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Adaptive Cooperative Load Transportation
by a Team of Quadrotors With Multiple
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Abstract— Cable-suspended load carried by multiple unman-
ned aerial vehicles (UAVs) has applications in many areas.
However, most existing aerial load transportation works are
tailored to a specific type of load transportation tasks, or assume
simplified system models or transportation scenarios. Further-
more, no existing works on this topic can provide a unified
framework to address multiple performance and safety con-
straints during the cooperative transportation operation. In this
paper, we propose and investigate a new constrained cooperative
control architecture for an UAV team, which are collaboratively
carrying a three-dimensional load, subject to multiple user-
defined time-varying performance and safety constraint require-
ments. A unified framework using universal barrier functions
has been proposed to deal with different types of constraint
requirements. Moreover, control saturation and uncertainties
in UAV inertia matrices are dealt with by employing adaptive
estimators. Exponential convergence on the distance and attitude
tracking errors can be guaranteed by the algorithm. Lastly,
we discuss a simulation example that further shows the efficacy
of the proposed cooperative control framework.

Index Terms— Adaptive cooperative transportation, cable-
suspended payload, multiple system constraints.

I. INTRODUCTION

CABLE-SUSPENDED load transportation by unmanned
aerial vehicles (UAVs), especially quadrotors, has

attracted significant attention over recent years [1], [2], [3], [4],
due to its vertical take-off and landing abilities and wide range
of potential applications including search/rescue missions and
package delivery. However, a single UAV usually suffers from
limited payload capacity, and is prone to failure in the face
of mechanical breakdowns. Therefore, it is advantageous to
use a group of UAVs to collaboratively transport a common
payload together, which is a modular design where the number
of UAVs can depend on the mission scenarios.
There has been a fruitful discussion on cooperative aerial

load transportation during the past decade. However, most
of existing works are tailored to a specific type of aerial
load transportation tasks, or assume simplified system models
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or transportation scenarios. For example, [5], [6] discuss
two quadrotors carrying a rod-shaped payload, [7], [8], [9],
[10] address quadrotors carrying a dimensionless point-mass
payload using three or more multirotor systems, and [11],
[12], [13], [14] consider simplified UAV models. These works
are not positioned to address a more generic class of load
transportation tasks where the load can be a three-dimensional
object, and the UAV models are highly nonlinear and uncer-
tain.
To overcome these limitations, other works, including [15],

[16], [17], [18], consider more generic operation scenarios,
with discussion on more realistic UAV models and/or pay-
load dimensions. Unfortunately, these works only focus on
unconstrained system operations during load transportation.
In reality, both the UAV team and load need to stay close to
the desired path, so that to ensure desirable formation pattern
and avoid collision with nearby obstacles. This demands that
the cooperative system needs to satisfy certain performance
constraint requirements. Moreover, for a team of UAVs to
cooperatively transport a common load, the distances between
any two UAVs in the team cannot be either too small or
too large, which can lead to inter-UAV collision and break-
down of the suspension cable, respectively. This implies the
load-carrying UAV team needs to satisfy certain safety con-
straint requirements. Failing to address these performance and
safety considerations can lead to failures of the cooperative
transportation tasks.
To address constrained operations during the load trans-

portation tasks, [19] addresses collision avoidance during path
planing, [20] discusses obstacle avoidance for two UAVs when
transporting a point-mass payload, [21], [22] consider payload
collision avoidance with environment obstacles during trans-
portation, and [23], [24] address constraints in the suspension
cable. However, these works fail to discuss constraints for
inter-UAV distances during the operation, which is a techni-
cally challenging problem due to the interconnections of UAVs
via payload. [25] discusses inter-UAV collision avoidance, but
ignores constraint requirements on the maximum allowable
inter-UAV distances, and fails to consider constraints for the
payload movement. Furthermore, most existing works that
discuss constrained load transportation tasks, including the
aforementioned [22], [23], [24], [25], use optimization-based
approaches. Solving the optimization problem in itself puts
a high demand for on-board real-time computation, which
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may not be realistic for small-size UAV platforms. Moreover,
no existing works, to the best of our knowledge, proposed
a unified framework to address both performance and safety
constraint requirements during the cooperative aerial load
transportation task, where both the UAV team and the payload
need to stay close to the desired trajectories, and the inter-UAV
distances cannot be either too small or too large. The main
difficulty is due to the coupling of nonlinear dynamics of
both the load and the UAVs, which are interconnected via
the cables.
In this work, we propose and investigate a new con-

strained cooperative control architecture for an UAV team,
which is collaboratively transporting a cable-suspended three-
dimensional rigid-body load. User-defined time-varying per-
formance and safety constraint requirements are considered
and addressed under this new and unified formation control
architecture. Specifically, to ensure operation performance,
constraint requirements on distance tracking errors of the
payload and each UAV are addressed. To guarantee safety,
we consider safety constraints on the inter-UAV distances,
which cannot be either too large or too small. Universal barrier
functions [26], [27], [28] are used to deal with the constraint
requirements, which can address different types of constraints
in a unified framework. Moreover, uncertainties in the UAV
inertia matrix, and control saturation effects of UAVs are
addressed by the use of adaptive laws. We demonstrate that the
proposed cooperative control law can guarantee exponential
convergence on the relative distance and attitude tracking
errors, with all constraint requirements met during the load
transportation operation.
The notations used in this work are fairly standard. Specif-

ically, R represents the real number set, R+ represents the
non-negative number set, and Im is the identity matrix in
R
m×m . (·)T denotes the transpose operation, | · | means the

absolute value of scalars, and ‖·‖ represents vectors’ Euclidean
norm or matrices’ induced norm. Furthermore, we use cθ
to denote cos θ , sθ to denote sin θ , and tθ to denote tan θ .
We also write ˙(·) as the first order time derivative of (·),
if (·) is differentiable. Next, Cn denotes the class of functions
that are n-times differentiable with respect to time, with the
derivatives being in the class of Cn−1. Besides, for any two
vectors v1, v2 ∈ R

3, the cross-product operator S(·) gives
S(v1)v2 = v1×v2. It is also true that S(v1)v2 = −S(v2)v1 and
vT1 S(v2)v1 = 0. Finally, SO(3) = {� ∈ R

3×3 | �T� = I3} is a
set of orthogonal matrices in R

3×3, and S2 = {x ∈ R
3 | ‖x‖ =

1} is a set of unit vectors in R
3.

II. PROBLEM FORMULATION

A. System Dynamics

Consider a group of N (N ≥ 3) UAVs that are cooperatively
transporting a rigid body payload connected via cables (for
example, see Figure 1), where the dynamics are given as

UAVs




mi p̈i(t) = −sat
(
Fi (t)

)
R(�i (t))ez + migez

+Ti (t)R(�L(t))ei (t)

�̇i (t) = �(�i (t))ωi (t)

Ji ω̇i (t) + S(ωi (t))Jiωi (t) = τi (t),

(1)

Fig. 1. Cable-suspended load transportation by UAVs (illustration only).

Load




mL p̈L(t) = mLgez −
N∑
i=1

Ti (t)R(�L(t))ei (t)

�̇L(t) = �(�L(t))ωL(t)

JLω̇L(t) + S(ωL(t))JLωL(t)

=
N∑
i=1

S(ri )(−Ti (t)ei (t)),

(2)

where mi ∈ R
+ is the mass of the i th quadrotor

(i = 1, · · · , N), and Ji ∈ R
3×3 is a symmetric positive

definite matrix representing the inertia. The position and
attitude in the inertial reference frame are represented as
pi(t) = [xi (t), yi (t), zi (t)]T ∈ R

3 and �i (t) = [φi (t),
θi (t), ψi (t)]T ∈ R

3, respectively. R(�i (t)) ∈ SO(3) is the
rotation matrix, which relates the body-fixed frame to the
inertial frame and is expressed as

R(�i )

=

 cθicψi sφi sθicψi − cφisψi cφisθicψi + sφi sψi

cθisψi sφi sθisψi + cφicψi cφisθisψi − sφicψi

−sθi sφicθi cφicθi


 . (3)

The rotational velocities with respect to this body-fixed frame
are denoted by ωi (t) = [ωxi (t), ωyi (t), ωzi (t)]T ∈ R

3, and
�(�i (t)) is the transformation matrix that relates the angular
velocity in the body-fixed frame to the rate of change of the
Euler angles in the inertial frame, and is given by

�(�i )=

 1 sφi tθi cφi tθi
0 cφi −sφi

0 sφi/cθi cφi/cθi


 , (4)

which is well defined and invertable when −π
2 < φi (t) < π

2
and −π

2 < θi (t) < π
2 . Furthermore, g ∈ R is the gravitational

acceleration and ez = [0, 0, 1]T ∈ R
3 is the unit vector.

Next, Ti (t) ∈ R
+ represents the tension in the i th rigid cable,

sat
(
Fi (t)

) ∈ R
+ denotes the thrust of the i th quadrotor Fi (t) ∈

R
+ (i = 1, · · · , N) which is subject to saturation nonlinearity

described in [29]:

sat
(
Fi (t)

) =
{
FMi , Fi (t) ≥ FMi

Fi (t), Fi (t) < FMi
,

where FMi is the saturation limit for thrust Fi (t) and sign(·)
is the sign function. Finally, τi (t) ∈ R

3 represents the torques
of the i th quadrotor (i = 1, · · · , N).
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Similarly, mL ∈ R
+ is the load mass, and JL ∈ R

3×3

is the load inertia that is symmetric and positive definite,
where the subscript L stands for “Load”. pL(t) = [xL(t),
yL(t), zL(t)]T ∈ R

3 and �L(t) = [φL(t), θL(t), ψL(t)]T ∈
R
3 represent the load position and attitude in the inertial

reference frame, respectively, and ωL(t) = [ωxL(t), ωyL(t),
ωzL(t)]T ∈ R

3 represents the load rotational velocity with
respect to its body-fixed frame. Furthermore, as shown in
Figure 1, ri ∈ R

3 is the attachment point on the payload by
the i th link, represented in the payload body-fixed frame.
Finally, ei (t) ∈ S2 is the unit direction vector from the
i th UAV mass center towards the i th link attachment point.

As shown in Appendix A (see (66)–(74)), the angular
motion dynamics of the UAV can be rewritten as

Mi (�i(t))�̈i (t) + Ci (�i (t), �̇i (t))�̇i (t)

= �T(�i (t))J
T
i τi (t), (5)

where �(�i(t)), Mi (�i (t)), and Ci (�i(t), �̇i (t)) are given
in (66), (70), and (71), respectively. Similarly

ML(�L(t))�̈L(t) + CL(�L(t), �̇L(t))�̇L(t)

= �T(�L(t))JTL

N∑
i=1

S(ri )(−Ti (t)ei (t)), (6)

where ML(�L(t)), and CL(�L(t), �̇L(t)) are given in (73)
and (74), respectively.

B. System Constraint Requirements

In the cooperative transportation task, the payload is sup-
posed to track its desired trajectory, denoted by pdL(t) �
[xdL(t), ydL(t), zdL(t)]T ∈ R

3. Moreover, all UAVs need
to track a desired formation pattern, with the coordinate of
the reference trajectory for the i th vehicle (i = 1, · · · , N)
denoted by pdi(t) � [xdi(t), ydi (t), zdi (t)]T ∈ R

3.
Now, define the line-of-sight (LOS) distance tracking error

for the payload deL(t) as

deL �
√

(xL − xdL)2 + (yL − ydL)2 + (zL − zdL)2, (7)

which is the distance between the desired and actual position
of the payload. Furthermore, for the i th quadrotor (i =
1, · · · , N), define the line-of-sight distance tracking error
dei (t) as

dei �
√

(xi − xdi)2 + (yi − ydi)2 + (zi − zdi )2. (8)

Besides, the desired LOS relative distance between any two
quadrotors ϑi j (t) is formulated as

ϑi j �
√

(xdi − xd j )2 + (ydi − yd j )2 + (zdi − zd j )2, (9)

and the actual LOS relative distance di j (t) is

di j �
√

(xi − x j )2 + (yi−y j )2 + (zi − z j )2. (10)

The configurations in the case of three quadrotors can be seen
in Figure 2.
During the cooperative transportation, there are certain

system constraint requirements that need to be satisfied,

Fig. 2. Illustration in the case of three quadrotors: for i, j = 1, 2, 3,
j �= i , quadrotors represented in dark colors and solid black are the real-time
positions (xi (t), yi (t), zi (t)), quadrotors represented in light colors and
dashed black are the reference locations (xdi (t), ydi (t), zdi (t)), dashed lines
in red are the desired path for each UAV, dashed lines in black are the desired
inter-quadrotor distances ϑi j (t), solid lines in black are the real-time inter-
quadrotor distances di j (t), and solid lines in blue are the real-time distance
tracking errors dei (t).

in order to ensure the precise and safe functioning of the
system. First, the payload position tracking error deL(t) needs
to meet the performance constraint requirement that

deL(t) < �dHL(t), (11)

where, for all t ≥ 0, �dHL(t) > 0 is a time-varying constraint
function that can be user defined, and is C3. This means the
payload should not deviate much from its desired trajectory.
Moreover, dei (t) has to meet the user-defined performance
constraint

dei(t) < �dHi(t), (12)

where �dHi(t) > 0 is a time-varying constraint function, and
is C3. This means each UAV cannot deviate too much from
its desired trajectory.
Next, define the LOS relative distance tracking error

between the i th and j th quadrotors (i, j = 1, · · · , N , j �= i )
as dei j (t) � di j (t) − ϑi j (t), which has to meet the following
safety constraint

−�Wi j (t) < dei j (t) < �Hi j (t), (13)

where �Hi j (t) > 0 is the upper constraint for dei j (t), and
−�Wi j (t) < 0 is the lower bound, with 0 < �Wi j (t) < ϑi j (t).
Both �Hi j (t) and �Wi j (t) are C3. The constraint requirement
(13) means that the inter-quadrotor distance cannot be either
too large or too small.
Remark 1: Both (11) and (12) belong to the performance

constraint requirements. The physical meaning is that during
the cooperative load transportation, both the load and the UAV
team should stay close to the desired trajectories. Violation
of such performance constraint requirements will result in
failure to keep the desired formation and/or collisions with
environment boundaries. (13) belongs to the safety constraint
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requirement. The physical meaning is that any two UAVs in
the team cannot be too close or too far apart, which will result
in inter-UAV collisions or the suspension cables being over
stretched, respectively.

C. Control Objective

The control objective for the cooperative transportation
problem is to design a control framework such that:
1) The payload distance tracking error deL(t) and the UAV

distance tracking errors dei(t) (i = 1, · · · , N) can all converge
into arbitrarily small neighbourhoods of zero;
2) The relative distance errors dei j (t) between any two

quadrotors can converge into arbitrarily small neighbourhoods
of zero;
3) The payload attitude tracking error �L(t) − �dL(t) and

the UAV attitude tracking errors �i (t) − �di (t) can converge
into arbitrarily small neighbourhoods of zero;
4) The system constraint requirements (11), (12), and (13)

are met during the operation.
We now present the following assumptions that will be used

in the theoretical analysis and controller synthesis.
Assumption 1: The payload reference trajectory xdL(t),

ydL(t), and zdL(t) are all C3, and for the i th quadrotor
(i = 1, · · · , N) xdi (t), ydi (t), and zdi (t) are C3. Moreover,
the reference payload attitude �dL(t) is C3, and the reference
yaw angle ψdi (t) is C2.
Assumption 2: The cables are massless and cannot be

stretched, and the tensions in the cables are unknown but
bounded.
Assumption 3: The payload mass mL and UAV mass mi

for the i th quadrotor (i = 1, · · · , N) are known. However,
the payload inertia JL and UAV inertia Ji are unknown, and
are assumed to be both upper and lower bounded, such that
for any z ∈ R

3, JLz
Tz < zT JLz < J̄LzTz and J i z

Tz <
zT Ji z < J̄i zTz, where J̄L, JL, J̄i , and J i are unknown positive
constants. As a direct result, the symmetric positive definite
matrices Mi (�i ) and ML(�L) in (70) and (73), respectively,
are both unknown and bounded, such that for any z ∈ R

3,
MizTz < zTMi (�i )z < M̄i zTz and MLzTz < zTML(�L)z <
M̄LzTz, where M̄i , Mi , M̄L, and ML are unknown constants.
Assumption 4 ([16]): Let

P =
[

I3 I3 · · · I3
S(r1) S(r2) · · · S(rN )

]
∈ R

6×3N , (14)

we assume rank(P) = 6.
Remark 2: This full row rank assumption in Assumption 4

can be realized when N ≥ 3.
Assumption 5: The UAV and load attitudes satisfy −π

2 <

φL(t) < π
2 , −π

2 < θL(t) < π
2 , −π

2 < φi (t) < π
2 , and −π

2 <
θi (t) < π

2 , where i = 1, · · · , N .
Remark 3: Assumption 5 is necessary to ensure that

�(�i (t)) defined in (4), as well as �(�L(t)), are both
invertable.
In order to simplify representations of signals, we will omit

the time and state dependence of signals for the rest of the
discussion in this work.

III. UNIVERSAL BARRIER FUNCTION (UBF)

Here we introduce the UBF to be used later in the analysis,
which is modified from our earlier work [26] to address the
issue of constraint requirements that can be time-varying and
asymmetric. Specifically, to address the constraint require-
ments (11), (12), and (13), the following transformed error
variables are introduced for the load and quadrotors as follows

ηeL = �dHLdeL
�dHL − deL

, ηei = �dHidei
�dHi − dei

,

ηei j = �Hi j�Wi j dei j
(�Hi j − dei j )(�Wi j + dei j )

. (15)

The universal barrier functions used to deal with the con-
straint requirements (11), (12), and (13) for the i th quadrotor
(i = 1, · · · , N) are then defined as

VeL = 1

2
η2eL, Vei = 1

2
η2ei , Vei j = 1

2
η2ei j . (16)

Take Vei j for an example. It is easy to see that ηei j = 0 if
and only if dei j = 0. Besides, when dei j → �Hi j , we have
ηei j → +∞, hence Vei j → +∞. Alternatively, when dei j →
−�Wi j , we have ηei j → −∞, therefore Vei j → +∞.

IV. CONTROL SYNTHESIS AND ANALYSIS

In this section we present the backstepping controller syn-
thesis procedure, followed by our main theoretical results. The
main idea is to first treat the cables as “actuators” for the
payload, and design the “desired cable tension” for the payload
to track the desired payload trajectory. Then design the UAV
control laws with the “desired cable tension” to achieve the
desired formation pattern tracking.
The next lemma will be used in the controller synthesis.
Lemma 1: For any ε > 0 and any z ∈ R, we have 0 ≤

|z| − z2√
z2+ε2

< ε.

A. “Desired Cable Tension” Design

Step 1:
We first consider the position kinematics of the payload.

The time derivative of the UBF VeL leads to

V̇eL = ηeLη̇eL = ηeL

[
∂ηeL

∂�dHL
�̇dHL + ∂ηeL

∂deL
ḋeL

]

= ηeL

[
∂ηeL

∂�dHL
�̇dHL + ∂ηeL

∂deL

1

deL

(
(xL − xdL)ẋL

+ (yL − ydL)ẏL + (zL − zdL)żL − ξL

)]
, (17)

where

ξL = (xL − xdL)ẋdL + (yL − ydL)ẏdL + (zL − zdL)żdL.

Now, denote EL = 1
deL

[xL − xdL, yL − ydL, zL − zdL]T ∈ R
3,

note that ET
LEL = 1. Furthermore, let z2L = ṗL − αpL, we

design the stabilizing function αpL as

αpL = EL
∂ηeL
∂deL

(
− ∂ηeL

∂�dHL
�̇dHL − K1LηeL

)
+ ṗdL, (18)
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where ∂ηeL
∂deL

= �2
dHL

(�dHL−deL)2
> 0, and K1L > 0 is a control

constant. Therefore, (17) further leads to

V̇eL = ηeL
∂ηeL

∂deL
ET
Lz2L − K1Lη2eL. (19)

Step 2:
Now we address the translational dynamics of the pay-

load. Design the Lyapunov function candidate as V2L =
1
2mLzT2Lz2L, and its time derivative leads to

V̇2L = zT2L
[
mL p̈L − mLα̇pL

]
= zT2L

[
−

N∑
i=1

Tdi RdLedi −
N∑
i=1

Tdi (RL − RdL)edi

+
N∑
i=1

RL(Tdi edi − Tiei ) + mLgez − mLα̇pL

]
, (20)

where RL � R(�L(t)), RdL � R(�dL(t)), and Tdi � Tdi (t) is
the desired cable tension in the i th cable. Under Assumption 3
and Lemma 1, we have

zT2L

[
−

N∑
i=1

Tdi (RL − RdL)edi +
N∑
i=1

RL(Tdi edi − Tiei )

]

≤ ‖z2L‖δ̄1L < εL δ̄1L + δ̄1L
‖z2L‖2√

‖z2L‖2 + ε2L

,

with δ̄1L > 0 being an unknown upper bound, and εL being a
small positive constant.
Next, treat −∑N

i=1 Tdi RdLedi in (20) as a virtual control
signal, represent it as −FdL for convenience, and design it as

−
N∑
i=1

Tdi RdLedi

= −FdL

= −mLgez + mLα̇pL − K2Lz2L − ηeL
∂ηeL

∂deL
EL

− δ̂1L
z2L√

‖z2L‖2 + ε2L

, (21)

where K2L > 0 is a control constant, and δ̂1L is the adaptive
estimate of the unknown constant δ̄1L, which is designed as

˙̂
δ1L = nδ1L

‖z2L‖2√
‖z2L‖2 + ε2L

− σδ1L δ̂1L, (22)

with nδ1L and σδ1L being positive adaptive gains.
Now, design the Lyapunov function as

VLoad1 = VeL + V2L + Vδ1L, Vδ1L = 1

2nδ1L
δ̃21L, (23)

where δ̃1L = δ̂1L − δ̄1L, and from (19), (20), (21), and (22),
we can get

V̇Load1 < −K1Lη2eL − K2Lz
T
2Lz2L − σδ1L

2nδ1L
δ̃21L + c1L, (24)

where c1L �
(
εLδ̄1L + σδ1L

2nδ1L
δ̄21L

)
is a constant.

Step 3:
Next, we discuss the attitude kinematics of the payload.

Define z3L = �L − �dL and z4L = �̇L − α�L, where the
stabilizing function is designed as

α�L = −K3Lz3L + �̇dL, (25)

where K3L > 0 is a control constant. Now, design the
Lyapunov function candidate as V3L = 1

2 z
T
3Lz3L, its derivative

gives rise to

V̇3L = −K3Lz
T
3Lz3L + zT3Lz4L. (26)

Step 4:
Finally, for the load dynamics control, we design the

Lyapunov function candidate as V4L = 1
2 z

T
4LMLz4L. With

some algebraic analysis shown in Appendix B (see (75)–(77)),
treat

∑N
i=1 S(ri )(−Tdi edi ) in (75) as a virtual control signal,

represent it as −MdL for convenience, and design it as

N∑
i=1

S(ri )(−Tdi edi ) = −MdL

= − �Lz4L‖µ̄L‖2ρ̂2
JL√

‖�Lz4L‖2‖µ̄L‖2ρ̂2
JL + ε2L

, (27)

where

µ̄L = K4L�T
Lz4L + �T

Lz3L + ζ̂L
�T
Lz4L�2

L√
‖z4L‖2�2

L + ε2L

+ δ̂2L
�T
Lz4L√

‖z4L‖2 + ε2L

. (28)

Here, K4L > 0 is a positive control gain. �L is introduced
in (77). ρ̂JL is the adaptive estimate of the unknown lower
bound ρJL = 1

JL
, ζ̂L is the adaptive estimate of the unknown

bound ζ̄L that is introduced in (77), and δ̂2L is the adaptive
estimate of the unknown bound δ̄2L that is introduced in (76),
where the adaptive laws are designed as

˙̂ρJL = nρ JLz
T
4L�T

L µ̄L − σρ JLρ̂JL, (29)

˙̂
ζL = nζL

‖z4L‖2�2
L√

‖z4L‖2�2
L + ε2L

− σζL ζ̂L, (30)

˙̂
δ2L = nδ2L

‖z4L‖2√
‖z4L‖2 + ε2L

− σδ2L δ̂2L, (31)

with nρ JL, σρ JL, nζL, σζL, nδ2L, and σδ2L are positive adaptive
gains.
Next, we design the Lyapunov function candidate as

VLoad2 = V3L + V4L + VζL + VρL + Vδ2L, (32)

VζL = 1

2nζL
ζ̃ 2
L , VρL = JL

2nρ JL
ρ̃2
JL, Vδ2L = 1

2nδ2L
δ̃22L,

(33)

where ζ̃L = ζ̂L − ζ̄L, ρ̃JL = ρ̂JL − ρJL (ρJL = 1
JL

), and

δ̃2L = δ̂2L − δ̄2L. The time derivative of VLoad2 leads to

V̇Load2 < −K3Lz
T
3Lz3L − K4L

M̄L
zT4LMLz4L − σζL

2nζL
ζ̃ 2
L

− σρ JL JL
2nρ JL

ρ̃2
JL − σδ2L

2nδ2L
δ̃22L + c2L, (34)
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where c2L is a constant and is defined as c2L � εL JL +
εL(δ̄2L + ζ̄L) + σζL

2nζL
ζ̄ 2
L + σρ JL

2nρ JL

1
JL

+ σδ2L
2nδ2L

δ̄22L.
Step 5:
Now we will derive the “desired cable tension” from (21)

and (27), therefore we can get


Td1ed1
...

TdNedN


 = PT(PPT)−1

[
RT
dLFdL
MdL

]
, (35)

with details presented in Appendix C (see (78)).

B. UAV Distance Control Design

Step 6:
From this step onwards, we will look into the kinematics

and dynamics of each UAV. At this step, we first consider the
position kinematics of the quadrotors. Design the universal
barrier function as

V1 =
N∑
i=1

(
Vei +

N∑
j=1, j �=i

Vei j
)
, (36)

with Vei and Vei j defined in (16).
With algebraic analysis shown in Appendix D (see

(79)–(82)), for V̇1 we have

V̇1 =
N∑
i=1

{
− ηeiξi −

N∑
j=1, j �=i

ηei j ξei j + ET
i ṗi

}
, (37)

where ξi is introduced in (80), ξei j is introduced in (82), and
Ei = [Exi , Eyi , Ezi ]T ∈ R

3 with

Exi

= ηei
∂ηei

∂dei

1

dei
(xi − xdi ) +

N∑
j=1, j �=i

2ηei j
∂ηei j

∂dei j

1

di j
(xi − x j ),

Eyi

= ηei
∂ηei

∂dei

1

dei
(yi − ydi ) +

N∑
j=1, j �=i

2ηei j
∂ηei j

∂dei j

1

di j
(yi − y j ),

Ezi

= ηei
∂ηei

∂dei

1

dei
(zi − zdi ) +

N∑
j=1, j �=i

2ηei j
∂ηei j

∂dei j

1

di j
(zi − z j ).

Next, define the fictitious velocity tracking error as z2i = ṗi −
αpi , with the stabilizing function αpi ∈ R

3 (i = 1, · · · , N)
designed as

αpi = Ei

ET
i Ei

{
− Keiη

2
ei −

N∑
j=1, j �=i

Kei jη
2
ei j

+ ηeiξi +
N∑

j=1, j �=i

ηei j ξei j

}
, (38)

where Kei > 0 and Kei j > 0 are the control gains.
Remark 4: In (38), singularity can occur when ‖Ei‖ = 0.

Since ‖Ei‖ = 0 if and only if Exi = 0, Eyi = 0, and
Ezi = 0 at the same time, there are two cases when this
can happen. First, ‖Ei‖ = 0 when both dei = 0 and dei j = 0.

In this situation, all the terms in the bracket on the right-hand-
side of (38) are also zero, and L’Hôpital’s rule we simply
have αpi = 0. Second, Exi = 0, Eyi = 0, and Ezi = 0 can
happen at the same time when the position error vector pi−pdi
and the relative position vectors pi − p j ( j �= i) are linearly
dependent, which is a “deadlock situation” [30]. This situation
can be bypassed by changing the reference trajectories and/or
the constraint functions at the deadlock, in order to allow
the vehicle breaking away from the deadlock. For the rest
of discussion it is assumed that ‖Ei‖ > 0 is guaranteed.

With the controller design, (37) becomes

V̇1 =
N∑
i=1

(
ET
i z2i − Keiη

2
ei −

N∑
j=1, j �=i

Kei jη
2
ei j

)
. (39)

Step 7:
At this step, we consider the translational dynamics of the

quadrotors. To address the saturation nonlinearity sat
(
Fi
)
, the

following smooth function [29] is first introduced

ϒ(Fi ) = FMi tanh

(
Fi
FMi

)

= FMi

exp ( Fi
FMi

) − exp (− Fi
FMi

)

exp ( Fi
FMi

) + exp (− Fi
FMi

)
.

Then, from (1), the translation dynamics of the i th quadrotor
can be expressed as

p̈i = gez − 1

mi
sat(Fi )(Rdi + Ri − Rdi )ez + 1

mi
Ti RLei

= gez − 1

mi
ϒ(Fi )Rdi ez + 1

mi
Ti RLei − 1

mi
ζFi Rdi ez

− 1

mi
sat(Fi )(Ri − Rdi )ez,

where ζFi = sat(Fi ) − ϒ(Fi ), which is bounded and satisfies
the following condition [29]

|ζFi | = |sat(Fi ) − ϒ(Fi )| ≤ FMi
(
1 − tanh(1)

) = dFi ,

where dFi is unknown.
By invoking the mean value theorem [31], the function

ϒ(Fi ) can be expressed as ϒ(Fi ) = ϒ(F0
i )+ ∂ϒ(Fi )

∂Fi
|Fi=Fµ

i
Fi

where F0
i is an non-negative constant and Fµ

i = (1−µ)F0
i +

µFi with µ ∈ (0, 1). Selecting F0
i = 0 makes ϒ(F0

i ) = 0,
hence ϒ(Fi ) = ∂ϒ(Fi )

∂Fi
|Fi=Fµ

i
Fi .

Let V2 = ∑N
i=1

1
2 z

T
2i z2i , and its time derivative gives

V̇2 =
N∑
i=1

zT2i

(
gez + 1

mi
RL(Tdi e

T
di ei )ei − α̇pi − bmiui

− 1

mi
sat(Fi )(Ri − Rdi )ez − 1

mi
ζFi Rdi ez

+ 1

mi
RL

(
Ti − (Tdi e

T
di ei )

)
ei
)
, (40)

where we denote ui = Fi Rdi ez , with Ri � R(�i ), Rdi �
R(�di ), and bmi = 1

mi

∂ϒ(Fi )
∂Fi

|Fi=Fµ
i

= 1
mi

(
1 − tanh2

( Fµ
i

FMi

))
satisfying 0 < bmi ≤ bmi ≤ 1

mi
([31]) with bmi being

an unknown positive constant. Now, for the i th quadrotor
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(i = 1, · · · , N), the control law ui ∈ R
3, and adaptive laws

for the estimators δ̂i and ρ̂mi are designed as

ui = z2i‖ūi‖2ρ̂2
mi√

‖z2i‖2‖ūi‖2ρ̂2
mi + ε2i

, (41)

ūi = Ei − α̇pi + gez + K2i z2i + δ̂i
z2i√

‖z2i‖2 + ε2i

+ 1

mi
RL(Tdi e

T
di ei )ei , (42)

˙̂δi = nδi
‖z2i‖2√

‖z2i‖2 + ε2i

− σδi δ̂i , (43)

˙̂ρmi = nρmi z
T
2i ūi − σρmi ρ̂mi , (44)

where K2i > 0 is a control gain, εi > 0 is a design constant,
δ̂i is the estimation of the unknown constant δ̄i such that under
Assumptions 2, 3 and the boundedness of ζFi ,∥∥∥∥ 1

mi
sat(Fi )(Ri − Rdi )ez

∥∥∥∥ +
∥∥∥∥ 1

mi
RL

(
Ti − (Tdi e

T
di ei )

)
ei

∥∥∥∥
+

∥∥∥∥ 1

mi
ζFi Rdi ez

∥∥∥∥ ≤ δ̄i ,

ρ̂mi is the estimation of the unknown constant ρmi = 1
bmi

, and
nδi , σδi , nρmi , and σρmi are positive adaptive gains.

Now, choose the following Lyapunov function candidate

Vpos = V1 + V2 + Vδ + Vρm ,

Vδ =
N∑
i=1

1

2nδi
δ̃2i , Vρm =

N∑
i=1

bmi

2nρmi

ρ̃2
mi , (45)

where δ̃i = δ̂i − δ̄i and ρ̃mi = ρ̂mi −ρmi (ρmi = 1
bmi

). We can
further get

V̇pos <

N∑
i=1

(
− Keiη

2
ei −

N∑
j=1, j �=i

Kei jη
2
ei j − K2i z

T
2i z2i

− σδi

2nδi
δ̃2i − bmiσρmi

2nρmi

ρ̃2
mi + c1i

)
, (46)

where c1i is a constant defined as c1i � εi (bmi + δ̄i )+ σδi
2nδi

δ̄2i +
σρmi
2nρmi

1
bmi

.

Denote VUAV1 = VLoad1 + VLoad2 + Vpos, after some
algebraic manipulation, we can get

V̇UAV1 < −κ1VUAV1 + �1, (47)

where

κ1 � min
i, j

(
2K1L,

2K2L

ML
, 2K3L,

2K4L

M̄L
, 2Kei , 2Kei j , 2K2i ,

σδ1L, σζL, σρ JL, σδ2L, σδi , σρmi

)
,

�1 � c1L + c2L +
N∑
i=1

c1i .

The above backstepping design for the payload and the
position of the quadrotors leads to the following results.

Theorem 1: With the UAV thrust laws designed as (41) and
(42), and adaptive laws (22), (29), (30), (31), (43), and (44) the
position control of the quadrotors and the payload described
in (1) and (2) under Assumptions 1–5 have the following
properties:
i) The user-defined constraints (11), (12), and (13) will be

satisfied for t ≥ 0.
ii) The transformed distance tracking errors ηeL, ηei , ηei j ,

(i = 1, · · · , N, j �= i ) and attitude tracking error of
payload z3L will converge into the sets{

x = ηeL, ηei , ηei j

∣∣∣ |x | < εη, εη =
√
2�1
κ1

}
, (48)

{
z3L

∣∣∣ ‖z3L‖ < εη, εη =
√
2�1
κ1

}
, (49)

and as a result, the actual distance tracking errors deL,
dei , and dei j will converge to the sets{

x = deL, dei
∣∣∣ x < εχH,i

}
, (50){

dei j
∣∣∣ − ειW,i < dei j < ειH,i

}
, (51)

where

εχH,i = εη�dHi

�dHi + εη
, (52)

and we have ειH,i expressed in (53), with ειW,i expressed
in (54), shown at the bottom of the next page, where
�H = �Hi j and �W = �Wi j for i, j = 1, · · · , N , j �= i .

iii) The control laws as (41) and (42), and adaptive laws (22),
(29), (30), (31), (43), and (44) are all uniformly bounded.
Proof: See Appendix E.

Remark 5: In Theorem 1, using L’Hôpital’s rule we get

lim
εη→0

ειH,i = 0, lim
εη→0

ειW,i = 0, lim
εη→0

εχH,i = 0 (55)

for i = 1, · · · , N . This implies that the transformed error vari-
ables ηeL, ηei , and ηei j , converge into small neighbourhoods
of zero, so does the actual distance tracking errors deL, dei ,
and dei j .
Remark 6: To reduce the size of the set in (48) and (49),

we need to select large κ1 and small �1. To make κ1 large,
we can select large control gains K1L, K2L, K3L, K4L, Kei ,
Kei j , and K2i for i, j = 1, · · · , N , j �= i , and large adaptive
control parameters σδ1L, σζL, σρ JL, σδ2L, σδi , and σρmi , for
i = 1, · · · , N . To make �1 small, we can select small εL
and εi , and large adaptive control parameters nδ1L, nζL, nρ JL,
nδ2L, nδi , and nρmi .

C. UAV Attitude Control Design

Step 8:
Here we consider the attitude kinematics of the quadrotors.

Define z3i = �i−�di and z4i = �̇i−α�i , where �di is shown
in Appendix F and α�i is a stabilizing function designed as

α�i = −
(
K3i + νi

2

)
z3i , (56)
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with K3i and νi being a positive control gain and a positive
design constant, respectively. Now, design the Lyapunov can-
didate as V3 = ∑N

i=1
1
2 z

T
3i z3i , its derivative gives rise to

V̇3 ≤
N∑
i=1

(
− K3i z

T
3i z3i + zT3i z4i + 1

2νi
�̄2

di

)
. (57)

Details including the definition of �̄di can be seen in
Appendix F.
Step 9:
Now, choose the Lyapunov function candidate as V4 =∑N
i=1

1
2 z

T
4i Mi z4i . With some algebric analysis shown in

Appendix G (see (88)–(89)), design the control law for the
i th UAV as

τi = − �i z4i‖τ̄i‖2ρ̂2
J i√

‖�i z4i‖2‖τ̄i‖2ρ̂2
J i + ε2i

, (58)

τ̄i = K4i�
T
i z4i + �T

i z3i + ζ̂i
�T
i z4i�

2
i√

‖z4i‖2�2
i + ε2i

, (59)

˙̂ρJ i = nρ J i z
T
4i�

T
i τ̄i − σρ J i ρ̂J i , (60)

˙̂
ζi = nζ i

‖z4i‖2�2
i√

‖z4i‖2�2
i + ε2i

− σζ i ζ̂i , (61)

where K4i > 0 is a positive control gain. �i is introduced
in (89). ρ̂J i is the adaptive estimate of the unknown constant
ρJ i = 1

J i
, and ζ̂i is the adaptive estimate of the unknown

constant ζ̄i that is introduced in (89). nρ J i , σρ J i , nζ i , and σζ i

are positive adaptive gains. Denote

Vatt = V3 + V4 + Vζ + Vρ,

Vζ =
N∑
i=1

1

2nζ i
ζ̃ 2
i , Vρ =

N∑
i=1

J i
2nρ J i

ρ̃2
J i , (62)

where ζ̃i = ζ̂i − ζ̄i and ρ̃J i = ρ̂J i −ρJ i . After some algebraic
manipulation, we can arrive at

V̇att <

N∑
i=1

(
− K3i z

T
3i z3i − K4i

M̄i
zT4i Mi z4i − σζ i

2nζ i
ζ̃ 2
i

− σρ J i J i
2nρ J i

ρ̃2
J i + c2i

)
, (63)

where c2i is a constant and is defined as c2i = εi (J i + ζ̄i ) +
σζ i
2nζ i

ζ̄ 2
i + σρ J i

2nρ J i

1
J i

+ 1
2νi

�̄2
di .

Hence, let the Lyapunov function for the attitude part of
the quadrotor be VUAV2 = Vatt, we can get

V̇UAV2 < −κ2VUAV2 + �2, (64)

where

κ2 � min
i

(
2K3i ,

2K4i

M̄i
, σζ i , σρ J i

)
, �2 �

N∑
i=1

c2i .

The above backstepping design for the attitude part of UAVs
leads to the following theoretical result.
Theorem 2: With the UAV torque laws as (58) and (59),

and adaptive laws (60) and (61), the attitude control of the
quadrotor system described by (1) under Assumptions 1–5 has
the following properties:
i) The attitude tracking error of the quadrotor z3i (i =

1, · · · , N) will converge into the set{
z3i

∣∣∣ ‖z3i‖ < εη, εη =
√
2�2
κ2

}
, (65)

ii) The torque laws (58) and (59), and adaptive laws (60)
and (61) are all uniformly bounded.
Proof: See Appendix H.

Remark 7: To reduce the set size in (65), large κ2 and small
�2 can be selected. To make κ2 large, we can select large
control gains K3i and K4i for i = 1, · · · , N , and large adaptive
control parameters σζ i and σρ J i for i = 1, · · · , N . To make
�2 small, we can select small εi , and large adaptive control
parameters nζ i and nρ J i for i = 1, · · · , N .

Remark 8: Once the thrust and torque of the i th quadrotor
(i = 1, · · · , N) are determined, the propeller speeds can be
calculated using the following relation


Fi
τφi

τθ i

τψ i


 =




υi υi υi υi
0 −liυi 0 liυi

−liυi 0 liυi 0
ιi −ιi ιi −ιi






ω2
roti1

ω2
roti2

ω2
roti3

ω2
roti4


 ,

where Fi ∈ R
+ is subject to saturation, τi =

[τφi , τθ i , τψ i ]T ∈ R
3. ωroti1, ωroti2, ωroti3, and ωroti4 represent

the front, right, rear, and left propeller speeds of the i th
quadrotor, respectively. li is the distance between the center of
the propeller and the center of the i th quadrotor, υi is a thrust
factor of the i th quadrotor, and ιi is a drag factor of the i th
quadrotor (i = 1, · · · , N).
The overall control algorithm can be summarized into the

following block diagram (Figure 3).

V. SIMULATION STUDIES

In this section, a simulation example is carried out with a
team of N = 4 quadrotors and an irregular payload. The model
parameters of the quadrotors are mi = 1kg, g = 9.81m/s2,
Ji = diag[0.109, 0.103, 0.0625]kg · m2, and FMi = 75N,
i = 1, 2, 3, 4. The mass and inertia matrix of the payload

ειH,i =
−(�H�W − εη(�H − �W)) +

√
�2

H�2
W + ε2η(�H + �W)2 − 2εη�H�W(�H − �W)

2εη
, (53)

ειW,i =
−(�H�W + εη(�H − �W)) +

√
�2

H�2
W + ε2η(�H + �W)2 + 2εη�H�W(�H − �W)

2εη
. (54)
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Fig. 3. Block diagram of the overall control algorithm.

are mL = 2kg and JL = diag[0.095, 0.14, 0.2388]kg · m2,
respectively. Note that Ji and JL are unknown to the controller
design. The length of cables is li = 2.5m, i = 1, 2, 3, 4,
and they are attached to the points of the payload r1 = [0.25,
−0.2, −0.45]T, r2 = [−0.5, −0.4, −0.15]T, r3 = [−0.5,
0.4, 0.15]T, and r4 = [0.5, 0.4, 0]T. Note that the units of the
position, attitude, translational and angular velocities are m,
rad, m/s, and rad/s, respectively. The desired trajectory of the
payload is selected as pdL(t) = [xdL(t), ydL(t), zdL(t)]T =
[0.2t − 0.35, 3.5 sin(0.15t), −0.2t + 0.01 sin(25t) − 1.5]T.
The desired attitude of the payload is �dL = [0, 0, 0]T.
Next, the desired unit direction vector from the mass center

of the i th UAV towards the i th link attachment point is sele-
cted as edi (t) = [edi1(t), edi2(t), edi3(t)]T where edi1(t) =
ϕi

xdL(t)−xdL(t+�dLi )‖pdL(t)−pdL(t+�dLi )‖ , edi2(t) = ϕi
ydL(t)−ydL(t+�dLi )

‖pdL(t)−pdL(t+�dLi )‖ ,

edi3(t) =
√
1 − ϕ2

i + ϕ2
i

|zdL(t)−zdL(t+�dLi )|2‖pdL(t)−pdL(t+�dLi )‖ , ϕi = 0.35, and

�dLi = 2, i = 1, 2, 3, 4. Thus, the desired trajectory of the
i th UAV can be written as pdi = pdL + R(�dL)ri − li edi .
Besides, the desired yaw angle of the i th UAV is selected as
ψdi = 0, i = 1, 2, 3, 4. Moreover, the constraint functions
are selected as �dHi = (7.8 − 0.2)e−0.4t + 0.2, �dHL =
(7.8 − 0.2)e−0.4t + 0.2, �Hi j = (2 − 0.1)e−0.1t + 0.1, and
�Wi j = (1.8 − 0.1)e−0.15t + 0.1, i, j = 1, 2, 3, 4, i �= j .
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Fig. 4. Initial conditions of the load and quadrotors in 3D space at t = 0.

To implement the proposed control framework, the design
parameters are chosen as nδ1L = 0.25, nρ JL = 0.25, nζL =
0.25, nδ2L = 0.25, σδ1L = 0.1, σρ JL = 0.1, σζL = 0.1,
σδ2L = 0.1, εL = 0.1, εi = 0.1, nδi = 0.15, nρ J i = 0.15,
nζ i = 0.15, nρmi = 0.1, σδi = 0.05, σρ J i = 0.05, σζ i = 0.05,
σρmi = 0.01, and i = 1, 2, 3, 4. The control gains are designed
as K1L = 3.55, K2L = 3.55, K3L = 2.35, K4L = 2.35,
Kei = 3.15, Kei j = 0.45, Kv i = 3.15, νi = 0.5, K�i = 0.75,
and Kωi = 1.2, i = 1, 2, 3, 4.
The initial position and attitude of the payload are pL(0) =

[0.6, 0.6, 4.5]T and �L(0) = [−0.2, −0.2, 0.3]T, respec-
tively. Thus, the initial position of the i th UAV can be
expressed as pi (0) = pL(0) + R

(
�L(0)

)
ρi − li ei (0), where

e1(0) = [0.2208, −0.2208, 0.95]T, e2(0) = [−0.1407,
0.1407, 0.98]T, e3(0) = [−0.1407, −0.1407, 0.98]T,
e4(0) = [−0.1719, −0.1719, 0.97]T, and the initial attitude
of the i th UAV is �i (0) = [0, 0, 0.3]T, i = 1, 2, 3, 4.
The initial positions of quadrotors and the payload in 3D
space are recorded in Figure 4 to show the shape of this
irregular payload, the initial attitude of the payload, the cable
connection locations, and the initial positions of UAVs. The
initial conditions of the translational and angular velocities of
every UAV and the payload are zero.
The simulation results are presented in Figures 5-10. The 3D

trajectories of four quadrotors and one payload are depicted
in Figure 5. A YouTube video for the simulation process can
also be viewed at: https://youtu.be/XrKB_DVq3DU
(To view the video, copy and paste the complete URL to
a web browser). It can be observed that the quadrotors and
payload can track the desired N-shaped paths around two
obstacles represented by cylinders. The LOS distance tracking
errors dei and deL under the proposed controller are shown in
Figure 6 with �dHi and �dHL, i = 1, 2, 3, 4. From this figure,
we see that dei and deL can converge to small neighborhoods
of the origin without violation of the performance constraints
�dHi and �dHL, respectively. Figure 7 gives the profile of
the inter-quadrotor distance tracking errors dei j under the
proposed controller, i, j = 1, 2, 3, 4, j �= i . It is clear
that the safety constraint requirements are met during the

Fig. 5. Trajectories of the quadrotors and the load in 3D space.

Fig. 6. The profile of the LOS distance tracking errors dei with �dHi ,
i = 1, 2, 3, 4, and deL with �dHL.

Fig. 7. The profile of the relative inter-quadrotor distance tracking errors
dei j with �Hi j and −�Wi j , i, j = 1, 2, 3, 4, i �= j .

cooperative transportation operation since dei j always stays
between the constraint functions, −�Wi j and �Hi j . The profile

Authorized licensed use limited to: UNIVERSITY OF KENTUCKY. Downloaded on September 25,2024 at 22:15:09 UTC from IEEE Xplore.  Restrictions apply. 



JIN AND HU: ADAPTIVE COOPERATIVE LOAD TRANSPORTATION BY A TEAM OF QUADROTORS 811

Fig. 8. The profile of the attitudes of the payload and the quadrotors, φL,
θL, ψL, φi , θi , and ψi , i = 1, 2, 3, 4.

Fig. 9. The thrust Fi of quadrotors, i = 1, 2, 3, 4.

Fig. 10. Torques τφi , τθ i , τψ i of quadrotors, i = 1, 2, 3, 4.

of the attitudes of the payload and quadrotors, φL, θL, ψL,
φi , θi , and ψi , i = 1, 2, 3, 4, presented in Figure 8 shows

that the convergence of the attitudes to their own desired
values despite the lack of model parameters. The thrust
Fi subject to saturation and the torques of φi , θi and ψi ,
i = 1, 2, 3, 4, are plotted in Figure 9 and 10, respectively.
The sum of thrusts provided by every quadrotor can make
this cable-suspended cooperative system track the reference
trajectory with desired acceleration. The torques can stabilize
the attitude of quadrotors and make the payload to track its
desired angles despite the lack of accurate model parameters.
From the aforementioned discussion, we can now conclude
that the simulation results align with the theoretical results
discussed in Theorem 1 and 2.

VI. CONCLUDING REMARKS

In this paper, we propose a new constrained cooperative
control architecture for load transportation by a group of
UAVs. Multiple user-defined time-varying system constraint
requirements on performance and safety during the operation
are dealt with by the universal barrier function structures.
Control saturation and uncertainties in UAV inertia matrices
are dealt with by employing adaptive estimators. Exponential
convergence of the distance and attitude tracking errors can be
guaranteed. Future research includes experiment verification
of the framework, and mitigation of measurement noise and
environment disturbances during cooperative load transporta-
tion tasks.

APPENDIX

A. System Dynamics

Denote

�(�i) = �−1(�i ), (66)

from (1) we get

ωi = �(�i)�̇i . (67)

Hence, multiply JTi on both sides of the third equation in (1),
and substitute (67) into the third equation in (1), the angular
motion dynamics of the UAV can be rewritten as

JTi Ji
(
�(�i)�̈i + �̇(�i )�̇i

)
+ JTi S

(
�(�i)�̇i

)
Ji�(�i )�̇i = JTi τi . (68)

Now, multiply �T(�i ) on both sides of (68), we can get

Mi (�i )�̈i + Ci (�i , �̇i )�̇i = �T(�i )J
T
i τi , (69)

where

Mi (�i ) = �T(�i )J
T
i Ji�(�i ), (70)

Ci (�i , �̇i ) = �T(�i )J
T
i S

(
�(�i )�̇i

)
Ji�(�i )

+ �T(�i )J
T
i Ji�̇(�i). (71)

It is easy to verify that Mi (�i ) is symmetric and positive
definite, and for any x ∈ R

3,

xT
(
Ṁi (�i ) − 2Ci (�i , �̇i )

)
x = 0.
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In a similar way, for the payload we can also obtain

ML(�L)�̈L + CL(�L, �̇L)�̇L

= �T(�L)JTL

N∑
i=1

S(ri )(−Tiei ), (72)

where

ML(�L) = �T(�L)JTL JL�(�L), (73)

CL(�L, �̇L) = �T(�L)JTL S
(
�(�L)�̇L

)
JL�(�L)

+ �T(�L)JTL JL�̇(�L). (74)

B. Step 4 of Backstepping Design

Taking derivative of V4L leads to

V̇4L = 1

2
zT4L ṀLz4L + zT4L

(
ML�̈L − MLα̇�L

)
= zT4L

(
�T

L J
T
L

N∑
i=1

S(ri )(Tdi edi − Tiei )

+ �T
L J

T
L

N∑
i=1

S(ri )(−Tdi edi ) − MLα̇�L − CLα�L

)
,

(75)

where 1
2 z

T
4L(ṀL − 2CL)z4L = 0. Under Assumption 2 and

Lemma 1, from (75) we have

zT4L�T
L J

T
L

N∑
i=1

S(ri )(Tdi edi − Tiei )

≤ ‖z4L‖δ̄2L < εL δ̄2L + δ̄2L
‖z4L‖2√

‖z4L‖2 + ε2L

, (76)

where δ̄2L > 0 is an unknown constant bound. Furthermore,
using the notation definitions in (73), we can obtain the
following

zT4L(−MLα̇�L − CLα�L)

= −zT4L�T
L J

T
L JL

(
�Lα̇�L + �̇Lα�L

)
− zT4L�T

L J
T
L S(�L�̇L)JL�Lα�L

≤ ‖z4L‖‖�L‖‖JL‖2
(
‖�Lα̇�L + �̇Lα�L‖

+ ‖S(�L�̇L)‖‖�Lα�L‖
)

< εL ζ̄L + ζ̄L
‖z4L‖2�L

2√
‖z4L‖2�L

2 + ε2L

, (77)

where ζ̄L � ‖JL‖2 is unknown, and �L � ‖�L‖
(
‖�Lα̇�L +

�̇Lα�L‖ + ‖S(�L�̇L)‖‖�Lα�L‖
)
is known.

C. Step 5 of Backstepping Design

From (21) and (27), we have

[
I3 I3 · · · I3

S(r1) S(r2) · · · S(rN )

]
︸ ︷︷ ︸

P




Td1ed1
...

TdNedN


 =

[
RT
dLFdL
MdL

]
, (78)

where P has full row rank under Assumption 4.

D. Step 6 of Backstepping Design

The derivative of V1 with respect to time leads to

V̇1 =
N∑
i=1

(
V̇ei +

N∑
j=1, j �=i

V̇ei j
)

=
N∑
i=1

(
ηei η̇ei +

N∑
j=1, j �=i

ηei j η̇ei j

)
. (79)

First we examine the dynamics for ηei (i = 1, · · · , N).
From (15), we have

η̇ei = ∂ηei

∂�dHi
�̇dHi + ∂ηei

∂dei
ḋei

= ∂ηei

∂dei

1

dei
(xi − xdi)ẋi + ∂ηei

∂dei

1

dei
(yi − ydi)ẏi

+ ∂ηei

∂dei

1

dei
(zi − zdi )żi − ξi , (80)

where

ξi � ∂ηei

∂dei

1

dei
(xi − xdi)ẋdi + ∂ηei

∂dei

1

dei
(yi − ydi )ẏdi

+ ∂ηei

∂dei

1

dei
(zi − zdi )żdi − ∂ηei

∂�dHi
�̇dHi .

Hence for V̇ei (i = 1, · · · , N) we have

V̇ei = ηei
∂ηei

∂dei

1

dei
(xi − xdi)ẋi + ηei

∂ηei

∂dei

1

dei
(yi − ydi)ẏi

+ ηei
∂ηei

∂dei

1

dei
(zi − zdi )żi − ηeiξi . (81)

Similarly, for V̇ei j (i, j = 1, · · · , N , j �= i ) we have

V̇ei j

= ηei j
∂ηei j

∂dei j

1

di j
(xi − x j )ẋi + ηei j

∂ηei j

∂dei j

1

di j
(yi − y j )ẏi

+ ηei j
∂ηei j

∂dei j

1

di j
(zi − z j )żi − ηei j

∂ηei j

∂dei j

1

di j
(xi − x j )ẋ j

− ηei j
∂ηei j

∂dei j

1

di j
(yi − y j )ẏ j − ηei j

∂ηei j

∂dei j

1

di j
(zi − z j )ż j

− ηei j ξei j , (82)

where

ξei j � ∂ηei j

∂dei j
ϑ̇i j −

(
∂ηei j

∂�Hi j
�̇Hi j + ∂ηei j

∂�Wi j
�̇Wi j

)

= ∂ηei j

∂dei j

1

ϑi j
(xdi − xd j )(ẋdi − ẋd j )

+ ∂ηei j

∂dei j

1

ϑi j
(ydi − yd j )(ẏdi − ẏd j )

+ ∂ηei j

∂dei j

1

ϑi j
(zdi − zd j )(żdi − żd j )

−
(

∂ηei j

∂�Hi j
�̇Hi j + ∂ηei j

∂�Wi j
�̇Wi j

)
.
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E. Proof of Theorem 1

Proof: First of all, from (47), we have

VUAV1(t) ≤
(
VUAV1(0) − �1

κ1

)
e−κ1t + �1

κ1
, (83)

hence VUAV1 is uniformly bounded. The boundedness of
VUAV1 implies boundedness of ηeL, ηei , and ηei j . Hence,
the constraints requirements (11), (12), and (13) are satisfied
during the operation.
Moreover, we have lim supt→∞ VUAV1 = �1

κ1
, hence 1

2η
2
eL ≤

�1
κ1

when t → ∞, therefore ηeL will converge to the set (48).
Similar relationships hold for ηei , ηei j , and z3L. Furthermore,
boundedness of the adaptive estimates δ̂1L, ρ̂JL, ζ̂L, δ̂2L, δ̂i ,
ρ̂mi , as well as boundedness of the fictitious error z2L and z2i
(i = 1, · · · , N), can be implied by the boundedness of VUAV1.
The boundedness of these variables implies the boundedness
of the desired cable tension Tdi and the control law ui
(i = 1, · · · , N).
Next, note that in the range deL < �dHL and dei < �dHi

(i = 1, · · · , N), (11) and (12) give rise to the range for deL and
dei given as in (50). Besides, within the range of (13), ηei j is
quadratically related to dei j . Hence, satisfying the constraints
(13) means that the relative distance tracking errors dei j will
be confined in the ranges defined by (51).

F. Step 8 of Backstepping Design

First, we need to extract the reference attitude from the
position control design. Recall that ui = Fi Rdi ez , and
from (41) we have

ui = Fi



cφdisθdicψdi + sφdisψdi

cφdisθdisψdi − sφdicψdi

cφdicθdi


 , (84)

in which we recall that Fi is the thrust of the i th quadrotor.
Here, for any designated reference yaw angle ψdi satisfying
Assumption 1, we define

Fi = ‖ui‖, (85)

φdi = arcsin
(ui1sψdi − ui2cψdi

‖ui‖
)
, (86)

θdi = arctan
(ui1cψdi + ui2sψdi

ui3

)
, (87)

where ui = [ui1, ui2, ui3]T ∈ R
3.

Next, taking derivative of φdi in (86) and θdi in (87) with
respect to time yields

φ̇di = ∂φdi

∂ui1
u̇i1 + ∂φdi

∂ui2
u̇i2 + ∂φdi

∂ui3
u̇i3 + ∂φdi

∂ψdi
ψ̇di ,

θ̇di = ∂θdi

∂ui1
u̇i1 + ∂θdi

∂ui2
u̇i2 + ∂θdi

∂ui3
u̇i3 + ∂θdi

∂ψdi
ψ̇di ,

where ui1, ui2, ui3 are bounded according to Theorem 1, and
ψdi and ψ̇di are bounded according to Assumption 1, such
that the terms ∂φdi

∂ui1
, ∂φdi

∂ui2
, ∂φdi

∂ui3
, ∂φdi

∂ψdi
, ∂θdi

∂ui1
, ∂θdi

∂ui2
, ∂θdi

∂ui3
, and

∂θdi
∂ψdi

are all bounded. The result of differentiating ui in (41)
with respect to time can be combined with Theorem 1 to

conclude the boundedness of u̇i1, u̇i2, and u̇i3. Therefore, �̇di
is bounded, which satisfies ‖�̇di‖ ≤ �̄di , where �̄di is an
unknown positive constant. Note that for any νi > 0,

zT3i�̇di ≤ ‖z3i‖�̄di ≤ 1

2νi
�̄2

di + νi

2
zT3i z3i .

Therefore, we can obtain the result shown in (57).

G. Step 9 of Backstepping Design

The rate of change of V4 is

V̇4 =
N∑
i=1

zT4i

(
�T

i J
T
i τi − Mi α̇�i − Ciα�i

)
, (88)

where, for zT4i (−Mi α̇�i − Ciα�i ), we can get

zT4i (−Mi α̇�i − Ciα�i )

= −zT4i�
T
i J

T
i Ji

(
�i (K3i + νi

2
)(�̇i − �̇di ) + �̇iα�i

)
− zT4i�

T
i J

T
i S(�i�̇i )Ji�iα�i

≤ ‖z4i‖‖�i‖‖Ji‖2
(
‖�̇iα�i‖ + ‖(K3i + νi

2
)�i�̇i‖

+ ‖S(�i�̇i )‖‖�iα�i‖ + �̄di‖(K3i + νi

2
)�i‖

)

< εi ζ̄i + ζ̄i
‖z4i‖2�i

2√
‖z4i‖2�i

2 + ε2i

, (89)

where ζ̄i � ‖Ji‖2(1 + �̄di ) is unknown, and �i �
‖�i‖

(
‖�̇iα�i‖ + ‖(K3i + νi

2 )�i�̇i‖ + ‖S(�i�̇i )‖‖�iα�i‖ +
‖(K3i + νi

2 )�i‖
)
is known.

H. Proof of Theorem 2

Proof: First of all, (64) leads to

VUAV2(t) ≤
(
VUAV2(0) − �2

κ2

)
e−κ2t + �2

κ2
, (90)

hence VUAV2 is uniformly bounded.
Next, we have lim supt→∞ VUAV2 = �2

κ2
, hence 1

2 z
2
3i ≤ �2

κ2
when t → ∞, therefore z3i will converge to the set (65). Fur-
thermore, boundedness of the adaptive estimates ρ̂J i and ζ̂i , as
well as boundedness of the fictitious error z4i (i = 1, · · · , N),
are now apparent since VUAV2 is bounded. Therefore, it is
straightforward to prove the boundedness of the torque laws
(58) and (59), as well as adaptive laws (60) and (61).
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