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Abstract

and economically vital species.

Macrocystis pyrifera (giant kelp), is a brown macroalga of great ecological importance as a primary producer and struc-
ture-forming foundational species that provides habitat for hundreds of species. It has many commercial uses (e.g.
source of alginate, fertilizer, cosmetics, feedstock). One of the limitations to exploiting giant kelp's economic potential
and assisting in giant kelp conservation efforts is a lack of genomic tools like a high quality, contiguous reference
genome with accurate gene annotations. Reference genomes attempt to capture the complete genomic sequence
of an individual or species, and importantly provide a universal structure for comparison across a multitude of genetic
experiments, both within and between species. We assembled the giant kelp genome of a haploid female game-
tophyte de novo using PacBio reads, then ordered contigs into chromosome level scaffolds using Hi-C. We found

the giant kelp genome to be 537 MB, with a total of 35 scaffolds and 188 contigs. The assembly N50 is 13,669,674
with GC content of 50.37%. We assessed the genome completeness using BUSCO, and found giant kelp contained
949% of the BUSCO genes from the stramenopile clade. Annotation of the giant kelp genome revealed 25,919 genes.
Additionally, we present genetic variation data based on 48 diploid giant kelp sporophytes from three different South-
ern California populations that confirms the population structure found in other studies of these populations. This
work resulted in a high-quality giant kelp genome that greatly increases the genetic knowledge of this ecologically
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Introduction

Macrocystis pyrifera (giant kelp) is the world’s largest
macroalga and one of the fastest growing multicellu-
lar autotrophs on Earth, increasing in mass by an aver-
age of 3.5% per day in favorable locations [1]. It forms
extensive subtidal forests on shallow reefs in temperate
seas that are among the most productive ecosystems on
Earth [2, 3]. Importantly, the high primary production
and three-dimensional structure of giant kelp forests
provide habitat for hundreds of species, ranging from
microscopic invertebrates to different types of fish and
mammals [4]. It’s not surprising that Darwin considered
giant kelp forests analogous to terrestrial rainforests,
owing to the impressive species diversity sustained in
both habitats [5].
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As a haplodiplontic organism, giant kelp alternates
between a macroscopic diploid sporophyte stage and a
microscopic haploid gametophyte stage. The diploid spo-
rophyte releases haploid zoospores into the water col-
umn that eventually settle on the ocean floor and develop
into sexed gametophytes. Female gametophytes release
a pheromone that triggers the release and attraction of
sperm from the male gametophyte towards their oogonia
[6]. After fertilization, young diploid sporophytes develop
into the macroscopic adults composing kelp forests [4].
The dispersal distance of the zoospores depends on many
factors, including water motion [7-9]. Successful coloni-
zation depends on opposite sex zoospores settling with
millimeters of each other on suitable habitat [10, 11],
which is dependent on the size of nearby kelp forests as
well as the number and synchronous timing of zoospores
released by them [12-15].

Interest in giant kelp as an aquaculture crop has
increased, with the global algal aquaculture market in
2020 producing 35 million tons of algae worth $16.5
billion [16]. Giant kelp is one of the main commercial
sources of alginate, a long chain polysaccharide found
in the cell walls of brown macroalgae, with uses in food
as a thickener and in medicine as a hydrogel [17, 18].
Giant kelp also has a range of other applications includ-
ing human food, animal feed, cosmetics, pharmaceu-
ticals, and fertilizers [19]. Furthermore, due to its fast
growth rate and limited composition of lignin and cellu-
lose, giant kelp has been identified as a potential marine
crop for biofuel [20]. However, the large-scale cultivation
of giant kelp lags that of other kelps such as Saccharina
japonica and Undaria pinnatifida, which are grown in
China, Korea, and Japan as human food sources and have
undergone selective breeding programs since the 1950s
[21-23].

Genomics can greatly benefit aquaculture production
by assisting in breeding efforts to increase crop produc-
tivity, increase the quality of specific compounds in the
crop, and increase resistance to stress, disease, and bacte-
rial infection [24]. The first brown macroalga to have its
genome completely sequenced was Ectocarpus siliculo-
sus, which has served as a model species [25]. Both Sac-
charina japonica and Undaria pinnatifida have since had
their genomes sequenced, an important step in breeding
programs because reference genomes provide an individ-
ual’s complete genetic information that can be universally
compared across experiments [26—28].

Previous research has identified the need for improved
cultivars of brown macroalgae and this improvement can
be expedited in giant kelp by increasing the availability
of genomic tools, such as a quality reference genome and
sequencing experiments [29, 30]. However, the available
genomic references for giant kelp are thus far limited to
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a giant kelp transcriptome in 2013, a heavily fragmented
genome with an estimated completeness of only 10%
based on stramenopile single copy orthologs, and a set
of gene models derived from reciprocal blasts against
Ectocarpus siliculosus [31-33]. Prior research identified a
northern hemisphere origin for giant kelp based on phy-
logenetic analysis of the ribosomal internal transcribed
regions [34]. Further molecular dating in conjunction
with fossil records estimate that giant kelp emerged as a
species ~6 million years ago and initially was found in the
colder waters in the Pacific Ocean off the Alaskan coast
[35]. The global hotspot of microsatellite genetic diver-
sity for giant kelp is presently in the Southern California
Bight in the northeast Pacific, reflecting a Pleistocene
glacial refugia for the species [36]. For example, a draft
of the presented annotated genome was used to examine
the genomic differences between two different morphol-
ogies of giant kelp in the Northern and Southern hemi-
spheres [37]. Therefore, in our efforts to support giant
kelp domestication,, we improved giant kelp’s genomic
resources by assembling a nuclear genome with 92% of
sequences scaffolded to chromosomal levels, and investi-
gated three Southern California populations for markers
that can be used in future selective breeding models for
giant kelp aquaculture.

Results
Genome sequencing, assembly, and annotation
We extracted DNA from a single female haploid game-
tophyte and sequenced the DNA using PacBio Sequel II
technology obtaining 57 GB of long reads with average
read length of 15.8 kb, representing a coverage of approx-
imately 100X of our estimated 513-542 MB giant kelp’s
genome. Our de novo assembly generated 1,033 contigs
with a total length of 540 MB and N50 of 1.7 MB. After
decontamination, scaffolding using Hi-C technology was
performed by Phase Genomics and clustered 96.82% of
the contigs into 35 clusters, resulting in a final assembly
of 35 scaffolds and 188 contigs with a total genome size of
537 MB and N50 of 13.6 MB (Table 1). Scaffolds average
13.3 MB and 34 out of 35 are larger than 4 MB (Fig. 1).
We used BUSCO for an assessment of gene content
completeness of our genome, as it looks for single copy
conserved orthologs in a given taxonomic group. The
stramenopile BUSCO analysis showed that the giant
kelp genome (Macrocystis pyrifera) compared favora-
bly to other published brown macroalgae genomes,
with 94 complete BUSCO genes, 1 fragmented gene,
and 5 missing genes. We compared the assembled giant
kelp genome presented here with other existing giant
kelp resources, highlighting the improvements this new
assembly offers. This includes a recently published,
highly fragmented genome that merely encompass 11
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Table 1 Genome statistics comparison between the genomes
of Macrocystis pyrifera (assembled in this study), Ectocarpus sp.
[25], Saccharina japonica [26], and Undaria pinnatifida [27]

Macrocystis Ectocarpus Saccharina Undaria

pyrifera siliculosus  japonica pinnatifida
Length 537Mb 196Mb 548Mb 511Mb
# Contigs 223 30 4598 114
Largest Contig  26Mb 19Mb 2.3Mb 32Mb
N50 13.6Mb 6.5Mb 0.34Mb 16.5Mb
# of N per 12.99 2601.51 1541.53 49.29
100Kb
# Genes 25919 16,271 18,732 14,300
% GC content 5037 53.59 49.35 50.14

completed stramenopile BUSCO genes, as well as a lim-
ited set of gene models that underwent reciprocal blast
against Ectocarpus siliculosus and encompassed 78 com-
plete BUSCO genes (Fig. 2) [32, 33].

We report the genome assembly statistics of our
giant kelp genome and the three major brown macroal-
gae genomes, Ectocarpus siliculosus, Saccharina japon-
ica, and Undaria pinnatifida. Our N50 for giant kelp is
13,669,674, which is greater than the N50 for Ectocar-
pus siliculosus and Saccharina japonica, but less than
that of Undaria pinnatifida. Our giant kelp genome
also contained fewer missing bases per 100,000 bases
out of the other brown macroalgae genomes. The giant
kelp estimated genome size based on kmer frequency
from the Pacbio corrected reads is 513 MB for k=25
and 542 MB for k=31 (Supplementary Fig. 1). Our
assembled genome is 537 MB, which falls within this
predicted range of genome sizes. The 537 MB genome
size is almost half of the upwards estimate from flow
cytometry and microspectrophotometry of 686 MB to
1176 MB, which may have been inflated due to the pol-
ytenic state of the female gametophytes of giant kelp
(38, 39].

Protein-coding genes were predicted using ab initio,
homology-based, and transcriptome-based modelers,
which after filtering resulted in the prediction of 25, 919
protein coding genes, greater than predictions of Sac-
charina japonica and Ectocarpus siliculosus, with 18,733
and 16,256 respectively (Table 1 and Fig. 1B) [25, 26].
Brown macroalgae have a UV sex determining system
in which sex determining regions (SDR) determine the
sex of an individual gametophyte. SDR typically are less
gene dense, contain large repeats of DNA, do not recom-
bine and thus can expand in size as the SDR accumulates
repetitive DNA [40]. Scaffold 2 contains fewer genes than
other scaffolds of similar size (Scaffold 1 contains 1135
genes, Scaffold 2 600 genes and Scaffold 3 1194 genes).
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In the second half of scaffold 2, the gene density and the
pairwise genetic diversity decreases in comparison with
the rest of the genome (Fig. 1B). If Scaffold 2 contains the
SDR for giant kelp, it should only contain female mark-
ers for kelp SDR regions. After blasting the kelp genome
using previously identified male and female SDR mark-
ers, the second half of scaffold 2 contained the four sex
determining markers specific for females in giant kelp
[41]. This fits expectation as a female gametophyte was
the individual sequenced in this experiment. The pres-
ence of the female sex determining markers in combina-
tion with decreases in gene density and genetic diversity
indicates that scaffold 2 contains the putative SDR region
of giant kelp.

Genome comparative analysis

To identify orthologous genes among other relevant
macroalgae, we performed a comparative analysis using
Orthofinder between Macrocystis pyrifera, Ectocarpus
siliculosus, Saccharina japonica and Undaria pinnati-
fida. A total of 70,317 genes were analyzed, of which
61,267 (87.1%) were assigned to a total of 14,001 ortho-
groups; of those, 7,660 were present in all four species
(Fig. 3A and B).

Differences in genome size between Ectocarpales and
Laminariales have been explained by the expansion of
repetitive elements in the larger genomes of Laminari-
ales [42]. Following this pattern, we found repetitive
sequences to total 57.6% (309 Mb) (Fig. 1H and Sup-
plementary Table 1) of giant kelp’s genome, similar to
what was found in the laminarian U. pinnatifida (52.1%)
and contrasting with the lower amount of repetitive
sequences in E. siliculosus (22.7%).

Overall synteny is conserved between E. siliculosus and
M. pyrifera single copy orthologs, but there are signs of
chromosomal rearrangement including the splitting of
four chromosomes and fusion of two, which explains the
chromosome number difference between the two spe-
cies (Fig. 4A). As expected, synteny is more conserved
between M. pyrifera and U. pinnatifida, both in the order
Laminariales, with signals of chromosomal splitting with
similar gene density but less chromosomal rearrange-
ment (Fig. 4B).

We also calculated linkage disequilibrium for the
48 samples for each population, as it can be used to
improve selective breeding models. Using r*2=0.1 as
the LD threshold we estimated the LD block size to be
~5.5 kb for the Catalina Island population and ~6 kb
for the Camp Pendleton and Santa Barbara populations
(Fig. 5). Pairwise genetic diversity () across the whole
giant kelp genome estimated 7=0.0035 (Fig. 1C). Taji-
ma’s D was overall negative throughout the genome,
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Fig. 1 Circos plot of first 34 contigs of the giant kelp genome. Different aspects of the genome are represented in each concentric circle. A Scaffold
size in MB. B Gene density heatmap. C Percentage of GC ranging from 45 to 55%. D Nucleotide diversity ranging from 0 to 0.007. E SNP density
heatmap. F Tajima's D values ranging from -2 to 2. G Fst values ranging from 0 to 0.4. H TE density heatmap. Line values are plotted on the same
200 kb sliding window with 40 Kb intervals while heatmaps are plotted over the same 1 MB windows. Heatmaps are in a 1.75 log scale for greater

dynamic range at higher values

with an average of -1.17522 across 200 kilobase win-
dows (Fig. 1F). Variant effect annotation showed that
2.66% of the variants were found inside exons with
53.1% predicted to be missense, while intergenic vari-
ants accounted for 32.73% of all variants (Supplemen-
tary Table 2 and Supplementary Fig. 2).

Discussion

Our study presents an improved annotated and scaf-
folded giant kelp reference genome capable of supporting
a genomics approach for the ongoing domestication and
conservation efforts for this species. This giant kelp refer-
ence genome compares favorably to the three published
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Fig. 2 Comparison of BUSCO assessment of genome completeness based on the stramenopiles_odb10 dataset between the macroalgaes
genomes of Macrocystis pyrifera (assembled in this study), Ectocarpus sp. [25], Saccharina japonica [26], Undaria pinnatifida [271, Macrocystis pyrifera
gene models from Molano et al. 2022 [34], and genome from Paul et al. 2022 [33]

major brown macroalgae genomes, Ectocarpus siliculo-
sus, Saccharina japonica, and Undaria pinnatifida, with
similar N50 values (genome contiguity) and BUSCO
scores (genome completeness) [25-27, 43]. Additionally,
our study presents a comprehensive analysis of whole
genome linkage disequilibrium, nucleotide diversity and
Tajima’s D. Compared to previous giant kelp genomes,
the giant kelp assembly presented here vastly improves
on genome contiguity and completeness, in particular
when comparing BUSCO scores (94% compared to 11%)
[32]. Therefore, we anticipate that the scaffolded giant
kelp genome presented here will be the universal refer-
ence for future giant kelp genomic projects.

Conclusion

The giant kelp genome presented in this study will assist
in ongoing giant kelp domestication and conservation
efforts by providing a reference genome that can be used
as a comparative benchmark between giant kelp individ-
uals sequenced in other kelp genetic studies. The func-
tional annotations of the genome can help pinpoint the
genomic locations of genes of interest for domestication
for further genetic variation analysis. The use of a con-
served gene model data set for phylogenetic studies may
be sufficient in giant kelp as the strong population struc-
ture seen in the diploid data concurred with the results
from the gene models.

Materials and methods

Data collection and sequencing

Sporophylls (spore-producing blades containing sporan-
gia in diploid sporophytes) were collected from giant kelp
individuals attached to the rocky substrate near Catalina
Island using SCUBA. Sporophylls were then sent to the
University of Wisconsin-Milwaukee, where spores were
released into Instant Ocean water. After 15-20 days, sin-
gle gametophytes were isolated into single genotype cul-
tures. To produce sufficient biomass required to extract
2 pg of high quality and high molecular weight genomic
DNA, we cultivated a single haploid female gametophyte
from the Catalina Island population (CI_03). To avoid
gametogenesis, we grew the culture vegetatively in red
light (30 pmol photons m™2 s~ 1), at 12°C temperature and
12:12 h (day:night) photoperiod.

To ensure the least amount of contamination during
PacBio sequencing, the culture was repeatedly treated
with antibiotics until no bacterial colonies would form
when plated [44, 45]. High molecular weight DNA was
extracted using the protocol of Doyle and Doyle (1987)
with minor modifications. Essentially, young gameto-
phytes that had been flash frozen and kept frozen at -80C
were ground to a fine powder in a frozen mortar with lig-
uid N,, followed by very gentle extraction in CTAB buffer
(that included proteinase K, PVP-40 and beta-mercaptoe-
thanol [46]) for 20 min at 37 °C and 20 min at 50 °C. After
centrifugation, the supernatant was gently extracted
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Fig. 3 Analysis of orthologs. A Protein comparative analysis of orthologs between giant kelp and three other relevant macroalgal species
(Ectocarpus sp., Saccharina japonica and Undaria pinnatifida) using Orthofinder. Numbers represent shared orthogroups between species. B Species

tree inferred by OrthoFinder

twice with 24:1 chloroform: iso-amyl alcohol. The upper
phase was adjusted to 1/10™" volume with 3 M Sodium
acetate (pH=5.2), gently mixed, and DNA precipitated
with iso-propanol. DNA was collected by centrifugation,
washed with 70% Etoh, air dried for a few minutes, and
dissolved thoroughly in 1 X TE at room temperature. Size
was validated by pulsed field electrophoresis.

Sequencing of sheared DNA >30 kb was performed at
the Arizona Genome Institute on a Pacbio Sequel II Plat-
form. A SMRTbell Express Template Prep Kit 2.0 was
used for library preparation and a Sequel II Binding Kit
was used for the sequencing that generated 56 GB of long
read data.

Genome assembly

Contamination from sample collection and library
preparation has been found in many different reference
genomes, and can be the cause for erroneous results
in downstream analysis [47]. Contamination has been

identified as a concern in genomes of other brown mac-
roalgae, including Saccharina japonica [48]. In order to
assemble our genomes using sequences free of most con-
tamination, we loosely aligned our PacBio reads to three
different brown macroalgae genomes (Ectocarpus silicu-
losus, Saccharina japonica and Cadosiphon okamuranus)
using Minimap2 map-pb option [49] and excluded from
our assembly sequences that did not map to any of the
brown macroalgae genomes using Samtools v1.15.1 [50].
We assembled the remaining reads using Canu 1.9 [51]
on standard settings resulting in a preliminary assembly
of 1,039 contigs containing 539Mbp, which was then pol-
ished using Racon v1.5.0 [52].

Because using published genomes to do an initial con-
tamination filter relies on those genomes being contami-
nation free, we analyzed the potential contamination of
each contig separately. We split the assembly into indi-
vidual contigs using faSplit [53] and used diamond blast
v2.10 to blast each contig against the Uniprot reference
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TNM o

Fig. 4 Synteny between the Macrocystis pyrifera genome (dark green) and the genomes of A Ectocarpus siliculosus and B Undaria pinnatifida (light
green). Bands represent clusters of at least 10 single copy orthologs no more than 3 MB apart. Purple bands are potential chromosome splitting
or fusion. Gray bands represent scaffolds that share the highest number of orthologs and, therefore, are most syntenic. Red bands represent
orthologs in different scaffolds. When multiple bands overlap, bands with fewer number of orthologs superimpose bands with higher numbers
of orthologs for easier visualization. Histogram represents density of single copy orthologs in 1 MB windows
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proteome database with an evalue of 1e-15 [54, 55]. We
then added the results to the blobtools pipeline using the
add --hits command and filtered contigs based on length
(contig>10,000 base pairs), GC content (between 0.35-
0.65), coverage (5-300X), and blast classification, keep-
ing contigs identified as phaeophyceae and no-hit. The
first round of filtering removed 161 contigs and ~42 MB
of sequence. The 870 contigs were then sent to Phase
Genomics for scaffolding.

Chromatin conformation capture data was generated
using a Phase Genomics (Seattle, WA) Proximo Hi-C 2.0
Kit, which is a commercially available version of the Hi-C
protocol [56]. Following the manufacturer’s instructions
for the kit, intact cells were crosslinked using a formal-
dehyde solution, digested using the DPNII restriction
enzyme, end repaired with biotinylated nucleotides, and
proximity ligated to create chimeric molecules com-
posed of fragments from different regions of the genome
that were physically proximal in vivo, but not necessarily
genomically proximal. Continuing with the manufactur-
er’s protocol, molecules were pulled down with strepta-
vidin beads and processed into an Illumina-compatible
sequencing library. Sequencing was performed on an
[llumina NovaSeq.

Reads were aligned to the 870 contig draft assembly giant
kelp genome also following the manufacturer’s recommen-
dations  (https://phasegenomics.github.i0/2019/09/19/hic-
alignment-and-qc.html). Briefly, reads were aligned using
BWA-MEM with the -5SP and -t 8 options specified, and all

other options default [57]. SAMBLASTER was used to flag
PCR duplicates, which were later excluded from analysis
[58]. Alignments were then filtered with samtools using the
-F 2304 filtering flag to remove non-primary and second-
ary alignments [50]. Putative misjoined contigs were broken
using Juicebox based on the Hi-C alignments [59, 60].

Phase Genomics’ Proximo Hi-C genome scaffolding
platform was used to create chromosome-scale scaf-
folds from the corrected assembly as described in Bick-
hart et al. [61]. As in the LACHESIS method, this process
computes a contact frequency matrix from the aligned
Hi-C read pairs, normalized by the number of restric-
tion sites on each contig, and constructs scaffolds in
such a way as to optimize expected contact frequency
and other statistical patterns in Hi-C data [62]. Approxi-
mately 20,000 separate Proximo runs were performed to
optimize the number of scaffolds and scaffold construc-
tion in order to make the scaffolds as concordant with
the observed Hi-C data as possible. Finally, Juicebox was
again used to correct scaffolding errors.

After scaffolding and preliminary annotation, we found
several contigs that had been discarded from the assem-
bly contained stramenopile_odb10 BUSCO genes. We
determined that our initial filtering with the blobtools
pipeline had been too strict, mostly due to misclas-
sification of the contigs during the blast analysis. The
misclassification of sequences has been shown to be
an increasing problem in sequence databases [63, 64].
After manually checking the 161 discarded contigs for
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potential candidate giant kelp contigs, we added 29 more
contigs into the giant kelp assembly, increasing the size of
the genome ~38 MB to 537 MB (Supplementary Fig. 3).
The additional contigs also raised the BUSCO score using
stramenopile_odb10. Unfortunately, the initial 870 con-
tigs had been already scaffolded, and completely re-scaf-
folding the genome was cost prohibitive.

Genome completeness

To assess genome completeness using single copy
orthologs, we used BUSCO v5.2.1 in genome mode and
in conjunction with the stramenopile_odb10 dataset to
compare our giant kelp genome to the publicly available
genomes of Ectocarpus siliculosus, Saccharina japonica,
and Undaria pinnatifida [64]. BUSCO (Benchmarking
Universal Single Copy Orthologs) searches a genome for
single copy ortholog proteins that are in data sets of spe-
cific lineages. BUSCO scores from the giant kelp genome
can then be compared against other brown macroal-
gal genomes, with the higher number of BUSCO genes
showing a more complete genome and lower number of
duplicated genes showing less duplication artifacts from
assembly.

Other methods to check genome completeness include
genome contiguity, usually measured using the N50 sta-
tistic, and comparing genome size to estimated genome
size [65]. N50 is the length of the shortest contig or scaf-
fold for which contigs or scaffolds with greater or equal
length cover at least 50% of the assembly [66]. Here we
compared the same genomes using QUAST v5.0.2 with
standard settings in order to generate genome assembly
statistics [43].

When assessed using microspectrophotometry, the
potential genome sizes of giant kelp gametophytes ranged
from 882 MB to 1,176 MB [67]. However, when using
flow cytometry, the giant kelp genome was estimated to
be 686 MB [68]. This discrepancy may be explained by
heterogeneous amounts of nuclear material in giant kelp
gametophytes. Giant kelp female gametophytes have
been shown to sometimes have double the genetic mate-
rial compared to most male gametophytes [39]. Other
brown macroalgae, such as Saccharina latissima, also
have variable amounts of DNA content in their haploid
tissue [38]. Therefore, using physical parameters to accu-
rately calculate the genome size of brown macroalgae
may require homogeneous mixes of cells with the same
levels of DNA content. Computational methods can esti-
mate the genome size of an organism based on approxi-
mating the repeat structure of sequenced shotgun reads
from a genome [69]. Sometimes, the genome estimates
using kmers, or unique subsequences of DNA of length k,
may produce different lengths of the genome compared
with physical measurements from flow cytometry [70].
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Since the physical estimates of the giant kelp genome are
not consistent, we compared them against a kmer based
estimate. Long reads from Pacbio sequencing have been
shown to accurately estimate genome size using kmers as
long as the reads have been corrected [71, 72]. To com-
putationally estimate genome size, we used the corrected
Pacbio reads generated by Canu with specific settings for
Sequel II reads: correctedErrorRate=0.035 utgOvIEr-
rorRate =0.065 trimReadsCoverage=2 trimReadsOver-
lap=500 [51]. We then counted the number of kmers
found in the corrected reads using the kmercounter pro-
gram kmc and two different kmer sizes, with k=25 and
k=31 [71]. Kmer distributions of both k=25 and k=31
was plotted, and genome size estimate was done by sum-
ming the total number of kmers and dividing by the mean
coverage of kmers in the genome.

Annotation

The giant kelp nuclear genome assembly was annotated
using the JGI Annotation pipeline [72, 73]. The following
steps describe the pipeline in brief. The genome assem-
bly was masked for repeats using RepeatMasker [74] with
the RepBase library [75] and the most frequent repeats
(more than 150 copies) identified by RepeatScout [76].
Protein-coding gene models were predicted using the
following gene modelers: ab initio modelers Fgenesh
[77] and GeneMark [78], homology-based Fgenesh+ and
GeneWise [79] seeded by BLASTx alignments against
the NCBI NR database, and transcriptome- based mod-
elers Fgenesh, combest [80], and Braker [81]. For use in
gene prediction, transcriptome assemblies were gener-
ated from Illumina RNAseq reads (Accession numbers:
SRR5026366, SRR5026588, SRR5026590, SRR5026591,
SRR5026593, SRR5026594, SRR3544557, SRR3615022)
using Trinity (v2.11.0) [82], and as input to Braker, RNA
reads were mapped to the genome using HISAT2 [83]. To
select the best representative gene model at each locus,
automated filtering was performed based on homol-
ogy and transcriptome support. In addition, genes with
similarity to transportable elements (TE), containing
known TE-related Pfam domains, or lie within repeat-
masked regions were excluded from the annotated gene
set. Finally, the protein sequences of the predicted gene
models were functionally annotated using SignalP v3
for signal sequences [84], TMHMM for transmembrane
domains [85], InterproScan for protein domains [86], and
homologs based on Blastp alignments against the NCBI
NR, SwissProt, and KEGG [87] databases.

Annotation of transposable elements was done using
RepeatModeler v2.0.3 with LTRStruct option and genom-
eSampleSizeMax of 81 Mb [88]. The output was classi-
fied using RepeatMasker v4.1.2 on standard settings [74].
Genome assembly and annotations are available from the
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JGI algal genome portal PhycoCosm (https://phycocosm.
jgi.doe.gov/Macpyr2) [89].

Comparative analysis

The protein datasets from Macrocystis pyrifera, Ectocar-
pus siliculosus, Saccharina japonica, and Undaria pin-
natifida were used for ortholog analysis with Orthofinder
v2.5.4 and visualization of species tree was done with
Dendroscope [90, 91]. The position of single copy
orthologs between M. pyrifera and E. siliculosus were
used to determine synteny between the two genomes.
Circos v2.30.1 [91] was used to graph links between
orthologs in each genome. Clusters where three or more
orthologs have no more than 1 MB of distance between
them were graphed as bands linking their respective
position in each genome.

SNP calling and population genetics

Raw Illumina reads from 49 giant kelp diploid individu-
als from three Southern California were downloaded
from NCBI (https://www.ncbi.nlm.nih.gov/bioproject/
661280). Reads were trimmed of adapter sequences and
low-quality tails using Trimgalore [92]. The reads were
then aligned to our giant kelp reference genome using
Hisat2 v2.1.0 using standard parameters, and the ensuing
alignment file was converted to binary and sorted using
Samtools v1.9 [50, 83]. Mean depth per individual across
the genome calculated using VCFtools v0.1.16 was ~X8,
and one individual was removed from the data set due to
poor coverage [93]. After removing PCR duplicates, we
called variants such as single nucleotide polymorphisms
(SNPs) and insertion/deletions (indels), producing a
variant call file (VCF) using the GATK4 best practices
pipeline [94]. Initial filtering followed the hard filter-
ing suggestions from GATK: “QD<2.0 || MQ<40.0 ||
FS>60.0 || HaplotypeScore>13.0 || MQRankSum<-12.5
|| ReadPosRankSum<-8.0” We then filtered the VCF
further for population genetics analysis on the follow-
ing parameters: insertions and deletions removed, bial-
lelic SNPs only, pass quality thresholds of 30, site is called
in 90% or more individuals, and each site has a mean
depth of 3 reads. Initially, there were 25, 374, 044 SNPs
and indels in the raw VCF file before filtering. The filters
reduced the number of SNPs to 16,019,851 for down-
stream analysis.

We performed a principal component analysis (PCA)
on the genetic variation using the hard filtered VCF as
an input into the SNPrelate v1.22.0. We used the SNPrel-
ate standard pipeline and plotted the PCA using ggplot2
v3.3.2 [95, 96]. We then calculated pairwise genetic diver-
sity and Tajima’s D using VCFtools and the hard filtered
VCE file across genomic windows of 200 kb with a step
interval of 40 kb, and for each population separately
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[93]. We also calculated FST between the three popula-
tions using VCFtools and the hard filtered VCF file across
genomic windows of 200 kb with a step interval of 40 kb.
To analyze linkage disequilibrium and population
structure we further filtered the VCEF file using vcftools
and the commands --maf 0.10 and max-missing 1. This
keeps alleles that are present in at least 3 individuals and
includes only sites that have no missing data. Phasing of
the file was done using py-popgen [97], with beagle pack-
age implementation [98]. We then calculated and plotted
linkage disequilibrium using PopLDDecay. Prediction on
the number of populations was done using faststructure
with k values from 1-10 with the built-in chooseK.py
script. Different k values were plotted with distruct.py.
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