner/author(s).
ACM 2475-1421/2024/6-ART217
https://doi.org/10.1145/3656447

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 217. Publication date: June 2024.

217:2 Guofeng Cui, Yuning Wang, Wenjie Qiu, and He Zhu

In what scenarios is deep reinforcement learning ineffective for
robot learning? We observe that challenging robotics tasks typically
involve a long-horizon, extending over thousands of control steps, and
are characterized by sparse rewards, where a reward indicating success
or failure is given only at the end of task execution. RL methods exhibit
limited effectiveness when dealing with long-horizon and sparse-reward
tasks because the number of robot-environment interactions needed for ef-
fective exploration grows exponentially with the number of steps required
to find rewarding signals [30]. As a result, they struggle with long-horizon
multi-stage tasks such as putting an object into a drawer through the sequence of opening the
drawer, placing the object, and subsequently closing the drawer, where intrinsic logic deduction
are essential. They also face challenges when tackling long-horizon tasks that feature repetitive
patterns, such as navigating through multiple rooms with complex floor plans, as illustrated in
Fig. 1 where an ant robot [48] is tasked with locating a target object. In our experience, controllers
learned using state-of-the-art RL techniques tend to get trapped in the second room [23, 36, 37] or
fail to generalize to similar floor plans with more rooms [6, 33, 39, 41].

This paper. We present ReGusS - reward-guided synthesis - to unlock the potential of program syn-
thesis to overcome the inherent exploration challenges encountered by conventional RL techniques
(which also perplex existing programmatic RL methods) in handling long-horizon robot-control
tasks with sparse reward signals. ReGuS aims to generate robot-control programs that guide agents
within a robotic environment to sequentially take control actions, maximizing the expected reward
received from the environment across all potential initial states.

The main idea behind ReGuS to address sparse-reward, long-horizon, multi-stage, and pro-
cedural robot-control tasks is to compress the agent exploration space by leveraging standard
language constructs such as state-conditioned loops, conditional statements, and procedure calls.
For example, in Fig. 1, after learning a procedure capable of traversing the first room, ReGuS can
encapsulate this procedure within a loop program to iteratively explore all the remaining rooms,
resulting in a systematic approach to environment exploration.

Key Assumption. To make program synthesis practical EEEEEE .-I.
for high-dimensional continuous robotics environments, Re- "
L.
EEENEE []

Fig. 1. A long-horizon,
sparse-reward robot task.

GusS fires on a domain-specific language (DSL) incorporated
with user-defined state abstraction predicates [1, 15]. Such pred-
icates construct a higher-level representation of the robot’s
environment based on observed sensor data. This higher-level
representation can then be reasoned about using standard Fig. 2. The DoorKey Environment.
language constructs, such as loops and conditionals, to trigger

suitable actions from a current state. For example, consider a simplified navigation environment
doorkey in Fig. 2. The robot has to pick up the key (marker) in the left room to unlock the door,
and then get into the right room to place the key on top of another key (marker). The DSL for
synthesizing such a navigation program can be designed to include perceptual functions such as
leftIsClear(), rightIsClear(), frontIsClear(), and present(marker) to enable the robot
to detect obstacles and locate desired objects. These perceptual functions form an effective state
abstraction for decision making e.g. turning left or right when the front is not clear.

ReGusS does not impose restrictions on the types of state abstractions. It operates with arbitrary
user-defined state abstraction, even in cases where it does not adhere to the Markov property. As
an example, our state abstraction for the doorkey environment is not Markov. An RL controller
depending solely on the abstracted states cannot accurately determine whether it should pick up
a marker or place a marker when a maker is present. This is because abstraction throws away

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 217. Publication date: June 2024.

Reward-Guided Synthesis of Intelligent Agents with Control Structures 217:3

information - the state abstraction should have included information about the room in which the
robot is located. However, defining such information in the abstraction is environment-specific and
not generalizable (e.g. to multiple rooms). Instead, ReGuS synthesizes a program that explicitly
divides the task into two sequential loops, with the first loop specifically for handling key pick-up
and the other for dropping the key at the correct position, leading to a program generalizable to
multiple rooms.

The ReGuS Framework. While pro- feword fonction fobor Emirenment
grams with rich control-flow structures com- U
press the exploration space for long-horizon
tasks in robot learning, the highly com- roborcontoiost (1) Loop Sketch

. Sketch

binatorial program search space renders a N —
pure enumeration-based synthesis process in-
tractable. For example, there are an infinite
number of syntactic elaborations of the loop
body for each loop construct, which crucially
depends on the loop condition and could be
executed in an arbitrary number of iterations. Fig. 3 visualizes ReGuS’s solution to this challenge.
It tackles the exponential growth of program search space using a combination of three key ideas:
(1) Hierarchical Synthesis of Loop Sketches: ReGuS is a two-stage synthesis technique. At the
high level, a sketch generator synthesizes a loop sketch that only captures the “skeletal" loop
structures (sequential or nested) while leaving the loop bodies as “holes", yet to be determined.
Given a loop sketch, the low-level loop sketch completer synthesizes a complete program and
provides feedback to guide the sketch generator. The feedback is the highest reward among all the
programs searched in the sketch completion phase. The high-level sketch generator, implemented
as a variant of Monte Carlo Tree Search, uses the feedback to prioritize a search path toward
the best quality sketch for low-level sketch completion. While leveraging reward feedback for
program search tree expansion has already been explored in related works such as [2, 4], the
novelty of ReGusS is to direct high-level sketch generation by backpropagating rewards obtained
from low-level sketch completion. The prior works [2, 4] assume access to input-output examples
and thus can evaluate candidate programs based on the inputs and compare the output similarity
to generate rich reward information. However, in sparse-reward settings without input-output
examples (aka user demonstrations), if we were to apply the Monte Carlo reward estimation to
synthesize an entire program (including loops, conditionals, and agent actions) rather than just a
loop sketch, the likelihood of reaching a complete program with a nonzero averaged reward is low.
This reward feedback mechanism also differs ReGuS from existing two-stage program synthesis
techniques [20, 21, 52, 54] that only enumerate (example-consistent) sketches to be filled in without
learning from the sketch completion process.
(2) On-demand Synthesis of Conditional Statements: In the loop sketch completion phase,
our method guides top-down enumerative search by executing partially synthesized programs
to prioritize exploring partial programs with the highest reward performance (regularized by
their structure cost). During this evaluation, ReGusS lifts concrete states before and after an action
¢ into presumed precondition ¢ and postcondition i by state abstraction. ReGuS uses inferred
preconditions and postconditions to synthesize conditional statements on an as-needed basis to
vastly reduce the program search space. If there is a disagreement between the inferred precondition
¢ and the current state o before executing ¢ (i.e., o does not satisfy ¢), ReGuS explores the option
of appending a conditional statement before ¢ with the branch condition evaluating to true for
o to handle the newly encountered state 0. ReGuS merges the two branches of this conditional
statement at a common point with consistent postconditions (Sec. 4.3).

Sketch
Completer

(3) new skill

Fig. 3. Overview of the reward-guided synthesis (Re-
GuS) framework for robotics tasks.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 217. Publication date: June 2024.

217:4 Guofeng Cui, Yuning Wang, Wenjie Qiu, and He Zhu

(3) Curriculum Synthesis of Procedural Calls: Synthesizing programs for robot control has the
additional benefit of enabling knowledge transfer across related tasks via reusable procedures. For
various tasks defined in similar environments, ReGuS ranks the tasks according to their complexity
e.g. the number of objects to manipulate, and adds programs synthesized to solve simpler tasks as
new skills via callable procedures so that they can be building blocks to constitute sophisticated
programs for more complex tasks. While curriculum synthesis can principally be incorporated into
existing programmatic RL approaches, these methods involve either adapting deep RL algorithms
to steer program search or synthesizing a program to imitate a trained RL agent. Consequently, the
integration must also extend to the deep RL algorithms, introducing additional complexity.

Evaluation. We evaluated ReGuS on several application domains including classic discrete
environments, highway autonomous driving, locomotion control of a quadruped ant robot to
explore goals in mazes of complex shapes, and object manipulation through a 7-DoF Fetch Mobile
Manipulator. All of our benchmarks are equipped with sparse rewards and involve inducing
programs with complex control structures to solve long-horizon tasks. The results demonstrate
that ReGusS significantly outperforms standard program synthesis baselines and state-of-the-art
reinforcement learning techniques.

Contributions. To summarize, this paper makes the following key contributions:

e We propose a reward-guided synthesis (ReGuS) technique for robot learning. ReGuS overcomes
the exploration challenges in long-horizon sparse-reward robot tasks by synthesizing programs
that incorporate state-conditioned loops, conditionals, and procedural calls. These program-
ming constructs act as strong inductive biases, enabling exploration space compression and the
generation of generalizable robot controllers for multi-stage and procedural robotics tasks.

o We evaluate ReGusS on challenging robotics tasks needing logical deduction and generalization
and show that it outperforms program synthesis and deep RL baselines by large margins.

2 OVERVIEW

Why Reward-guided Synthesis? ReGuS uses reward functions over program
traces to define the intended program behavior. The synthesis problem is framed
as generating a program that maximizes the expected reward over all potential | |
initial states. Reward functions are black boxes to the synthesis algorithm. EEE EEEE
ReGuS does not rely on examples or counterexamples from specifications. illl
The motivation behind this choice stems from the significant cost required to

obtain example robot behavior (demonstrations) from human experts in robotic

tasks [16, 27]. More importantly, synthesizing programs from demonstrated Fig. 4. Partial Ob-
robot behaviors can be infeasible when robots have only partial visibility into servability.

the world. Consider a maze environment in Fig. 4 where the agent begins at

the bottom facing east. There are two target positions (markers). In each episode, one of the targets
is randomly selected as the agent’s goal to reach. Although it is feasible to collect demonstrations
by determining the shortest paths to the targets using an A* planner, programming by example
would fail to identify a valid program based on these demonstrations. This is because, at the starting
position, due to the agent’s limited field of view, a synthesized program cannot condition the
invisible goal position to instruct the agent whether it should move forward or turn left.

Sparse Reward Functions. Synthesizing programs by rewards presents a significant challenge
in constructing informative reward functions. One may be tempted to use dense reward functions
as they offer frequent task-related information. For example, Fig. 5a presents a simplified household
environment CleanHouse for home-assisted robots where the goal is to navigate the house to pick
up trash cans (markers) placed adjacent to walls. The agent starts at the entry and must return

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 217. Publication date: June 2024.

Reward-Guided Synthesis of Intelligent Agents with Control Structures 217:5

Ilr= while (not present(marker)) {
while (not present(marker)) {

s uomn] e if (leftIsClear()) turnLeft();

]
]] if (not frontIsClear()) turnRight();
I move();
i } pickUp(marker);
; pickUp(marker);
| = hop p()

(a) CleanHouse environment. (b) CleanHouse controller.

Fig. 5. Fig. 5a depicts the CleanHouse environment where the agent starts at the entrance of the house.
Fig. 5b is a program that can pick up all trash cans and return them to the dumpster from all possible initial
states.

to one side of the entry where two dumpsters (green and blue) are located, with two markers in
this area. A dense reward function may be inversely proportional to the robot’s distance from the
dumpster location. However, using dense rewards can lead to a learning agent becoming trapped
in local minima [24]. For example, rewarding the robot to be close to the dumpster location may
inadvertently hinder its ability to collect trash cans at the far end of the house. ReGusS targets sparse
rewards that are given either after the robot completes the entire task or sporadically when it
achieves critical steps. In CleanHouse, by the end of a control episode, the agent receives a reward
based on the percentage of markers picked up and whether the dumpster location is reached.

2.1 Program and Domain-Specific Language

In this work, we focus on application domains for robot navigation and manipulation. We assume
that a robot takes an object-centric view as input (formally defined in Sec. 3) obtained by e.g. using
object detection [34, 35, 43] or discovery [14, 32] methods. These models return the detected objects
in the view and their associated attributes e.g. object class, positions, and velocities.

ReGuS synthesizes robot-
control programs based on a
generic DSL depicted in Fig. 6,
powered by user-defined state
abstraction predicates. Based Condition b ::=h | not h
on the observation that a ro- Statement S ::= while (b) {S} | if (b) S; else Sy | S1;52 | ¢
bot typically needs to interact
with various environment ob-
jects during navigation or ma-
nipulation tasks, our design principle is to specify state abstraction predicates as perception
functions that describe spatial relationships and physical orientations among environment objects,
including the robot itself. For example, in a manipulation task of grasping a block on a table, a
predicate for determining whether the robot’s gripper is positioned above the block is crucial. As
another example, for the CleanHouse task, we define state abstraction predicates as:

frontIsClear() : =Jo. front(self, o) leftIsClear() : —=3o. left(self, o)
rightIsClear() : —=3o. right(self, o) present (o) : front(self, o)

State Abstraction h ::= Domain-dependent predicates

Control Action ¢ ::= Domain-dependent skills

Fig. 6. Our DSL for robot-control program synthesis.

where self represents the robot itself and o is an arbitrary object in the scene. The perception
functions front, left, and right describe spatial relationships between objects. State abstraction
predicates as such enable the robot to locate desired objects or obstacles to construct a higher-level
representation of its environment. This, in turn, facilitates the search for controllers capable of
updating the environment representations to achieve a desired goal state.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 217. Publication date: June 2024.

217:6 Guofeng Cui, Yuning Wang, Wenjie Qiu, and He Zhu

In the DSL, a control action ¢ is an application of a low-level skill that refers to task-agnostic
capabilities of a robot. For example, to enable robot navigation at a desired speed or manipulation
of objects in a specific orientation, skills for speed and steering control within the robot’s raw
continuous state space are needed. These skills can be derived from either robot APIs (primitive
actions) or pre-trained RL controllers. Conceptually, skills are modular and reusable, and can be
likened to building blocks or subroutines that contribute to the overall control policy of the robot
in diverse contexts. In the context of the CleanHouse task, we include in the DSL the skills for
object manipulation pickup(marker) and navigation move(), turnLeft() and turnRight() to
facilitate operations such as picking up objects, forward movement, and changing the orientation.

Our DSL allows for standard language constructs, such as state-conditioned loops and conditional
statements, which serve as powerful inductive biases to address the exploration challenges in
handling long-horizon and multi-stage robot tasks. A program that achieves the full reward for
CleanHouse is depicted in Fig. 5b. It uses the state abstraction predicates to extract state conditions
(e.g. present(marker)) and based on these state conditions invokes a sequence of control actions
for navigation (e.g. turnRight) and object manipulation (e.g. pickUp(marker)).

2.2 The Synthesis Procedure

ReGusS handles the exponentially expanding program search space for the DSL in Fig. 6 by leveraging
the following novel strategies:

Hierarchical Synthesis of Loop Sketches. ReGusS is a hierarchical program synthesis pro-
cedure, as visualized in Fig. 3. The high-level sketch generator searches a “skeletal” loop sketch
comprising solely of sequential or nested loop structures, where the loop bodies are represented as
placeholders yet to be completed. For the CleanHouse example, a loop sketch could be

while (not present(marker)) { ??2¢; };??¢, (1)

where ??¢ represents a missing hole. The low-level sketch completer uses top-down enumeration to
fill out a loop sketch. To best use the reward information, it executes partially synthesized programs,
prioritizing exploration of those demonstrating high reward performance. The sketch completer
feeds back the highest reward attained by completing the loop sketch to the sketch generator. The
sketch generator, implemented as a variant of Monte Carlo Tree Search, uses the reward feedback
to improve its future sketch selections. ReGuS demonstrates exceptional performance, particularly
when task rewards are sporadically provided upon the robot’s completion of critical steps. The
sketch generator leverages this reward structure to break down a challenging task into subtasks that
can be completed within separate loops. For example, in CleanHouse, ReGuS discovers a program
on top of the loop sketch in Equation 1 that can clean at least one marker (trash can) out of the
total markers in a house, and the other single-loop sketches with a different loop condition hardly
lead to a nonzero-reward program. Therefore, ReGuS prioritizes loop sketches similar to Equation 1
and proposes the following sketch, which can be used to generate a program capable of iteratively
collecting all the markers:

while (not present(marker)) {while (not present(marker)) { ??¢; }; ?%c2}; ??2¢3 (2)

On-demand Synthesis of Conditional Statements. ReGuS lazily synthesizes conditional
statements on an as-needed basis to reduce the search space for sketch completion. It infers pre- and
postconditions of each statement in a synthesized program by abstracting the states encountered
before and after executing the statement using the state abstraction predicates. A conditional
statement is inserted prior to an action statement when the state encountered before executing the
action does not meet the inferred pre-condition of the action, indicating an unanticipated scenario.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 217. Publication date: June 2024.

Reward-Guided Synthesis of Intelligent Agents with Control Structures 217:7

while (not present(marker)) { ! Il..!._l
while (not present(marker)) { R i

{ = leftIsClear() AfrontIsClear() l . .
A = present(marker) } I
move(); L
} e .
¥ 3 !

(a) A partial program of the CleanHouse controller. (b) Executing the program in Fig. 7a in CleanHouse.

Fig. 7. Fig. 7a is a partial program enumerated by ReGuS. The inferred precondition of the move action is
depicted in blue. Fig. 7b is the execution result of the partial program in Fig. 7a from the state in Fig. 5a.

For example, Fig. 7a is a partial program enumerated while (not present(marker)) {

by ReGusS to solve the CleanHouse task. The agent is while (not present(marker)) {
initially at the entrance of the house (Fig. 5a), and if (leftIsClear()) { ??s }
the inferred precondition of move is drawn in blue. { - leftIsClear() AfrontIsClear()

A = present(marker) }

Particularly, the precondition asserts that in any state 5
move();

before executing move, the left to the controlled agent
is not clear (i.e. there is a wall). The precondition is 3 77
valid until the state in Fig. 7b is encountered in a sub-
sequent inner loop iteration. The precondition is not
satisfied as the left of the agent in Fig. 7b is clear. At
this point, the axiomatic semantics of the partial pro-
gram in Fig. 7a and the actual execution results in Fig. 7b are out-of-sync. ReGuS then explores
the option of synthesizing a new conditional statement to synchronize the precondition and the
actual state before executing move by constructing a new sketch depicted in Fig. 8. With on-demand
conditional statement synthesis, ReGuS eventually finds the desired program in Fig. 5b.

Curriculum Synthesis of Procedural Calls. ReGuS uses procedure calls to enable knowledge
transfer across related tasks in similar environments. ReGuS incorporates programs learned for
simpler tasks into DSLs, treating them as procedures that can be utilized as skills. As the library
of skills expands, the learned procedures serve to compress the program search space, expediting
the synthesis of larger programs (Section 4.5). For example, the CleanHouse procedure (Fig. 5b)
can serve as a skill that a program can iteratively invoke in an outer loop to clean each floor of a
multi-floor house.

Fig. 8. ReGus adds a conditional statement to
Fig. 7a on-demand.

3 PROBLEM FORMULATION

We define a robot-control environment as a tuple (A, d, O, C) where A is a finite set of object types,
the map d : A — N defines the dimensionality of the real-valued feature vector for each type,
and O is an object set where each object has a type drawn from A. As illustrated in Sec. 2.1, C
is a finite set of task-agnostic skills for low-level control in the continuous state space. A skill
f(Ao, ..., Am-1) € C, e.g. pickup(-), have typed parameters (Ao,...,Ay—1) where M > 0 and
Ai € A. We frame reward-guided synthesis (ReGuS) as the problem of synthesizing domain-specific
programs to solve robot-control tasks formalized as Markov decision processes (MDPs).

Markov Decision Process (MDP). Given an environment (A, d, O, C), a robot task e is modeled
as an MDP in a structure e = (S,C, 7 : SXC XS — [0,1], u(Sp),R : {SxC — R}). Sisan
infinite set of continuous states. In each state o € S, every object 0 € O is mapped to a feature
vector in R4(%P¢(9) The action space C is induced by the objects O and the low-level skills C
where an action ¢ := f(0y,...,0p-1) applies a skill f(Ao,...,Apy-1) € C to objects oo, ..., 0p-1

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 217. Publication date: June 2024.

217:8 Guofeng Cui, Yuning Wang, Wenjie Qiu, and He Zhu

o ~T (| o,¢) (o, S1) J o', r
r=R(c’,c) (o', Soy U o”, 1’ b(o) (o, S1)J o', r
(o,c) o, r (o, S;82) Lo, r+r’ (o, if (b) Sy else S3) || o/, r
(o,S) Jo, r
—-b(0) AR N b(o) (o', while (b) S) || o”, ¥’ -b(0o)
(o, if (b) Sy else Sy) || o’, r (o, while (b) S) | ¢”’, r+7r’ (o, while (b) S) || o, 0

Fig. 9. DSL operational semantics and reward evaluation.

and the objects must have types matching the typed parameters Ay, ..., Ap—1 of skill f, such as
pickup(marker). We use type information to filter out unreasonable control actions, such as
pickup(door). 7 captures the state transition probabilities. R denotes the reward function. We
assume that any initial state oy € S of e is sampled from a state distribution p(Sy). It is important
to note that 7, R, and p(Sy) are unknown to ReGuS.

State Abstraction. A predicate h := g(oy, . ..,0,-1) is a binary state classifier g(O?) : S — {true,
false} characterized by an ordered list of types (A, ..., ,-1) where g(O?) is defined only when
each object o; has type A;, e.g. present(marker).

Operational Semantics with Rewards. ReGuS synthesizes programs based on the DSL in-
troduced in Fig. 6. We outline the DSL operational semantics in Fig. 9. A distinct feature is that
the DSL operational semantics tracks the cumulative reward achieved during program execution.
The rules are in the shape of (o, S) || ¢’, r. It specifies the semantics of executing a program S in
the DSL from a state o € S. The resulting state of the execution is ¢’. The execution receives a
reward of r from the environment. The AcTION rule is defined for a control action c¢. The action
c is executed upon a state o and the MDP transits to another state ¢’ as the effect of the action
according to the stochastic transition model 7 (¢”|o, ¢). The immediate reward of taking action ¢
at o is given by the reward function r = R(o”, ¢).

Program Synthesis Objective. The objective of ReGusS is searching a robot-control program
x* in the DSL in Fig. 6 for a task MDP e such that

7" = argmax Eg - (o, 7) | of, rf[re]
Vs

where o and ry are the resulting state and final reward by executing 7 in the task MDP from a
state oy sampled from the initial state distribution p of e.

4 REWARD-GUIDED PROGRAM SYNTHESIS

We present the core algorithms for reward-guided synthesis. We first provide ReGuS’s sketch
language, then present the top-level synthesis algorithm, and then describe its key components.

4.1 Sketch Language

As outlined in the ReGuS framework in Fig. 3, ReGuS employs a hierarchical synthesis procedure.
At the high level, ReGuS enumerates only "skeletal" programs. A skeletal program ??g is a loop
sketch that only contains sequential or nested loop structures with their loop bodies as “holes" yet
to be determined. We rewrite the grammar in Fig. 6 to describe the syntax of loop sketches:

Loop Sketch ??g :=??¢; while b {??5}; 2?75 | ??¢ (3)

where ??¢ is a code block sketch, ??, is an unknown control action subject to enumerative search,
and skip is a special command used by ReGuS to complete a block:

Block ??¢ = ?2,; ?2¢ | skip (4)

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 217. Publication date: June 2024.

Reward-Guided Synthesis of Intelligent Agents with Control Structures 217:9

4.2 Top-level Algorithm

The top-level ReGusS algorithm is
outlined in Algorithm 1. The algo-
rithm takes as input a robot MDP 1:
e, areward threshold £, and N ran-
dom seeds with each seed initializ- 3 while rp < £ do
ing arandom initial MDP state (e.g. 4. & « ReGuSgke: (€, 1¢)
randomized object positions). The s, if & ¢ Qthen Q[¢*] « 0

6

7

8

Algorithm 1 Reward-guided Synthesis (ReGuS)

procedure REGUS(e: MDP, ¢&: reward threshold, N: seeds)
& Tey Tbhests Q — ??Ss —00, —09, {}

N random seeds are used to create ree < ReGuSproq(e, €, Q[e*], & N)
diverse MDP instances for robot if 7pe > P then rpeg — 7o
learning. The goal is to synthesize & e — € Te

a program whose averaged reward
across all potential initial states of
e meets £. The reward threshold & should be set as the maximum task reward. As the reward scale
can vary across tasks, ReGuS allows the user to specify £. For example, for tasks with binary sparse
rewards that only signal if a task succeeds (1.0) or fails (0.0), £ is set to 1.0.

The algorithm repeatedly finds a loop sketch ¢* derived from the start symbol ?? s via the sketch
generator ReGuSgg, (Line 4), following the loop sketch grammar expressed in Equation 3. Each
loop sketch ¢* is equipped with a unique program search queue Q[¢*]. The sketch completer
ReGuSp,q4 (Line 6) attempts to fill the missing code blocks ??¢ in £*, following the code block
grammar expressed in Equation 4, to search a program that has the best-averaged reward among all
possible executions from the initial states of e. In Line 4, ReGuSgg,; leverages the reward feedback
from sketch completion to prioritize the search order of highly likely loop sketches. In the following
discussion, we explain ReGuSsy,; and ReGuSp,o4 in more detail.

4.3 Low-level Loop Sketch Completion

In this section, we illustrate the core ideas of sketch completion ReGuSp,,4 using the FourCorners
task taken from [49]. The goal of the agent is to put a marker at each of the four corners of a room
depicted in Fig. 11. The agent gets a 0.25 reward for each marker put in a corner. However, if a
marker is placed in other positions, the final reward is 0. For simplicity, we assume the agent starts
beside one of the walls. The state abstraction and actions for this example in the DSL (Fig. 6) are:

Object o € { marker }
State Abstraction h ::= present(o), leftIsClear(),rightIsClear(), frontIsClear()
Control Action ¢ := put(o), pickUp(o), turnLeft(), turnRight (), move () (5)

We further assume that the loop sketch given by the high-level sketch generator is:
while (not present(marker)) { ??¢c; }; ??c2 (6)

where ??¢; and ??¢, are missing code blocks in the sketch.

The sketch completion algorithm ReGuSp,,, is outlined in Algorithm. 2. It takes a task MDP e,
aloop sketch ¢, a program search queue Q for ¢, the reward threshold £ and N random seeds for
creating diverse MDP instances for synthesizing a generalizable program. It returns a program €pes;
empirically yielding the best reward rj.,; averaged over all potential instances of e. ReGuSpy,, per-
forms an execution-guided top-down enumerative search and on-demand synthesis of conditional
statements. As standard in top-down search, it utilizes the notion of partial programs [19, 20], which
can be thought of as an abstract syntax tree where some of the nodes are labeled with non-terminals
??¢ to be expanded later. By evaluating each partial program generated during synthesis in robot

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 217. Publication date: June 2024.

217:10 Guofeng Cui, Yuning Wang, Wenjie Qiu, and He Zhu

Algorithm 2 Reward-guided Loop Sketch Completion (ReGuSpyqg).

1: procedure REGUSp;. (e: MDP, ¢: sketch, Q: search queue, &: reward threshold, N: seeds)

2 Ppest <— —O0 > i holds the current random seed
3 if Q = 0 then Q.ApD({¢, 0, L, —o0, —co}) > If Q # 0, continue the search from Q
4 while Q # O A (max search budget not reached) do

5: & 1, Of, If, Tavg < Q.REMOVE(AIgMAaX(, ; o 1. 1o, }e0 Favg — A COST (€))

6 if Tavg 2 Thest then Tbest < Tavg

7 if i > N then break > € has surpassed the reward threshold across all N seeds
8 if op # (L,_) Arp 2 £ then

9: 0 < RESET(e, i + 1) » ¢’ meets the reward threshold on seed i; search on seed i + 1
10: ¢, of, ry < ExEc(o,) > Apply synthesis rules in Fig. 10
11: Q.app({¢’, i+1, oy, ry, EvAaL(¢)}) > Eval avg. reward of ¢’ across all N seeds
12: else if oy = (1,??,) then > ¢ is a partial program with nonterminal A
13: for each produce rule l for A do
14: &’ « EXPAND(¢, A, I) > Expand A using production rules
15: 0 < RESET (e, i) > Reset e with random seed i to an initial state.
16: e, of, 1y « EXEC(o, ') > Apply synthesis rules in Fig. 10
17: Q.app({€”, i, of, rp, EVAL(¢”)}) v Eval avg. reward of ¢”” across all N seeds
18: return rpeg

environments, it uses reward information to prioritize exploring program search directions leading
to the highest reward performance. We extend the DSL operational semantics in Fig. 9 to support
evaluating partial programs:
(0,72¢) | (L,?72¢), 0

where ??¢ is a nonterminal symbol in the partial program reached during execution that prevents it
from further proceeding and L is an indicator denoting that a program cannot be executed beyond
this point. The reward is 0 since a nonterminal cannot be evaluated. For example, given a partial
program (move(); ??¢;), the resulting state is (L, ??¢) i.e. the execution cannot resume beyond
??c1. The reward of this partial program is the reward of taking move() in the task MDP.

ReGuSpy,g uses the priority queue Q to manage partially synthesized programs derived from the
provided loop sketch ¢. Each element in Q is a tuple comprising a (partial) program &, the current
random seed i used in the search for ¢, final state oy and final reward r¢ obtained by executing ¢
in the MDP instance initialized by random seed i, averaged reward r,,4 acquired by evaluating ¢
across all N MDP instances induced by the N random seeds. Q ranks partial programs by their reward
performance r,,, regularized by the structural cost cosT (¢), as indicated in Line 5 of Algorithm 2.
Structure costs bias ReGuS to generate simpler programs that are more likely to generalize. Let
each production rule of the DSL have a non-negative cost defined as cost([). The structural cost of
a program ¢ is cost(e) = e r(,) cost(l), where L(¢) is the multiset of production rules used to
construct €. The hyper-parameter A dictates the balance between structure cost and rewards.

In each iteration of the loop in Algorithm 2 lines 4-17, ReGuSp,,, dequeues a partial program e
in Q (Line 5). If the execution of ¢ in the MDP instance induced by random seed i did not encounter
any nonterminal symbol and the final reward obtained by the execution meets the reward threshold
(Line 8), the algorithm goes on searching for ¢ using a new initial MDP state ¢ induced by the
next random seed i + 1 (Line 9). At line 10, the ExEc procedure executes ¢ from o to obtain its
final state oy and reward ry in the new MDP instance. It may also return an updated version of
¢ through on-demand conditional statement synthesis. The formalization of the Exec procedure

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 217. Publication date: June 2024.

Reward-Guided Synthesis of Intelligent Agents with Control Structures 217:11

AcTION-HOARE ACTION-LAZYBRANCH
¢(0o) or ¢ = False (o,¢) L o/, r —¢(0) beH b(o)
o, {p}c{y} » {pua(o)} c{yua(a)},o'r o, {ote{y} » if(D) {??2s} {pte{y} (L,7%5), 0
CoMPOUND-HOARE Compr1
0,88, o, r o #(L)) o, S8, 0, r o' =(L)
o, {p}S{Y} » {pua(o)}S{yua(a)}, o, r 0, 813 S2 > S S2, 0 r
Comp2 WHILE-SKIP
o, S1;»8;1, ', n o, S > 85, 0", -b(0o)
0, S1; 82> 815 S5, 0, ri 12 o, while (b) {S} » while () {S}, o, 0
WHILE-SKETCH1 WHILE-SKETCH2
o, S8, o0, r o, Sv» S, o, r o #(L,)
b(o) o =(1,) b(o) o', while (b) {S} » while (b) {S"}, o”, 1’
o, while (b) {S} » while (b) {S’}, o/, r o; while (b) {S} » while (b) {S’}, ¢, r+7r’
IF-ERASE
S1=c13 7% c1=c¢ (o,c2) L o', r

o, if (b) {S1}: {92} c2 (Yo} » {a(o) Uz} ca {a(c’) Uyp}, o', r

IF-MERGE IF-MERGE-FAIL
Sy=sis sy 05 {op) s ¥k skip St =siss3: - {og} sp YR} skip
(S =3join(S1,82)) # L o, S S, 0 r join(81,8) = L
o, if (b) {S1}; S2 » S”, o/, r o, if (b) {S1}; S2 » L, 1,0
Ir-T Ir-F
b(o) o, S1> 81, 0, r —b(o) o, S2> Sy, 0, r
o, if (b) Sy else Sy » if (b) 7 else Sy, o', r o, if (b) Sy else Sy » if (b) Sy else S), o', r

Fig. 10. The Exec Procedure: o, ¢ » ¢’, ¢/, r. The synthesis rules are based on the syntax of ¢. || defines the
semantics (Fig. 9). a abstracts a concrete state using state abstraction predicates associated with the DSL.

will be detailed shortly. The program and its execution results are enqueued for further processing
at Line 11. The search process in ReGuSpy,, continues until a synthesized program achieves the
maximum reward on all N random seeds, terminating the search (Line 7).

Example 1. In the maze environment depicted in Fig. 4, consider an instance where the goal
position is near the bottom. ReGuSp,o could generate a program that guides the agent to move
forward and turn left whenever obstructed by a wall to reach the goal. However, this program does
not generalize to the other instances with the goal position at the top. For such cases, EXEc inserts
an if-statement into the program by need, enabling ReGuSp,,s to eventually find a program that
instructs the agent to turn right when the path to the right is clear for reaching the top goal.

If the execution of a partial program ¢ on the MDP instance induced by seed i does encounter
a nonterminal symbol (Line 12), ReGuSp,,; expands the nonterminal by enumerating all suitable
production rules for the missing hole (Line 14). For each expanded program &', ReGuSpy,, uses the
ExEc procedure to execute ¢’ in the MDP instance induced by the current seed i (Line 16), then
adds ¢” and its final state and reward back to Q for further processing (Line 17).

The Exec Procedure. We describe EXEc using the synthesis rules of the following shape:

o,ev &, 0y 1f

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 217. Publication date: June 2024.

217:12 Guofeng Cui, Yuning Wang, Wenjie Qiu, and He Zhu

while (not present(marker)) {
{leftIsClear() A frontIsClear()A-rightIsClear() A —present(marker)}
move();
{leftIsClear() A frontIsClear()A-rightIsClear A —present(marker)}
¥ ?c2

Fig. 11. Pre and postcondition inference of while (not present(marker)) {move;}; ??¢c, in FourCorners.

while (not present(marker)) {
{leftIsClear() A frontIsClear()A-rightIsClear() A —present(marker)}
move();
{leftIsClear()A-rightIsClear() A —present(marker) }

¥ ?c2

Fig. 12. Widen the postconditon of move in Fig. 11 to include an unseen state resulting from executing move.

where ¢ represents a (partial) program, and o is the state from which ¢ is to be executed. The Extc
procedure accomplishes three tasks: (1) it evaluates ¢ using the DSL semantics {0, S) | oy, (as
depicted in Fig. 9), where of represents the final state, and r¢ is the reward obtained from the
execution. (2) It deduces (underapproximated) pre- and post-conditions for each program statement.
(3) It may modify ¢ into a new program ¢’ by leveraging inferred preconditions and postconditions
to synthesize conditional statements on an as-needed basis. Fig. 10 depicts the synthesis rules.

Action Synthesis Rules. The AcTioN-HoOARE rule is applied to an action c. For any new program
statement that is just enumerated to fill a missing hole in a sketch, we assume its initial pre- and
post-conditions are False. ReGuS executes an action c only if the current program state o satisfies
the precondition ¢ of ¢ or ¢ is the initial False. Following the DSL operational semantics, this
execution produces the resulting state ¢’ and receives a reward r from the environment. We define
H as the set of state abstraction predicates equipped within the DSL (Equation 5) and H as the
lattice space of the (conjunctive) predicate abstraction domain formed by these state abstraction
predicates. We lift concrete states o and ¢’ before and after executing c into its precondition ¢ and
postcondition i by leveraging the state abstraction predicates H :

a(o) = {hif h(o) otherwise —h | Vh € H}

The state abstraction function « (o) constructs a Boolean conjunction of literals where each literal
is a predicate h(o) or its negation —h(o) evaluated on o. The rule widens the current precondition
@ (resp. postcondition i) by joining it with a (o) (resp. @(o”)) in the abstract domain H.

Example 2. Assume that the sketch in Equation. 6 is expanded to the partial program in Fig. 11.
ReGuS abstracts the states before and after executing move (assuming that the agent is initially at
the left bottom corner facing east). When ReGuS continues to execute the partial program in Fig. 12,
it discovers that the inferred postcondition of move is no longer valid when the agent touches the
right wall in the state depicted in Fig. 12. The postcondition is widened to include this new state.

The ActioN-LazyBRANCH rule allows ReGusS to synthesize conditional statements on demand. It
applies when the state o encountered before executing an action ¢ does not satisfy the previously
inferred precondition ¢ of ¢, which indicates that c is about to be executed in an unknown state.
This situation commonly occurs when c is evaluated in a subsequent loop iteration or from a
different initial state. The rule appends an if statement with a sketch ??g before c, creating a branch
point. The intuition is that since o is new to the program, a new piece of statements might be
needed to handle it. The if condition b € H evaluates to true on the unseen state.

Example 3. When we continue to execute move from the state in Fig. 12, the precondition is no
longer valid (as the front of the agent is not clear before executing move). The inferred axiomatic

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 217. Publication date: June 2024.

Reward-Guided Synthesis of Intelligent Agents with Control Structures 217:13

semantics of the partial program in Fig. 12 (left) and the actual execution state of the program
in Fig. 12 (right) are out-of-sync. ReGuS resolves the disagreement by exploring the option to
synthesize a new conditional statement to synchronize the precondition and the actual state before
executing move. The new sketch is depicted in Fig. 13.

The CoMmPOUND-HOARE rule applies to all
compound statements (e.g. loops and condi-

while (not present(marker)) {
if (not frontIsClear()) { ??s }

tional statements). It infers the precondition {leftIsClear() A frontIsClear() A
and postcondition of a compound statement S - rightIsClear() A = present(marker) }
by abstracting the states encountered before move () ;

and after executing S via the state abstraction { LeftIsClear() A

- rightIsClear() A - present(marker) }

function a.
3 e

Sequential Statement Synthesis Rules.
The Compl1 rule applies to a sequential state-
ment S;; S» when the execution of S; results
in a sketch S due to on-demand conditional
statement synthesis. The resulting state is L as
the program is incomplete. The Comp2 rule is straightforward.

Loop Statement Synthesis Rules. The WHILE-SKETCH1 rule applies when the execution of the
first iteration of a loop encounters a nonterminal e.g. the loop body S is incomplete. The execution
cannot proceed beyond it. The WHILE-SKETCH2 rule is standard. It allows on-demand conditional
statement synthesis at any subsequent loop iteration beyond the first one, updating the loop body
S to S” with an appended conditional statement, as exemplified in Fig. 13.

Conditional Statement Synthesis Rules. The Ir-ERASE rule relates to an if (b) {??s,} state-
ment appended before an action statement c; by the AcTioN-LAzYBRANCH rule. If the first statement
to fill ??g; is an action c; that is equivalent to cz, the conditional statement is unnecessary as c; is
executed on both branches regardless of the Boolean condition b. The rule joins the preconditions
and postconditions of the shared action c; in both branches while eliminating the conditional state-
ment. The [F-MERGE rule evaluates an if (b) {S;} statement appended by AcTioN-LAzZYBRANCH at
a branch point before a compound statements S,. The rule applies when the expansion of S; has
been completed with a skip command, per the sketch grammar in Equation 3 and 4. Intuitively,
S; and S, perform different actions depending on the Boolean condition b. This rule expects the
control of either computation to return to a merge point with consistent postconditions. The join
function below searches a merge point in S; by comparing the last statement si‘ of S; with each
statement in Sy, where we use S[;.x] to denote the subsequence of statements from the jth to the
k™ statement in S:

join(8y,S;) =

Fig. 13. ReGuS synthesizes a new conditional as the
current running state in Fig. 12 before executing move
does not meet the inferred precondition of move.

assume Sy = Sy {(pf} sf {lﬁf}; skip

; ; . Iy J g, k_ J k J

1f3]- SZ SZ[I:j]’ {(pz}sz {‘pz}s 52[j+1:] /\ ST =9 /\¢1 = ¢2

then return { if (b) Sy[1.4] else Sa[1.1; {(pf W (pg} sg {1//{}; S, } else return L

If si‘ is syntactically equivalent to the j-th statement sg in S; and the postcondition of s{‘ in S
implies that of sg meaning that the resulting state of taking sf has previously been seen, a merge
point is found at j. At the merge point, we join the postconditions of sf and sg .

Example 4. Assume that ReGuS has expanded the body ??s of the appended if statements in
Fig. 13 to a sequence of actions in Fig. 14. ReGuS favors the action put (marker) as performing this
action can receive a reward of 0.25 from the environment for placing a marker in the bottom right

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 217. Publication date: June 2024.

217:14 Guofeng Cui, Yuning Wang, Wenjie Qiu, and He Zhu

while (not present(marker)) {

if (not frontIsClear()) {

put(marker);

turnLeft();

move();

{leftIsClear() A frontIsClear()A-rightIsClear() A —present(marker)}

skip

}

move();

{leftIsClear()A—rightIsClear() A —present(marker)}
¥ e

Fig. 14. ReGusS fills out the if statement in Fig. 13. The postconditions of the two move statements are shown.

corner. In Fig. 14, move is a merge point - the postcondition of the first move within the if body
implies the postcondition of the same move action outside the if scope. Fig. 15 shows a program
derived through the Ir-MERGE rule. This program can successfully place a marker on each of the
four corners.

The Ir-MERGE-FAIL rule applies when a merge point
cannot be found by the join function. In this case, the

while (not present(marker)) {
if (not frontIsClear()) {

program is reduced to L to notify the sketch completer to put (marker) ;

prune away this search direction. This rule does not affect turnLeft();

the completeness of ReGuS. Interested readers can find } else { }
move();

more details in the extended version [13]. This design
choice is particularly beneficial for robot learning where
diverse agent behaviors often need to converge at key
sub-goals. For example, in a task for household cleaning, Fig- 15. ReGusS applies the IF-MERGE syn-
when a home-assisted robot encounters a locked door, thesis rule (Fig. 10) to join the branches of
its desired behavior converges at the subgoal of passing the conditional statement in Fig. 14.
through the door, regardless of whether it currently has the key. The IF-MERGE-FAIL rule prunes
away partial programs that cannot open the door when the robot does not initially have the key.

¥ ¢

4.4 High-Level Loop Sketch Generation

ReGusS generates high-level loop sketches containing loop bodies as "holes" to be completed by the
sketch completer (Sec. 4.3). We approach loop sketch generation as a tree search. Each node in the
tree represents a sketch allowed by the sketch grammar. (same as Equation 3):

Loop Sketch ??¢ ::=??c; while b {??5}; ??g | ?c

In the following, we use the terms "tree node" and "sketch" interchangeably. The root node corre-
sponds to the empty sketch ??s. A tree edge (u, u”) encodes a single-step application of a production
rule in the sketch grammar to obtain the sketch u’ by replacing a nonterminal ??g in the sketch
u. A terminal loop sketch only contains nonterminals ??¢ (code block) and can be filled out by the
sketch completer ReGuSp,o4 (Algorithm 2). Terminal loop sketches are found on the leaf nodes of a
search tree. Given a robot task MDP e, we measure the reward r of a terminal loop sketch ¢* as:

r(e*) = ReGuSproq(e, ", Q[€"], £, N)

where Q[&*] is the program search queue for ¢*, £ is the task reward threshold, and N is the number
of random seeds to initialize MDP instances in Algorithm 1 and 2.

The sketch generator ReGuSgy,; is a variant of Monte Carlo Tree Search (MCTS). In each iteration,
it samples one terminal loop sketch from the search tree. The best reward achieved by the sketch

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 217. Publication date: June 2024.

Reward-Guided Synthesis of Intelligent Agents with Control Structures 217:15

completer on this sketch is used to weigh the nodes in the search tree so that better sketches are
more likely to be chosen in the future. ReGuSgy,; repeats four steps at each search iteration:

o Selection: The tree is traversed from the root guided by the score of each node (defined below)
until reaching either a leaf or a node u that still has one or more unexplored ??s nonterminals.

e Expansion: If sketch u has unexplored ??s nonterminals, we create a child node u” which is
obtained by expanding the leftmost nonterminal ??g of u using either the sketch production rule
??s u= ??cor??s u= ??¢; while b {??s}; ??s, as presented in Equation 3.

o Synthesis: This step assesses the reward of the new expansion. If sketch u is already a leaf node,
we set ¢ = u. Otherwise, we iteratively expand any remaining nonterminal ??s on the newly
created node u’ until a terminal loop sketch ¢* is derived. ReGusS then evaluates the reward of ¢*
using the function r(¢*).

o Backpropagation: The reward feedback r(&*) from the sketch completer is propagated recursively
to all the traversed tree nodes to update the averaged reward of branching from these nodes.

In the selection step, the score of each tree node u is computed by UCT (Upper Confidence Bound
1 applied to trees) [29] as follows: UCT, = (R, + 2C, IZITLMT) where R, is the averaged reward

feedback received on terminal loop sketches branching from node u, T is the number of visits of the
parent of u during tree search, T, is the number of visits of u and C,, is the exploration constant. The
child node with the greatest UCT is selected during tree exploration. UCT is a standard mechanism
to balance between exploitation (the first component of the formula) and exploration (the second
component of the formula) for tree search. An example is given in the extended version [13].

4.5 Curriculum Synthesis

Robots are often assigned a variety of related tasks rather than
being tasked with a single specific problem. These tasks differ
in their complexity, involving various objects to manipulate
and different goals to achieve. Synthesizing programs for ro-

def skillj(obj):
while (not present(obj)) {
while (not present(obj)) {

bot control has the additional benefit of enabling knowledge }; pickUp(obj);
transfer across tasks via reusable procedures. ReGuS ranks a }; pikeUp(ob3);
sequence of related tasks according to their complexity e.g. the

number of objects to manipulate to form a curriculum for the Fig. 16. Skill Lifting.

synthesizer. ReGuS adds programs synthesized to solve simpler
tasks as new skills in the form of callable procedures to the DSL in Fig. 6. These new procedures
serve as building blocks to constitute sophisticated programs for more complex tasks.

To lift a program to a procedure, we abstract the various environment objects O manipulated by
the program to the parameters of the procedure. For instance, the CleanHouse program depicted
in Figure 5b can be abstracted to a procedure skill; (where the specific name is not of significance),
shown in Fig. 16. Adding this skill of cleaning one floor to the DSL, ReGuS can efficiently synthesize
a robot-control program that iteratively invokes this procedure in a loop to clean a multi-floor house.
As the set of robot skills grows in the DSL, the program search space becomes more efficiently
compressed by these new skills.

5 EXPERIMENTS

ReGuS' is written in Python. In our implementation, to ensure program termination, we add
"return" as a special action and add a penalty reward to programs that do not terminate within the
task horizon for the agent to learn to terminate its execution when goal conditions are satisfied.

The source code of ReGusS is available at https://github.com/RU- Automated-Reasoning-Group/ReGuS

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 217. Publication date: June 2024.

217:16 Guofeng Cui, Yuning Wang, Wenjie Qiu, and He Zhu

I 5 G

(a) StairClimber (b) FourCorners (c) TopOff (d) Maze (e) CleanHouse (f) Harvester (g) Seeder

Fig. 17. Tasks of the "karel The Robot"

Our experiments are designed to answer the following research questions:

¢ (RQ1) How significant is the use of loop sketch synthesis and on-demand conditional statement
synthesis in the ReGuS algorithm?

o (RQ2) Does curriculum synthesis enable ReGusS to expedite the generation of large programs
needed for complex tasks, which would be challenging to synthesize?

o (RQ3) How effective is ReGusS at learning robot-control programs for tasks with stochastic and
continuous state spaces?

Main Baselines. Throughout the evaluation, we consider two important deep reinforcement
learning (DRL) baselines.

e DRL: A deep reinforcement learning agent that takes raw environment states as input and
produces a control action. The agent is implemented as a deep feedforward neural network
trained by proximal policy optimization (PPO) [44], a state-of-the-art DRL algorithm.

o DRL-abs: A DRL agent that takes abstract states as input. This baseline allows for a fair com-
parison to ReGusS as both approaches utilize the same state abstraction. All returned values of
abstraction predicates e.g. { frontIsClear() == true, present(marker) == false, ...}
are concatenated as a binary vector, which is fed to a recurrent deep neural network as its input.

ReGusS and the baselines share the same control action space parameterized by the finite set of
task-agnostic robot skills (as defined in Sec. 3).

5.1 RQ1: Loop Sketch Synthesis and On-demand Conditional Statement Synthesis

We use a suite of discrete state and action environments with the "Karel The Robot" simulator [38],
taken from [49], to evaluate the capability of hierarchical loop sketch synthesis and on-demand
conditional statement synthesis. In these environments visualized in Figure 17, an agent navigates
inside a 2D grid world with walls and modifies the world state by interaction with markers. These
tasks feature randomly sampled agent positions, walls, markers, and goal configurations. For these
environments, we equip our DSL (Fig. 6) with the state abstraction predicates and actions defined in
Equation 5. DoorKey, CleanHouse and FourCorners are running examples in the paper. In DoorKey,
the agent gets a sporadic reward of 0.5 for picking up the first key and 1.0 for dropping it onto the
second key. On StairClimber, the goal is to climb the stairs to reach the marker to get a reward
of 1. The reward is —1 if the agent moves into an invalid position off the stairs and 0 otherwise. On
TopOff, the goal is to put a marker in any position already with a marker and reach the rightmost
square on the bottom row. The reward is defined as the number of markers correctly placed until
the agent either misses a marker or puts a marker in undesired positions (the reward is normalized
to a value between 0 and 1). On Maze, the goal is to find a marker inside a random maze to get
a reward of 1. The reward is —1 if the agent attempts to place an extra marker and 0 otherwise.
On Harvester, the goal is to pick up all the markers. Similarly, Seeder requires the agent to place
exactly one marker on each grid.

Fig. 18 depicts the learning performance in terms of the agent’s rewards over 5 runs of each
tool. We show the average (solid line) and standard deviation (shaded area) of rewards over the

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 217. Publication date: June 2024.

Reward-Guided Synthesis of Intelligent Agents with Control Structures 217:17

— ReGus
—— DRLabs
— DRL

(a) StairClimber (b) FourCorners (c) TopOff (d) Maze

(e) CleanHouse (f) Harvester (g) Doorkey (h) Seeder

Fig. 18. Comparing ReGuS against the baselines on the Karel domain. The x-axis denotes the number of
robot-environment interactions (simulation steps). The y-axis records the rewards of learned controllers.

Table 1. Comparing the mean time in seconds (with standard deviation) used by ReGuS against baselines for
synthesizing a program achieving the maximal reward 1.0 in the Karel domain.

StairClimber FourCorners TopOff Maze CleanHouse Harvester DoorKey Seeder

EnumS$S >2hrs 1170.82 1609.06 3611.09 >2hrs >2hrs >2hrs >2hrs

EnumR >2hrs 1187.31 184.21 2980.31 >2hrs >2hrs > 2hrs >2hrs
ReGuSgpe;+EnumR >2hrs 221.79 >2hrs >2hrs >2hrs >2hrs >2hrs >2hrs
EnumS+ReGuSpmg 20.13 3.76 3.10 135.04 890.12 1262.79 >2hrs 1599.97

ReGuS 22.02 3.52 2.85 124.83 537.67 171.38 2623.51 259.54

course of training. The rewards are collected by evaluating each program or neural policy for 1000
random initial states. ReGuS successfully synthesized programs getting 1.0 reward on all the tasks
and exhibited the best data efficiency over the baselines.

Ablation Study. We studied the importance of hierarchical loop sketch synthesis and on-demand
conditional statement synthesis through an ablation study.:

e EnumsS: top-down enumeration of programs in order of increasing complexity measured by
program structural cost (defined in Sec. 4.3).

o EnumR: top-down enumeration of (partial) programs ranked by both rewards and structural costs
as in ReGusS but without loop sketch synthesis and on-demand conditional statement synthesis.

® ReGuSg,+EnumR: This ablation replaces the sketch completer ReGuSpy,, in ReGuS with EnumR
(sketch completion does not use on-demand conditional statement synthesis).

o EnumS+ReGuSpy,,: This ablation replaces the sketch generator ReGuSs,; in ReGuS with EnumS
(sketch generation does not use reward feedback from sketch completion)?.

Table. 1 presents the time taken by all the tools to find a program that achieves the maximal 1.0
reward across 1000 random initial states. The results are averaged over five trials. The enumeration
baselines EnumS and EnumR perform significantly worse than ReGusS on all tasks, demonstrating the
effectiveness of ReGuS’s strategy for decomposed search space for loops. ReGuSgg.+EnumR times

2EnumR cannot be used because rewards cannot be assigned to “intermediate” sketches that still have ??s symbols.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 217. Publication date: June 2024.

217:18 Guofeng Cui, Yuning Wang, Wenjie Qiu, and He Zhu

|
(a) RandomCrossing (b) LavaCrossing (c) MultiRoom (d) LockedRoom (e) DoorKey (f) PutNear & UnlockPickup

Fig. 19. Tasks of the MiniGrid Environments.

out on most of the benchmarks whereas ReGuS solves all the tasks in a few minutes, highlighting
the necessity of on-demand conditional statement synthesis to reduce the large program search
space. ReGuS outperforms EnumS+ReGuSp,,g on tasks requiring complex loop structures such as
CleanHouse, Harvester, seeder, and DoorKey, showing the importance of hierarchical synthesis
of loop sketches. The reward feedback from sketch completion acts as an effective heuristic to
guide the generation of high-quality loop sketches.

5.2 RQ2: Curriculum Synthesis

We evaluate how ReGuS can expedite program synthesis
for a stream of tasks with various complexity using Min-
iGrid [11], a collection of gridworld environments with
goal-oriented tasks, widely used to evaluate state-of-the-
art reinforcement learning algorithms. The agent can only
detect if an object presents within its visible area (gray
region). We focus on 7 tasks depicted in Fig. 19. Crossing: }r(f T T
the agent has to reach a goal randomly placed in a room " RS o cumculur synesis
with intersecting walls. LavaCrossing: Similar to Cross- ;

ing, but with lava streams that terminate the episode with

zero rewards upon contact by the agent. MultiRoom: the Fig. 20. ReGuS'’s performance on the Mini-
agent has to navigate randomly connected rooms with Gyid tasks, evaluated over 5 trails. Each
closed doors to reach a goal. LockedRoom: the agent has program is tested with 1000 random seeds.
to find a key in a room to unlock another room that houses

the goal. DoorKey: similar to LockedRoom, but the key is initially in the same room as the agent
(this is more challenging than Karel-DoorKey in Fig. 2 because this environment lacks the 0.5
reward for key pickup). PutNear: the agent needs to pick up a key in one room and place it next to
another box hidden behind a locked door. UnlockPickup: the agent has to use a key to enter a
locked room, drop the key, and then pick up a box. These environments feature random initial agent
and object positions. As the tasks involve interacting with various objects, the state abstraction
and control action space is significantly more complicated than that of Karel (Equation 5). In each
environment, a positive reward of 1.0 is given only when the goal condition is satisfied. These tasks
are known to be challenging to state-of-the-art RL algorithms due to their sparse reward setting,
long horizon, and partial observability [11].

We depict ReGuS’s learning performance in Fig. 20. As these tasks increase in complexity as the
number of objects to manipulate increases, ReGuS adds programs synthesized for a simpler task as
a new skill that can be reused to constitute sophisticated programs for more complex tasks. For
example, ReGuS adds the goal-reaching program synthesized for the third environment Multiroom
as a new skill skill;(obj) to the DSL. This skill can then be reused as a new control action in the
form of callable procedures such as skills(key) and skills(door). When synthesizing a program in
LockedRoom, the agent can call skill;(key) to grab the key if it faces a locked door. It can then
return to the locked door via skill;(door) to open it. For a fair comparison, for DRL-abs, we also

MiniGrid Tasks

w & o o o~

Task Solved

°

1 2 3 4
Number of Environment Interactions 1e7

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 217. Publication date: June 2024.

Reward-Guided Synthesis of Intelligent Agents with Control Structures 217:19

v —_— -
Autonomous Highway Driving Fetch-Pick&Place Fetch-Hook Ant U-shaped Maze Ant S-shaped Maze Ant Il-shaped Maze Ant w-shaped Maze

Fig. 21. Evaluating ReGusS in robot tasks with continuous state and action spaces.

add learned neural policies for simpler tasks as a macro action that can be used by neural policies
when learning for more complex tasks. DRL-abs consistently receives nearly zero rewards beyond
the second environment. Using curriculum synthesis, ReGuS achieves the maximum 1.0 reward
on all the 7 environments evaluated over 1000 random seeds. Without curriculum synthesis, ReGuS
failed to solve the more complex tasks as DRL-abs. The synthesized programs feature multiple
loops with nested conditionals making them infeasible to be found by EnumS or EnumR.

5.3 RQ3: Robotics Tasks in Stochastic Continuous State Spaces

We evaluate ReGusS using the following continuous, long horizon robotics tasks with sparse rewards.

Highway Driving. We consider the task of a self-driving car navigating a multilane highway
depicted in Fig. 21 (left) adapted from [31]. In the DSL, we define a state abstraction predicate
frontIsClear () to check if the predicted time-to-collision of observed vehicles on the same lane
as the ego-vehicle is no less than a threshold based on their current speed and position. Additionally,
we have leftIsClear() to check the clearance on the left lane assuming the ego-vehicle were
to drive on the left lane. The rightIsClear() predicate is defined in the same way. The skills
in our DSL lane_left(), lane_right(), faster() and slower() are borrowed from [31] which
add a layer of speed and steering controllers on top of the continuous low-level control so that the
ego-vehicle can follow the target lane at a desired speed. The environment is stochastic as the
other vehicles’ speeds and lane positions are uncertain e.g. at each timestep the front vehicle may
maintain its speed or decelerate. The reward is 1.0 at each timestep only if the ego-car drives on
the rightmost lane with the highest permissible speed while avoiding collisions. The horizon is 50.

Fetch Environments. The Fetch-Pick & Place task is for a manipulator to pick up a block and
place it in a target position in mid-air as depicted in Fig. 21 (middle). The robot used is a 7-DoF
Fetch Mobile Manipulator with a two-fingered parallel gripper. The environment is stochastic as
the block is slippery and prone to falling from the gripper once grasped with 20% probability every
step. We consider state abstraction predicates Closing (indicates if the gripper is closed), NearObj
(indicates if the gripper is close to the block), HoldingObj (indicates if the gripper is holding the
block), AboveObj (indicates if the gripper is above the block), and ObjAt (indicates if the block
is in the goal region g € R3). These predicates are borrowed from [28]. The continuous action
space is R*, where the first 3 components encode the target gripper position and the last one is the
target gripper width. The skills in our DSL are defined to include openGripp(), closeGripp(),
moveUp (), moveDown (), move(g) that moves the gripper to a goal region g. The reward function
is 1.0 if the block is moved to the goal region and 0 otherwise. The Fetch-Hook task is similar.
However, the robot’s gripper cannot directly reach the object and must utilize a hook to manipulate
the object effectively. The table surface is scattered with random "bumps" that act as rigid obstacles,
making the environment stochastic.

Ant Navigation. In the 4 maze environments depicted in Fig. 21 (right), a MuJoCo quadruped
ant [48] is tasked to navigate to a goal position (red sphere). The objective is to synthesize a
single program capable of reaching the goal regions in all 4 mazes. We adopt the same setting
used in [17]: the ant receives range sensor readings about nearby obstacles as well as the goal.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 217. Publication date: June 2024.

217:20 Guofeng Cui, Yuning Wang, Wenjie Qiu, and He Zhu

Highway Driving Fetch-Pick&Place Fetch-Hook

Average Reward
et Rl
Average Reward
_ TaskSoved

— DRL — DRL
— DRLabs 00 —— DRL-abs
— ReGus o — ReGus

0 0k 0% o7 1w 125 1% 175 o [o 3 [To o o2 04 3 [To 13 T 3 3 3
Number of Environment Interaction 165 Number of Environment Interactions 166 Number of Environment Interactions 106 Number of Environment Interaction

(a) Highway Driving (b) Fetch-Pick&Place (c) Fetch-Hook (d) Ant Navigation

Fig. 22. Comparing the mean performance of ReGusS against the baselines over the robot learning tasks in
Fig. 21 for 5 trails. The x-axis denotes the number of robot-environment interactions (simulation steps). The
y-axis records the rewards of learned controllers (left and middle) or the numbers of solved tasks (right). Each
program/neural policy is evaluated over 1000 trajectories.

The DSL is equipped with the state abstraction predicates and skills in Equation 5. The predi-
cates frontIsClear(), leftIsClear(), rightIsClear(), and present(goal) use range sensory
inputs for object detection. The skill module move can navigate the ant along the four cardinal
directions by invoking four neural primitive skills UP, DOWN, LEFT and RIGHT pretrained by a deep
RL algorithm SAC [23]. The other two skills turnLeft and turnRight update the cardinal direction
of the ant based on which move invokes one of the four neural primitive skills correspondingly.
Detailed descriptions of the predicates and skill modules are included in the extended version [13].
A positive reward is given only when the robot reaches the goal region within 800 timesteps.

Fig. 22 (left) compares ReGuS and the baselines on the Highway autonomous driving environment.
As there is no goal in this environment, we show the rewards accumulated at each timestep. ReGuS
learns an interpretable program that ensures safe avoidance, facilitates lane changes to the right, and
maintains the highest permissible speed whenever possible. ReGuS ultimately surpasses the DRL
baseline, which becomes stuck in a local minimum. DRL-abs tends to be overly cautious, always
slowing down Fig. 22 (middle) shows that ReGuS generalizes well to the stochastic Pick&Place
environments. Although the block is prone to falling off, the learned program iteratively picks it
up in a loop to ensure eventual goal achievement. Curriculum synthesis further improves the data
efficiency of ReGuS for the Hook environment. The synthesized program can utilize the Pick&Place
skill to grasp the hook and align it with the block for movement toward the goal, enabling fast
learning. In Fig. 22 (right), a task in Ant navigation is considered solved if the agent can achieve
above 95% success rate for goal achievement over 1000 trajectories. The program synthesized for
the Ant-U maze includes the behavior of turning left when facing a wall. When executed in the
Ant-S environment, ReGusS adds to it a conditional statement, directing the ant to explore its right
side when its right is clear. The program generalizes to the remaining two environments. The DRL
and DRL-abs baselines struggle with the long-horizon, procedural Fetch and Ant Navigation tasks.

Local Reward Optimums. We further investigate whether ReGusS is subject to the risk of
converging to suboptimal programs. Principally, ReGuS handles this issue by using UCT (Upper
Confidence Bound 1 [29]) to balance sketch exploitation and sketch exploration in the high-level
sketch generation phase (Sec. 4.4) and considering program structure cost in the low-level sketch
completion phase (Sec. 4.3). For example, for the Fetch-Pick&Place task in Fig. 21 (middle), a
synthesized program may attempt to move the gripper directly to the block to grab it. While this
approach may occasionally succeed in getting a reward early, it is suboptimal because it could
accidentally push the block off the table. Expanding partial programs excessively based on this
behavior can result in increased structural complexity that outweighs the task reward. By leveraging
structure costs, ReGuS navigates away from this local optima by synthesizing another program
moving the gripper above the block before descending to grasp it. Although this behavior requires

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 217. Publication date: June 2024.

Reward-Guided Synthesis of Intelligent Agents with Control Structures 217:21

more search steps to receive a positive reward, it can eventually lead to success. This phenomenon
is evident in the fluctuations observed in the reward curve during learning for this task, as depicted
in Fig. 22(b) (a similar trend can be observed for the other environments as well).

Defining State-Abstraction Predicates. To study the difficulty of defining predicates for
continuous state environments, we firstly perform an ablation study to examine how the number
of state abstraction predicates affects reward performance. In the Fetch-Pick&Place environment
shown in Fig. 21 (middle), we iteratively eliminate predicates from the 5 perception-based predicates
defined for this task and then rerun ReGuS. Our ablation study reveals that even when one of
the three predicates—Closing, NearObj, or HoldingObj—is removed, ReGuS can still produce a
correct program with full reward. However, ReGusS fails to solve this task when more than one
predicate is removed, or when the other predicates are removed. We also investigate the influence
of the quality of state abstraction predicates in the highway environment shown in Fig. 21 (left).
The state abstraction predicates for this environment e.g. frontIsClear () assess if the predicted
time-to-collision of observed vehicles is beyond a certain threshold. Our ablation study indicates
that setting the threshold to 2 or 3 seconds yields programs with comparable rewards. However,
setting the threshold to 4 leads to a program with a much lower reward, as the learned controller
exhibited an overly cautious behavior, causing the ego vehicle to slow down prematurely.

We provided the synthesized programs for each robot task in our experiments in the extended
version [13]. It also includes further comparisons between ReGuS and state-of-the-art deep RL
algorithms and programmatic RL baselines. In the extended version, we demonstrated ReGuS’s
unique ability to generalize effectively to larger problem instances, and presented an ablation study
on the hyperparameters of ReGuS, along with program execution trajectories on selected tasks.

6 LIMITATIONS

While ReGuS has demonstrated superior performance compared to state-of-the-art RL algorithms
and standard program synthesis baselines in the robot-control tasks discussed in Sec. 5, our experi-
ments have also revealed several limitations that require further improvement. The main limitation
of ReGusS is its dependence on user-defined state abstraction predicates to construct the DSL used for
synthesis. Based on our experimental results, specifying predicates to describe spatial relationships
among environmental objects appears to be an effective heuristic for state abstraction. The ablation
study in Sec. 5.3 shows that determining suitable (constant) thresholds within these predicates for
continuous environments may require domain expertise.

ReGusS relies on curriculum synthesis to solve extremely sparse-reward tasks characterized by
multiple stages, where a positive reward is given only upon the task’s full completion. As shown in
the experiment detailed in Sec. 5.2, this requires the presence of a series of related procedural tasks
to form a reasonable curriculum. Exploring methods to automatically generate a curriculum for a
single complex task is an interesting direction for future research.

Another limitation is that ReGuS has only been evaluated in the domain of robot navigation and
manipulation. We anticipate that ReGuS can be generalized to other domains such as data-structure
manipulations with a proper DSL for heap manipulation and a test generator to define rewards
based on the ratio of passed test cases. For example, a ReGuS agent could generate a list filtering
program to move along a linked list as long as there are elements present to pick up specific elements.
We leave this extension for future work.

7 RELATED WORK

Reward-guided Program Synthesis. There exist synthesis algorithms that design dense rewards
over their own solutions to guide search directions. PROBE [2] and SYNTIA [4] evaluate candidate
programs based on the inputs from input-output examples and compare the output similarity to

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 217. Publication date: June 2024.

217:22 Guofeng Cui, Yuning Wang, Wenjie Qiu, and He Zhu

generate rich reward information. Chen et al. [9] incorporate feedback from a deduction engine
in its reward function, which is based on the feasibility of partial programs concerning a set of
input-output examples. FAERY [10] uses Monte Carlo estimation to sample user queries for obtaining
additional input-output examples. In sparse-reward scenarios, attempting to synthesize complete
programs (with complex control flow structures) using Monte Carlo reward estimation becomes
challenging as the likelihood of finding a complete program with a nonzero averaged reward
is low, making it difficult to guide the search algorithm effectively. ReGuS is designed to tackle
sparse-reward tasks through its two-staged synthesis approach. The sketch generator leverages the
reward feedback from the sketch completer to guide its sketch generation process.

Quantitative Synthesis. The goal of quantitative synthesis is to find a program that meets a
given specification, like a set of examples or a logical formula, while also optimizing a quantitative
cost function, such as minimizing the number of instructions in the program or its performance
overhead. Cost functions require white-box access to whole programs [7] and must be in decidable
theory [5]. However, agents for robot learning interact with complex dynamics environments,
wherein the state-transition models may be black boxes. Moreover, quantitative synthesis techniques
are rooted in programming by example and counterexample-guided inductive synthesis [22, 25].
ReGusS conducts synthesis without the dependency on examples.

Execution-guided Program Synthesis. There exists prior work in program synthesis that
incorporates execution traces to guide program generation. Ellis et al. [18] expose program execution
results encountered during a bottom-up search to a neural predictor. The predicted production rule
probabilities are then used to prioritize more likely programs. Chen et al. [8] leverage intermediate
values of partial programs that are consumed by a neural encoder-decoder model to guide top-down
search. ReGuS differs in the sense that it generalizes states encountered in execution to pre- and
postconditions to enable on-demand conditional statement synthesis.

On-demand Synthesis of Conditional Statements. ReGuS’s conditional statement synthesis
strategy is related to the lazy predicate synthesis algorithms described in [40, 53]. These algorithms
learn a predicate " to strengthen an existing abstraction ¢ such that the following properties hold
pt = (¢ AY*) = p~ where p* and p~ are in general pre- and post-conditions or abstractions of
input-output examples. However, ReGuS does not assume it knows the specification of a robot
task nor does it assume access to a provided set of task execution examples. We justify this design
choice in Sec. 2. Compared to [e,f], ReGuS is more suitable when only rewards are used to specify
tasks and there is no example or formal specification.

Generalized Planning. ReGusS shares conceptual similarities with generalized planning tech-
niques such as [46, 47], which aim to derive plans with loops to solve problem instances of un-
bounded sizes. However, planning techniques require the state transition model for each robot
action within an abstracted state space to be provided. Similar requirements are imposed for
component-based synthesis techniques with user-defined predicates, as seen in [9, 20]. In contrast,
ReGusS automatically generates the pre- and postconditions of each task-agnostic robot skill within
the abstracted state space of user-defined predicates. This model-free approach makes ReGusS better
suited for application domains such as stochastic robot environments, where manually specifying
each robot skill is challenging and requires extensive domain expertise.

8 CONCLUSION

We present ReGuS, reward-guided synthesis, to address the exploration challenges in deep rein-
forcement learning for robot environments with sparse rewards. Extensive experiment results
demonstrate that by decomposed search space for loops, on-demand synthesis of conditional
statements, and curriculum synthesis of robot skills as reusable procedures, ReGuS can effectively
compress the agent exploration space for long-horizon, multi-stage, and procedural robot tasks.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 217. Publication date: June 2024.

Reward-Guided Synthesis of Intelligent Agents with Control Structures 217:23

DATA AVAILABILITY STATEMENT

An artifact containing our implementation, benchmark suite and results is publicly available on
Zenodo [12].

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their help and feedback on this paper. This
material is based upon work supported by the National Science Foundation under grant numbers
CCF-2124155 and CCF-2007799.

REFERENCES

[1] David Andre and Stuart J. Russell. 2002. State Abstraction for Programmable Reinforcement Learning Agents. In
Proceedings of the Eighteenth National Conference on Artificial Intelligence and Fourteenth Conference on Innovative
Applications of Artificial Intelligence.

[2] Shraddha Barke, Hila Peleg, and Nadia Polikarpova. 2020. Just-in-time learning for bottom-up enumerative synthesis.
Proc. ACM Program. Lang. OOPSLA (2020).

[3] Osbert Bastani, Yewen Pu, and Armando Solar-Lezama. 2018. Verifiable Reinforcement Learning via Policy Extraction.
In Advances in Neural Information Processing Systems, NeurIPS 2018.

[4] Tim Blazytko, Moritz Contag, Cornelius Aschermann, and Thorsten Holz. 2017. Syntia: Synthesizing the Semantics of
Obfuscated Code. In 26th USENIX Security Symposium, USENIX Security 2017.

[5] James Bornholt, Emina Torlak, Dan Grossman, and Luis Ceze. 2016. Optimizing synthesis with metasketches. In
Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2016.

[6] Elliot Chane-Sane, Cordelia Schmid, and Ivan Laptev. 2021. Goal-Conditioned Reinforcement Learning with Imagined
Subgoals. In Proceedings of the 38th International Conference on Machine Learning, ICML 2021.

[7] Swarat Chaudhuri, Martin Clochard, and Armando Solar-Lezama. 2014. Bridging boolean and quantitative synthesis
using smoothed proof search. In The 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2014.

[8] Xinyun Chen, Chang Liu, and Dawn Song. 2019. Execution-Guided Neural Program Synthesis. In 7th International
Conference on Learning Representations, ICLR 2019.

[9] Yanju Chen, Chenglong Wang, Osbert Bastani, Isil Dillig, and Yu Feng. 2020. Program Synthesis Using Deduction-
Guided Reinforcement Learning. In Computer Aided Verification - 32nd International Conference, CAV 2020.

[10] Yanju Chen, Chenglong Wang, Xinyu Wang, Osbert Bastani, and Yu Feng. 2023. Fast and Reliable Program Synthesis
via User Interaction. In 38th IEEE/ACM International Conference on Automated Software Engineering, ASE 2023.

[11] Maxime Chevalier-Boisvert, Lucas Willems, and Suman Pal. 2018. Minimalistic Gridworld Environment for Gymnasium.
https://github.com/Farama-Foundation/Minigrid

[12] Guofeng Cui, Yuning Wang, Wenjie Qiu, and He Zhu. 2024. PLDI 2024 Artifact: Reward-Guided Synthesis of Intelligent
Agents with Control Structures. https://doi.org/10.5281/zenodo.10976438

[13] Guofeng Cui, Yuning Wang, Wenjie Qiu, and He Zhu. 2024. Reward-guided Synthesis of Intelligent Agents with
Control Structures (Extended Version). https://github.com/RU- Automated-Reasoning-Group/ReGuS/regus.pdf

[14] Quentin Delfosse, Wolfgang Stammer, Thomas Rothenbacher, Dwarak Vittal, and Kristian Kersting. 2023. Boosting
Object Representation Learning via Motion and Object Continuity. In Machine Learning and Knowledge Discovery in
Databases: Research Track - European Conference, ECML PKDD 2023.

[15] Thomas G. Dietterich. 2000. Hierarchical Reinforcement Learning with the MAXQ Value Function Decomposition. J.
Artif. Intell. Res. (2000).

[16] Yan Duan, Marcin Andrychowicz, Bradly Stadie, OpenAl Jonathan Ho, Jonas Schneider, Ilya Sutskever, Pieter Abbeel,
and Wojciech Zaremba. 2017. One-Shot Imitation Learning. In Advances in Neural Information Processing Systems,
NeurIPS 2017.

[17] Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. 2016. Benchmarking Deep Reinforcement
Learning for Continuous Control. In Proceedings of the 33rd International Conference on International Conference on
Machine Learning, ICML 2016.

[18] Kevin Ellis, Maxwell I. Nye, Yewen Pu, Felix Sosa, Josh Tenenbaum, and Armando Solar-Lezama. 2019. Write, Execute,
Assess: Program Synthesis with a REPL. In Advances in Neural Information Processing Systems, NeurIPS 2019.

[19] Yu Feng, Ruben Martins, Osbert Bastani, and Isil Dillig. 2018. Program synthesis using conflict-driven learning. In
Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2018.

[20] Yu Feng, Ruben Martins, Jacob Van Geffen, Isil Dillig, and Swarat Chaudhuri. 2017. Component-based synthesis of
table consolidation and transformation tasks from examples. In Proceedings of the 38th ACM SIGPLAN Conference on

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 217. Publication date: June 2024.

217:24 Guofeng Cui, Yuning Wang, Wenjie Qiu, and He Zhu

[21]

[22]
[23]

[24]

[25]
[26]

[27]

[28]
[29]

[30]
[31]

[32]

[33]

[34]

[35]
[36]
[37]
[38]

[39]

[40]

[41]

[42]
[43]

[44]

Programming Language Design and Implementation, PLDI 2017.

Yu Feng, Ruben Martins, Yuepeng Wang, Isil Dillig, and Thomas W. Reps. 2017. Component-based synthesis for
complex APIs. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL
2017.

Sumit Gulwani, Kunal Pathak, Arjun Radhakrishna, Ashish Tiwari, and Abhishek Udupa. 2019. Quantitative Program-
ming by Examples. CoRR abs/1909.05964 (2019).

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. 2018. Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor. In International conference on machine learning, ICML 2018.
Dylan Hadfield-Menell, Smitha Milli, Pieter Abbeel, Stuart J. Russell, and Anca D. Dragan. 2017. Inverse Reward
Design. In Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing
Systems 2017, December 4-9, 2017, Long Beach, CA, USA.

Qinheping Hu and Loris D’Antoni. 2018. Syntax-Guided Synthesis with Quantitative Syntactic Objectives. In Computer
Aided Verification - 30th International Conference, CAV 2018.

Jeevana Priya Inala, Osbert Bastani, Zenna Tavares, and Armando Solar-Lezama. 2020. Synthesizing Programmatic
Policies that Inductively Generalize. In 8th International Conference on Learning Representations, ICLR 2020.

Michael Janner, Sergey Levine, William T. Freeman, Joshua B. Tenenbaum, Chelsea Finn, and Jiajun Wu. 2019. Reasoning
About Physical Interactions with Object-Oriented Prediction and Planning. In 7th International Conference on Learning
Representations, ICLR 2019.

Kishor Jothimurugan, Suguman Bansal, Osbert Bastani, and Rajeev Alur. 2021. Compositional Reinforcement Learning
from Logical Specifications. In Annual Conference on Neural Information Processing Systems, NeurIPS 2021.

Levente Kocsis and Csaba Szepesvari. 2006. Bandit Based Monte-Carlo Planning. In 17th European Conference on
Machine Learning, ECML 2006.

John Langford. 2010. Efficient Exploration in Reinforcement Learning. In Encyclopedia of Machine Learning.
Edouard Leurent. 2018. An Environment for Autonomous Driving Decision-Making. https://github.com/eleurent/
highway-env.

Zhixuan Lin, Yi-Fu Wu, Skand Vishwanath Peri, Weihao Sun, Gautam Singh, Fei Deng, Jindong Jiang, and Sungjin
Ahn. 2020. SPACE: Unsupervised Object-Oriented Scene Representation via Spatial Attention and Decomposition. In
8th International Conference on Learning Representations, ICLR 2020.

Russell Mendonca, Oleh Rybkin, Kostas Daniilidis, Danijar Hafner, and Deepak Pathak. 2021. Discovering and
Achieving Goals via World Models. In Advances in Neural Information Processing Systems, NeurIPS 2021.

Chaitanya Mitash, Kostas E. Bekris, and Abdeslam Boularias. 2017. A self-supervised learning system for object
detection using physics simulation and multi-view pose estimation. In 2017 IEEE/RST International Conference on
Intelligent Robots and Systems, IROS 2017.

Chaitanya Mitash, Abdeslam Boularias, and Kostas E. Bekris. 2018. Robust 6D Object Pose Estimation with Stochastic
Congruent Sets. In British Machine Vision Conference 2018, BMVC 2018.

Ofir Nachum, Shixiang Gu, Honglak Lee, and Sergey Levine. 2018. Data-Efficient Hierarchical Reinforcement Learning.
In Annual Conference on Neural Information Processing Systems, NeurIPS 2018.

Soroush Nasiriany, Vitchyr Pong, Steven Lin, and Sergey Levine. 2019. Planning with Goal-Conditioned Policies. In
Annual Conference on Neural Information Processing Systems, NeurIPS 2019.

Richard E. Pattis. 1981. Karel the Robot: A Gentle Introduction to the Art of Programming (1st ed.). John Wiley & Sons,
Inc., USA.

Silviu Pitis, Harris Chan, Stephen Zhao, Bradly C. Stadie, and Jimmy Ba. 2020. Maximum Entropy Gain Exploration
for Long Horizon Multi-goal Reinforcement Learning. In Proceedings of the 37th International Conference on Machine
Learning, ICML 2020.

Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. 2016. Program synthesis from polymorphic refinement
types. In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI
2016.

Vitchyr Pong, Murtaza Dalal, Steven Lin, Ashvin Nair, Shikhar Bahl, and Sergey Levine. 2020. Skew-Fit: State-Covering
Self-Supervised Reinforcement Learning. In Proceedings of the 37th International Conference on Machine Learning, ICML
2020.

Wenjie Qiu and He Zhu. 2022. Programmatic Reinforcement Learning without Oracles. In 10th International Conference
on Learning Representations, ICLR 2022.

Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick, and Ali Farhadi. 2016. You Only Look Once: Unified,
Real-Time Object Detection. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016. 779-788.
John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. 2017. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347 (2017).

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 217. Publication date: June 2024.

Reward-Guided Synthesis of Intelligent Agents with Control Structures 217:25

[45]

[46]

[47]
[48]
[49]
[50]

[51]

[52]

[53]
[54]

[55]

Tom Silver, Kelsey R. Allen, Alex K. Lew, Leslie Pack Kaelbling, and Josh Tenenbaum. 2020. Few-Shot Bayesian
Imitation Learning with Logical Program Policies. In The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI
2020.

Tom Silver, Rohan Chitnis, Joshua B. Tenenbaum, Leslie Pack Kaelbling, and Tomas Lozano-Pérez. 2021. Learning
Symbolic Operators for Task and Motion Planning. In IEEE/RST International Conference on Intelligent Robots and
Systems, IROS 2021.

Siddharth Srivastava, Neil Immerman, and Shlomo Zilberstein. 2011. A new representation and associated algorithms
for generalized planning. Artif. Intell. (2011).

Emanuel Todorov, Tom Erez, and Yuval Tassa. 2012. Mujoco: A physics engine for model-based control. In 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems.

Dweep Trivedi, Jesse Zhang, Shao-Hua Sun, and Joseph J Lim. 2021. Learning to Synthesize Programs as Interpretable
and Generalizable Policies. In Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021.
Abhinav Verma, Hoang Minh Le, Yisong Yue, and Swarat Chaudhuri. 2019. Imitation-Projected Programmatic
Reinforcement Learning. In Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019.
Abhinav Verma, Vijayaraghavan Murali, Rishabh Singh, Pushmeet Kohli, and Swarat Chaudhuri. 2018. Programmati-
cally Interpretable Reinforcement Learning. In Proceedings of the 35th International Conference on Machine Learning,
ICML 2018.

Chenglong Wang, Alvin Cheung, and Rastislav Bodik. 2017. Synthesizing highly expressive SQL queries from
input-output examples. In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2017.

Xinyu Wang, Isil Dillig, and Rishabh Singh. 2018. Program synthesis using abstraction refinement. Proc. ACM Program.
Lang. POPL (2018).

Yuepeng Wang, Rushi Shah, Abby Criswell, Rong Pan, and Isil Dillig. 2020. Data Migration using Datalog Program
Synthesis. Proc. VLDB Endow. (2020).

Yichen Yang, Jeevana Priya Inala, Osbert Bastani, Yewen Pu, Armando Solar-Lezama, and Martin Rinard. 2021. Program
Synthesis Guided Reinforcement Learning for Partially Observed Environments. In Annual Conference on Neural
Information Processing Systems 2021, NeurIPS 2021.

Received 2023-11-16; accepted 2024-03-31

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 217. Publication date: June 2024.

	Abstract
	1 Introduction
	2 Overview
	2.1 Program and Domain-Specific Language
	2.2 The Synthesis Procedure

	3 Problem Formulation
	4 Reward-guided Program Synthesis
	4.1 Sketch Language
	4.2 Top-level Algorithm
	4.3 Low-level Loop Sketch Completion
	4.4 High-Level Loop Sketch Generation
	4.5 Curriculum Synthesis

	5 Experiments
	5.1 RQ1: Loop Sketch Synthesis and On-demand Conditional Statement Synthesis
	5.2 RQ2: Curriculum Synthesis
	5.3 RQ3: Robotics Tasks in Stochastic Continuous State Spaces

	6 Limitations
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

