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Abstract—Strong-motion processing holds paramount impor-
tance in earthquake engineering and disaster risk management
systems. By leveraging parallel loops and task-parallelism tech-
niques, we address computational challenges posed by large-scale
accelerographic datasets. Through experimentation with more
than one million data points from six real-world seismic events,
our approach achieved speedups of up to 2.9x, demonstrating
the effectiveness of parallel programming in accelerating seismic
data processing. Our findings highlight the significance of parallel
programming techniques in advancing seismological research and
enhancing earthquake mitigation strategies.

Index Terms—strong-motion data, parallel processing, natural
disaster management, OpenMP, Fortran, C++

I. INTRODUCTION

Earthquakes are well-known for their unpredictability and

potential to cause significant damage. These events have

profound and far-reaching impacts on both human societies

and the environment. One of the most devastating earthquakes

in recent history occurred in 2004 in Sumatra, Indonesia,

triggering a massive tsunami that affected the entire Indian

Ocean region, and resulting in approximately 230,000 fatalities

[13]. The 2015 Nepal earthquake caused significant damage

to the Himalayan region, with economic losses amounting to

one-third of its gross domestic product for that year [19].

Similarly, in February 2023, a powerful earthquake struck

southeastern Turkey and Syria, causing over 50,000 fatalities

and widespread destruction [11]. Furthermore, seismic events

such as the Gyeongju and Pohang earthquakes in 2016 and

2017 in the Korean Peninsula have underscored the importance

of ground-motion data collection and analysis for ensuring the

stability of critical infrastructure such as nuclear power plants

[20], and have highlighted the critical need for seismic hazard

assessment and disaster risk reduction strategies in earthquake-

prone areas, such as the Indian subcontinent [18].

Earthquake-resistant structural design is primarily con-

cerned with the tradeoff between potential for local earthquake

activity levels and the ability of structures to resist damage,

and relies on seismic data collection and analysis. With

numerous data analysis schemes available, ensuring accurate

interpretation and utilization of the data is crucial [3]. Large

seismic monitoring networks generate vast amounts of data

that require efficient archiving, dissemination, visualization,

and real-time analysis [6]. These records, obtained from

strong-motion accelerograph machines, are indispensable for

hazard estimation and site-effect studies, forming the backbone

of seismic research [18]. Processing strong ground motion

Fig. 1. Seismic station and accelerograph [26, 22]

data efficiently can mitigate seismic hazards and gain valuable

insights into site-specific effects [5].

In this paper, we explore a parallelization-based approach

for improving the performance of vital strong-motion process-

ing software used in El Salvador. Although various techniques

for parallelizing generic programs exist, these approaches are

not straightforward to use in the context of real-world seismo-

logical software because of complex process dependencies,

legacy programming languages and APIs, mixed input/output

data formats, and intrinsically distributed data sources.

Specifically, we focus on software used in El Salvador’s

Observatory of Natural Threats. In this context, despite us-

ing modern technology for sensing, distributing, storing, and

visualizing seismic-related data, the core calculations needed

for processing strong-motion records are performed using

legacy Fortran code. In this paper, we show how to perform

a careful analysis of input/output data dependencies, and

apply techniques such as parallelizing loops and adding task-

parallelism, producing an optimized version of the existing

sequential implementation.

To our knowledge, our approach is the first to fully par-

allelize the processing of accelerographic records when all

three signal components are analyzed, leveraging the robust

Salvadoran strong-motion sensor network. We demonstrate the

utility of our approach by processing data from 6 strong-

motion events in El Salvador. On this data, our work out-

performs the original sequential implementation by a factor

of 2.6x to 2.9x, benefiting seismology research and natural

disaster management, and aiding impact mitigation on society.

II. BACKGROUND: ACCELEROGRAPHIC RECORDS

PROCESSING

When a seismic event occurs, proximal strong-motion sen-

sors register its effects – Figure 1 shows an example of

1



such sensors. Each sensor produces data files capturing three

distinct components: longitudinal, transversal, and vertical

motions. These raw data files, denoted as uncorrected versions,

are stored with a V1 extension, and contain the ground’s

acceleration, velocity, and displacement over a defined tem-

poral window. The number of files needing to be processed

per seismic event depends on nearby sensors’ availability and

the event’s magnitude. In the following, we will outline the

processing steps for each file.

The components of the accelerographic data (e.g., Figure

2) are individually stored in files named according to the

format [station][comp].v1. Subsequently, a Hamming band-

pass filter is applied to each component, utilizing default

parameters. This processing step generates corrected versions

of the signals, which are then saved with a V2 extension.

-2.000

-1.000

0.000

1.000

2.000

cm
/s
^2

Acceleration

-0.050
-0.025
0.000
0.025
0.050

cm
/s

Velocity

-0.003
-0.002
0.000
0.002
0.003

0 5 10 15 20 25 30 35

cm

Displacement

Time(s)

Fig. 2. Accelerographic data (one component)

Following this correction, a Fourier transformation is per-

formed on each signal (e.g, Figure 3) resulting in files marked

with an F extension. Notably, the velocity Fourier spectrum

of each signal holds significant importance, as its analysis

yields the low-pass frequency (FPL) and low-stop frequency

(FSL) parameters, highlighted in red in Figure 3. These are

used in the definitive acceleration baseline correction of each

signal. Moreover, the peak ground acceleration (PGA) values

are extracted and archived.
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Fig. 3. Inflection point in the velocity Fourier spectrum (one component),
indicates the values of the FPL & FSL signal filtering parameters.

The final corrected signals are derived by applying another

Hamming band-pass filter, tailored with the appropriate FPL

and FSL parameters obtained from the Fourier analysis, and

are subsequently stored in V2 files.

The most computationally intensive operation involves cal-

culating the Response spectrum for each corrected signal (e.g.,

Figure 4), saved with an R extension. This spectrum provides

valuable insights into the response characteristics of various

building types during seismic events.

0

5

10

ga
l*

s

Acceleration

0.002

0.020

0.1 1
cm

*s

Displacement
0.0

0.2

0.4

cm
/s

^2

Velocity

Period (s)

Fig. 4. Response spectrum (one component)

Finally, 18 Global Earthquake Model (GEM) files are

created from the V2 and R files. These serve as crucial

inputs for subsequent processes. This information resulting

from this processing of strong-motion files is of considerable

significance to structural engineers during the design phase

of new buildings, informing their decisions and enhancing

structural integrity.

III. SEQUENTIAL IMPLEMENTATION

The entire process used in the sequential version is seg-

mented into 20 sequential steps, shown in Figure 5. Each

step, which we will refer to as a process, is either a function

embedded within C++ code, or an entire Fortran program.

While certain processes are lightweight, others entail sub-

stantial input/output operations, calculations, or plotting tasks.

The following section describes how to optimize this sequen-

tial implementation (Figure 6).

IV. OPTIMIZING THE SEQUENTIAL IMPLEMENTATION

Initial optimization involves the elimination of unnecessary

processes. Detailed analysis of the process uncovered the

following redundancies.

1) The plotting of uncorrected signals (process #6) is

unnecessary, as the generated plots are not utilized

within the program. Additionally, the [station].ps files

produced are subsequently overwritten in process #15.

2) Segmentation of each component of uncorrected signals

into individual files (process #12) is superfluous, since

no modifications are applied to V1 files during execution.

3) Overwriting intermediate files (process #14) is redun-

dant, as these files mirror those obtained earlier in

process #5.
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However, the parallelization strategy for these processes

differs significantly from the approaches used in the other

stages. Due to the impracticality of modifying the original

Fortran programs, multiple instances are executed concurrently

within separate folders. The primary task involves creating

these folders with all the necessary files, and subsequently

copying the results back. This approach maximizes processor

utilization by harnessing all available processors.

D. Parallelizing Stage V

Process #7 is responsible for computing the Fourier spectra

for acceleration, velocity, and displacement of each component

stored in all [station][comp].v2 files, with the results saved in

[station][comp].f files.

The parallelization strategy employed for this process mir-

rors that of Stages IV and VIII, as detailed in the preceding

section. All available processors are utilized to optimize com-

putational efficiency.

1 void ParallelizeFourier(){

2 //Read data (fourier file)

3 string files[N*3];

4 for (int i = 0; i < N; i++)

5 files[3*i] = //Input: Folder name

6 files[3*i+1] = //Input: <s><comp>.v2 files

7 files[3*i+2] = //Input: <s><comp>.f files

8 #pragma omp parallel for

9 for (int i = 0; i < N; i++)

10 //Create temp 3*i folder & fourier file

11 for (int i = 0; i < N; i++)//Seq. to avoid races

12 //Move EXE to 3*i folder

13 #pragma omp parallel for

14 for (int i = 0; i < N; i++)

15 //Input: Move 3*i+1 <s><comp>.v2 file

16 //Apply Fourier Transform on 3*i folder

17 //Output: Move 3*i+2 <s><comp>.f file

18 //Delete remaining temp files

19 }

VII. EXPERIMENTS AND RESULTS

A. Experimental Setup

Our experimental dataset comprises 71 unprocessed ac-

celerograph files from 6 seismic events that occurred in El

Salvador over the past decade. These events represent a

diversity of stations affected, and have varying numbers of

data points within each raw file, ranging from 7,300 to 35,000.

The original sequential implementation consisted of 2,297

lines of Fortran code. Our fully-parallelized version was im-

plemented with 653 lines of C++ code and an additional 337

lines of Fortran code.

The experimental platform used for the experiments was a

12th Gen Intel Core i5-12450H, 2.00 GHz, 8 Cores, 12 Logical

Processors, 16 GB of RAM, 640 KB of L1 cache, 6.2 MB of

L2 cache, and 12 MB of L3 cache.

B. Results per Stage

For this experiment, we assessed the parallel performance

of each individual stage using data from the seismic event with

the most data in the experimental dataset, i.e., 384, 000 data

points distributed across 19 V1 files.

Figure 11 illustrates that stage IX exhibits the longest

execution time among all stages, accounting for 57.2% of the

original sequential implementation. However, Stage IX also

achieves the highest speedup, reaching 5.14x.
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Fig. 11. Speedup per individual Stage (19 Files, 384k Data points)

Other parallel stages successfully reduce the sequential

execution time by more than half, achieving speedups of 2.2x,

2.0x, 2.6x, and 2.1x for stages I-II, IV, VI, and XI, respectively.

Furthermore, the remaining parallel stages achieve speedups

of 1.8x, 1.7x, 1.9x, and 1.5x for stages III, V, VIII, and X,

respectively. Overall, for this event, the speedup stands at

2.88x, as indicated in the bottom row of Table I.

TABLE I
EXPERIMENTAL RESULTS

Event
V1

Files

Data

Points

Seq.

Ori.*

Seq.

Opt.*

Part.

Par.*

Full

Par.*

Speed

Up

Nov’18 5 56K 76.6 64.1 61.9 32.1 2.39x

Apr’18 5 115K 149.6 127.1 126.4 56.5 2.65x

Jul’19 9 145K 174.9 161.3 154.8 68.1 2.57x

Apr’17 15 309K 358.6 351.2 327.9 131.5 2.73x

May’19 18 361K 439.5 392.6 378.9 155.3 2.83x

Jul’19 19 384K 483.7 426.0 412.2 168.1 2.88x

*Execution times are measured in seconds.

C. Results per Event

All available uncorrected accelerographs (V1 files) for each

seismic event in the experimental dataset were processed using

the four implementations explained in sections III to VI:

• Sequential Original: contains 20 sequential processes.

• Sequential Optimized: contains 17 sequential processes.

• Partially Parallelized: utilizes 5 parallel stages.

• Fully Parallelized: utilizes 10 parallel stages.

Figure 12 shows a visual representation of each implemen-

tation’s execution times, and full data is shown in Table I.

Execution time is linearly proportional to the total amount of

data points. While each implementation offers a performance

improvement over its predecessor, the fully-parallelized ver-

sion demonstrates the most efficiency.
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Fig. 12. Speedup per Event: execution time is proportional to the number of data points in each seismic event.

We observe that the speedup increases proportionally with

the number of total input data points, as illustrated in Figure

13. The overall speedup ranges from 2.4x to 2.9x and appears

to follow a quasi-logarithmic trend (Amdahl’s effect).
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Fig. 13. Overall speedup in parallel accelerographic records processing:
problem size vs. speedup (purple) and vs. data points per second (green).

The fully-parallelized implementation was able to process

between 1,700 to 2,300 data points per second, a significant

improvement over the original sequential version, which pro-

cessed 800 data points per second on average. This improve-

ment also follows a quasi-logarithmic trend on the problem

size, as shown in Figure 13.

VIII. DISCUSSION & FUTURE WORK

Although the number of seismic events contained in our

experimental dataset is relatively small, it offers a compre-

hensive range of real-world seismic data, generated in differ-

ent geographic locations with a variety of equipment types

and sampling rates. Although we used a relatively low-end

machine for the experiments, and performance may be further

improved on a higher-performance machine, our experimental

platform is reflective of the types of machines used in practice

in the Salvadoran Observatory of Natural Threats. It is worth

noting that the engineering work invested in parallelizing

each stage does not always directly translate to performance

gains. Despite similar levels of effort, Stage IX provides the

most significant improvements. Additionally, different stages

leverage available processors differently, with some using only

a fraction while others fully utilize all available resources.

Our findings indicate potential for leveraging tools like

OpenMP to enhance Accelerographic Records Processing,

though communication overhead remains a concern. We also

observed similarities in array management techniques across

stages IV, VIII, and V, resembling principles seen in MPI or

CUDA programming.

While we believe our approach to be an important step

toward the high-level goal of scaling up strong-motion records

processing, especially in regard to large-scale real-world

datasets, there are engineering and research challenges we

plan to address in future work. Enhancing strong-motion

record processing could involve automatic translation of di-

verse legacy code into a single programming language, such

as C++, and using search-based techniques [25, 10, 24] to

assist in parallelization of the code, which could streamline

development and improve overall efficiency. With adequate

time and resources, similar enhancements could extend to

other seismic-related applications, as well as processes related

to other natural threats, like vulcanology and landslides.

Additionally, there is room for further optimization through

the exploration of advanced parallel processing techniques

like tiling, wavefront scheduling, and the polyhedral model.

Furthermore, scaling our approach to larger experimental

accelerographic datasets presents an exciting opportunity to

assess its performance and scalability in real-world scenarios.

IX. RELATED WORK

A. Strong-Motion Records Databases

Several initiatives worldwide have been dedicated to collect-

ing and disseminating strong-motion data to advance seismic

research and hazard assessment. For instance, the ITACA

project focused on gathering, standardizing, and sharing strong

motion data acquired in Italy since 1972. By 2010, this

database encompassed 7,038 waveforms from analog and

digital instruments recorded during 1,019 earthquakes with

magnitudes reaching 6.9 [23]. Similarly, the Salvadoran Ac-

celerographic Repository stores 6,787 strong motion records
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from 1,615 seismic events between the years 1966 and 2019.

It scales up quickly; the most recent report shows 241 seismic

events recorded just during December 2023 [21]. Another

example is the Indian Strong Motion Instrumentation Network,

with around 220 accelerograph stations, which provides data

from approximately 300 strong ground motion records from

130 earthquakes [18]. Furthermore, a comprehensive database

has been established to study induced earthquakes in the

Groningen gas field, Netherlands. This repository houses over

8,500 processed ground motion recordings from 87 earth-

quakes, serving as a resource for refining seismic hazard and

risk models and conducting research in site response and

ground motion characteristics [27].

B. Earthquake Engineering and Urban Planning

Despite efforts to enhance safety through urban planning,

indiscriminate development and structural failures persist,

leading to significant loss of life and economic damage [1]. To

address these challenges, there is a need to prioritize the devel-

opment of resilient buildings and emergency response efforts

by mapping vulnerable urban areas and populations. While

progress has been made in evaluating individual facilities and

distributed systems, greater integration and collaboration are

necessary to improve overall seismic resilience [34]. In El Sal-

vador, the original sequential code discussed in this paper was

a component of a large project that united academia, industry,

and governmental agencies with the goal of updating building

design codes. Various software tools are utilized in earthquake

engineering and seismic risk assessment, enabling different

aspects of the analysis process. High-performance computing

clusters enable parallel job configurations for handling build-

ings independently [34]. Neural networks like the multi-layer

perceptron assess urban block vulnerability to earthquakes

[1]. Additionally, software tools such as Obspy [16, 7] and

TSPP [2] are employed for ground-motion processing, aiding

in structural design and seismic evaluation [20].

C. Seismic and Volcanic Observatories

Software plays a crucial role in supporting natural-threat

observatories by processing strong-motion records, like the

ones from El Salvador used in our experiments. A parallel

approach, similar to ours, using Python and MPI, enables

efficient processing of strong-motion files, albeit from vol-

canoes, demonstrating scalability with the number of events

and processor cores [9]. In contrast, sequential software like

Earthworm (developed by the USGS) and packages from the

Alaska Volcano Observatory provide robust tools for seismic

data analysis and real-time monitoring [28, 6]. Additionally,

the waveform suite from the University of Alaska Geophysical

Institute offers MATLAB code for waveform data manipula-

tion, ensuring data integrity and program stability [32]. These

software tools are vital for monitoring seismic and volcanic

activity and conducting research in these fields.

D. Early Warning Systems

Software supporting early warning systems for earthquakes

and tsunamis plays a pivotal role in mitigating the impact

of these natural disasters. The German Indonesian Tsunami

Early Warning System (GITEWS) Project has developed the

SeisComP3 software package, which offers reliable and fast

earthquake location and magnitude estimation capabilities

[13]. SeisComP3 is also used in El Salvador as a real-time

support tool that allows seismic technicians to visualize and

handle customized parameters for magnitude calculations. Fur-

thermore, machine learning approaches, such as Convolutional

Neural Networks (CNNs) and Long Short-Term Memory

(LSTM) networks, are utilized in Early Earthquake Warning

(EEW) systems to issue alerts promptly [4]. Early warning

systems require rapid data processing and transmission to

provide timely alerts, with mere seconds dedicated to sensor

data acquisition, processing, magnitude estimation, and deci-

sion transmission to the warning server [19, 8, 31]. Overall,

developing and deploying advanced software solutions are

essential for enhancing the effectiveness of early warning

systems, thereby reducing the impact of earthquakes and

tsunamis on vulnerable communities.

E. General purpose seismology research

Parallel programming plays a crucial role in advancing

seismology research by enabling the efficient processing of

strong-motion datasets. Computing Grids provide a platform

for sharing seismic data from diverse sources, facilitating

seismic waveform analysis, and uncovering observed regions’

geological features. The authors of [15] propose a framework

for massively parallel wavelet data processing of seismic

waveforms. Software tools like Seismic Analysis Code offer

capabilities for processing multiple signals concurrently, en-

hancing research productivity and enabling detailed seismic

event analysis [12, 33]. A server-side tool [29] allows parallel

processing of accelerometric waveforms through a combi-

nation of Python for signal processing, Fortran for parallel

acceleration and displacement response spectrum calculation,

and PHP for dynamic plot generation. Moreover, similar to our

approach’s architecture, efforts to parallelize source code using

High-Performance Fortran and OpenMP demonstrate a faster

and more accessible approach to simulating seismic radiation

interactions with near-surface geological structures [5].

Nowadays, a considerable portion of scientific software op-

erates sequentially. For instance, the SEISAN seismic analysis

system provides a comprehensive suite of programs written

primarily in Fortran, supplemented by some C code, facili-

tating earthquake analysis from both analog and digital data

sources [14]. Another example is the open-source software

PASCAL Quick Look eXtended (PQLX), which allows for

detailed analysis of seismographic data records to study am-

bient noise and detect earthquake events reliably [30]. Ad-

ditionally, MATLAB-based software like EQK SRC PARA

enables estimation of earthquake source spectrum spectral

parameters, which are essential for analyzing seismic events

and developing scaling laws for specific study regions [17].

These programming tools offer valuable support for seis-

mologists in analyzing seismic data, understanding earthquake

characteristics, and improving earthquake detection systems.
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X. CONCLUSION

Our paper introduces a fully-parallelized approach for

strong-motion record processing, marking a significant ad-

vancement over the original sequential version. Leveraging

parallel loops and task parallelization, our method effectively

addresses the challenge of efficiently processing accelero-

graphic data, providing scalability and speedup roughly pro-

portional to problem size. This demonstrates the potential

for parallel programming techniques to enhance scientific

software, playing a pivotal role in advancing seismology

research. By enabling efficient data processing, analysis, and

simulation of seismic events, such software contributes to

a deeper understanding of seismic phenomena and aids in

mitigating their impact on society.
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