
Improving Block Management in 3D NAND Flash SSDs with
Sub-Block First Write Sequencing

Matchima Buddhanoy
Colorado State University
Fort Collins, CO, USA

matchima.buddhanoy@colostate.edu

Kamil Khan
Colorado State University
Fort Collins, CO, USA
kamil@colostate.edu

Aleksandar Milenkovic
University of Alabama in Huntsville

Huntsville, AL, USA
milenka@uah.edu

Sudeep Pasricha
Colorado State University
Fort Collins, CO, USA
sudeep@colostate.edu

Biswajit Ray
Colorado State University
Fort Collins, CO, USA

biswajit.ray@colostate.edu

ABSTRACT
Continual vertical scaling in 3D NAND flash solid-state drives
(SSDs) results in larger memory blocks, causing performance degra-
dation due to big-block management issues. Pages within a 3D
NAND flash block are traditionally written using layer first write
sequencing. This paper introduces and explores the benefits of an al-
ternative sub-block first write sequence. This method when coupled
with sub-block erase operations promises to alleviate the big-block
problem. Our evaluation on a commercial 32-layer 3D NAND flash
SSD chip shows that though the proposed method increases the
raw bit error rate (RBER), it remains below the threshold that can
be corrected by error correction codes (ECCs). Simulation analysis
further shows that our proposed method reduces garbage collection
overhead, resulting in 36.0% lower response time and 9.6% reduc-
tion in additional writes due to garbage collection compared to
traditional 3D NAND flash SSDs.

CCS CONCEPTS
• Hardware→ External storage.

KEYWORDS
Flash memories, sub-block write, SSD storage, garbage collection,
write amplification
ACM Reference Format:
Matchima Buddhanoy, Kamil Khan, Aleksandar Milenkovic, Sudeep Pas-
richa, and Biswajit Ray. 2024. Improving Block Management in 3D NAND
Flash SSDs with Sub-Block First Write Sequencing. In Great Lakes Sym-
posium on VLSI 2024 (GLSVLSI ’24), June 12–14, 2024, Clearwater, FL, USA.
ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3649476.3658803

1 INTRODUCTION
3D NAND flash memories are indispensable in the design of SSDs
used in storage systems across a wide range of computing domains,
including IoT platforms, smartphones, workstations, and servers in

This work is licensed under a Creative Commons Attribution International
4.0 License.

GLSVLSI ’24, June 12–14, 2024, Clearwater, FL, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0605-9/24/06
https://doi.org/10.1145/3649476.3658803

cloud computing platforms. The bit density continues to increase
with every new generation of 3D NAND memories, driven by an
increase in the number of vertical layers (3D scaling) and logical
scaling that allows for storing 2, 3, or 4 bits of data per single
memory cell. As a result of these trends, the number of pages in a
memory block has continued to increase, causing a so-called big
block problem in the management of flash SSD media [4, 9, 12].

The big block problem occurs during garbage collection (GC)
when valid data on live pages must be copied from a victim block
(the block selected for erasing) to another free block. Larger blocks
mean more live pages to copy, resulting in increasing GC latency
in the Flash Translation Layer (FTL). The increase in GC latency
degrades performance and increases write amplification, negatively
impacting flash memory lifetime and capacity [3, 15, 17].

To cope with the big-block problem, a sub-block erase mecha-
nism has been proposed by industry [6, 7, 14, 16]. With this mecha-
nism, each flash block is partitioned into multiple sub-blocks, where
each sub-block can be erased independently from other sub-blocks
within the block. Additional circuitry is required to electrically iso-
late sub-blocks during a sub-block erase operation. Several recent
research efforts in academia focus on developing GC algorithms
that take advantage of the sub-block erase mechanism [2, 4, 9, 12]
and demonstrate that sub-block erase can significantly reduce GC
latency. However, they focus solely on GC algorithms without ad-
dressing sub-block erase implementation challenges.

Generally, two challenges remain with the sub-block erase mech-
anism in 3D NAND flash SSDs. The first problem is that the existing
approaches focus on sub-block erase operations performed on logi-
cal sub-blocks (see Section 2.2 for a detailed discussion) that cause
disturbances in values stored in pages residing in boundary layers
of the victim block. To address this problem, either hardware or
software isolation is required [2, 9], limiting the potential gains. The
second problem is related to sub-block erase operations performed
on physical sub-blocks. Physical sub-blocks span multiple layers
in 3D NAND flash, whereas a conventional page write sequence,
called layer first write sequence (LFWS), assumes that pages are
written layer-by-layer, i.e., we first write all pages in a single layer
before moving to writing pages in the next layer. As requests from
the host processor for data writes and updates exhibit a strong
spatial locality, locating empty physical sub-blocks ready for an
erase operation can be challenging.

https://orcid.org/0000-0002-1484-1631
https://orcid.org/0000-0001-5476-0935
https://orcid.org/0000-0002-9359-4594
https://orcid.org/0000-0002-0846-0066
https://orcid.org/0000-0002-5890-1368
https://doi.org/10.1145/3649476.3658803
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3649476.3658803


GLSVLSI ’24, June 12–14, 2024, Clearwater, FL, USA Buddhanoy et al.

To address these challenges, we propose a page writing sequence
called sub-block first write sequence (SFWS). This mechanism is
amenable to physical sub-blocks in 3D NAND flash SSDs, thus
improving robustness as physical sub-block erase operations are
less susceptible to program disturbances. In addition, the SFWS
improves data placement, thus minimizing the number of live pages
that need to be copied before a sub-block erase operation, and max-
imizing the number of sub-blocks that can be erased concurrently.

In summary, the novel contributions of our work are:
• We propose a new page writing sequence approach for 3D
NAND flash SSDs called SFWS.

• We conduct experimental analysis on a commercial off-the-
shelf (COTS) 32-layer 3D NAND chip that supports multi-
level-cell (MLC) storage to contrast our SFWS approach with
the traditional LFWS. Our evaluation shows that SFWS re-
sults in a slightly increased RBER relative to the LFWS. How-
ever, RBER is much below the threshold that can be corrected
by ECCs.

• We show how SFWS reduces GC overhead by quantifying im-
provements in response time and GC write overhead across
SSD workloads.

2 BACKGROUND
2.1 Fundamentals of SSD Flash Storage
Flash-based SSD storage systems consist of one or more flash chips.
Figure 1(a) illustrates the overall organization of a 3D NAND flash
chip. A single flash chip includes a NAND die that contains control
logic and one or more planes. A plane contains a certain number of
memory blocks that share the same set of bit lines (BLs). A single
block contains multiple flash pages, and each flash page contains
multiple flash cells. A flash memory cell is essentially a Metal Oxide
Semiconductor Field Effect Transistor (MOSFET) with an additional
floating gate (FG) or charge trap (CT) layer in the gate oxide stack. A
traditional flash cell stores 1 bit of data known as SLC (Single-Level
Cell). Advances in controlling the amount of charge on the FG/CT
layer and in sensing the charge during a read operation allowed for
logical scaling, further increasing bit density. Thus, modern flash
can store 2 bits (MLC), 3 bits (TLC – Triple-Level Cell), or 4 bits
(QLC – Quad-Level Cell) per cell.

To achieve high bit density, 3D NAND flash is designed to ver-
tically stack multiple layers of flash cells on top of each other [8].
Figure 1(b) illustrates the physical organization of a 3D NAND
flash block, where green planes represent word lines (WLs) or the
stack layers. In general, a 3D NAND block is physically divided
into several sub-blocks to optimize the die area utilization (as all
physical sub-blocks can share the same WLs). Note that our sample
in this work has 16 sub-blocks (𝑆0-𝑆15), as shown in Figure 1(b).
All the purple poly-silicon pillars along the same y-axis form one
sub-block. All pillars within a sub-block connect to the substrate
when the corresponding source select gates (SSGs) are active and
to individual BLs when the corresponding drain select gates (DSGs)
are active. Sub-blocks are identical to each other in terms of struc-
ture and organization. All sub-blocks share the same WLs and BLs.
Select transistors are used to select a particular sub-block during
page read and write operations. However, all the sub-blocks within
a block are simultaneously erased using a block erase operation.

Figure 1: (a) Overall organization of a 3D NANDflash chip. (b)
Schematic of a 3D NAND flash block. (c) Distinction between
a logical and a physical sub-block structure. (d) Evolution of
number of pages per block in NAND technology.

The circuit schematic of a physical sub-block is shown in Figure
1(c). Each sub-block contains multiple flash pages, where the page
size is generally 16 kB in state-of-the-art 3D NAND flash chips. All
cells in the same row share the same WL. The cells in a vertical
column connect to a metal BL via its DSG and to the ground via its
SSG at the bottom. With each new generation of 3D NAND, there is
a substantial increase in the physical block size, measured in terms
of the number of pages per block, leading to the emergence of the
big block problem, as shown in Figure 1(d).

2.2 Block Erase vs. Sub-Block Erase Operation
The traditional erase operation in NANDflashmemory occurs at the
physical block level. Erasing a block involves setting the substrate
to a high erase voltage, grounding the WLs, and activating all select
transistors to remove charge from the memory cells. A flash cell set
to logic ’0’ by a program operation can only be reset to logic ’1’ by
erasing the entire block. To update a page of data, the new content
must be written into a new erased page, and the page containing
obsolete data is marked as invalid. When most pages in a block are
marked as invalid, the block erase operation is performed to make
the block available for reuse. However, before the erase operation,
all valid (or live) pages in the block need to be copied to a different
physical block. The more valid pages that need to be copied, the
higher the latency penalty of this step.

Erasing at the sub-block granularity is a promising approach to
reduce the performance penalty associated with the big-block prob-
lem. Two flavors of the sub-block erase mechanisms are discussed in
prior work. The first approach assumes that erasing sub-blocks cor-
responds to physical sub-blocks (illustrated in Figure 1(c)) [6, 7, 14].
This approach ensures that only a single physical sub-block is erased
while the remaining sub-blocks within the same block are electri-
cally isolated from the erase operation. This isolation is achieved
by providing independent control over SSG transistors for each
sub-block. The second approach assumes logical sub-blocks that
may span multiple physical layers or WLs (illustrated in Figure 1(c))



Improving Block Management in 3D NAND Flash SSDs with Sub-Block First Write Sequencing GLSVLSI ’24, June 12–14, 2024, Clearwater, FL, USA

[4, 9, 12]. The logical sub-block erase is executed by selectively con-
trolling the layers. The layers to be erased are grounded, whereas
the layers associated with valid content are left floating.

There are two significant challenges with practically realizing
the logical sub-block erase approach: The first challenge is erase
disturbances in neighboring or boundary layer pages. This problem
can be addressed by either hardware isolation or software isolation
[2, 9]. Hardware isolation requires that certain neighboring pages
are not used, acting as buffers that absorb erase disturbances. The
major drawback of this approach is that it reduces storage capac-
ity. Software isolation assumes the relocation of live pages from
neighboring or boundary layers, thus ensuring that disturbances
do not impact valid pages. A major drawback of this approach
is an increased overhead due to live page migration. The second
challenge is reliability concerns with potential permanent dam-
age to the inter-layer oxides. The closely spaced vertical memory
layers can experience hard breakdown of the interlayer oxides if
a large voltage difference is presented during logical sub-block
erase [5]. The voltage on floating WLs can reach as high as 20V
due to coupling effects with the erase voltage on the substrate.
This substantial voltage difference not only causes disturbance but
also creates permanent defects in the inter-layer oxides, limiting
endurance.

Due to these two major challenges, logical sub-block erase is
difficult to realize in practice. In contrast, physical sub-block erase
has fewer reliability concerns [6, 7, 14]. The physical sub-block erase
is performed by activating the appropriate select gate transistors
which pass the high erase voltage from the substrate and BLs inside
the poly-silicon channel of the selected physical sub-block only.
All the WLs are kept grounded during the erase operation which
ensures less voltage stress on the memory layers. Due to its better
practicality, in this paper, we utilize the physical sub-block erase
approach while addressing the big-block problem.

3 RELATEDWORK: BIG BLOCK PROBLEM
The big block problem arises during GC because pages containing
valid data (live pages) need to be copied from the victim block –
the block selected for erasing – to another free block. Larger blocks
result in a larger number of live pages that need to be copied from
the victim block, thus increasing the latency of the GC. The increase
in latency due to GC severely degrades the overall performance
of flash memory. In addition to performance loss, the big block
problem exacerbates write amplification that negatively affects the
lifetime and/or capacity of flash memory [4, 9, 12, 15]. The write
amplification is the ratio of the amount of data actually written
to the flash media (including page writes caused by GC) and the
amount of data written by the host.

To cope with the big-block problem, prior research mainly fo-
cuses on developing GC algorithms that take advantage of the
logical sub-block erase mechanism. Chen et al. [4] introduced a
method called performance booster strategy that tries to maximize
the number of victim sub-blocks (those that can be erased concur-
rently) within a flash block while ensuring minimal overhead due
to live-page copy operations. The proposed method includes three
components: (i) a runtime victim finder that finds sub-blocks that
require no live-copy page overhead; (ii) a sub-block victim packer
that finds a victim block with the maximum number of sub-blocks

Figure 2: Comparison between (a) LFWS and (b) SFWS scheme.
We assume the first 256 written pages are updated.
that can be reclaimed in one erase operation; and (iii) a free space
cleaner that finds sub-blocks with a minimum number of live pages
(in case the previous steps failed to find any sub-block for erasing).
Their simulation-based evaluation shows that the proposed method
can reduce the overhead caused by GC for up to 50% when com-
pared to the conventional GC methods. Similarly, Liu et al. [12]
propose a partial-erase – a software only mechanism that does not
require any hardware modifications. They propose a custom GC
algorithm that takes advantage of the proposed mechanism and
shows that it can reduce the write latency by up to 48% relative
to the baseline implementation. Finally, Gong et al. [9] propose
a mechanism to further improve sub-block erase by placing fre-
quently updated (hot) data into pages of blocks that are soon to be
erased. This way they reduce the number of live pages that need
to be copied to fresh blocks. Their simulation-based experimental
analysis shows that their technique can reduce the GC latency by
up to 65%.

All of these prior efforts focus on using the logical sub-block
erase mechanism. However, practically realizing logical sub-block
erase is very challenging, as discussed in Section 2.2. Unlike these
prior efforts, we focus on the more practical physical sub-block
erase mechanism and propose an approach to reduce GC overheads
and write amplification, as discussed next.

4 PROPOSED SFWS METHOD
Writing flash pages in a 3DNAND flash block follows the traditional
LFWS, as shown in Figure 2(a), to minimize RBER. LFWS ensures
efficient pre-charge operation which is an essential step to minimize
program disturbance. The pre-charge voltage is usually applied on
the BLs which propagate through the top memory layers to the pro-
gram layer. According to the LFWS, all pages within a given vertical
layer need to be written before moving to the next layer ensuring
uninterrupted propagation of pre-charge voltage. Instead of writing
data in a layer-by-layer manner, we propose an alternative method
of writing data in a sub-block-by-sub-block direction, called SFWS
in Figure 2(b). Note that the arrow represents the writing direction.
With SFWS, all flash pages within a lower-indexed sub-block are
written before flash pages in a higher-indexed sub-block are written.
SFWS when combined with the physical sub-block erase operation,
allows treating each sub-block as an independent unit and hence it
can reduce block size to the equivalent sub-block size, leading to
the potential to overcome big-block management issues.

We illustrate the advantage of using SFWS in Figure 2(a)-(b).
Let us consider a freshly erased 32-layer SLC flash block with 16
physical sub-blocks. In the traditional LFWS, the page addresses
within a block are illustrated in Figure 2(a). Let us further assume
that we receive a write request from the host processor to fill in



GLSVLSI ’24, June 12–14, 2024, Clearwater, FL, USA Buddhanoy et al.

Figure 3: Comparison of RBER for SFWS and LFWS. (a) RBER for LSB pages. (b) Plot of MSB page BER vs. page number. (c) Plot
of the worst-page RBER vs. layer number. (d) Plot of the worst-page RBER vs. sub-block number.

the entire block. The controller will issue sequential write requests
incrementing page address after each page write, i.e., the page
writing sequence is P0, P1, P2, . . . P511. Here all pages in layer 0
(𝐿0) are written before page writes are issued for pages in layer 1
(𝐿1). As requests from the host for data writes and updates exhibit
a strong spatial locality, locating empty sub-blocks ready for erase
presents a challenge. Let us assume that the first 256 pages are
updated, resulting in the invalidation of pages P0-P255 in the flash
block. In this case, half of the block contains invalid pages, yet every
sub-block contains 16 valid pages, that need to be copied by the GC
if this block is going to be recycled.

This practical limitation of the traditional LFWS approach when
combined with physical sub-block erase motivates the use of our
SFWS approach, even though it may increase RBER in the written
page. SFWS takes advantage of physical sub-block erase operations
as they are less susceptible to program disturbances, but also im-
proves data placement to minimize the number of live pages that
need to be copied before a sub-block erase. By changing the write
sequence of data to SFWS, sub-blocks 𝑆0-𝑆7 can be erased in a sin-
gle sub-block erase operation with no additional live page copy
operations, as shown in Figure 2(b).

5 EXPERIMENTAL EVALUATION
We evaluate our proposed SFWS approach using both raw NAND
flash chips and workload simulation. Reliability analysis of SFWS
and the corresponding simulation-based performance analysis are
discussed in Section 5.1 and Section 5.2, respectively.
5.1 Reliability Analysis
The goal of our reliability analysis is to explore the effects of the
proposed SFWS on RBER by comparing it to the traditional LFWS.
The experimental evaluation is carried out on COTS 32-layer 3D
MLC NAND flash chips from a major NAND vendor. Each chip
has 2,192 blocks and each block contains 1,024 logical pages. Each
logical page reserves 16 kB for user data and 2 kB for ECC. A custom-
designed test board is used to interface the raw NAND chip with a
workstation. This setup allows us to perform basic operations such
as page read, page write, and block erase. Our software emulating
FTL functions determines RBER for read operation. Our prior work
[1] explained our test setup in detail. To evaluate the RBER of
the traditional LFWS method, we first erase and write a full block
with random data. After completing the program operations, we
immediately read all 1,024 flash pages and calculate the RBER. Next,
we erase the same block and write the same random data using the
SFWS method. Once the entire block is written, we immediately
read all pages in the same order and calculate the RBER. Finally,
we analyze and compare the RBER of the two methods.

We evaluate the SFWS and LFWS approaches on a block config-
ured in the MLC mode. Note that MLC memory contains shared

memory pages - LSB (Least Significant Bit) and MSB (Most Sig-
nificant Bit) pages share the same set of memory cells for a given
WL. We first write all the logical pages of the MLC memory block
sequentially which is the default page write sequence (i.e., LFWS).
We compute the page RBER after writing all memory pages of the
block. Then, we erase the memory block and re-write its logical
pages following the SFWS method. We choose the appropriate page
addresses (from the datasheet) to finish writing all the pages of a
physical sub-block before moving to the next physical sub-block.
We finish writing all pages of the block following the SFWSmethod,
read the pages, and then compute the RBERs of individual pages.

The results of this experiment are shown in Figure 3(a)-(d). Figure
3(a)-(b) shows the RBER for the LSB and MSB pages, respectively.
Blue and red dots represent the LFWS and SFWS methods, respec-
tively. We find that the RBER for LSB pages remains comparable
for both methods. However, the RBER for MSB pages programmed
using the SFWS method is significantly higher than the RBER of
corresponding pages programmed using LFWS. However, since the
standard ECC threshold is around 0.1% [10, 13], the increased RBER
is still far below the threshold value that can be corrected by the
ECCs. Thus, the higher RBER with our proposed SFWS approach is
correctable with the standard ECC available within the flash chip
and does not create reliability issues.

Figure 3(c) shows the worst-page RBERs for each layer for LFWS
and SFWS. We find that the RBERs for pages in the middle layers
programmed using SFWS are higher than the equivalent ones when
using the LFWS method. Lastly, Figure 3(d) shows the worst-page
RBERs per each sub-block (𝑆0-𝑆15). The 𝑆0 and 𝑆1 yield significantly
higher RBERs with SFWS and the RBER monotonically decreases
with an increase of the sub-block number. Since 𝑆0 and 𝑆1 are
written first, they experience the highest disturb as the subsequent
sub-blocks are programmed in SFWS. Similarly, 𝑆15 is the last sub-
block that is written and hence it has the smallest RBER among
all sub-blocks. Interestingly, the worst-page RBER for SFWS falls
below the one for LFWS in 𝑆6-𝑆15. Thus, we conclude that the
middle layers and the first few physical sub-blocks are slightly
more erroneous in SFWS. However, the worst-page RBER values of
SFWS are still correctable by the standard ECCs threshold value as
they remain below ∼ 0.1% [10, 13].

Figure 4: (a) LFWS and (b) SFWS during pre-charge operation.



Improving Block Management in 3D NAND Flash SSDs with Sub-Block First Write Sequencing GLSVLSI ’24, June 12–14, 2024, Clearwater, FL, USA

Figure 5: Comparison of (a) average number of copied pages during GC, (b) total pages copied during GC, and (c) average
response time for LFWS and SFWS.

We conduct root cause analysis to explain the higher RBER in
the middle layer pages for SFWS. Figure 4 illustrates a cross-section
of a 3D NAND array corresponding to different sub-blocks during a
pre-charge operation. The pre-charge operation, performed before
applying the program pulse, boosts the poly-silicon channel volt-
age, preventing program disturbance. Consider a program pulse
applied to𝑊𝐿2 of 𝑆0. In LFWS (Figure 4(a)), memory cells above
𝑊𝐿2 are erased, aiding efficient pre-charge voltage propagation.
However, in SFWS (Figure 4(b)), programmed memory cells above
𝑊𝐿2 hinder pre-charge efficiency by blocking voltage propaga-
tion. In MLC memory, program disturbance primarily affects MSB
pages by shifting the erase threshold voltage distribution, resulting
in higher RBER. The middle layers show the worst-case RBER as
they will experience the highest pre-charge voltage drop assuming
pre-charge happens from both the BL and the substrate direction.

5.2 Performance Analysis
To explore the performance impact of using the SFWS approach,
we use the SSD simulator MQSim-E [11]. We model an SSD using
parameters shown in Table 1. Note that we use 2 planes per die, 2
dies per chip, 4 chips per channel, and 8 channels configuration. The
simulation is performed using write-only random-access workloads
(𝑊10 to𝑊40) with a varying "hot” region to emulate real applications
with spatial and temporal locality. For instance,𝑊10 represents a
random write-access pattern, where 90% of the requests target 10%
of the address range, hence resulting in the highest access locality.
Similarly,𝑊20 has 80% of the requests targeting 20% of the address
range, and so on. The total volume of data transferred is assumed
to be equal, and large enough to trigger GC. We observe that the
SFWS approach results in a smaller block size compared to the
much larger block size in the conventional SSDs, where LFWS is
used, leading to significant performance differences. The total SSD
size is kept the same by adjusting the total number of blocks per
plane according to the block size.

Table 1: Simulation Parameters
Total SSD Capacity 256 GB

Page Size 8096 Bytes
Pages Per Block 512 (LFWS), 32 (SFWS)
Blocks Per Plane 512 (LFWS), 8,096 (SFWS)

Interface NVMe x4 lanes at 1.0 GB/s

Figure 5(a) shows the average number of pages copied for each
approach during GC. Due to the smaller effective block size, SFWS
significantly reduces page copy operations per GC operation with
an average reduction of 95.2%. However, the total number of GC
operations is significantly higher for smaller blocks. Figure 5(b)
shows the total pages copied for all GC operations is still reduced
by 9.7% on average against LFWS. Since the total number of host-
issued writes is the same, fewer pages copied during GC leads to

lower write amplification, improving SSD endurance. Finally, Figure
5(c) shows the average response time for each method, showing an
average improvement of 36.0% due to reduced GC latency overhead.

6 CONCLUSION
This paper describes a new SFWS mechanism designed to alleviate
the big-block problem inmodern 3DNANDflash SSDs. This method
coupled with the physical sub-block erase operations improves
GC efficiency and reduces write amplification in 3D NAND flash
SSDs. Our performance analysis showed how SFWS reduced GC
overhead by 9.6% and average response time by 36.0% compared to
the traditional LFWS approach. Experiments carried out on 3DMLC
NAND flash chips showed that although the RBERs of SFWS are
higher than those for LFWS, especially for the pages residing in the
middle layers, they can still be easily corrected by standard ECCs.
Thus, SFWS is a promising technique to improve performance in
3D NAND flash SSDs.

ACKNOWLEDGMENTS
This workwas supported in part by the National Science Foundation
under Grant #2403540 and #2346853.

REFERENCES
[1] M. Buddhanoy et al. 2023. Electrostatic Shielding of NAND Flash Memory from

Ionizing Radiation. In 2023 IRPS.
[2] H. Y. Chang et al. 2016. How to enable software isolation and boost system

performance with sub-block erase over 3D flash memory. In 2016 CODES+ISSS.
[3] F. H. Chen et al. 2015. PWL: a progressive wear leveling to minimize data

migration overheads for nand flash devices. In 2015 DATE.
[4] T. Y. Chen et al. 2016. Enabling sub-blocks erase management to boost the

performance of 3D NAND flash memory. In Proc. of 2016 ACM DAC.
[5] Y. A. Chung et al. 2023. Common Source Line-to-Word Line Short Improvement

by Eliminating SLT Sidewall Notch in 3D NAND Deep Trench Patterning. In
2023 ASMC.

[6] M. A. d’Abreu. 2015. Partial block erase for a three dimensional (3D) memory.
US Patent No. 9,036,428, Issued May. 19th., 2015.

[7] M. Dunga et al. 2020. System and method for string-based erase verify to create
partial good blocks. US Patent No. 10,535,411, Issued Jan. 14th., 2020.

[8] A. Goda et al. 2012. Scaling directions for 2D and 3D NAND cells. In 2012 IEDM.
[9] H. Gong et al. 2021. Accelerating Sub-Block Erase in 3D NAND Flash Memory.

In 2021 IEEE ICCD.
[10] J. Kim et al. 2012. Low-energy error correction of NAND Flash memory through

soft-decision decoding. EURASIP J. Adv. Signal Process (2012).
[11] D. Lee et al. 2022. MQSim-E: An Enterprise SSD Simulator. IEEE Comput. Archit.

Lett. 21 (2022), 13–16.
[12] C. Y. Liu et al. 2018. PEN: Design and Evaluation of Partial-Erase for 3D NAND-

Based High Density SSDs. In USENIX FAST ’18.
[13] Y. Luo et al. 2018. HeatWatch: Improving 3D NAND Flash Memory Device Relia-

bility by Exploiting Self-Recovery and Temperature Awareness. In 2018HPCA.
[14] E. C. Oh et al. 2015. Nonvolatile memory device and sub-block managing method

thereof. US Patent No. 20,140,063,938, Issued Feb. 24th., 2015.
[15] M. C. Yang et al. 2014. Garbage collection and wear leveling for flash memory:

Past and future. In 2014 SMARTCOMP.
[16] T. H. Yeh et al. 2017. 3D non-volatile memory array with sub-block erase archi-

tecture. US Patent No. 9,721,668, Issued Aug. 1st., 2017.
[17] L. Zuolo et al. 2017. Solid-State Drives: Memory Driven Design Methodologies

for Optimal Performance. Proc. IEEE (2017).


	Abstract
	1 Introduction
	2 BACKGROUND
	2.1 Fundamentals of SSD Flash Storage
	2.2 Block Erase vs. Sub-Block Erase Operation

	3 RELATED WORK: BIG BLOCK PROBLEM
	4 PROPOSED SFWS METHOD
	5 EXPERIMENTAL EVALUATION
	5.1 Reliability Analysis
	5.2 Performance Analysis

	6 CONCLUSION
	Acknowledgments
	References

