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Fixed-Time Rigidity-Based Formation Maneuvering
for Nonholonomic Multirobot Systems

With Prescribed Performance
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Abstract—This article presents rigidity-based formation
maneuvering for a group of nonholonomic mobile robots subject
to limited sensing capability, where the performance bounds are
introduced to constrain the distance and angle errors. The time-
varying and asymmetric performance constraints can prescribe
the transient and steady-state performance of the closed-loop
systems, which further specify collision avoidance and connec-
tivity maintenance among neighboring robots and avoid the
controller singularity issue. To satisfy the constraint require-
ments and fixed-time convergence, universal barrier Lyapunov
functions are incorporated with control design such that angle
errors are fixed-time stable and distance errors can converge
to a small neighborhood around zero in fixed time. Under the
proposed control protocol, all robots can track the desired time-
varying velocity while generating and maintaining the predefined
formation defined by a minimally and infinitesimally rigid graph.
Simulation and experiment studies are carried out to illustrate
the effectiveness of the proposed control protocol.

Index Terms—Collision avoidance, connectivity maintenance,
formation maneuvering, nonholonomic mobile robots, prescribed
performance, rigidity graph.

I. INTRODUCTION

COOPERATIVE control of multiagent systems has
received considerable research interest in the fields of

control and robotics during the past decades. Many com-
plex tasks are accomplished efficiently by the cooperation
of multiple agents, such as cooperative coverage, explo-
ration, entrapment [1], etc. Control problems in multiagent
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coordination can be typically categorized into formation
stabilization [2]; formation tracking [3]; and formation maneu-
vering [4], [5]. Formation stabilization refers to the generation
of a stationary geometrical shape, while formation tracking
requires multiple agents to set up a desired formation geometry
and move along a reference trajectory. Formation maneuvering
corresponds to simultaneous shape stabilization and tracking
the desired reference velocity [6].
In the context of multiagent systems, the rigid graph the-

ory is an important tool to describe the formation geometry in
rigidity formation control, where the desired formation geom-
etry is generated by controlling the interagent distances [7]
and interagent bearings [8], [9], [10]. However, most existing
rigidity-based algorithms in the literature can only be applied
to solve the formation control problem of multiagent systems
modeled by single-integrator or double-integrator kinemat-
ics. The nonholonomic kinematics is a more realistic model
for wheeled mobile robots in formation control [11], [12],
[13], [14], which makes rigidity-based control design more
challenging. The distance-based control framework has been
recently applied to nonholonomic kinematic agents [15], in
which the nonholonomic systems are converted into single-
integrator-like systems that include a multiplicative matrix
dependent on the heading angle errors of the agents.
There are several significant issues associated with formation

maneuvering problems of nonholonomic multirobot systems.
The first one is the safety problem,whichmay deteriorate system
performance or even result in system failure. The safe navigation
of robot swarms usually requires that interrobot collision never
occurs, which relates to collision-avoidance problem in [16],
[17], [18], and [19]. In addition to collisions, the limited sensing
capability is another safe hazard. The onboard sensors equipped
with robots can only detect their neighbors that stay within a
certain sensing range; otherwise, the information interaction
among robots may be broken, which results in the connectivity
maintenance problem [20], [21], [22], [23]. To deal with such
a safety problem, artificial potential functions [17], [24] and
constrained control systems [25], [26] have been developed.
In [17] and [24], a repulsive vector field is constructed around
the agents and the potential function is equal to zero when
the desired formation is achieved, and grows to infinity when
any collision occurs or network connectivity is broken. In [25]
and [26], interagent distances are enforced to evolve within a
certain range such that the safety requirement is never violated
during the formation motion.
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The second challenging issue relates to the performance
of formation maneuvering systems including transient and
steady-state performance, and convergence speed. Transient
and steady-state behaviors are important performance specifi-
cations for a control system. A prescribed performance control
(PPC) methodology [27] can guarantee the predefined tran-
sient and steady-state performance of output tracking errors
by enforcing the given performance requirements in control
design. Without depending on the trial-and-error method, the
PPC methodology can guarantee that neighborhood errors con-
verge to predefined residual sets, while the convergence rates
of neighborhood errors are faster than the given values and the
maximum overshoots are less than the given constants. Due to
its remarkable properties, the PPC methodology [27] has been
applied in the designs of fuzzy control [28], synchronization
control [29], and formation control [25]. Recently, the PPC
methodology is employed to develop a robust distance-based
formation control with guaranteed transient performance, con-
nectivity maintenance, and collision avoidance among neigh-
boring agents [26]. Another performance specification is the
settling time which characterizes the convergence rate of a
control system [30], [31]. The fixed-time stability studied
in [32] can provide guaranteed convergence time irrelevant
to initial conditions which are unavailable a priori, which is
extended to multiagent systems [33], [34], [35].
For constrained systems, any violation of constraint require-

ments may lead to unsatisfactory transient performance or
system failure. To address the constraint problems, a bar-
rier function, which grows to infinity whenever its argument
approaches the constraint boundary, is introduced in con-
structing Lyapunov functions. Moreover, the barrier Lyapunov
function can also be utilized to handle performance con-
straints for multiagent control systems, whereas the transient
constraint problems are not discussed in the potential-function-
based control literature [17], [24]. The barrier functions,
including logarithmic [36] and tan-type barrier functions [37],
are applied to control systems with output/state constrains.
Recently, a novel universal barrier function has been developed
in [38], which can tackle both output-constrained and uncon-
strained nonlinear systems. How to address the safety and
performance constraint requirements for nonholonomic mul-
tirobot systems under the distance-based framework is an
important research topic that still remains to be developed.
This article presents fixed-time rigidity-based formation

maneuvering for a group of nonholonomic mobile robots
under the distance-based control framework, where the system
performance and the safety requirement among neighboring
robots are considered. Different from the leader-follower for-
mation architecture studied in [3], [16], and [39], in which the
communication graph is a simple directed spanning tree and
each follower is only able to handle the constraint require-
ments from one leader, the presented formation maneuvering
considers a minimally and infinitesimally rigid formation
graph in which the communication graph is undirected and
connected, and each robot is able to deal with the constraint
requirements from more than one neighboring robots. The
rigidity-based maneuvering problem for nonholonomic agents
has been addressed in [15], where input transformation is

applied for the multiagent system. However, the settling time
and the constraint requirements from safety and performance
are not taken into account. Finite- and fixed-time controls of
multiagent systems have been studied in [40], [41], and [42],
but the transient responses or interagent constraints are not
fully considered. Compared with control design for uncon-
strained systems or handling constraints between a pair of
leader and follower, our approach that can deal with constraints
among neighboring robots with the concern of the system
performance is more challenging. The technical difficulties
mainly stem from that: 1) although the modified input trans-
formation can work for multiagent systems with prescribed
performance, the singularity issue arises in control design;
2) the control design for each robot is expected to address
constraints from its neighbors, and the stability analysis of
barrier Lyapunov functions is more complex than that of the
conventional quadratic form; and 3) the fixed-time control for
system performance improvement is further addressed. The
main contributions are summarized as follows.
1) A fixed-time rigidity-based formation maneuvering pro-

tocol is presented for nonholonomic mobile robots,
where the robots can track the desired time-varying
velocity while converging to the desired shape defined
by a minimally and infinitesimally rigid graph. With the
consideration of a fixed-time control methodology, the
angle errors are fixed-time stable, and the distance errors
can converge into a small neighborhood around zero
in fixed time and then asymptotically converge to the
origin.

2) The safe navigation and limited sensing capability
are considered during the entire formation motion, in
which performance constraints are imposed on distance
errors to satisfy the prescribed transient and steady-state
performance, and further ensure the collision avoid-
ance and connectivity maintenance among neighboring
robots.

3) The universal barrier function is incorporated with con-
trol design to deal with the constraint requirements
and fixed-time convergence, and the singularity-free-
constrained control design is guaranteed in the distance-
based formation maneuvering framework.

II. PRELIMINARIES

A. Rigid Graph Theory

An undirected graph with n vertices and l edges is defined
as G � (V, E) where V = {1, 2, . . . , n} is the set of vertices
and E ⊂ V × V is the set of undirected edges that connect
two different nodes. If a node pair (i, j) ∈ E , then so is (j, i).
The set of neighbors of vertex i is defined as Ni(E) = {j ∈
V|(i, j) ∈ E}. Let pi ∈ R

2 denote the coordinate of vertex
i, then a framework is defined as F � (G, p) where p is
the stacked vector p = [pT1 , . . . , pTn ]

T ∈ R
2n. Based on the

arbitrary ordering edges, an edge function � : R
2n → R

l

associated with (G, p) is given by

�(p) =
[
, . . . , ||pi − pj||2, . . . ,

]T
, (i, j) ∈ E (1)
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where its kth element ||pi − pj|| corresponds to the kth edge
in E connecting the ith and jth vertices. The rigidity matrix
R(p) : R2n → R

l×2n of F = (G, p) is defined as

R(p) = 1

2

∂�(p)

∂p
(2)

where rank(R(p)) ≤ 2n−3 in R
2 [43]. It should be noted that

each row of rigidity matrix R(p) has the form [0T2 , . . . , (pi −
pj)T , . . . , 0T2 , . . . ,−(pi − pj)T , . . . , 0T2 ]. Frameworks Fp =
(G, p) and Fp̂ = (G, p̂) are equivalent if �(p) = �(p̂), and are
congruent if ||pi−pj|| = ||p̂i−p̂j|| ∀i, j ∈ V . A rigid framework
is minimally rigid if no single interagent distance constraint
can be removed without losing rigidity. A framework (G, p) in
R
2 is minimally rigid if l = 2n−3 [44]. A framework (G, p) is

infinitesimally rigid in R
2 if rank(R(p)) = 2n−3 [45]. Hence,

if a framework is minimally and infinitesimally rigid, then the
corresponding rigidity matrix has full row rank. An isome-
try of R

2 is a bijective map T : R2 → R
2 satisfying [46]

||x − y|| = ||T (x) − T (y)|| ∀x, y ∈ R
2, where T includes

rotations and translations of the vector x−y ∈ R
2. Two frame-

works are regarded to be isomorphic in R
2 if they are related

by an isometry, and Iso(F) represents the set of all isomorphic
frameworks F . Note that �(p) is invariant under isomorphic
motions of the framework. If two infinitesimally rigid frame-
works (G, p) and (G, p̂) are equivalent but not congruent, then
they are said to be ambiguous. The notation Amb(F) denotes
the set of all ambiguities of an infinitesimally rigid framework
F and its isometries. According to [44] and [47] (Theorem 3),
it is reasonable to assume that all frameworks in Amb(F) are
infinitesimally rigid.

B. Useful Lemmas

Lemma 1 [48]: For any velocity v ∈ R
2, it follows

R(p)(1n ⊗ v) = 0, where 1n is the n × 1 vector of ones.
Lemma 2 [48]: Consider the function

�
(
Fp,Fp̂

) =
∑

(i,j)∈E

(||pi − pj|| − ||p̂i − p̂j||
)2

.

If Fp is infinitesimally rigid and �(Fp,Fp̂) ≤ δ where
δ is a sufficiently small positive constant, then Fp̂ is also
infinitesimally rigid.
Lemma 3 [49]: If the framework Fp = (G, p) is minimally

and infinitesimally rigid, then the matrix R(p)R(p)T is positive
definite.
Lemma 4 [50]: If there exists a continuous radially

unbounded and positive-definite function V(x) such that

V̇(x) ≤ −αVp(x) − ρVq(x)

for constants α > 0, ρ > 0, p > 1, and 0 < q < 1, then
the origin of the system is globally fixed-time stable and the
settling time function T can be estimated by

T ≤ Tmax := 1

α(p − 1)
+ 1

ρ(1 − q)
.

Lemma 5 [35]: For xi ≥ 0, i = 1, . . . , n, it follows:
n∑

i=1

xpi ≥
(

n∑
i=1

xi

)p

, 0 < p ≤ 1

n∑
i=1

xpi ≥ n1−p

(
n∑

i=1

xi

)p

, p > 1.

III. PROBLEM STATEMENT

Consider a swarm of n nonholonomic mobile robots moving
on the plane. The kinematics of the robot i = {1, 2, . . . , n}, is
described by

ẋi(t) = cos θi(t)vi(t)

ẏi(t) = sin θi(t)vi(t)

θ̇i(t) = wi(t) (3)

where pi(t) = [xi(t) yi(t)]T and θi(t) denote the position and
heading angle of the robot i in the earth-fixed frame, respec-
tively. vi(t) and wi(t) are linear and angular velocity control
inputs.
Let the desired formation be represented by a minimally

and infinitesimally rigid framework F∗ = (G∗, p∗), where
G∗ = (V∗, E∗), dim(V∗) = n, dim(E∗) = l, and p∗ =
[p∗T

1 , . . . , p∗T
n ]T ∈ R

2n. Then, the desired distance between
the robot i and the robot j is given by

ddes,ij = ||p∗
i − p∗

j ||, (i, j) ∈ E∗. (4)

The actual formation shares the same framework F =
(G∗, p(t)) with p(t) = [pT1 (t), . . . , pTn (t)]T ∈ R

2n. The rela-
tive position pij(t) and distance dij(t) between the robot i and
its neighboring robot j are given by

pij(t) = pi(t) − pj(t), (i, j) ∈ E∗ (5)

dij(t) =
√(

xi(t) − xj(t)
)2 + (

yi(t) − yj(t)
)2

, (i, j) ∈ E∗. (6)

Define the distance error

eij(t) = dij(t) − ddes,ij, (i, j) ∈ E∗ (7)

where ddes,ij is the desired distance defined in (4).

A. Collision Avoidance

The safe navigation of the formation system requires that
collisions among neighboring robots never occur. Accordingly,
the constraint of safe distance dij is imposed on the relative
distance dij(t) between the robot i and its neighbor j to prevent
collision, that is

0 < dij < dij(t), (i, j) ∈ E∗ ∀t ≥ 0 (8)

where dij is the safe distance. Substituting (7) into (8) yields

dij − ddes,ij < eij(t), (i, j) ∈ E∗ ∀t ≥ 0 (9)

where dij < ddes,ij; otherwise, the desired formation is not
feasible.

B. Connectivity Maintenance

Since the sensing capability is limited, it is necessary
to ensure that each robot can reliably communicate with
its neighbors during the formation motion. Thus, neighbor-
ing robots are required to remain within a limited sensing
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region, and this specification also imposes the constraint on
the relative distance dij(t) as follows:

0 < dij(t) < d̄ij, (i, j) ∈ E∗ ∀t ≥ 0 (10)

where d̄ij is the maximum sensing range with 0 < dij < d̄ij.
Substituting (7) into (10) yields

− ddes,ij < eij(t) < d̄ij − ddes,ij, (i, j) ∈ E∗ ∀t ≥ 0 (11)

where ddes,ij < d̄ij; otherwise, the communication channel can-
not be established. From (9) and (11), we obtain the following
constraint:

− eij < eij(t) < ēij, (i, j) ∈ E∗ ∀t ≥ 0 (12)

where ēij = d̄ij − ddes,ij and eij = ddes,ij − dij.

C. Infinitesimally Rigid Preservation

The requirement of a sufficiently small positive constant in
Lemma 2 is a conservative estimate for how far F can be
from F∗ in order to remain infinitesimally rigid. A sufficient
condition [26] is presented to establish infinitesimal rigidity
of the actual formation F based on the distance error bounds
given in (12), which is restricted by

∑
(i,j)∈E∗

|eij(t)| <
∑

(i,j)∈E∗
max

{
|eij(0)|, |ēij(0)|

}
< ϑ̄ ∀t ≥ 0

where ϑ̄ > 0 is a sufficiently small constant. This implies
that |eij(0)| and |ēij(0)| are also sufficient small and, thus, it is
reasonable to set |eij(0)| = |ēij(0)| = |eij(0)| + μ with μ > 0
being a sufficiently small constant. As a result, eij(t) in (12)
is also restricted by

− (|eij(0)| + μ
)

< eij(t) < |eij(0)| + μ. (13)

Thus, it follows from (12) and (13) that:

− e∗
ij < eij(t) < ē∗

ij, (i, j) ∈ E∗ ∀t ≥ 0 (14)

where ē∗
ij = min{d̄ij − ddes,ij, |eij(0)| + μ} and e∗

ij =
min{ddes,ij − dij, |eij(0)| + μ}.

D. Performance Constraints

Define the following squared distance error:

ηij(t) = d2ij(t) − d2des,ij, (i, j) ∈ E∗ (15)

which means from (7) that

ηij(t) = eij(t)
(
eij(t) + 2ddes,ij

)
, (i, j) ∈ E∗. (16)

It is clear from (14) that

− η
ij

< ηij(t) < η̄ij, (i, j) ∈ E∗ (17)

where η̄ij = ē∗
ij(ē

∗
ij + 2ddes,i) and η

ij
= e∗

ij(−e∗
ij + 2ddes,i).

Furthermore, we consider the following performance con-
straint imposed on ηij(t), that is:

− zijβij(t) < ηij(t) < z̄ijβij(t), (i, j) ∈ E∗ ∀t ≥ 0 (18)

where zij > 0 and z̄ij > 0 are design parameters, and βij(t) is
the design performance function given by

βij(t) = (
βij,0 − βij,∞

)
e−γijt + βij,∞ (19)

where βij,∞ denotes the steady-state boundary with 0 <

βij,∞ < βij,0, and γij > 0 is the decaying rate. In view of (18)
and (19), at t = 0, ηij(t) has maximal bounds −zijβij(0) and
z̄ijβij(0). Thus, we select η

ij
= zijβij(0) and η̄ij = z̄ijβij(0),

respectively, which yields z̄ij = ē∗
ij(ē

∗
ij + 2ddes,ij)/βij,0 and

zij = e∗
ij(−e∗

ij + 2ddes,ij)/βij,0. In view of (16) and (18), the
distance error is further restricted by following performance
constraint:

− αij(t) < eij(t) < ᾱij(t) (20)

where ᾱij(t) =
√
d2des,ij + z̄ijβij(t) − ddes,ij and αij(t) =

−
√
d2des,ij − zijβij(t) + ddes,ij. Define the following error

variable:

zij(t) = ηij(t)

βij(t)
, (i, j) ∈ E∗ ∀t ≥ 0 (21)

which converts the time-varying constraint (18) to the follow-
ing time-invariant constraint:

− zij < zij(t) < z̄ij, (i, j) ∈ E∗ ∀t ≥ 0. (22)

It is clear that if the constraint (22) is guaranteed by the
designed controllers, the constraint (18) is satisfied, which
indicates the satisfaction of (17) and (20). Then, the inequal-
ity (14) holds, which implies that the collision avoidance (9),
connectivity maintenance (11), and infinitesimal rigidity (13)
are guaranteed.
Assumption 1: At the initial time, the robot i is positioned

at a given initial pose such that: 1) the robot i can establish
communication channel and avoid collision with its neigh-
boring robot j, that is, dij < dij(0) < d̄ij, (i, j) ∈ E∗ and
2) the initial angle error θ̃i(0) does not violate the constraint
|θ̃i(0)| < θ̃i,max with θ̃i,max ≤ π/2, where the angle error θ̃i(t)
is defined in (27).
Formation Maneuvering Objective: Under Assumption 1

and the minimally and infinitesimally rigid framework F∗ =
(G∗, p∗), the formation maneuvering objective is to design the
control laws vi(t) and wi(t), i ∈ V∗, for system (3) such that:
1) the distance errors eij(t), (i, j) ∈ E∗ converge to a small

neighborhood of zero in fixed settling time;
2) F(t) → Iso(F∗) as t → ∞ which is equivalent to

eij(t) → 0 as t → ∞, (i, j) ∈ E∗;
3) all robots move with the desired swarm velocity v0(t) ∈

R
2, that is, ṗi(t) → v0(t) as t → ∞, i ∈ V∗;

4) the performance constraints imposed on distance errors
in (20) are never violated, which further guarantees the
collision avoidance (9) and connectivity maintenance
(11) among neighboring robots during the formation
motion.

IV. FORMATION CONTROL DESIGN

The time derivative of the squared distance error ηij(t) along
(3)–(6) produces

η̇ij(t) = 2pTij(t)
[
ṗi(t) − ṗj(t)

]
, (i, j) ∈ E∗ (23)

where pij(t) is the relative position between the robot i and its
neighbor j, ṗ∗(t) = [ cos θ∗(t)v∗(t) sin θ∗(t)v∗(t)]T , ∗ ∈ {i, j}
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with θ∗(t) and v∗(t) being heading angle and linear velocity
input, respectively. Consider the following transformed error
in the universal barrier function [38] corresponding to each
edge in the rigid framework:

σij(t) = z̄ijzijzij(t)(
z̄ij − zij(t)

)(
zij(t) + zij

) , (i, j) ∈ E∗ (24)

where zij and z̄ij are positive constraints, and zij(t) in (21) is
the error variable.
Remark 1: The transformed error σij(t) in (24) grows to

infinity whenever zij(t) approaches the boundaries, that is,
σij(t) → +∞ as zij(t) → z̄ij or σij(t) → −∞ as zij(t) → −zij.
Furthermore, σij(t) = 0 if and only if zij(t) = 0. In addition,
when there are no constraint requirements on zij(t), which is
equivalent to z̄ij = zij → +∞, it follows limz̄ij=zij→+∞ σij(t) =
zij(t). Therefore, the proposed barrier function can address
both symmetric and asymmetric constraint problems, and can
also work for the multiagent systems with no constraints.
The time derivative of (24) along (19), (21), and (23) yields

σ̇ij = f
(
zij

)2pTij
(
ṗi − ṗj

)

βij
− g

(
zij

) β̇ijσij

βij
(25)

where

f
(
zij

) =
z̄ijzij

(
z̄ijzij + z2ij

)

(
z̄ij − zij

)2(
zij + zij

)2 , g
(
zij

) = z̄ijzij + z2ij(
z̄ij − zij

)(
zij + zij

) .

Then, the control law for formation acquisition and velocity
tracking is designed as

ui(t) =
[
uix(t)
uiy(t)

]
= −

∑
j∈Ni

kijpij(t)
f
(
zij

)

βij(t)
σ 3
ij (t) + v0(t) (26)

with

θid(t) =
{
atan2

(
uiy(t), uix(t)

)
, if ui(t) �= 0

0, if ui(t) = 0

where kij > 0 is the control gain, v0(t) is the desired
swarm velocity with its upper bound being ||v̄0||, and
atan2(uiy(t), uix(t)) is the arctangent function with two argu-
ments returning the appropriate quadrant of the angle of point
(uiy(t), uix(t)) as a numeric value in the range (−π, π]. Then,
the angle error between heading angle of the robot i and the
direction of ui is defined as

θ̃i(t) = θi(t) − θid(t) (27)

which is further restricted by the performance constraint to
ensure |θ̃i(t)| < θ̃i,max, for t ≥ 0, that is

− θ̃i,maxβθ̃i
(t) < θ̃i(t) < θ̃i,maxβθ̃i

(t) (28)

where βθ̃i
(t) is the performance function with βθ̃i

(0) = 1
defined in (19) and, thus, θ̃i,max > 0 is the upper bound of
|θ̃i(t)|. Consider the following error variable:

zθ̃i(t) = θ̃i(t)

βθ̃i
(t)

(29)

which satisfies −θ̃i,max < zθ̃i(t) < θ̃i,max in view of (28).
According to (24), the error transformation is given by

σθ̃i
(t) = θ̃2i,maxzθ̃i(t)

θ̃2i,max − z2
θ̃i
(t)

. (30)

The control laws are designed as

vi = 1

cos θ̃i
||ui|| (31)

wi = −k1wiθ̃
2
i,maxβθ̃i

σθ̃i
+ θ̃iβ̇θ̃i

βθ̃i

+ θ̇id

− k2wiβθ̃i

( θ̃2i,max − z2
θ̃i

θ̃2i,max

)2

|σθ̃i
| 12 sign

(
σθ̃i

)
(32)

where k1wi > 0 and k2wi > 0 are control gains. The singular-
ity problem arises in the controller (31) when cos θ̃i → 0. To
avoid such a problem, the controller (32) is required to guar-
antee that the constraint (28) is never violated, which further
fulfills the condition that |θ̃i(t)| < θ̃i,max ≤ π/2. Taking the
time derivative of θid(t) gives

θ̇id =
{

uTi Hu̇i
||ui||2 , if ui �= 0

0, if ui = 0

where

u̇i = −
∑
j∈Ni

kij

(
pij

f
(
zij

)

βij
σ 3
ij

)′
+ v̇0, H =

[
0 1

−1 0

]
.

Note that the time derivatives of pij, [f (zij)/βij], and σij in u̇i
are computable, which are given as follows. It follows from
(3), (5), (27), and (31) that ṗij = ṗi − ṗj given by:

ṗ∗ = Q
(
θ̃∗

)
u∗, ∗ ∈ {i, j} (33)

where

Q
(
θ̃∗

)
=

[
1 − tan θ̃∗

tan θ̃∗ 1

]
.

Moreover, σ̇ij is given in (25) and the time derivative of
[f (zij)/βij] can be calculated as

d
(
f(zij)
βij

)

dt
=

ζ
(
zij

)[
2pTij

(
ṗi − ṗj

) − β̇ijzij
]

− β̇ijf
(
zij

)

β2
ij

where

ζ(zij) = 2z̄ijzijz
3
ij + 6(z̄ijzij)

2zij − 2z̄3ijz
2
ij + 2z̄2ijz

3
ij

(z̄ij − zij)3(zij + zij)
3

.

The Lyapunov function candidate is defined as

V
(
σθ̃i

)
= 1

2
σ 2

θ̃i
(34)

whose time derivative along (27)–(32) produces

V̇
(
σθ̃i

)
≤ −k1wiσ

4
θ̃i

− k2wi|σθ̃i
| 32 (35)

which implies

V̇
(
σθ̃i

)
≤ −αiV

(
σθ̃i

)2 − ρiV
(
σθ̃i

) 3
4
.
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Using Lemmas 4 and 5, the angle error θ̃i converges to zero
in fixed time with αi = 4k1wi, ρi = 2(3/4)k2wi, and the settling
time can be estimated by T(θ̃i) ≤ T(θ̃i)max := (1/αi)+ (4/ρi).
Therefore, for the entire multiagent system, all angle errors
converge to zero within a fixed-time bounded by T(θ̃ ) =
max{T(θ̃i)}, i ∈ V∗. Next, we will show that the constraint
on θ̃i(t) is never violated for t ≥ 0. Completing the squares,
for any variable x ∈ R, we obtain

(
x2 − 1

)2 ≥ 0 ⇒ −2x2 + 1 ≥ −x4. (36)

Substituting (36) into (35) yields V̇(σθ̃i
) ≤ −4k

(1/2)

1wi V(σθ̃i
) + 1,

which implies

V
(
σθ̃i

)
≤

(
V

(
σθ̃i,0

)
− 1

4
k
− 1

2
1wi

)
exp

(
−4k

1
2
1wit

)
+ 1

4
k
− 1

2
1wi .

It is clear that V(σθ̃i
) is bounded by initial condition V(σθ̃i,0

),
that is, V(σθ̃i,0

) ≤ ιi for t ≥ 0. It follows from (34) that:

|σθ̃i
| ≤ √

2ιi. (37)

In view of (30), the boundedness of σθ̃i
(t) implies the satisfac-

tion of constraint on zθ̃i(t), that is, −θ̃i,max < zθ̃i(t) < θ̃i,max

holds. According to (28) and (29), the angle error θ̃i(t) always
evolves within the boundary, that is, |θ̃i(t)| < θ̃i,maxβθ̃i

(t),
which has the maximal value θ̃i,max at t = 0. Therefore,
the singularity problem in the controller (31) is avoided with
θ̃i,max ≤ π/2.

Next, constructing the following Lyapunov function candi-
date:

V(σ ) = 1

4

∑
(i,j)∈E∗

kijσ
4
ij = 1

4

(
σ 3

)T
Kσ (38)

where σ ∈ R
l and σ 3 ∈ R

l, respectively, are the stacked
vectors of σij and σ 3

ij with σ 3 = [, . . . , σ 3
ij , . . . , ]

T , (i, j) ∈ E∗,
and K = diag(kij) ∈ R

l×l. σ̇ij in (25) can be rewritten in matrix
form as

σ̇ = 2�Rṗ − �σ (39)

where R ∈ R
l×2n is a shorthand notation for R(p) repre-

senting the rigidity matrix, ṗ = [ṗT1 , . . . , ṗTn ]
T ∈ R

2n, � =
diag(f (zij)/βij) ∈ R

l×l, and � = diag(g(zij)β̇ij/βij) ∈ R
l×l, for

(i, j) ∈ E∗ and the same ordering as in (1). According to (33),
ṗ can be rewritten as

ṗ = Qu (40)

where Q = diag(Q(θ̃i)) ∈ R
2n×2n and u ∈ R

2n is the stacked
vector of ui, i ∈ V∗. Substituting (26) into (40), we obtain

ṗ = Q
(
−RT�Kσ 3 + 1n ⊗ v0

)
. (41)

From (33), Q(θ̃i) can be rewritten as

Q
(
θ̃i

)
= I2 + tan θ̃i

[
0 − 1
1 0

]
.

Hence, we obtain

Q = I2n + Q∗ (42)

where Q∗ = diag

([
0 − tan θ̃i

tan θ̃i 0

])
∈ R

2n×2n. Note that

Q∗ is a skew symmetric matrix, which has the property that
XTQ∗X = 0 for non zero vector X. Therefore, differentiating
(38) along (39)–(42) gives

V̇(σ ) = −2
(
σ 3

)T
K�RRT�Kσ 3 + 2

(
σ 3

)T
K�R(1n ⊗ v0)

− 2
(
σ 3

)T
K�RQ∗RT�Kσ 3 −

(
σ 3

)T
K�σ

+ 2
(
σ 3

)T
K�RQ∗(1n ⊗ v0). (43)

Using the property of skew symmetric matrix and Lemma 1,
V̇(σ ) in (43) leads to

V̇(σ ) = −2
(
σ 3

)T
K�RRT�Kσ 3 −

(
σ 3

)T
K�σ

+ 2
(
σ 3

)T
K�RQ∗(1n ⊗ v0). (44)

Furthermore, by Young’s inequality, we have

2
(
σ 3

)T
K�RQ∗(1n ⊗ v0) ≤

(
σ 3

)T
K�RRT�Kσ 3

+ (1n ⊗ v0)
TQ∗TQ∗(1n ⊗ v0)

where in view of (42), Q∗TQ∗ ∈ R
2n×2n is given as

Q∗TQ∗ = diag

([
tan2 θ̃i 0

0 tan2 θ̃i

])
.

Therefore, the term 2(σ 3)TK�RQ∗(1n ⊗ v0) in (44) leads to

2
(
σ 3

)T
K�RQ∗(1n ⊗ v0) ≤

(
σ 3

)T
K�RRT�Kσ 3

+ nmax
(
tan2 θ̃i

)
||v̄0||2 (45)

where ||v̄0|| is the upper bound of v0. The boundedness of
σθ̃i

(t) in (37) indicates that |θ̃i(t)| < θ̃i,maxβθ̃i
(t) ≤ π/2. Thus,

tan2 θ̃i is bounded, that is, tan2 θ̃i < cθ̃i
with cθ̃i

being positive
constant. Moreover, using Lemma 3, it follows λmin(RRT) ≥
cr with a constant cr > 0. Hence, substituting (45) into (44)
produces

V̇(σ ) ≤ −cr
(
σ 3

)T
K��Kσ 3 −

(
σ 3

)T
K�σ

+ nmax
(
cθ̃i

)
||v̄0||2. (46)

Theorem 1: Under Assumption 1, consider the desired
rigidity formation F∗ = (G∗, p∗), robot kinematics (3), and
control laws (31) and (32). If control gains k1wi, k2wi i ∈ V∗,
and kij, (i, j) ∈ E∗ are chosen such that k1wi > 0, k2wi > 0,
and kij > 0, then we have the following results.

1) The performance constraints imposed on distance errors
in (20) are never violated, which further guarantees the
collision avoidance (9) and connectivity maintenance
(11) among neighboring robots during the formation
motion.

2) The distance errors eij(t), (i, j) ∈ E∗ converge to a small
neighborhood of zero in a fixed settling time.

3) F(t) → Iso(F∗) as t → ∞ which is equivalent to
eij(t) → 0 as t → ∞, (i, j) ∈ E∗.

4) All robots move with the desired swarm velocity v0(t) ∈
R
2, that is, ṗi(t) → v0(t) as t → ∞, i ∈ V∗.
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Proof 1): There exists a scalar � ∈ (0, 1) such that V̇(σ )

in (46) can be rewritten as

V̇(σ ) ≤ −(1 − �)cr
(
σ 3

)T
K��Kσ 3 −

(
σ 3

)T
K�σ

− �cr
(
σ 3

)T
K��Kσ 3 + nmax

(
cθ̃i

)
||v̄0||2. (47)

It can be concluded that V̇(σ ) ≤ 0 as long as

− �cr
(
σ 3

)T
K��Kσ 3 −

(
σ 3

)T
K�σ ≤ 0 (48)

and

− (1 − �)cr
(
σ 3

)T
K��Kσ 3 + nmax

(
cθ̃i

)
||v̄0||2 ≤ 0.(49)

First, we discuss a sufficient condition for (48). Substituting
K, �, and � defined in (39) into (48) yields

− �crkijf
(
zij

)2
σ 2
ij − g

(
zij

)
βijβ̇ij ≤ 0.

In view of βij defined in (19), f (zij) and g(zij) defined in (25)
where (z̄ij − zij)4(zij + zij)

4 ≥ 0 and z̄ijzij + z2ij ≥ z̄ijzij > 0, we
obtain

γij
(
βij,0 − βij,∞

)
e−γijtβij

(
z̄ij − zij

)3(
zij + zij

)3
(
z̄ijzij

)3 ≤ �crkijσ
2
ij .

Note that (z̄ij − zij)(zij + zij) has the maximal value (z̄ij +
zij)

2/4 > 0, and e−γijt has the maximal value of 1. Hence, we
obtain the following sufficient condition for (48):

λ1 ≤ |σij|, λ1 =

√√√√√√
γij

(
βij,0 − βij,∞

)
βij,0

(
z̄ij + zij

)6

64
(
z̄ijzij

)3
�crkij

.

Second, we discuss a sufficient condition for (49). Substituting
K, �, and � defined in (39) into (49), along with f (zij) from
(25) yields

nmax
(
cθ̃i

)
||v̄0||2 ≤

(1 − �)crk2ij

(
z̄ijzij

)2
z4ij

β2
ij

(
z̄ij − zij

)4(
zij + zij

)4 σ 6
ij .

Thus, we obtain the following sufficient condition for (49):

λ2 ≤ |σij|, λ2 = 10

√√√√√nmax
(
cθ̃i

)
||v̄0||2

(
z̄ijzij

)2
β2
ij,0

(1 − �)crk2ij
.

As a result, V(σ ) is nonincreasing as long as |σij| ≥
max{λ1, λ2}. Thus, it follows from (38) that σij is bounded,
which indicates the constraint requirement on zij is never vio-
lated according to (22). Then, the constraint (18) is satisfied,
which indicates the satisfaction of (17) and (20). Therefore, the
inequality (14) holds, which implies that collision avoidance
(9) and connectivity maintenance (11) among neighboring
robots are guaranteed during the formation motion.
Proof 2): The boundedness of σij in proof 1) indicates that

f (zij) and g(zij) defined in (25) are also bounded since the
constraint requirement −zij < zij(t) < z̄ij is satisfied. Thus,
we have cfij < f (zij) < c̄fij and cgij < g(zij) < c̄gij with cfij ,

c̄fij , cgij , and c̄gij being positive constants. By completion of
squares, we obtain

g
(
zij

)
β̇ij

βij
kijσ

4
ij ≤ crεk

2
ijσ

8
ij + 1

4crε

(
g
(
zij

)
β̇ij

βij

)2

where ε > 0 is an arbitrary small constant, which implies that
the term (σ 3)TK�σ in (46) is bounded by

(
σ 3

)T
K�σ =

∑
(i,j)∈E∗

(
kij

g
(
zij

)
β̇ij

βij
σ 4
ij

)

≤
∑

(i,j)∈E∗

(
crεk

2
ijσ

8
ij + cij

)
(50)

where cij = c̄2gijγ
2
ij (βij,0−βij,∞)2/4crεβ2

ij,∞. Moreover, in view
of (24) and (25), we have f (zij) > (1/z̄ijzij)σ

2
ij ≥ 0, which

implies that

− k2ijf
(
zij

)2
β2
ij

σ 6
ij ≤ −k2ijf

(
zij

)

z̄ijzijβ
2
ij

σ 8
ij ≤ − k2ijcfij

z̄ijzijβ
2
ij,0

σ 8
ij . (51)

There exists a scalar κ ∈ (0, 1) such that V̇(σ ) in (46) can be
rewritten as

V̇(σ ) ≤ −(1 − κ)cr
(
σ 3

)T
K��Kσ 3 −

(
σ 3

)T
K�σ

− κcr
(
σ 3

)T
K��Kσ 3 + nmax

(
cθ̃i

)
||v̄0||2 (52)

which yields

V̇(σ ) ≤ −(1 − κ)cr
(
σ 3

)T
K��Kσ 3 + C∗

+
∑

(i,j)∈E∗

(
crεk

2
ijσ

8
ij − κcr

k2ijcfij
z̄ijzijβ

2
ij,0

σ 8
ij

)
(53)

by inequalities (50) and (51), where C∗ = nmax(cθ̃i
)||v̄0||2 +∑

(i,j)∈E∗ cij. Let the arbitrary small constant ε satisfy ε ≤
min(κcfij/z̄ijzijβ

2
ij,0), (i, j) ∈ E∗ such that V̇(σ ) in (52) leads to

V̇(σ ) ≤ −(1 − κ)cr
(
σ 3

)T
K��Kσ 3 + C∗. (54)

Next, we will show the fixed-time convergence of distance
errors. V̇(σ ) in (54) can be rewritten as

V̇(σ ) ≤ −(1 − κ)(1 − �)cr
(
σ 3

)T
K��Kσ 3

− �(1 − κ)cr
(
σ 3

)T
K��Kσ 3 + C∗ (55)

where � ∈ (0, 1) is a scalar. Completing the squares, for any
variable x ∈ R, we obtain

(
|x|3 − 1

)2 ≥ 0 ⇒ −2|x|3 + 1 ≥ −x6

which implies that the following inequality holds:

−
(
σ 3

)T
K��Kσ 3 ≤ −2

∑
(i,j)∈E∗

kij
f
(
zij

)

βij
|σij|3 + l (56)

where dim(E∗) = l. Substituting (56) into (55) yields

V̇(σ ) ≤ −χ1

∑
(i,j)∈E∗

σ 6
ij − χ2

∑
(i,j)∈E∗

|σij|3 + C
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where χ1 = (1 − κ)(1 − �)crλmin(�)2λmin(K)2, χ2 =
2�(1−κ)crλmin(�)λmin(K), with λmin(�) = min(f (zij)/βij) ≥
min(cfij/βij,0) > 0, and C = C∗ +�(1− κ)crl being a positive
constant. Using Lemma 5, we have

V̇(σ ) ≤ −αV(σ )
3
2 − ρV(σ )

3
4 + C (57)

where α = 23χ1l−(1/2)λmax(K)−(3/2) and ρ =
2(3/2)χ2λmax(K)−(3/4). There exists a scalar ε ∈ (0, 1)
such that V̇(σ ) in (57) can be rewritten as

V̇(σ ) ≤ −α(1 − ε)V(σ )
3
2 − ρV(σ )

3
4 − αεV(σ )

3
2 + C

which implies that V̇(σ ) ≤ −α(1 − ε)V(σ )(3/2) − ρV(σ )(3/4)

when (C/αε) ≤ V(σ )(3/2). Thus, according to Lemma 4, V(σ )

converges into the set {V(σ )|V(σ ) < (C/αε)(2/3)} in fixed
time. Furthermore, in view of (38), we obtain

|σij| < ς (58)

where ς = 2(1/2)k−(1/4)
ij (C/αε)(1/6) > 0 can be designed as

a small neighborhood of the origin by properly selecting kij.
From (24) and (58), we obtain

− �ij < zij(t) < �̄ij (59)

where

�ij =
ς(zij − z̄ij) − z̄ijzij +

√
(ςzij − ς z̄ij − z̄ijzij)

2 + 4ς2z̄ijzij

2ς

and

�̄ij =
ς(z̄ij − zij) − z̄ijzji +

√
(z̄ijzij + ςzij − ς z̄ij)2 + 4ς2z̄ijzij

2ς
.

As a result, the squared distance errors ηij converge into the set
�ηij = {ηij(t)| − �ijβij(t) < ηij(t) < �̄ijβij(t)} which implies
that distance errors eij also converge to a small neighborhood
around zero in fixed time.

Proof 3): It is clear from (35) that all angle errors θ̃i(t)
converge to the origin in fixed time T(θ̃ ), which implies that
Q∗ → 0 for t > T(θ̃) according to (42). Moreover, proof
2) indicates that g(zij) defined in (25) is bounded due to the
boundedness of σij. In addition, β̇ij(t) ultimately decreases to
zero. Thus, � defined in (39) also ultimately decreases to zero.
It is concluded that according to Lemmas 1 and 3 as t → ∞,
V̇(σ ) in (43) leads to

V̇(σ ) ≤ −2λmin
(
RRT)

λmin(�)2λmin(K)2
(
σ 3

)T
σ 3

which indicates that the σij asymptotically converges to the
origin. Hence, it is clear from (24), (21), and (16) that zij → 0,
ηij → 0, and eij(t) → 0 as t → ∞.
Proof 4): Because of the boundedness of eij obtained from

proof 1), it is from (7) that dij is bounded, which indicates the
boundedness of rigidity matrix R(p). Moveover, angle errors
θ̃i(t) are fixed-time stable according to the analysis result of
V(σθ̃i

) in (35), which implies θ̃i(t) → 0, Q(θ̃i) → I2, and
Q → I2n for t > T(θ̃). Furthermore, according to proof 3), we
know that σij → 0 and zij → 0 and, thus, � → diag(1/βij,∞)

as t → ∞. As a result, in terms of (41), ṗ → 1n ⊗ v0, which
is equivalent to ṗi → v0 as t → ∞.

Remark 2: It is worth noticing that the constrained control
laws (31) and (32) are substantially different from the existing
distance-based formation controllers presented in [15] where
there is no constraint requirement in control design. For com-
parison, the distance-based formation control laws [15] are
recalled as follows:

vi = ||ui|| cos θ̃i

wi = −kwiθ̃i + θ̇id

ui =
[
uix
uiy

]
= −

∑
j∈Ni

kijpijηij + v0. (60)

With the concern of constraint requirements in the rigidity-
based formation maneuvering, the constrained control design
becomes very challenging due to the following two reasons.
1) By incorporating the barrier Lyapunov function with

control design and analysis for constrained control
systems, the time derivative of transform errors σ̇ij(t)
in (25) is more complicated compared with the time
derivative of squared distance error η̇ij(t) in (60) in
unconstrained systems.

2) When the angle error θ̃i is around ±π/2, the linear
velocity is approximate zero in (60) in the unconstrained
system, and explodes to infinity in (31), which implies a
risk of the violation of constraint requirements especially
in the transient time, and causes the singularity issue in
the controller. Consequently, the angle error θ̃i is fur-
ther restricted within the feasible region (−π/2, π/2)
to prevent the control singularity problem.

Remark 3: The distance errors eij can converge to a
small neighborhood around zero in fixed time by adjust-
ing control gains kij. When kij → ∞, (i, j) ∈ E∗, we
have kij = λmin(K) = λmax(K) → ∞. Thus, the con-
stant α in (57) can be rewritten as α = 23k(1/2)

ij (1 −
κ)(1 − �)crλmin(�)2l−(1/2). Then, ς in (58) leads to
ς = [(l(1/2)C)/(ε(1 − κ)(1 − �)crλmin(�)2)]1/6k−(1/3)

ij → 0
which indicates that the transformed errors σij is bounded by ς

that can be designed as a small neighborhood of the origin by
designing large control gains kij. Moreover, the error bounds of
variables zij in (59) are also arbitrarily small as ς → 0 since by
L’ Hopital’s rule, we have limς→0 �ij = 0 and limς→0 �̄ij =
0. As a result, �ijβij(t) → 0 and �̄ijβij(t) → 0, which implies
that when the squared distance errors ηij converge into the set
�ηij = {ηij(t)| − �ijβij(t) < ηij(t) < �̄ijβij(t)}, the distance
errors eij also converge to a small neighborhood around zero.

V. COMPARATIVE SIMULATION STUDIES

To show the improved formation maneuvering performance
of the proposed fixed-time controller, we perform a compar-
ative simulation study between the control laws (31), (32)
and the existing distance-based formation controller presented
in [15]. Consider five identical nonholonomic mobile robots
modeled by system (3). The desired translational velocity
is given by v0(t) = [1 cos(t)]Tm/s. The desired forma-
tion E∗ is designed as a regular pentagon with formation
topology shown in Fig. 1, which is made infinitesimally
and minimally rigid by introducing seven edges, that is,
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Fig. 1. Formation topology.

Fig. 2. Phase plane trajectories.

E∗ = {(1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (3, 4), (4, 5)}. Let
the maximum sensing range d̄ij = 5m and the safe dis-
tance dij = 0.6m, (i, j) ∈ E∗ with infinitesimally rigid
preservation parameter μ = 0.12. To avoid the controller
singularity, the upper bound of angle errors is selected as
θ̃i,max = π/2 rad. Without the violation of constraint require-
ments from collision avoidance and connectivity maintenance,
we choose the desired relative distance ddes,12 = ddes,15 =
ddes,23 = ddes,34 = ddes,45 = √

2(1 − cos(2π/5))m, and
ddes,13 = ddes,14 = √

2(1 + cos(π/5))m. In accordance with
(19), the prescribed performance constraints imposed on the
squared distance error and the angle error are formulated as
βij = βθ̃i

= (1 − 0.05) exp(−0.6t) + 0.05. The design param-
eters in (26) and (32) are taken as k12 = k13 = k14 = k15 =
k23 = k34 = k45 = 3, k1w1 = k1w2 = k1w3 = k1w4 = k1w5 = 1,
and k2w1 = k2w2 = k2w3 = k2w4 = k2w5 = 1. The
initial positions are p1(0) = [−0.8049 0.6951]T , p2(0) =
[−1.4941 − 0.3340]T , p3(0) = [−0.4940 − 0.7153]T ,
p4(0) = [1.6028 − 0.2060]T , and p5(0) = [1.8808 1.2388]T .
The initial heading angles are given by θ1(0) = π/6 rad,
θ2(0) = π/6 rad, θ3(0) = 0rad, θ4(0) = 8π/9rad, and
θ5(0) = −π rad. In terms of (26) and (27), the initial angle
errors are θ̃1(0) = 0.4234rad, θ̃2(0) = −0.4539rad, θ̃3(0) =
0.5591rad, θ̃4(0) = −0.1146rad, θ̃5(0) = −0.2002rad, which
indicates that all initial angle errors start within the predefined
error bounds, that is, |θ̃i(0)| < θ̃i,max = π/2rad. The design
parameters in the distance-based formation control law (60)
presented in [15] are kw1 = kw2 = kw3 = kw4 = kw5 = 3 and
k12 = k13 = k14 = k15 = k23 = k34 = k45 = 2. For com-
parison, the initial positions and heading angles for the two
controllers are the same.
Simulation results are depicted in Figs. 2–10. The phase

plane trajectories of nonholonomic robots with different snap-
shots at 0, 5, and 10 s are illustrated in Fig. 2, where the
proposed control laws ensure the convergence to the desired
formation of a regular pentagon. Figs. 3–9 show the results
of distance errors using the proposed fixed-time controller
(31), (32) and the distance-based formation controller [15],

(a) (b)

Fig. 3. Profiles of distance error e12. (a) Proposed fixed-time control with
prescribed performance. (b) Distance-based formation control [15].

(a) (b)

Fig. 4. Profiles of distance error e13. (a) Proposed fixed-time control with
prescribed performance. (b) Distance-based formation control [15].

(a) (b)

Fig. 5. Profiles of distance error e14. (a) Proposed fixed-time control with
prescribed performance. (b) Distance-based formation control [15].

(a) (b)

Fig. 6. Profiles of distance error e15. (a) Proposed fixed-time control with
prescribed performance. (b) Distance-based formation control [15].

where all distance errors are driven to a small neighborhood
of zero. From Figs. 3(a)–9(a), it is clear that the proposed
fixed-time formation controller can guarantee that the dis-
tance errors always evolve within the prescribed performance
bounds −αij(t) and ᾱij(t) given in (20), which further indicates
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(a) (b)

Fig. 7. Profiles of distance error e23. (a) Proposed fixed-time control with
prescribed performance. (b) Distance-based formation control [15].

(a) (b)

Fig. 8. Profiles of distance error e34. (a) Proposed fixed-time control with
prescribed performance. (b) Distance-based formation control [15].

(a) (b)

Fig. 9. Profiles of distance error e45. (a) Proposed fixed-time control with
prescribed performance. (b) Distance-based formation control [15].

(a) (b)

Fig. 10. Profiles of angle errors θ̃i. (a) Proposed fixed-time control with
prescribed performance. (b) Distance-based formation control [15].

that both connectivity maintenance and collision avoidance
[−e∗

ij and ē∗
ij given in (14)] are not violated. In compari-

son, Fig. 3(b) shows the distance error e12 has exceeded the
allowed maximum bound, which indicates the communica-
tion connectivity between neighboring robots is broken. These

Fig. 11. Phase plane trajectories in the experiment.

results show the advantage of the proposed control protocol
with concerns of safety and performance requirements for con-
strained multiagent systems. In addition, the angle errors are
demonstrated in Fig. 10, where the angle errors are enforced
to stay within the performance bounds [Fig. 10(a)] and, thus,
the singularity problem in the controller (31) is avoided. The
angle errors are exponentially stable using the angular con-
trol law given in [15], as shown in Fig. 10(b). It should be
noted that the initial angle errors are different for the two
controllers since θid resulting from ui are designed differently
[(26) and (60)] even though the initial heading angles of robots
are the same.

VI. EXPERIMENT STUDIES

The formation control laws (31) and (32) are experimentally
verified on three AmigoBot mobile robots. In the experiment,
each AmigoBot accesses to the wireless network via Wi-Fi
modules onboard, which enables them to share information
and receive control commands. The proposed control laws
are executed in a laptop and sent to all robots through Wi-
Fi at 10 Hz. The desired translational velocity is given by
v0(t) = [0.1 0.1 cos(0.1t)]Tm/s. The desired formation E∗
is designed as a regular triangle with three edges E∗ =
{(1, 2), (1, 3), (2, 3)}. Let the maximum sensing range d̄ij = 5
m, the safe distance dij = 0.6 m, (i, j) ∈ E∗, and the maxi-
mum angle error θ̃i,max = π/2 rad with infinitesimally rigid
preservation parameter μ = 0.12. Without the violation of
collision avoidance and connectivity maintenance, we set the
desired relative distance ddes,12 = ddes,13 = ddes,23 = 1m. In
accordance with (19), the prescribed performance constraints
imposed on the squared distance error and the angle error
are taken as βij = (1 − 0.1) exp(−0.025t) + 0.1 and βθ̃i

=
(1 − 0.1) exp(−0.03t) + 0.1, respectively. The design param-
eters in (26) and (32) are selected as k12 = k13 = k23 = 1,
k1w1 = k1w2 = k1w3 = 1, and k2w1 = k2w2 = k2w3 = 0.1.
The initial positions are p1(0) = [0.95 0.6]T , p2(0) = [0 0]T ,
and p3(0) = [0.75 − 0.5]T . The initial heading angles are
given by θ1(0) = θ2(0) = θ3(0) = 0rad. In accordance with
(26) and (27), the initial angle errors are θ̃1(0) = −0.3991
rad, θ̃2(0) = −0.8971 rad, and θ̃3(0) = −0.7498 rad, which
implies that all initial angle errors start within the predefined
error bounds, that is, |θ̃i(0)| < θ̃i,max = π/2 rad.

The experimental results are demonstrated in Figs. 11–16.
The phase plane trajectories of nonholonomic robots and

Authorized licensed use limited to: UNIVERSITY OF KENTUCKY. Downloaded on September 25,2024 at 22:07:34 UTC from IEEE Xplore.  Restrictions apply. 



LU et al.: FIXED-TIME RIGIDITY-BASED FORMATION MANEUVERING 2139

(a) (b) (c)

Fig. 12. Snapshots taken in the experiment. (a) t = 0 s. (b) t = 30 s. (c) t = 65 s.

Fig. 13. Profiles of distance error e12.

Fig. 14. Profiles of distance error e13.

Fig. 15. Profiles of distance error e23.

Fig. 16. Profiles of angle errors θ̃i.

different snapshots at 0, 30, and 65 s are, respectively, illus-
trated in Figs. 11 and 12, in which the desired formation of
a regular triangle is successfully acquired from the initial

configuration and maintained during the formation motion.
Figs. 13–16 show that all of the distance errors (Figs. 13–15)
and the angle errors (Fig. 16) stay within their prescribed
performance bounds, and converge to a small neighborhood of
zero. Accordingly, collision avoidance and connectivity main-
tenance among neighboring robots are guaranteed, and the
controller singularity is avoided.

VII. CONCLUSION

This article has presented a fixed-time rigidity-based for-
mation maneuvering control protocol for nonholonomic mul-
tirobot systems with prescribed performance. All robots can
track the desired time-varying velocity while converging to
the desired shape defined by a minimally and infinitesimally
rigid graph. The performance constraints imposed on the
distance and angle errors, which can specify their transient
and steady-state performances, guarantee collision avoidance
and connectivity maintenance among neighboring robots, and
avoid the controller singularity issue. Using rigid graph the-
ory, fixed-time control design, universal barrier functions, and
Lyapunov synthesis, formation maneuvering control laws are
proposed such that the angle errors are fixed-time stable, and
the distance errors can converge to a small neighborhood
around zero in fixed time and then asymptotically converge
to the origin. Future studies will focus on the time-varying
maneuvering formation which is scalable and reconfigurable.
Another challenging topic is to consider the obstacle avoidance
in an obstacle-cluttered environment.
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