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Adaptive Image-Based Moving-Target Tracking
Control of Wheeled Mobile Robots With Visibility

Maintenance and Obstacle Avoidance
Shi-Lu Dai , Member, IEEE, Jianjun Liang , Ke Lu , and Xu Jin , Member, IEEE

Abstract— This article presents an adaptive image-based visual
servoing (IBVS) for nonholonomic wheeled mobile robots to solve
the moving-target tracking problem in obstacle environments.
A pinhole camera that is equipped with the following robot to
monitor the target’ motion is limited field of view (FOV), which
relates to the issue of visibility maintenance. Safety navigation
is another concern, which requires that the following robot
can avoid collisions with the target and static obstacles. Under
the IBVS framework, we design novel constrained boundary
functions based on pixel coordinate, which can be deviated away
from zero to ensure that the following robot drives away from
obstacles because obstacle avoidance is a higher priority rather
than the tracking task. When there is no obstacle detected,
the constrained boundary functions are taken as exponentially
decaying functions of time. Using fixed-time stability and control
Lyapunov synthesis, the tracking errors are shown to con-
verge in fixed time to a small neighborhood of the desired
obstacle-avoidance trajectory generated from the centerline of
constrained boundaries while guaranteeing visibility maintenance
and obstacle/collision avoidance. The proposed fixed-time IBVS
controller (FTIBVSC) only depends on locally relative informa-
tion acquired by onboard sensors without the need of knowing the
feature height and target’s velocity. Simulation and experiment
studies are carried out to show the efficacy of the proposed
FTIBVSC.
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NOMENCLATURE
Ri Wheeled mobile robot Ri , i ∈ {l, f }.
F0 Earth-fixed frame.
Fi Body-fixed frame of robot Ri , i ∈ {l, f }.
Fc Body-fixed frame of the camera.
O j Obstacle O j , j ∈ N = {1, 2, . . . , N }.
Pci Center point of robot Ri , i ∈ {l, f }.
PO j Closest point on Line 0 to the edge of obstacle

O j , j ∈ N .
(xi , yi ) Position of the center point Pci of robot Ri

in F0.
θi Heading angle (orientation) of robot Ri in F0.
θl f Relative orientation between robot Rl and

robot R f .
vi Linear velocity control input of the robot Ri .
ωi Angular velocity control input of the robot Ri .
r i Radius of the circular safe zone of robot Ri .
dl f Distance between Pcl and Pc f .
r j,i Minimum distance between Pci and the edge

of O j .
d j Minimum distance between PO j and the edge

of O j .
λ j Line parameter of PO j on Line 0.
ρ j Overlap distance between robot R f and the

obstacle O j .
hc Height between the optical center of the

camera and Pc f .
h Feature height, which is an unknown height

between the feature point and the optical center
of the camera.

x p, f x-coordinate of the feature point in F f .
yp, f y-coordinate of the feature point in F f .
z p, f z-coordinate of the feature point in F f .
x p,c x-coordinate of the feature point in Fc.
yp,c y-coordinate of the feature point in Fc.
z p,c z-coordinate of the feature point in Fc.
(m, n) Pixel coordinate of the feature point on the

image plane.
(m0, n0) Pixel coordinate of the principal point on the

image plane.
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(md , nd) Desired pixel coordinate of feature point.
A Intrinsic matrix of the camera.
am, an Scaling constants along the x-axis and y-axis

of Fc.
em, en Tracking errors.
β∗ Constrained boundary functions,

∗ ∈ {mL , m H, nL , nH}.
µ∗ Time derivatives of the constrained boundary

functions β∗.
ηm, ηn Error transformations of em and en .
f1, f2, f12 Activation functions for obstacle avoidance.

I. INTRODUCTION

VISION-BASED control, also known as visual servoing
[1], has recently received an increasing attention in

robotics since it simply employs the visual information of
a camera as feedback signals to determine robot motion.
Compared with traditional sensors, e.g., radar and light detec-
tion and ranging (LiDAR), cameras have been strongly tied
to robotic applications due to their low prices and the rich
information they provide. Visual servoing can be classified into
two basic categories: position-based visual servoing (PBVS)
[2], [3] and image-based visual servoing (IBVS) [4], [5], [6].
In PBVS control design, the controllers are developed based
on the relative pose of the target recovered by visual feed-
back information. PBVS typically requires either geometric
knowledge or depth information of the target to be known.
To eliminate the need for depth information, several elegant
control design techniques [7], [8] were proposed for pose
regulation tasks with simultaneous depth identification. Even
though the dependence on depth information is reduced in
PBVS control design, the control performance may signifi-
cantly deteriorate when the camera is not perfectly calibrated
or the geometric/depth information of the target is inaccurate.
In contrast, IBVS employs the pixel coordinate of a feature
point as feedback information and thus has robustness against
camera calibration errors without the need for geometric/depth
information.

One of the most significant problems concerning vision-
based moving-target tracking control is the visibility to the
target since the visual feedback information is essential to
the implementation of controllers. The loss of visibility may
happen when either the target is outside the limited field
of view (FOV) of the camera or the target is occluded by
obstacles in the workspace. Hence, visibility maintenance
with the target should be considered in moving-target con-
trol design. Consequently, many vision-based tracking control
strategies have been proposed to enforce the FOV constraints
in controller design [9], [10], [11], [12]. In [9] and [10],
a path planning technique was presented to online generate
an occlusion-free reference path, and then, vision-based con-
trollers were designed to guarantee that autonomous vehicles
track the optimized path without the violation of FOV con-
straints. In [11], the design of adaptive reference trajectories
that satisfy the FOV constraints was developed to address the
enclosing and tracking problem of a group of unicycle-type
mobile robots. How to develop an IBVS control design without
the need of the online reference trajectory generation while

handling FOV constraints and vehicle/obstacle occlusion is a
challenging research topic that has not yet been fully addressed
in the literature.

In addition to visibility maintenance, another critical safety
problem is collision/obstacle avoidance, which requires that
the following robot does not collide with the moving target
or/and obstacles. The artificial potential field is typically
employed to deal with the problem of collision/obstacle avoid-
ance [13], [14], [15]. In [13], a formation tracking controller
was designed to tackle the spatial constraints induced by
obstacles and the borders of the workspace based on an arti-
ficial potential field. Nevertheless, when multiple objectives/
constraints need to be considered simultaneously, for instance,
moving-target tracking, visibility maintenance, and collision
avoidance, designing a potential function for these multiple
tasks may increase the risk of converging into local minima.
Instead of the design of potential functions, barrier Lyapunov
functions (BLFs) have been incorporated into controller design
for various types of constraints, e.g., recently presented in
[16], [17], [18], and [19], where the constraint requirements
from visibility maintenance and collision avoidance were
addressed simultaneously. An IBVS for leader–follower for-
mation of mobile robots was presented in [18], where the FOV
constraints with guaranteed transient and steady-state perfor-
mances were solved, but the collision avoidance between the
leader and followers was not fully considered. Furthermore,
none of these BLF control designs has considered obstacle
avoidance. In the typical BLF control designs, e.g., [18], [19],
the constraints require that tracking errors are always within a
neighborhood of the origin. When obstacle avoidance is con-
sidered, tracking errors along with time-varying constraints are
expected to deviate from the origin due to the higher priority
of obstacle avoidance. In [20], novel switching functions were
introduced to modify the nominally exponential behavior of
performance functions [21] such that tracking errors deviated
from the origin in order to achieve the safety specifications
of collision and obstacle avoidance as well as connectivity
maintenance.

The convergence speed is an important performance indi-
cator for a control system. In many practical applications,
it is desired to achieve tracking control in a finite/fixed time.
A practical fixed-time consensus framework for integrator-type
multiagent systems was developed in [22] to reduce the mag-
nitude of the initial control input. In [23], adaptive fixed-time
control was proposed for output tracking problems of a
class of nonlinear systems with asymmetric output constraint
requirements, in which tracking error can converge into a small
neighborhood of zero with a fixed-time convergence rate. How
to develop an IBVS control design technique for solving the
moving-target tracking problem, such that tracking error can
converge in fixed time to a small residual set without violation
of constraint requirements, is also one of the main motivations
for this work.

This work addresses the image-based moving-target track-
ing control problem of nonholonomic wheeled mobile robots,
where visibility maintenance, collision/obstacle avoidance, and
prescribed performance are integrated in a unified BLF control
design framework. To cope with the issues of limited visual
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Fig. 1. Schematics of two robots operating in an obstacle environment.
Line 0 (red dashed line) is the connecting line between two points Pcl and
Pc f . Lines 1–4 (green dashed lines) contact with obstacles O1, O2, and the
circular safe zone of R f , and they are parallel to the heading direction of Rl .

capability and safe navigation, FOV and time-varying bound-
ary constraints are imposed to ensure that the following robot
never breaks the visibility connection and never collides with
the target and static obstacles during the whole operation. The
constrained boundary functions based on pixel coordinate need
to be carefully constructed, which behave differently in the
presence of different obstacles. To satisfy the time-varying
boundary constraints, BLFs are incorporated into the IBVS
control design. The technical contributions of this work are
summarized as follows.

1) We construct novel constrained boundary functions in a
pixel coordinate system, which can be deviated away
from zero to ensure that the following robot drives
away from obstacles because obstacle avoidance is a
higher priority rather than the tracking task. When
there is no obstacle detected, the constrained boundary
functions are taken as exponentially decaying functions
of time, also known as performance functions [21], [24],
which can describe predefined transient and steady-state
performances of the tracking errors.

2) In addition to obstacle avoidance, collision avoidance
and visibility maintenance with the target are guaranteed
during the whole operation without the need of knowing
the feature height and target’s velocity even though the
obstacles present.

3) Compared with the recent IBVS results [18], [19], the
proposed IBVS controller not only guarantees prescribed
transient and steady-state performances but also achieves
fixed-time convergence of tracking errors to a small
neighborhood of a desired obstacle-avoidance trajectory.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. Robot Model

Two nonholonomic wheeled mobile robots moving on a
plane cluttered with static obstacles are shown in Fig. 1. For
the motion description of the wheeled mobile robots, the sys-
tem variables and parameters are defined in the Nomenclature.
The leading robot Rl denotes the moving target to be tracked

by robot R f . The kinematic models of robots Ri , i ∈ {l, f },
are described by

ẋi = vi cos θi (1)
ẏi = vi sin θi (2)

θ̇i = ωi . (3)

Assume that every robot Ri has a circular safe zone (denoted
by the orange circle in Fig. 1) that centers at Pci with a
radius of r i . If the relative distance dl f satisfies the following
inequality:

dl f =

√(
xl − x f

)2
+
(
yl − y f

)2
≥ r l + r f (4)

then there is no collision between robots Rl and R f .

B. Obstacle Model

In this work, we address the vision-based target tracking
problem in an obstacle environment. More specifically, our
objective is to design an IBVS controller such that robot R f
follows the moving target Rl while guaranteeing collision/
obstacle avoidance. Let N = {1, 2, . . . , N } denote the index
set of the static obstacle O j , j ∈ N . Assume that the
static obstacle O j has a virtually circular zone covered by
a geometrical radius rO j . The position of the obstacle O j
relative to the robot R f can be extracted by an onboard radar
or LiDAR. As shown in Fig. 1, for example, two mobile robots
Rl and R f are operating in an obstacle environment with
N = 3 static obstacles. Line 0 (denoted by the red dashed
line in Fig. 1) is the line that connects Pcl and Pc f , and thus,
the coordinate (x, y) of a point on Line 0 in the Earth-fixed
frame F0 can be formulated as[

x
y

]
= λ

[
x f
y f

]
+
(
1 − λ

) [ xl
yl

]
where λ is known as a line parameter. The value of λ j
indicates the position of PO j on Line 0. More specifically,
PO j is ahead of Rl if λ j < 0, PO j is behind R f if λ j > 1,
and PO j lies between Rl and R f if 0 < λ j < 1.

When there are multiple obstacles in the tracking control
system, it is reasonable to only consider the most dangerous
or the nearest obstacle at a time. In this work, we consider
both the nearest obstacle on the left of Line 0 and the one on
the right. For 0 < λ j < 1, the obstacle O j is considered as the
most dangerous one on the left/right, if it has the minimum
distance d j among all alternative obstacles on the same side
of Line 0. The minimum distance d j can be computed by the
geometrical relation, e.g., d j = dO j −rO j , where the center of
circle that covers the obstacle O j is measured by an onboard
radar or LiDAR such that the distance dO j and the radius rO j
are obtained. For instance, in Fig. 1, the obstacle O1 is the
most dangerous obstacle on the left because 0 < λ1 < 1 and
λ3 < 0, and the obstacle O2 is the most dangerous obstacle on
the right. To simplify the notation, we specify O1 and O2 as
the most dangerous obstacle on the left and the one on the
right under any circumstance. Hence, we only need to consider
the most dangerous obstacle index j ∈ {1, 2} hereafter. Note
that there is no occlusion caused by the obstacles as long as
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Fig. 2. Camera setup for the visual servoing system.

d1 > 0 and d2 > 0. Robots Ri , i ∈ {l, f }, are collision-free
with obstacles if and only if r j,i > r i , j = 1, 2.

Lines 1–4 denoted by the green dashed lines shown in Fig. 1
contact with the nearest obstacles O1, O2, and the circular safe
zone of R f , and they are parallel to the heading direction
of Rl . More specifically, Lines 1 and 4 shown in Fig. 1
are on the right side of the obstacle O1 and the robot R f ,
respectively, and Lines 2 and 3 are on the left side of O2 and
R f , respectively, when we are facing the heading direction of
the target Rl . These lines in the Earth-fixed frame F0 can be
described by sin(θl)x−cos(θl)y+Ck = 0, k = 1, 2, 3, 4, where
(x, y) denotes the coordinate of a point on a line and |Ck |

represents the distance from the origin to Line k. As shown in
Fig. 1, ρ1 and ρ2 are called the overlap distances, which can
be computed by ρ1 = C3−C1 and ρ2 = C2−C4, respectively.
It is clear that |ρ1| and |ρ2| are the distances between Lines
1 and 3, and between Lines 2 and 4, respectively. If Line 1 is
on the right side of Line 3, then the obstacle O1 overlaps with
the circular safe zone of the robot R f and ρ1 ≥ 0. Otherwise,
there is no overlap and ρ1 < 0. Similar properties hold for the
distance ρ2 between Lines 2 and 4.

C. Pinhole Camera Model

As shown in Fig. 2, a monocular pinhole camera is equipped
with the following robot R f to obtain visual information of
the target Rl . The origin of the camera frame Fc is coincident
with the optical center of the camera. We assume that the
camera’s optical center lies on the z-axis of the robot’s body-
fixed frame F f , that is, the coordinate of the optical center in
F f is (0, 0, hc), and its optical axis is aligned with the heading
direction of robot R f . Moreover, there is a feature point on
the z-axis of the target frame Fl , whose pixel coordinate on
the image plane is employed to calculate the tracking errors.
Then, the feature point’s coordinate in the robot’s body-fixed
frame F f can be described by x p, f

yp, f
z p, f

 =

 cos θ f sin θ f 0
− sin θ f cos θ f 0

0 0 1

 xl − x f
yl − y f
h + hc

 (5)

where [x p, f , yp, f , z p, f ]
T is the feature point’s coordinate in

F f and h ̸= 0 is the unknown feature height between the
optical center of the camera and the feature point. According

to the imaging principle of the pinhole camera, the pixel
coordinate (m, n) of the feature point on the image plane is
given by m

n
1

 =
1

z p,c
AP (6)

with

A =

 am 0 m0
0 an n0
0 0 1

 ; P =

 x p,c
yp,c
z p,c


where A is known as the intrinsic matrix of the camera and P
denotes the coordinate of the feature point in the camera frame
Fc. Note that the feature height h is an unknown constant, and
its sign is coincident with the sign of (n0 − n), which can be
easily determined by the feedback information. Without loss
of generality, we assume that h > 0.

Using the relationship between the frames Fc and F f shown
in Fig. 2, we can rewrite (6) as[

m
n

]
=

1
x p, f

[
a⃗1
a⃗2

]−yp, f
−h
x p, f

 (7)

where a⃗1 and a⃗2 are the first row and second row of the intrin-
sic matrix A, respectively. Differentiating (7) along systems
(1)–(3) and (5) obtains

[
ṁ
ṅ

]
=


q
h

(m0 − m) am + (m − m0) p

q
h

(n0 − n) (n − n0) p

[ v f
ω f

]

+
qvl

h

[
am sin θl f + (m − m0) cos θl f

(n − n0) cos θl f

]
(8)

with p = −yp, f /x p, f = (m − m0)/am and q = −h/x p, f =

(n − n0)/an , where θl f = θl − θ f is the relative orientation,
and the linear velocity v f and the angular velocity w f are
taken as the control inputs to be designed.

D. Modeling of the Visibility Constraints

Because of the limited FOV of the camera, the pixel
coordinate (m, n) is subject to the following constraints:

mmin ≤ m ≤ mmax, nmin ≤ n ≤ nmax (9)

where mmin, mmax, nmin, and nmax are constant parameters that
are determined by the pixel resolution of the camera. Violating
the FOV constrain (9) implies that the feature point is no
longer visible to robot R f , that is, the visibility connectivity
between Rl and R f is broken.

In addition to the FOV constraint, the inequality (4) can be
modeled with pixel coordinate as well. From (6), we know that
n is a function of yp,c and z p,c. Since the robots are moving
on a plane, which means that yp,c = −h, it follows from (6)
that:

n = −an
h

z p,c
+ n0.

Furthermore, the relative distance dl f between the moving
target Rl and the follower R f can be represented by the
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feature point coordinate in Fc, i.e., dl f = (x2
p,c + z2

p,c)
1/2.

According to (4), a sufficient condition for collision avoidance
between Rl and R f is z p,c ≥ r l + r f , which requires
n ≥ −anh/(r l + r f ) + n0. Accordingly, constraint (9) can
be rewritten as

mmin ≤ m ≤ mmax, n ≤ n ≤ nmax (10)

where n ≥ max{nmin,−anh/(r l+r f )+n0}. It should be noted
that inequality (10) is obtained under the assumption h > 0.
If h < 0, the constraint imposed on n becomes nmin ≤ n ≤

n, where n ≤ min{nmax,−anh/(r l + r f ) + n0}. Define the
tracking errors of pixel coordinate as[

em
en

]
=

[
m
n

]
−

[
md
nd

]
(11)

where (md , nd) is the desired pixel coordinate of the feature
point. Substituting (11) into (10) yields

mmin − md ≤ em ≤ mmax − md (12)
n − nd ≤ en ≤ nmax − nd . (13)

If constraints (12) and (13) are not violated, then inequality
(10) holds, which implies that the FOV constraint (9) and no
collision between the robots are guaranteed simultaneously.

E. Control Objective

We assume that the moving target (leading robot) Rl is
controlled by human operators or intelligent decision-making
programs [25]. Hence, we do not consider control design for
the moving target Rl and only design an IBVS controller
for the follower R f . Accordingly, we make the following
assumptions and formulate the control objective.

Assumption 1: The target Rl moves along a collision-free
and feasible trajectory during the whole operation. Moreover,
between two obstacles that the moving target Rl passes
through, there is enough space for R f to pass through.

Assumption 2: There is no communication between the
robots. The follower R f has no knowledge about vl and ωl
and vice versa. The linear velocity of robot Rl and its time
derivative are bounded by unknown constants c1 > 0 and
c2 > 0, i.e., ||vl(t)|| ≤ c1, ||v̇l(t)|| ≤ c2, ∀t ≥ 0.

Assumption 3: At the initial time t0 = 0, the following
conditions mmin ≤ m(t0) ≤ mmax, n ≤ n(t0) ≤ nmax,
d j (t0) > 0, and r j,i > r i , j = 1, 2, are satisfied.

Remark 1: The initial conditions mmin ≤ m(t0) ≤ mmax
and n ≤ n(t0) ≤ nmax mean that the target Rl is in the camera’s
FOV and collision-free with the follower R f . The inequalities
d j (t0) > 0 imply that the visibility connectivity between the
follower R f and the target Rl is not occluded by obstacles.
The conditions r j, f (t0) > r f mean that the follower R f is
collision-free with obstacles at the initial time.

Control Objective: Under Assumptions 1–3, given the
desired pixel coordinate (md , nd), the control objective is to
design an IBVS controller for the follower R f such that the
following conditions hold.

1) Visibility connectivity to the target Rl is always main-
tained and a collision with the target is avoided, that is,
the constraint (10) is never violated.

2) The follower R f can avoid collisions with obstacles, and
when there is no obstacle detected, the tracking errors
em and en converge to small neighborhoods of zero.

F. Preliminaries

Lemma 1 [26]: For two variables x, y ∈ R, constants ε >

0, n > 1, and m > 1, if (n−1)(m−1) = 1, then the following
inequality holds:

xy ≤
εn

n
|x |n +

1
mεm |y|m .

Lemma 2 [27]: For p = 1 + (1/µ), q = 1 − (1/µ) with a
constant µ > 1, and a variable x ≥ 0, the following inequality
holds:

−x2
≤ −x p

− xq
+ 1.

Lemma 3 [28]: For x ≥ 0, i = 1, 2, . . . , n, it follows:
n∑

i=1

x p
i ≥

( n∑
i=1

xi

)p

, 0 < p ≤ 1

n∑
i=1

x p
i ≥ n1−p

( n∑
i=1

xi

)p

, p > 1.

Lemma 4 [29]: For constants α > 0, β > 0, p > 1,
and 0 < q < 1, if there exists a continuously radially
unbounded and positive definite function V (x) such that
V̇ (x) ≤ −αV p(x) − βV q(x), then the origin of a system
is globally fixed-time stable and the settling time function T
can be estimated by

T ≤ Tmax :=
1

α (p − 1)
+

1
β (1 − q)

.

III. IBVS CONTROL DESIGN

A. Design of Constrained Boundary Functions

In order to tackle the obstacle-avoidance problem, the
time-varying boundary constraints imposed on tracking errors
are designed such that: 1) when there is no obstacle detected,
the tracking errors can exponentially converge to small neigh-
borhoods of zero and 2) when there is an obstacle on the
neighborhood of the desired trajectory, the constrained bound-
ary functions should increase or decrease accordingly to ensure
the tracking errors to deviate from zero so that the following
robot R f diverges from its desired trajectory to avoid the
obstacle without violating the boundary constraints.

The time-varying boundary constraints imposed on tracking
errors are specified by

βmL (t) < em (t) < βm H (t) , βnL (t) < en (t) < βnH (t)

(14)

where β∗, ∗ ∈ {mL , m H, nL , nH}, are the constrained bound-
ary functions to be specified later. For the purpose of designing
constrained boundary functions that are suitable for obstacle
avoidance, we need to clarify how the robot R f should behave
when obstacles are present. Since we only consider the two
most dangerous obstacles, i.e., O1 and O2, at a time, the
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obstacle-avoidance problem can be divided into the following
two cases.

Case 1: There is only one obstacle (O1 or O2), tending to
collide with robot R f . In this scenario, obstacle avoidance is
a higher priority rather than the tracking task, and thus, the
follower R f needs to perform a left or right turn to move
away from the obstacle. To this end, the boundary functions
βmL and βm H are designed to be adjustable according to the
presence of obstacles, which guarantees the tracking errors
deviate from zero such that R f is driven to avoid the obstacle.
In addition, robot R f should turn more intensely for a greater
overlap distance ρ j since it needs more lateral displacement.

Case 2: The two obstacles O1 and O2 have potential to
collide with robot R f . This case happens when Rl is passing
between O1 and O2. According to Assumption 1, it is possible
for R f to pass between O1 and O2 and follow the target
Rl without breaking visual connectivity. Therefore, robot R f
should first turn away from the closer obstacle, which is similar
to Case 1, and then drive to a balanced spot between O1 and
O2 where the need for turning left is equivalent to turning
right. Meanwhile, robot R f should get closer to Rl in order to
pass through as soon as possible since this case is relatively
more dangerous. This maneuver can be accomplished by
decreasing the boundary functions βnL and βnH if h > 0.

Consider the FOV constraints (12) and (13) and
time-varying boundary constraint (14), and the tracking errors
em and en are required to satisfy the following conditions:

mmin − md ≤ βmL (t) < em (t) < βm H (t) ≤ mmax − md

(15)
n − nd ≤ βnL (t) < en (t) < βnH (t) ≤ nmax − nd (16)

which implies that the constrained boundary functions β∗,
∗ ∈ {mL , m H, nL , nH}, should be bounded. Motivated by
the modifications of performance functions [20], we design
the time derivatives of the constrained boundary functions by
a Lipschitz continuous projection [20], [30] as follows:

β̇∗ =


µ∗, p (β∗) ≤ 0
µ∗, p (β∗) ≥ 0 and β∗µ∗ ≤ 0
(1 − p (β∗)) µ∗, otherwise

(17)

with ∗ ∈ {mL , m H, nL , nH}, where

µmL = −κm
(
βmL+βm,∞

)
+k1

(
f2eκpρ2

d2r2
−

f1eκpρ1

d1r1

)
(18)

µm H = −κm
(
βm H −βm,∞

)
+k1

(
f2eκpρ2

d2r2
−

f1eκpρ1

d1r1

)
(19)

µnL = −κn
(
βnL + βn,∞

)
− k2 (1 − f12) ( f1 + f2) (20)

µnH = −κn
(
βnH − βn,∞

)
− k2 (1 − f12) ( f1 + f2) (21)

p(β∗) =

(
β∗ − β∗

)(
β∗ + β

∗

)
ϵ2 + ϵ

(
β∗ + β

∗

) (22)

in which

r1 = r1, f − r f , r2 = r2, f − r f (23)

f1 = f (λ1,−δ11, δ11) − f (λ1, 1, δ12) (24)
f2 = f (λ2,−δ21, δ21) − f (λ2, 1, δ22) (25)

f12 = f ( f1 − f2, 0, δd) + f ( f2 − f1, 0, δd) (26)

f (x, a, b) =
g(x − a)

g(x − a) + g(b − x + a)
(27)

g(x) =

{
0, x ≤ 0

e−
1
x , x > 0

(28)

with κm , κn , κp, k1, k2, βm,∞, βn,∞, δ11, δ12, δ21, δ22, and
δd being positive design parameters. For a small constant
ϵ > 0, the inequality −ϵ + β

∗
< β∗(t) < β∗ + ϵ, ∗ ∈

{mL , m H, nL , nH}, ∀t ≥ 0 is guaranteed by the Lipschitz
continuous projection (17), where constants β

∗
and β∗ are

the lower and upper bounds of the boundary functions β∗(t),
respectively. The use of the Lipschitz continuous projection
(17) is to guarantee that the time-varying constrained boundary
functions β∗ remain within the camera’s FOV, i.e.,

mmin − md ≤ βmL (t) < βm H (t) ≤ mmax − md (29)
n − nd ≤ βnL (t) < βnH (t) ≤ nmax − nd (30)

hold by the proper choice of constant bounds of the boundary
functions β∗(t), ∗ ∈ {mL , m H, nL , nH}, where the constant
bounds can be taken as

β
mL

= md − mmin − ϵ, βmL = mmax − md − 2βm,∞ − ϵ

β
m H

= md − mmin − 2βm,∞ − ϵ, βm H = mmax − md − ϵ

β
nL

= nd − n − ϵ, βnL = nmax − nd − 2βn,∞ − ϵ

β
nH

= nd − n − 2βn,∞ − ϵ, βnH = nmax − nd − ϵ. (31)

We remark the following important observations for the
design of constrained boundary functions.

Remark 2: Note that the first terms of µ∗, ∗ ∈

{mL , m H, nL , nH} given in (18)–(21), are the time deriva-
tives of performance functions [21], [24], which are taken as
the exponentially decaying functions of time, and thus, the first
terms of µ∗ define the behaviors of the constrained boundary
functions when there is no obstacle detected, where κm and
κn are their exponentially decaying rates and β∗,∞ are their
steady-state boundaries.

Remark 3: When robot R f approaches an obstacle, we have
r1 → 0 or/and r2 → 0 by (23). Moreover, d1r1 → 0
(d2r2 → 0) means that the obstacle is on the left (right) side
of robot R f . It follows from (18) and (19) that as d1r1 → 0,
we have µmL → −∞ and µm H → −∞, which implies
that β̇∗ given in (17) is negative. As a result, the values of
the constrained boundary functions β∗ are decreased, which
drives the feature point in the pixel coordinate to deviate from
its desired value to the right side, and then, robot R f turns
right to avoid the obstacle on its left side. Similarly, when
d2r2 → 0, the constrained boundary functions β∗ will drive
robot R f turns left to avoid the obstacle on its right side.

Remark 4: f (x, a, b) : R → [0, 1] given in (27) is a
smooth and differentiable function. As shown in Fig. 3,
f (x, a, b) = 0 for x ≤ a, and f (x, a, b) = 1 for x ≥ a + b.
When a < x < a + b, f (x, a, b) varies from 0 to 1. f1,
f2, and f12 given in (24)–(26) are activation functions that
activate different obstacle-avoidance behaviors. More specifi-
cally, in Case 1, robot R f needs to perform a turn to avoid
the obstacle. When the obstacle O j lies between the target Rl
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and the follower R f , i.e., 0 < λ j < 1, the activation function
f1 or f2 is active with 0 < f ≤ 1. If f1 is active, then
robot R f turns right to avoid the obstacle on the left. If f2 is
active, then R f turns left to avoid the obstacle on the right.
Moreover, the terms eκpρ j , j = {1, 2}, presented in (18) and
(19) are introduced as scaling factors for f j to adjust turning
intensity according to the overlap distance ρ j shown in Fig. 1.
In Case 2, both f1 and f2 are active, which implies that robot
R f needs to turn left and right at the same time. When the
need for turning left is equivalent to turning right, robot R f
reaches a balanced spot and stops turning. Note that (1− f12)

is active in Case 2 only, which leads to decrement of βnL and
βnH , and then, the following robot R f eventually gets closer
to the target Rl if h > 0.

Remark 5: The design parameters k1, k2, and κp determine
how intensely robot R f would turn left or right under the same
d jr j and ρ j , j = {1, 2}. The bigger they are, more intense
the turn is. The design parameters δ∗, ∗ ∈ {11, 12, 21, 22, d},
are used to adjust when and how rapidly f1, f2, and f12
activate and deactivate. With larger design parameters δ∗,
the corresponding activation functions activate and deactivate
more slowly, and the obstacle avoidance would begin earlier
and end later. Therefore, larger δ∗ are preferred in practice
such that the robot R f can smoothen abrupt turns. However,
δ∗ are also limited by the sensing range of onboard radar or
LiDAR.

B. Control Design

To solve the vision-based tracking control problem for
the following robot R f , we impose FOV and time-varying
boundary constraints to ensure visibility connectivity to the
moving target and there is no collision with the target or
obstacles simultaneously. To be more specific, in this section,
we first introduce an error transformation, then contract the
dynamics of the constrained boundary functions based on the
obstacle-avoidance behavior and constraint (10), and finally
construct a tracking controller to keep em and en between their
corresponding constrained boundary functions, which leads to
provable visibility maintenance and collision avoidance.

Define the following error transformation variable:

ηs = ln
(

es − βsL

βs H − es

)
, s ∈ {m, n} . (32)

Taking the time derivative of [ηm, ηn]
T along system (8) and

(11) yields[
η̇m
η̇n

]
= G

 1
h

0

0 1

[ v f
ω f

]
+

qvl

h
H +

[
ξ1
ξ2

]
(33)

where

ξ1 =
∂ηm

∂βmL
β̇mL +

∂ηm

∂βm H
β̇m H , ξ2 =

∂ηn

∂βnL
β̇nL +

∂ηn

∂βnH
β̇nH

G =


∂ηm

∂em
q (m0 − m)

∂ηm

∂em

[
am + (m − m0) p

]
∂ηn

∂en
q (n0 − n)

∂ηn

∂en
(n − n0) p



Fig. 3. Schematics of the design function f (x, a, b) given in (27).

H =


∂ηm

∂em

[
am sin θl f + (m − m0) cos θl f

]
∂ηn

∂en
(n − n0) cos θl f

 .

Although θl cannot be directly obtained as a feedback
signal, the relative orientation θl f can be computed by the
homography-based technique given in [31] with visual feed-
back information. More specifically, we can obtain θl f by
the Euclidean homography reconstruction if there are at least
four available coplanar feature points on the target. If the
displacements between the feature points are known, then
the number of the feature points can be reduced to three using
the pose estimate method. If there are not enough coplanar
feature points on the target, we can still employ the virtual
parallax algorithm presented in [31] to calculate θl f with eight
random feature points. Hence, θl f is available for feedback
control design and θl can be computed by θl = θl f + θ f .

Since system (33) contains the uncertain feature height h
and the unknown target’s velocity ϑl = vl/h, we cannot
directly introduce them into the control inputs. To compensate
for these unknown variables, we employ an adaptive estimator
and a velocity observer to estimate h and ϑl , respectively.
Define the estimation errors h̃ = ĥ − h and ϑ̃l = ϑ̂l − ϑl ,
where ĥ and ϑ̂l are the estimations of h and ϑl , respectively.

Consider the following BLF candidate:

V =
1
2
ηηηTηηη +

1
2γ1h

h̃2
+

1
2γ2

ϑ̃2
l (34)

with ηηη = [ηm, ηn]
T , where γ1 > 0 and γ2 > 0 are design

parameters. The time derivative of (34) along system (33) is
given by

V̇ = ηηηT G

 1
h

0

0 1

[ v f
ω f

]
+ ηηηT qϑl H + ηηηT

[
ξ1
ξ2

]

+
1

γ1h
h̃ ˙̂h +

1
γ2

ϑ̃l
( ˙̂
ϑl − ϑ̇l

)
. (35)

Hence, the IBVS control inputs v f and ω f given in system
(33) can be taken as[

v f
ω f

]
=

[
ĥ 0
0 1

]
G−10 (36)

in which the adaptive law and the velocity observer are
designed as follows:

˙̂h = −γ1ηηη
T G

[
1 0
0 0

]
G−10 − σ1ĥ3 (37)
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˙̂
ϑl = γ2ηηη

T q H − ϑ̂l − σ2ϑ̂
3
l (38)

with 0 = −K1 sig(ηηη)(3/2)
−K2 sig(ηηη)(1/2)

−qϑ̂l H −[ξ1, ξ2]
T ,

where σ1 > 0, σ2 > 0, K1 > 0, and K2 > 0 are design param-
eters, and sig(xxx)a ≜ [sig(x1)

a, sig(x2)
a, · · · , sig(xn)a

]
T .

sig(x)a
= sgn(x)|x |a is a continuous function with a > 0 and

x ∈ R. Note that det(G) = −(∂ηm/∂em)(∂ηn/∂en)amq(n0 −

n) ̸= 0 due to (∂ηm/∂em) ̸= 0, (∂ηn/∂en) ̸= 0, and
n0 − n = anh/x p, f > 0, and thus, the matrix G defined
in (33) is invertible.

Substituting (36)–(38) into (35) gives

V̇ = −ηηηT K1 sig (ηηη)
3
2 − ηηηT K2 sig (ηηη)

1
2 −

1
γ2

ϑ̃l ϑ̂l −
1
γ2

ϑ̃l ϑ̇l

−
σ1

γ1h
h̃
(

h̃3
+ 3h̃2h + 3h̃h2

+ h3
)

−
σ2

γ2
ϑ̃l

(
ϑ̃3

l + 3ϑ̃2
l ϑl + 3ϑ̃lϑ

2
l + ϑ3

l

)
. (39)

By the completion of squares, we have

−h̃h3
≤ 3h̃2h2

+
1

12
h4, −ϑ̃lϑ

3
l ≤ 3ϑ̃2

l ϑ2
l +

1
12

ϑ4
l

−ϑ̃l ϑ̂l ≤ −
1
2
ϑ̃2

l +
1
2
ϑ2

l , −ϑ̃l ϑ̇l ≤
1
2
ϑ̃2

l +
1
2
ϑ̇2

l .

Then, we obtain

V̇ ≤ −ηηηT K1 sig (ηηη)
3
2 − ηηηT K2 sig (ηηη)

1
2 +

1
2γ2

ϑ2
l +

1
2γ2

ϑ̇2
l

−
σ1

γ1h
h̃4

−
3σ1

γ1h
h̃3h +

σ1

12γ1h
h4

−
σ2

γ2
ϑ̃4

l −
3σ2

γ2
ϑ̃3

l ϑl +
σ2

12γ2
ϑ4

l . (40)

Applying Lemma 1 to −h̃3h and −ϑ̃3
l ϑl in (40) with ε > 0,

n = (4/3), m = 4, and ((4/3) − 1)(4 − 1) = 1, we obtain

V̇ ≤ −ηηηT K1 sig (ηηη)
3
2 − ηηηT K2 sig (ηηη)

1
2 +

1
2γ2

ϑ2
l +

1
2γ2

ϑ̇2
l

−

(
σ1

γ1h
−

9ε
4
3 σ1

4γ1h

)
h̃4

+

(
3σ1

4ε4γ1h
+

σ1

12γ1h

)
h4

−

(
σ2

γ2
−

9ε
4
3 σ2

4γ2

)
ϑ̃4

+

(
3σ2

4ε4γ2
+

σ2

12γ2

)
ϑ4

l (41)

with ((σ1/γ1h) − (9ε(4/3)σ1/4γ1h)) > 0 and ((σ2/γ2) −

(9ε(4/3)σ2/4γ2)) > 0. Under Assumption 2, using Lemma 2
with x = h̃2, ϑ̃2 given in (41), and µ = 4, it follows:

V̇ ≤ −ηηηT K1 sig (ηηη)
3
2 − ηηηT K2 sig (ηηη)

1
2

−

(
σ1

γ1h
−

9ε
4
3 σ1

4γ1h

) ∣∣h̃∣∣ 5
2

−

(
σ1

γ1h
−

9ε
4
3 σ1

4γ1h

) ∣∣h̃∣∣ 3
2 −

(
σ2

γ2
−

9ε
4
3 σ2

4γ2

) ∣∣ϑ̃l
∣∣ 5

2

−

(
σ2

γ2
−

9ε
4
3 σ2

4γ2

) ∣∣ϑ̃l
∣∣ 3

2 + 1 (42)

where 1 = ((σ1/γ1h) − (9ε(4/3)σ1/4γ1h)) + ((σ2/γ2) −

(9ε(4/3)σ2/4γ2)) + ((3σ1/4ε4γ1h) + (σ1/12γ1h))h4
+

((3σ2/4ε4γ2) + (σ2/12γ2))(c4
1/h4) + (c2

1/2γ2h2) +

(c2
2/2γ2h2) > 0 is a constant. From (42) and Lemma 3,

it follows that:

V̇ ≤ −αV
5
4 − βV

3
4 + 1 (43)

in which α = min{4((2/4))(5/4)km1, 4((2γ1h/4))(5/4)

((σ1/γ1h) − (9ε(4/3)σ1/4γ1h)), 4((2γ2/4))(5/4)((σ2/γ2) −

(9ε(4/3)σ2/4γ2))}, β = min{2(3/4)km2, (2γ1h)(3/4)((σ1/γ1h)−

(9ε(4/3)σ1/4γ1h)), (2γ2)
(3/4)((σ2/γ2)−(9ε(4/3)σ2/4γ2))}, and

km1 and km2 are the minimum eigenvalues of K1 and K2,
respectively.

C. Stability Analysis

The following theorem shows that the proposed IBVS
controller achieves the fixed-time convergence of tracking
errors while guaranteeing visibility maintenance and obstacle/
collision avoidance.

Theorem 1: Under Assumptions 1–3, consider system (8)
and IBVS tracking controller (36) with adaptive law (37) and
velocity observer (38), then we have the following results.

1) The tracking errors em and en converge to the following
compact sets:

�em =
{
em
∣∣em ≤ em ≤ em

}
(44)

�en =
{
en
∣∣en ≤ en ≤ en

}
(45)

in the fixed time T ≤ Tmax = (4/αω) + (4/β) with
ω ∈ (0, 1), in which em , em , en , and en are given by

em =
βmL + βm H

2
−

(eχ
− 1) (βm H − βmL)

2 (1 + eχ )

em =
βmL + βm H

2
+

(eχ
− 1) (βm H − βmL)

2 (1 + eχ )

en =
βnL + βnH

2
−

(eχ
− 1) (βm H − βmL)

2 (1 + eχ )

en =
βnL + βnH

2
+

(eχ
− 1) (βnH − βnL)

2 (1 + eχ )

where the constant χ can be made arbitrarily small by
increasing the controller gain km1 and the design param-
eters γ1 and γ2. Note that the desired obstacle-avoidance
trajectory (((βmL +βm H )/2), ((βnL +βnH )/2)) depends
on the constrained boundary functions β∗(t), ∗ ∈

{mL , m H, nL , nH}. In particular, when there is no
obstacle, the pixel coordinate tracking error (em, en) will
converge to a small neighborhood of zero in the fixed
time T ≤ Tmax.

2) The following robot R f never breaks the visibility
connection and never collides with the target Rl and
obstacles during the whole operation, that is, the con-
straint conditions (15) and (16) with (17) and (31) are
guaranteed.

3) All signals in the closed-loop system are uniformly
ultimately bounded.

Proof: The following conditions hold.
1) Inequality (43) can be rewritten as

V̇ ≤ −ωαV
5
4 − βV

3
4 − (1 − ω) αV

5
4 + 1. (46)

From (46), it is clear that V̇ ≤ −ωαV (5/4)
− βV (3/4)

for V ≥ ((1/(α(1 − ω))))(4/5), which indicates that
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V would converge to the set given by {V : V ≤

((1/(α(1 − ω))))(4/5)
} in fixed time according to

Lemma 4. Moreover, the maximum convergence time
can be estimated by Tmax = (4/αω) + (4/β). Recalling
(34), we have

1
2
ηηηTηηη +

1
2γ1h

h̃2
+

1
2γ2

ϑ̃2
l ≤

(
1

α (1 − ω)

) 4
5

(47)

for t ≥ Tmax, which indicates that ηm and ηn satisfy

|ηm | ≤ χ, |ηn| ≤ χ, χ =

√√√√2
(

1

α (1 − ω)

) 4
5

(48)

where χ can be made arbitrarily small by increasing the
controller gain km1 and the design parameters γ1 and
γ2. From (32) and (48), it follows that tracking errors
em and en converge to the compact sets �em and �en

given in (44) and (45), respectively. When there is no
obstacle around, it follows βmL → −βm,∞, βm H →

βm,∞, βnL → −βn,∞, and βnH → βn,∞, which means
that em and en converge to small neighborhoods of zero
in the fixed time T ≤ Tmax.

2) Next, we show that there is no collision with obstacles
during the whole motion operation. Consider Cases 1
and 2 presented in Section III-A. For Case 1, assume
that the obstacle is O1. When robot R f approaches the
obstacle O1, we have (1/d1r1) → +∞ and (1/d2r2)

is bounded, which means that the proposed controller
takes O1 into account only. This leads to R f moving
away from O1 immediately, resulting in an increment
of d1r1. Thus, d1r1 > 0 holds while avoiding O1.
The same arguments hold when the obstacle is O2. For
Case 2, both f1 and f2 are active. For the worst case
scenario, we have that both d1r1 and d2r2 tend to 0.
For this case, the first terms of µmL and µm H can be
neglected since (( f1eκpρ1)/d1r1) and (( f2eκpρ2)/d2r2)

tend to +∞. As a result, robot R f will turn away from
the obstacle that has bigger (eκpρ j /d jr j ), j = 1, 2,
and stop turning when (eκpρ1/d1r1) and (eκpρ2/d2r2)

are balanced. Consequently, both d1r1 and d2r2 can
be kept away from zero, which indicates that R f
would navigate through obstacles with no collision.
Therefore, it is concluded that R f can always avoid
collision with obstacles and occlusion during the oper-
ation under Assumption 1. It follows from (32) that
es = ((eηs βs H + βsL)/(1 + eηs )), s ∈ {m, n}. Note that
es is strictly increasing with respect to ηs , and thus,
we have es → βs H if and only if (iff) ηs → −∞, and
es → βsL iff ηs → +∞. Since the boundedness of ηs ,
we have βsL < es < βs H , which indicates that constraint
(14) is never violated. For the choice of the lower and
upper bounds β

∗
and β∗ given in (31), inequalities (29)

and (30) hold. Hence, constraint conditions (15) and (16)
are satisfied since constraints (14), (29), and (30) are
never violated.

3) It follows from (47) that ηm , ηn , h̃, and ϑ̃l are uni-
formly ultimately bounded. Furthermore, it is concluded

Fig. 4. Phase-plane trajectories of the two robots for no obstacle scenario
using the proposed FTIBVSC (blue) and the existing SNGC [19] (green).

that the constrained boundary functions and their time
derivatives are always bounded since neither a collision
with obstacles nor an occlusion would occur according
to proof 2). Consequently, all signals v f , ω f , ĥ, and
ϑ̂l in the closed-loop system are uniformly ultimately
bounded. This completes the proof.

Remark 6: To achieve a high tracking performance, it can
be seen from (48) that a small value of χ is preferred.
Hence, in view of (42) and (43), a small 1 and a
large α are desirable, which requires a large control gain
km1 and large design parameters γ1 and γ2. Furthermore,
it follows from (44) and (45) that the pixel coordinate
tracking error (em, en) can converge to a small neighbor-
hood of the desired obstacle-avoidance trajectory (((βmL +

βm H )/2), ((βnL + βnH )/2)) in the fixed time T ≤ Tmax,
where the desired obstacle-avoidance trajectory is generated
from the center orbit of the constrained boundary functions
β∗(t), ∗ ∈ {mL , m H, nL , nH}. When there is no obstacle
detected, we have βmL → −βm,∞, βm H → βm,∞, βnL →

−βn,∞, and βnH → βn,∞, which means that the desired
obstacle-avoidance trajectory converges to the origin.

IV. COMPARATIVE SIMULATION STUDIES

To show the improved control performance of the pro-
posed fixed-time IBVS controller (FTIBVSC), we perform
comparative simulation studies between the proposed control
law (36) and the static nonlinear gain controller (SNGC)
recently presented in [19] for two scenarios where there are
no obstacle and four obstacles in the workspace. The SNGC
[19] is chosen here due to the fact that it is the most relatively
related work, to the best of our knowledge, and is one of the
state-of-the-art methods for IBVS tracking control of mobile
robots with FOV constraints. In the simulations, the visual
feedback information is obtained by a virtual camera, which
is implemented according to (6). The resolution of the virtual
camera is 640 × 480. The intrinsic matrix is given by

A =

 376.1587 0 320
0 376.1587 240
0 0 1

 .
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Fig. 5. Evolutions of tracking errors for no obstacle scenario using the proposed FTIBVSC (36) (blue) and the existing SNGC [19] (green): (a) tracking
error em and (b) tracking error en .

Fig. 6. (a) Estimations of h and ϑl by (37) and (38). (b) Velocity inputs of R f given by (36).

The radii of the safe zones of robots Rl and R f are r l = r f =

0.8 m. The feature height is h = 0.3 m. The desired pixel
coordinate of the feature point is [480, 200]T . The constraint
(10) is specified by 0 ≤ m ≤ 640, 169.4702 ≤ n ≤ 480.
The design parameters of the constrained boundary functions
are taken as κm = κn = 0.15, κp = 2, k1 = 40, k2 = 0.1,
δ11 = 1.8, δ21 = 1, δ12 = δ22 = 0.2, δd = 5, βm,∞ = 15,
βn,∞ = 3, βmL(0) = −480, βm H (0) = 160, βnL(0) = −25,
βnH (0) = 40, and ϵ = 2. Let β

mL
= 478, βmL = 128,

β
m H

= 448, βm H = 158, β
nL

= 23, βnL = 32, β
nH

= 17,

and βnH = 38. Thus, we have

−480 ≤ βmL (t) < βm H (t) ≤ 160
−25 ≤ βnL (t) < βnH (t) ≤ 40.

In the following simulations, we consider two scenar-
ios where there are no obstacle and four obstacles in the
workspace.

Case I: First, we consider the scenario where there is no
obstacle in the workspace. The velocity inputs of the target
Rl are set to be vl = 1 m/s and ωl = 0.1 rad/s, and
the initial pose of Rl is [0, 0, 0]T . The initial states of the
following robot R f are [x f (0), y f (0), θ f (0)]T = [−3, 0, 0]T

and v f (0) = ω f (0) = 0. The control gain matrices of the
proposed controller are taken as K1 = diag(3, 10) and K2 =

diag(0.5, 3). The adaptive gains are chosen as γ1 = 0.02 and

σ1 = 0.25. The observer gains are set to be γ2 = 23 and
σ2 = 0.01. The control gains for the SNGC in [19] are given
by k1 = −0.1 and k2 = 2. The simulation results for Case
I are shown in Figs. 4–6. Fig. 4 shows the trajectories of
the two mobile robots and their positions at 0, 15, and 45 s.
It can be seen from Figs. 4 and 5 that both the proposed
controller (36) and the SNGC [19] can satisfy constraint (14)
and the tracking errors converge to small regions around zero.
Compared with the tracking errors shown in Fig. 5, larger
tracking errors are caused using the SNGC [19] in the transient
and steady-state stages. This is mainly because there is no
compensation for the uncertain parameter h and the target’s
velocity vl in the static nonlinear gain (SNG) control inputs
[19]. On the contrary, we employ an adaptive estimator to esti-
mate the unknown constant h and present a velocity observer
to estimate the target’s velocity vl , whose effectiveness is
well demonstrated in Fig. 6(a), and then, the estimates of
h and vl are embedded in the proposed control inputs (36)
such that smaller tracking errors are achieved. Furthermore,
it can be seen from Fig. 5 that the convergence speed of
tracking errors is improved because the fixed-time convergence
property is applied in the proposed IBVS controller (36). The
velocity inputs of R f using the proposed controller are shown
in Fig. 6(b).

Case II: In this case, the mobile robots are operating in an
obstacle environment. The velocity inputs of the target Rl are
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Fig. 7. Responses of the proposed IBVS controller and the existing SNGC [19] for the case when there are four obstacles in the workspace. (a) Phase-plane
trajectories of the two robots: Rl (red solid line) and R f using the proposed IBVS controller (blue solid line) and R f using the existing SNGC [19] (green
dashed line). (b) Velocity inputs of R f given by (36). (c) and (d) Evolutions of tracking errors em and en using the proposed IBVS controller (36).

vl = 1 m/s and

ωl =

{
0.1 rad/s, t < 10π or 10π + 20 ≤ t < 20π + 20
0, otherwise.

Other conditions and all design parameters are identical with
those in the first simulation. The trajectories of mobile robots
are plotted in Fig. 7(a), which provides an explicit exhibi-
tion of the proposed controller’s performance in an obstacle
environment and how the following robot R f moves when
there are obstacles. We can see from Fig. 7(a) that the robots
encounter an obstacle on the left at about 10 s. The following
robot R f controlled by the control law (36) performs a left
turn to avoid the obstacle, while the robot R f controlled
by the SNGC [19] collides with the obstacle since obstacle
avoidance was not considered in [19]. At about 45 s, there
are two obstacles on both sides of the following robot R f .
Robot R f under control law (36) is driven to the balanced
position, that is to say, robot R f moves along with the middle
of the gap between the two obstacles in this case. The feature
point tracking errors em and en of the proposed controller
(36) along with their corresponding constrained boundary
functions are presented in Fig. 7(c) and (d). It is clear from
Fig. 7(c) and (d) that the tracking errors always stay between
their corresponding boundary functions no matter how they
change in the obstacle-avoidance process. After 50 s, when

Fig. 8. Experiment setup.

there is no obstacle at the around of robot R f , em and en
converge to small neighborhoods of zero eventually, which
confirms the theoretical results presented in Theorem 1. The
control inputs of the proposed controller are presented in
Fig. 7(b).

V. EXPERIMENT STUDIES

In addition to the numerical simulations, a physical
experiment is also carried out to verify the efficacy of
the proposed FTIBVSC. An experimental setup of two
differential-driven mobile robots equipped with an onboard
visual sensor and LiDAR is built, as shown in Fig. 8. The
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Fig. 9. Experiment results. (a) Phase-plane trajectories of the two robots. (b) and (c) Evolutions of tracking errors em and en , respectively.

Fig. 10. Snapshots taken in the experiment. (a) t = 0 s. (b) t = 22 s. (c) t = 70 s. (d) t = 105 s.

two differential-driven mobile robots are an Amigobot mobile
robot and a P3-AT mobile robot from Adept MobileRobots,
LLC. The Amigobot mobile serves as the moving target Rl and
the P3-AT mobile robot is the follower R f . A MYNT EYE
D1000-IR-120 RGB-D camera and a SLAMTEC RPLIDAR
A3 LiDAR are mounted on the following robot R f to
obtain necessary feedback information. A chessboard pattern
is attached on Rl . The feature point of checkerboard pattern
is extracted by the onboard RGB-D camera. The minimum
distance d j , j ∈ {1, 2}, is detected by the onboard LiDAR.
The specifications of the camera are the same as that of the
virtual camera mentioned in Section IV. The control algorithm
is running in the laptop placed on the following robot R f and
looping at 20 Hz during the experiment.

The radii of the safe zones of Rl and R f are r l = 0.3
m and r f = 0.4 m, respectively. The following robot R f is
placed 0.7 m behind the target Rl . The lower bound of n is
given by n = 115. Consequently, constraint (10) is specified
by 20 ≤ m ≤ 460 and 120 ≤ n ≤ 240. The feature height
is h = 0.205 m. The desired pixel coordinate of the feature
point is [160, 160]T . The design parameters of the constrained
boundary functions are set to be κm = κn = 0.17, κp = 2,
k1 = 10, k2 = 0.25, δ11 = 0.5, δ21 = 2, δ12 = δ22 = 1, δd =

1, βm,∞ = 15, βn,∞ = 10, βmL(0) = −140, βm H (0) = 300,
βnL(0) = −40, βnH (0) = 80, and ϵ = 3. Furthermore, we

select β
mL

= 137, βmL = 267, β
m H

= 107, βm H = 297,
β

nL
= 37, βnL = 57, β

nH
= 17, and βnH = 77. Thus,

we have −140 ≤ βmL(t) < βm H (t) ≤ 300 and −40 ≤

βmL(t) < βm H (t) ≤ 80. The control gains of the proposed
control controller (36) are taken as K1 = diag(1.2, 0.6) and
K2 = diag(0.5, 0.6), and the other design parameters are
γ1 = 0.005, σ1 = 0.0015, γ2 = 0.05, and σ2 = 0.005. The

Fig. 11. Velocity inputs of R f given by (36).

velocity inputs of the target Rl are vl = 0.2 m/s and

ωl =

{
0.05 rad/s, 30 ≤ t < 60
0, otherwise.

The initial poses of Rl and R f are [0, 0, 0]T and
[−1.69,−0.92, 0.42]T , respectively, with v f (0) = ω f (0) = 0.

The experiment results are presented in Figs. 9–11.
As shown in Fig. 9(a), the trajectories of Rl and R f are
depicted with their poses marked at 0, 22, 70, and 105 s,
which are coincident with the snapshots in Fig. 10. Obstacle
avoidance behavior and satisfactory tracking performance can
be observed from Fig. 9(a). It is worth noticing that R f
performs a much smaller left turn at 70 s, compared to
the one at 22 s since the obstacle on the right is further
away and the overlap distance is negative. Consequently,
the obstacle-avoidance behavior is suppressed and a large
deviation from zero is avoided for em . Fig. 9(b) and (c) shows
the evolutions of em and en . Though the boundary functions
βm H and βmL change quite abruptly at around 20 s, em
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always keeps inside the feasible region that is bounded by the
functions βm H and βmL . Moreover, both em and en converge
to small neighborhoods of zero eventually. The velocity inputs
v f and ω f are plotted in Fig. 11. Hence, the effectiveness of
the proposed control protocol in a practical scenario is verified.

VI. CONCLUSION

This article developed a fixed-time IBVS control design
technique for moving-target tracking of nonholonomic
wheeled mobile robots, where visibility maintenance,
collision/obstacle avoidance, and prescribed performance
were integrated in a unified BLF control design framework.
The proposed control protocol only depends on the locally
relative information acquired by onboard sensors, without
the need of knowing the feature height and target’s velocity.
To cope with the issues of limited visual capability and safe
navigation, FOV and time-varying boundary constraints were
imposed to ensure that the following robot never breaks the
visibility connection and never collides with the target and
obstacles. The constrained boundary functions were proposed,
which behave differently in the presence of different obstacles.
When an obstacle tends to interfere between the moving
target and the robot, the constrained boundary functions are
deviated away from zero such that the following robot is
enforced to drive away from obstacles. When there is no
obstacle detected, the constrained boundaries are taken as
exponentially decaying performance functions, which can
describe predefined transient and steady-state performances
of tracking errors. Using fixed-time stability and control
Lyapunov synthesis, an FTIBVSC was designed such that
tracking errors converge to a small neighborhood of the desired
obstacle-avoidance trajectory in fixed time while guaranteeing
visibility maintenance and obstacle/collision avoidance.
Simulation and experiment results showed the effectiveness
of the proposed fixed-time IBVS control protocol.
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