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(d) Eccentricity (equalized); conn. components; n={40, 20, 10, 6, 4}; ϵ=0

Fig. 1: Our approach adapts the mapper construction—a popular tool from topological data analysis—to the visualization of graphs.
It provides multi-scale skeletonizations of the graph from diverse perspectives. First, a topological lens is applied to the graph, based
upon a property of interest from the graph, for instance, (a) node importance and (b) eccentricity. Then, by modifying a single input
parameter, namely the number of cover elements n, our approach provides a multi-scale skeletonization of the input graph that
emphasizes the property of interest. In the examples presented here, the visible level-of-detail is reduced as n decreases (within an
appropriate range), whereas the homology of the graph—in the form of components and tunnels—remains well persevered.

Abstract—Node-link diagrams are a popular method for representing graphs that capture relationships between individuals, businesses,
proteins, and telecommunication endpoints. However, node-link diagrams may fail to convey insights regarding graph structures, even
for moderately sized data of a few hundred nodes, due to visual clutter. We propose to apply the mapper construction—a popular tool
in topological data analysis—to graph visualization, which provides a strong theoretical basis for summarizing the data while preserving
their core structures. We develop a variation of the mapper construction targeting weighted, undirected graphs, called mapper on
graphs, which generates homology-preserving skeletons of graphs. We further show how the adjustment of a single parameter enables
multi-scale skeletonization of the input graph. We provide a software tool that enables interactive explorations of such skeletons and
demonstrate the effectiveness of our method for synthetic and real-world data.

Index Terms—Graph visualization, topological data analysis, mapper, skeletonization, multi-scale visualization

1 INTRODUCTION

Graphs are often used to model relationships in social, biological,
and technological systems. In recent years, our ability to collect and
archive such data has far outpaced our ability to understand them. The
challenges for graph visualizations are two-fold: how to effectively
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extract features from such large and complex data; and how to design
effective visualizations to communicate these features to the users?

One approach to addressing this problem has been graph aggrega-
tion, which creates a skeleton of a graph via node [94] and edge clus-
tering [29, 43]. Common node clustering techniques include spectral
methods [34, 45, 67, 106], similarity-based aggregation [100], commu-
nity detection [81, 82], random walks [60, 89], and hierarchical clus-
tering [16, 20]. There are two limitations to these existing approaches.
First, they make no guarantees about the preservation of homological
features (i.e., components and tunnels) in the original graph (see Fig. 1).
Second, they provide only a single perspective on the aggregation of
the graph, driven by the objective of the clustering algorithm.

We propose to address these challenges by adapting the mapper
construction [98]—a tool from topological data analysis (TDA)—to
develop homology-preserving skeletonizations of graphs for visualiza-
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tion. The original mapper algorithm has enjoyed tremendous success
in data science, e.g., cancer research [84], phonemics [62, 108], and
others [76, 101].

Our approach works by first applying a topological lens to the input
graph that captures a certain property of the graph. We consider topolog-
ical lenses that preserve graph-theoretic properties such as symmetries,
density, and centrality. We then perform a series of operations to skele-
tonize the graph, producing a topological summary. The benefits of our
approach are three-fold. First, it provides guarantees on preserving the
homology of the graph it is summarizing, assuming certain sampling
conditions [19, 79]. Second, the topological lens allows observing the
graph from multiple perspectives, each highlighting different aspects
of the graph being studied. Finally, the mapper construction connects
naturally with visualization by providing a strong theoretical basis for
multiscale simplifications of the input graph while preserving its core
homological structures. In this paper, we develop and evaluate a varia-
tion of the mapper construction targeting weighted undirected graphs;
the method is referred to as mapper on graphs, which produces mapper
graph as output. Specifically:

• We describe a series of modifications required to make the mapper
algorithm effective on graph data;

• We study the utility of five graph-specific topological lenses;
• We demonstrate the effectiveness of our method on synthetic and

real-world data;
• We perform a human-subject study showing mapper on graphs

produces good quality skeletons.
Finally, we provide an open-sourced implementation together with our
experimental datasets via GitHub.

2 RELATED WORK

2.1 Graph Visualization
We limit our review to node-link diagrams, which are utilized by many
visualization software tools, including Gephi [8], GraphViz [42], and
NodeXL [56]. For a comprehensive overview of graph visualization
techniques, see [105]. One of the biggest challenges with node-link
diagrams is visual clutter, which has been extensively studied in graph
visualization [41]. It is addressed in several ways: improved node
layouts, edge bundling, lenses, and alternative visual representations.

Tutte [102] provided the earliest graph layout method for node-link
diagrams, followed by methods driven by linear programming [50],
force-directed embedding [46, 59], graph metric embedding [48], and
connectivity structures [17, 63, 65, 66]. TopoLayout [2] creates a hy-
brid layout by decomposing a graph into subgraphs based on their
topological features, including trees, complete graphs, bi-connected
components, and clusters, which are grouped and laid out as meta-
nodes. The difference between TopoLayout and our work is that we use
functions defined on the graph to automatically guide decomposition
and feature extraction among subgraphs, and multiple functions induce
graph skeletonizations, capturing different properties of the graph.

Edge bundling, which bundles adjacent edges together, is commonly
used to reduce visual clutter on dense graphs [57]. For massive graphs,
hierarchical edge bundling scales to millions of edges [47], while di-
vided edge bundling [95] tends to produce higher-quality visual results.
Nevertheless, these approaches only deal with edge clutter, not node
clutter, and they only support limited types of analytic tasks [6, 78].

The concept of applying lenses to view large and complex data
has also been used in graph visualization. An early example is the
topologically-driven “fisheye views” for visualizing large graphs [49].
Another example is the TugGraph used to explore neighborhoods and
paths extending from the foci of interest within a large graph [4, 51].

Finally, alternative visual representations have been used to remove
clutter, ranging from variations on node-link diagrams, such as replac-
ing nodes with modules [40] and motifs [39], to abstract representations,
such as matrix diagrams [36] and graph statistics [61].

2.2 Graph Clustering
The objective in node clustering (or graph clustering) is to group the
nodes of the graph by taking into consideration their edge structure [94].

Vehlow et al. provided a recent survey on the visualization of clustered
structures [104] (see Sec. 1 for examples). Edge clustering has also been
studied [29, 43]. Importantly, in their assessment of graph readability,
Archambault et al. [5] concluded that only clustering could be efficiently
performed on large graphs. Broadly speaking, our approach is a type of
graph clustering that simultaneously preserves relationships between
clusters to retain the homological features of the graph.

Several approaches have leveraged clustering and hierarchical rela-
tionships to improve exploration within graphs. For example, van Ham
and van Wijk provided methods for interacting with clusters in graph vi-
sualizations [103]. Abello et al. built a system, ASK-GraphView, which
enables interacting with very large graphs using clustering, among
other techniques [1]. Grouse and GrouseFlocks are systems designed
to ease the exploration through a feature topology-based hierarchy of
the graph [3]. Batagelj et al. created the (x,y)-clustering, with the goal
of generating visualizations where intercluster (x) and intracluster (y)
graphs retained desired topological properties [9].

2.3 TDA in Graph Analysis and Visualization
Persistent homology (the study of topological features across multi-
scales) and mapper construction are two of the most widely used tools
in TDA. Persistent homology has been used to analyze graphs [37,
58, 86, 87], with applications to collaboration networks [7, 24] and
brain networks [25, 30, 69–72, 88]. In terms of graph visualization,
persistent homology has been used in capturing changes in time-varying
graphs [55], as well as supporting interactive force-directed layouts [38,
99]. It has also been used to simplify and visualize hypergraphs [109].

The mapper construction [98], which provides a multiscale skele-
tonization of point clouds has been widely utilized in TDA for a number
of applications [21, 75, 76, 84, 101]. It has witnessed recent major theo-
retical developments (e.g., [23, 33, 79]) that further adjudicate its use in
data analysis and provide mathematical foundations for its homology-
preserving properties. Recently, Bodnar et al. considered learning the
lens of a mapper graph using graph neural networks [13], which is based
upon a preprint draft of this work on applying mapper to graphs [54].

3 MAPPER ON GRAPHS CONSTRUCTION

Our mapper on graphs method—a variation of the classic mapper
construction—provides a general framework to skeletonize and visu-
alize a graph. However, to accomplish this, every stage of the classic
mapper construction required significant modification (see Fig. 3). This
includes the selection of graph-specific topological lenses, and modifi-
cation of the methods used to calculate the cover and the output mapper
graph nodes and edges.

Whereas the input to classic mapper construction is a high-
dimensional point cloud P ⊂ Rn, the input to mapper on graphs
is a weighted undirected graph G = (V,E) equipped with a positive
edge weight w : E → R (see Fig. 3a). If a weight is not provided,
several strategies are possible. We assign a uniform edge weight, as
seen in other recent works [38, 99].

3.1 Topological Lens (Fig. 3a)
The first step of classic mapper construction is to apply a real-valued
function to each point. The function plays the role of a topological lens
through which we look at the properties of the data. An interesting
open problem for the classic mapper construction is how to formulate
topological lenses beyond the best practice or a rule of thumb [10, 11].
Nevertheless, prior work has shown that different lenses are important
for providing different insights into the data [10, 98].

Table 1: Topological lens comp. scalability and properties preserved

Method Scalability Properties Preserved
Average Geodesic Distance (AGD) Low Symmetries
Density Estimation Low Density
Eccentricity Low Centrality
Eigenfunctions (*Fiedler vector) Low (*High) Spectral
PageRank High Importance
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(a) Average Geodesic Distance (b) Density (δ=0.5) (c) Eccentricity (d) Fiedler Vector (e) PageRank (d=0.85)

Fig. 2: Examples of the topological lenses applied to the USAIR97 input graph (top) and the resulting mapper graph (bottom) using n=8, ϵ=0,
and modularity clustering. Each of the topological lenses provides a slightly different perspective on the input graph, which is reflected in the
output mapper graph.

For mapper on graphs, the topological lens (see Fig. 3a) is a real-
valued function defined on the nodes, f : V → R. We focus on five
graph-theoretic lenses, including average geodesic distance (AGD),
density estimation, eccentricity, eigenfunctions of the graph Laplacian,
and PageRank (see Fig. 2), although our framework can be easily ex-
tended to include other lenses. Each lens is chosen to reflect a specific
property of interest that is intrinsic to the structure of a graph, which are
outlined in Tab. 1. In addition to utilizing the function directly, we pro-
vide a non-parametric variation obtained using histogram equalization
on the topological lens.

3.1.1 Average Geodesic Distance (AGD)
The average geodesic distance (AGD) [64] is a topological lens that
detects symmetries in the graph while being invariant to reflection,
rotation, and scaling, and it has been used extensively in shape analysis
due to these properties [64]. AGD is calculated by first defining a
geodesic distance d(u, v) between any two nodes u, v ∈ V , in our
case, utilizing Dijkstra’s shortest path algorithm. The AGD is given by

AGD(v) =
1

|V |
∑
u∈V

d(v, u).

This definition implies that the nodes near the center of the graph will
likely have low function values, while points on the periphery will have
high values. See Fig. 2a for an example.

3.1.2 Density Estimation
Density estimation helps to differentiate dense regions from sparse
regions and outliers. The density estimation function [97] is given by

Dδ(v) =
∑
u∈V

exp(
−d(u, v)2

δ
),

where d(u, v) is the geodesic distance between two nodes in the graph
and δ > 0. Dδ tends to differentiate dense regions from sparse regions
and outliers, and interestingly, it tends to negatively correlate with the
AGD. We set δ = 0.5 for all examples. See Fig. 2b for an example.

3.1.3 Eccentricity
Eccentricity measures the maximum distance from one node to all
others. The eccentricity of a graph node is given by

Ecc(v) = max
u∈V

(d(u, v)),

where d(u, v) is the geodesic distance between two nodes in the graph.
Eccentricity measures centrality on the graph, since nodes that are
towards the center need to travel a shorter distance to reach all other
nodes than those on the periphery. See Fig. 2c for an example.

3.1.4 Eigenfunctions of the Graph Laplacian
Eigenfunctions of the graph Laplacian L capture spectral properties of
the graph [68]. In particular, the gradient of the eigenfunctions of L
tends to follow the overall shape of the data [74], and these functions
have been used in applications, such as graph understanding [96],
segmentation [92], spectral clustering [83], and min-cut problems [77].
Let C(G) be the vector space of all functions, f : V → R. The
unnormalized graph Laplacian of G is the linear operator L : C(G) →
C(G) defined by mapping f ∈ C(G) to Lf , with weight, w, where

(Lf)(v) =
∑
u∼v

wu,v(f(v)− f(u)).

Sorting the eigenvectors of L by increasing eigenvalues, we can use
eigenvectors of the second or the third smallest eigenvalues of L as
the lens, denoted as l2, l3, and so on. We focus in particular on l2
(both unnormalized and normalized), commonly referred to as the
Fiedler vector [74], since it has desirable geometric properties [35].
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Fig. 3: An illustration of the mapper on graphs construction: (a) A
weighted graph G = (V,E) with a topological lens f : V → R. (b) A
cover U of the range space is given by intervals U1, U2, U3, and U4 as
cover elements. (c-d) The connected subgraphs induced by f−1(Ui)
form a cover of G. (e) The resulting mapper graph is a 1-dimensional
skeleton whose nodes represent the connected subgraphs (in orange),
and edges represent the graph-cut between the subgraphs (in purple).
Observe that the output mapper graph retains the main homological
features of the input graph, which is represented by a large cycle and
the two components attached at its bottom.



For example, the minimum and maximum of the Fiedler vector tend
to occur at nodes with maximum geodesic distances [27]. Efficient
computations of the Fiedler vector also exist, making it feasible to use
in larger graphs. See Fig. 2d for an example.

3.1.5 PageRank
Except for the Fiedler vector, prior topological lenses are computation-
ally expensive, making them prohibitive to use on large graphs. To
address the scalability issue, we utilize PageRank [18] as a computa-
tionally efficient lens that measures the importance of nodes. We use a
version of the PageRank algorithm applicable to undirected graphs [52].
A PageRank vector R : V → R is defined for every node v ∈ V ,

R(v) =
(1− d)

|V | + d
∑

u∈N(v)

R(u)

|N(u)| ,

where N(v) is the set of neighbors of v; 0 < d < 1 is the damping
factor, which is set at 0.85 for our examples. Using this formation of
R(v), PageRank yields an iterative algorithm that can be computed
efficiently in practice [18, 85]. A high PageRank score at v typically
means that v is connected to many nodes that also have high PageRank
scores. PageRank has been shown to be a continuous function that has
many properties similar to density [90].

3.2 Cover of f (Fig. 3b)
In the second step, a cover U is formed over the range of f , f(V ) ⊆
[a, b] (see Fig. 3b). The cover consists of a finite number of open
intervals called cover elements, U = {Uα}α∈A. To obtain the cover,
we use a common strategy, uniformly sized overlapping intervals. Given
a graph G equipped with a topological lens f : V → R, suppose the
range of the function f(V ) is normalized to be within [0, 1]. To obtain
an initial cover, we split [0, 1] into n (the resolution parameter) intervals
[c1, c2], · · · , [cn−1, cn] with equal length, such that c1 = 0 and cn=1.
Adjusting the resolution parameter increases or decreases the amount
of aggregation mapper on graphs provides. Broadly speaking, smaller
n leads to a smaller topological summary of the graph. Fig. 4a-4d show
an example by varying the number of cover elements n.

The overlap parameter ϵ is used to obtain the cover U consisting
of cover elements (ci − ϵ, ci+1 + ϵ) for 1 ≤ i ≤ n − 1. Fig. 4e-4h
show an example of increasing ϵ. Increasing the overlap causes the
number of output nodes and density of edges in the mapper graph to
increase, which is caused by the duplication of data in the overlapped
cover elements. The necessity for the overlapping cover elements in
the classic mapper is partially attributable to the lack of connectivity
in point clouds. Importantly, in a significant departure from classic
mapper, we utilize the edges of the graph for the connectivity, as will
be discussed shortly. This modification eliminates the need for overlap.
Therefore, we use ϵ=0 in all of our experiments.

3.3 Inverse Image (Fig. 3c)
In the third step, the inverse image of the cover is calculated, as shown
in Fig. 3c. For each cover element Uα, the inverse image f−1(Uα) is
the subset of nodes Vα ⊆ V , where f(Vα) ∈ Uα. In other words, a
node is associated with a cover element whose interval cover the node’s
function value. In contrast with the classic mapper, for each element of
the cover Uα, we find the nodes Vα = f−1(Uα) and extract its induced
subgraph Hα ⊆ G, where f(Vα) ∈ Uα. It is important to note that
when the overlap is used in cover elements (i.e., ϵ ̸=0), some nodes
from the input graph will be replicated across multiple inverse images.

3.4 Mapper Graph Nodes and Edges (Fig. 3d)
The final step of the process is forming nodes and edges of the output
mapper graph, as shown in Fig. 3d.

3.4.1 Forming Mapper Graph Nodes
To form the nodes of the output, classic mapper construction applies a
clustering algorithm to a set of points in the inverse image of a cover el-
ement (e.g., agglomerative clustering or DBSCAN [44]). In our setting,
the subgraphs Hα extracted with mapper on graphs have additional

(a) n=2, ϵ=0 (b) n=4, ϵ=0 (c) n=8, ϵ=0 (d) n=16, ϵ=0

(e) n=8, ϵ=0 (f) n=8, ϵ=0.1 (g) n=8, ϵ=0.2 (h) n=8, ϵ=0.4

Fig. 4: An example using AGD while varying n and ϵ in a cover on the
USAIR97 data: (a-d) fixing ϵ=0, n={2, 4, 8, 16}, respectively; and
(e-h) fixing n=8, ϵ={0, 0.1, 0.2, 0.4}, respectively.

structures coming from the connectivity of the graph. Therefore, to
form the nodes of the mapper graph, we apply a graph clustering algo-
rithm to each subgraph Hα. Every cluster within Hα is returned as a
node of the output mapper graph.

We apply three clustering algorithms that preserve different aspects
of the subgraph. The first identifies connected components in each
subgraph (see Fig. 5a), that is, groups of nodes in Hα that are reach-
able to each other. The second algorithm is modularity clustering [15]
(see Fig. 5b), which identifies communities with dense connections
between nodes and sparse connections between communities. Finally,
we consider label propagation (see Fig. 5c), which identifies commu-
nities by iteratively assigning node labels and propagating the labels
through the graph. We tested two label propagation algorithms (semi-
synchronous [28] and asynchronous [91]) and obtained similar results
(all presented results use asynchronous label propagation).

Fig. 5 show the results of these clustering algorithms, which preserve
similar structures. However, the graph details they retain vary based on
the properties of the underlying algorithm.

(a) Conn. Components (b) Modularity Clustering

(c) Label Propagation

(d) Connectivity using overlap

(e) Connectivity using graph-cut

Fig. 5: Left: An example of using (a) connected components, (b) mod-
ularity clustering, and (c) asynchronous label propagation as node
clustering methods on the USAIR97 data with n=8 and ϵ=0. Right:
An example of using different edge forming methods on the USAIR97
data with n=8, ϵ=0, and connected components.



3.4.2 Forming Mapper Graph Edges

Finally, we form the edges of the mapper graph. Initially, we test
a classic (mapper) approach that identifies the overlapping node sets
between clusters. For all mapper graph nodes created in the prior step,
if they share any node from the original graph, they are connected with a
weight equal to the overlap between them. In other words, consider two
mapper nodes Ni and Nj (i ̸= j), they are connected if Ni ∩Nj ̸= ∅
with wij = |Ni ∩ Nj |. Unfortunately, this method does not work
as well as we have hoped. As seen in Fig. 5d, the method has two
undesirable problems. First, the required overlap creates a few dense
connections. Second, the method does not guarantee connectivity.

Instead, we use the connectivity of the input graph to determine
the connectivity of the output graph. We utilize the number of edges
in the input graph that go between any two mapper graph nodes Ni

and Nj (i ̸= j). We count the number of edges between the nodes
of Ni and Nj , which can be efficiently computed using a graph-
cut. The nodes are connected if graph_cut(Ni, Nj) ̸= ∅, with
wij = |graph_cut(Ni, Nj)|. Fig. 5e shows an example. Alterna-
tive approaches could sum (wij =

∑
q∈graph_cut(Ni,Nj)

wq) or apply
a statistic, such as the mean, to the weights of the edges of the graph-cut.
The utility of such approaches depends upon the analytical goals of the
visualization. In comparison with the initial approach, the graph-cut-
based method better preserves graph details and eliminates the need for
enforcing overlaps among cover elements. Unless otherwise specified,
all examples in the paper use the graph-cut method to form edges in
the mapper graph.

3.5 Visualization (Fig. 3e)

The final output mapper graph (Fig. 3e) provides an overview of the
homological structure of the input graph (Fig. 3a) through multiple
perspectives using different topological lenses. The levels of details
captured by the mapper graph may be adjusted by modifying the cover.
Its visualization consists of two components (see Fig. 6): a visualization
of the mapper graph, and a visualization of the cover with a histogram
useful for parameter selection.

3.5.1 Output Mapper Graph Visualization

The output of mapper on graphs is a mapper graph with additional
metadata, which is the primary visualization target, with flexibility in its
layout and visual encodings; see Fig. 6d. For the purpose of this paper,
we have chosen a simple approach. The mapper graph is laid out using
a standard force-directed layout provided by D3.js. Our approach is
ultimately agnostic of the graph layout algorithm, and different layouts
(e.g., layered approaches) may improve the presentation under certain
scenarios. For illustrative purposes, we also add several (optional) vi-
sual encodings to better understand the information captured by mapper
on graphs. First, a mapper graph node Ni (i.e., the cluster Ni ⊆ G)
is colored using the average function value across its members using
a topological lens specific colormap (see Fig. 2). Next, the sizes of
the nodes are proportional to |Ni|. Finally, edge thickness is drawn
proportional to the edge weight (i.e., |graph_cut(Ni, Nj)|).

(a) (b) (c) (d)

Fig. 6: Visualization of the (a) MOVIES graph includes a visualization
of (b) the cover elements U , (c) the histogram of the topological lens f ,
and (d) the mapper graph (n=6, ϵ=0, with modularity clustering).

3.5.2 Histogram and Cover Visualization

To assist with parameter selection, we provide additional information
about the input graph, which is particularly useful when the input graph
is too large to draw.

To understand the distribution of a topological lens f , a histogram
of the function values is laid out vertically, with the minimum value a
at the bottom and the maximum value b at the top. Fig. 6c shows an
example of a histogram for the Fiedler lens. The histogram is split into
an adjustable number of bins.

The cover (see Fig. 6b) is visualized using a series of boxes, one per
cover element, displayed next to the histogram of the topological lens.
Each box is placed and colored based on its corresponding interval. The
boxes are laid out horizontally automatically using a greedy packing
approach. Observing patterns in the histogram and its alignment with
the cover elements can help inform choices for n, ϵ, and the equalization
of the topological lens.

4 EVALUATION

We evaluate the computational performance of our approach (see
Sec. 4.1) and its ability to provide multiscale homology-preserving
skeletonizations (see Sec. 4.2, 4.3, and 4.4).

Implementation. Our approach is implemented using Python for
the calculation of the mapper graph and D3.js for visualization. The
code and datasets are available on GitHub <https://github.com/
shape-vis/MapperOnGraphs>. A demo version of the software is avail-
able at <https://shape-vis.github.io/MapperOnGraphsDemo/>.

Datasets. We evaluate our approach using over 45 graphs
(see Tab. 2). We focus on a subset of small (|V | ∈ [100, 1 000),
|E| ∈ [200, 16 651]), medium (|V | ∈ [1 000, 5 000), |E| ∈
[1 092, 284 924]), and large (|V | ∈ [5 000, 1 134 890], |E| ∈
[91 342, 2 987 624]) graphs. The datasets are a mix of synthetic and
real-world datasets. Graphs not in the paper are available in the demo.

Table 2: Listing of Datasets Used in Evaluation

Dataset |V | |E| Source
AIRPORT 2,896 15,641 Openflights.org
AMAZON0302 262,111 899,792 SNAP [73]
BALANCED TREE(3,6) 1,093 1,092 NetworkX [53]
BARBELL(50,20) 120 2,471 NetworkX [53]
BCSSTK 110 254 UF Sparse Matrix Repo. [31]
BCSSTK20 467 1,762 UF Sparse Matrix Repo. [31]
BCSSTK22 110 364 UF Sparse Matrix Repo. [31]
BIO-CELEGANS 453 2,025 Network Repository [93]
BIO-DISEASOME 516 1,188 Network Repository [93]
BN-MOUSE-VISUAL-CORTEX-2 193 214 Network Repository [93]
CA-CONDMAT 21,363 91,342 SNAP [73]
CALTECH 762 16,651 Facebook 100
CHCH-MINER 1,510 48,512 BioSNAP [110]
CIRCULAR LADDER(100) 200 300 NetworkX [53]
COLLABORATION NETWORK 379 914 [80]
COM-AMAZON 334,863 925,872 SNAP [73]
COM-YOUTUBE 1,134,890 2,987,624 SNAP [73]
CONNECTED CAVEMAN(15,30) 450 6,525 NetworkX [53]
DCH-MINER 7,197 466,656 BioSNAP [110]
DF-MINER 20,549 802,760 BioSNAP [110]
DOROGOVTSEV GOLTSEV MENDES(5) 123 243 NetworkX [53]
ENRON-EMAIL 143 623 SNAP [73]
FF-MINER 46,007 106,499 BioSNAP [110]
HIC 1K NET 1 5,420 315,852
HIC 1K NET 2 5,096 333,129
HIC 1K NET 3 5,345 320,659 BioSNAP [110]
HIC 1K NET 4 5,472 378,343
HIC 1K NET 5 7,015 434,977
HIC 1K NET 6 4,581 284,924
HIC 5K NET 1 411 11,688
HIC 5K NET 2 308 9,599
HIC 5K NET 3 632 19,469
HIC 5K NET 4 265 8,402 BioSNAP [110]
HIC 5K NET 5 1,032 32,329
HIC 5K NET 6 192 6,242
HIC 5K NET 7 435 13,428
HIC 5K NET 8 1,194 37,569
MAP OF SCIENCE 554 2,276 [14]
MOVIES 101 192 [32]
RANDOM LOBSTER(100,0 6,0 4) 596 595 NetworkX [53]
RING OF CLIQUES(6,70) 420 14,496 NetworkX [53]
SMITH 2,970 97,133 Facebook 100
SOC-EPINIONS1 75,877 405,739 SNAP [73]
USAIR97 332 2,126 Network Repository [93]
WATTS STROGATZ(100,5,0.05) 100 200 NetworkX [53]

https://github.com/shape-vis/MapperOnGraphs
https://github.com/shape-vis/MapperOnGraphs
https://shape-vis.github.io/MapperOnGraphsDemo/
Openflights.org


4.1 Performance
4.1.1 Calculating Topological Lenses
Calculating the topological lens is oftentimes the most expensive part
of generating a mapper graph. We recorded the compute time for all
lenses on all graphs in our test set. In some cases, certain lenses can
not be computed in a reasonable amount of time. We terminated those
computations after 900 seconds.

Fig. 7a shows the (completed) compute time for all lenses. They are
laid out by the number of input graph nodes (|V |) against the compute
time in seconds using a log-log scale. A power regression is plotted for
each lens. The experimental results show that the methods from fastest
to slowest are: (1) PageRank: O(|V |1.07), (2) Fiedler: O(|V |1.17),
(3) eccentricity: O(|V |2.45), (4) density: O(|V |2.45), and (5) AGD:
O(|V |2.46). One conclusion is that Fiedler and PageRank perform
only slightly worse than linear, making them good candidates for large
graphs. The other methods—AGD, density, and eccentricity—are
worse than quadratic, making them impractical on large graphs.

4.1.2 Calculating Mapper Graphs
As we investigated the performance of the mapper on graphs frame-
work, it became clear that the performance was highly dependent upon
the clustering algorithm. Fig. 7b shows the time to calculate mapper
graph for three typical datasets, one small, one medium, and one large,
across several lens functions and various numbers of cover elements.
In addition, it differentiates the clustering algorithm by color. The
connected components algorithm (in blue) is the most efficient, often
by several orders of magnitude. We also observed that asynchronous
label propagation (in green) is often faster than modularity clustering.
In addition, for both asynchronous label propagation and modularity
clustering, the time required decreases as the number of cover elements
increases. This occurs because as more cover elements are added, the
number of input graph nodes that fall into each inverse image decreases.

Fig. 7c shows the time to calculate a mapper graph (excluding lens
calculation) for all datasets and all lenses with n=2 and n=20 cover
elements. The plots show the performance trend of different clustering
algorithms across a variety of datasets. The power regressions show
that from fastest to slowest are: (1) connected components: O(|V |1.15)
and O(|V |1.05); (2) asynchronous label propagation: O(|V |1.60) and
O(|V |1.55); and (3) modularity clustering: O(|V |1.88) and O(|V |1.72),
for n=2 and n=20, respectively. In summary, connected component
clustering is significantly more scalable than label propagation, which
is somewhat more scalable than modularity clustering.

4.2 Examples
A major challenge in evaluation is that we were unable to identify
appropriate quantitative metrics for comparing skeltonizations in our
context [107]. As such, we relied on qualitative evaluations in this
section and Sec. 4.3 and a human-subject evaluation in Sec. 4.4.

4.2.1 Multi-scale Homology Preservation
To demonstrate the homology preservation properties of our approach,
we show a variety of examples. The examples were selected such
that the homology of the input graph was clear, and a corresponding
mapper graph was selected that reflected that homology. Fig. 1, Fig. 8,
and Fig. 9 show two, two, and four examples, respectively. These
examples were chosen to show diversity among topological lenses and
clustering algorithms. In all examples, as the number of cover elements
n increases, the mapper graph becomes more similar to the input graph.
As n decreases, the mapper graph contains fewer nodes while still
retaining important homological structures. These structures include
the preservation of tunnels, which are particularly visible in both graphs
of Fig. 1 and can also be observed in Fig. 9a, 9b, 9c, 9d, and others.

4.2.2 Large Graphs
We demonstrate the effectiveness of our approach to summarize large
graphs as well. Fig. 10 shows results for three larges graphs, AMA-
ZON0302, COM-AMAZON, and COM-YOUTUBE, with different num-
bers of cover elements n. As n increases, the topological structure
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Fig. 7: Log-log plots of the compute time of (a) each topological
lens, and mapper on graphs for (b) different sized datasets across all
topological lenses and (c) all graphs and lens functions across different
numbers of cover elements. The data are colored by (a) their associate
topological lens and (b-c) the chosen clustering algorithm.

remains visible with more details added. In the case of COM-AMAZON,
the graph eventually becomes a hairball. The same would eventually
happen for the other graphs as n and the level-of-detail increase.

4.2.3 Case Study: USAIR97

The USAIR97 dataset is an undirected graph whose nodes are 332
airports in the US, and edges encode direct flights between the airports
in 1997. We are interested in studying the properties of the network
in terms of identifying which airports have high or low access to other
airports in the network. Since US airlines tend to work on the hub-
and-spoke model, we chose PageRank as the topological lens, since it
identifies nodes of high importance (i.e., hubs). The input graph and
three levels of mapper graph skeletonizations are shown in Fig. 12a.

Using the most aggregated mapper graph version (see Fig. 12b), we
identified several groups of airports with varying levels of access. At
the highest level are hub nodes in orange (type 1), which contain airline
hubs (e.g., LAX/Los Angeles, ATL/Atlanta, etc.) and popular vacation



destinations (e.g., LAS/Las Vegas and MCO/Orlando). Unsurprisingly,
flights from these airports can directly access many other airports, as
well as connecting limited access airports. Another group with high
access are the yellow nodes in the center (type 2), connected to all
three hub groups. These airports can reach most destinations directly
or through a single layover. The next group with medium access are
the few airports that are connectors between two hub groups (type 3).
These airports connect to multiple hubs and mostly require a single
layover. Finally, the limited access airports are the fans that connect to
hub nodes (type 4). These airports require going through at least one
hub to reach any destination (besides the hub itself).

4.3 Comparison With Community-based Skeletonization

To compare with existing approaches for skeletonization via cluster-
ing, we compare our approach with two community finding algorithms
provided by NetworkX [53] that offer a resolution parameter, namely,
modularity-based communities [15] and Louvain community detec-
tion [12]. To ease comparison, graphs are constructed using the method
described in Sec. 3.4. We show several examples in Fig. 11. For each
example, the mapper graph and community-based graph were chosen
to have approximately the same number of nodes with the exception
of Fig. 11b, which had five large fans. In many cases, the community-
based methods produce graphs that are similar to the mapper on graphs
approach (e.g., see Fig. 11a). However, there are some distinctions.

Multiple Perspectives. Community-driven skeletonization provides
only a single perspective on the graph. The ability to use different topo-
logical lenses provides mapper on graphs with the ability to provide
multiple context-specific visualizations of the homological structure of
an input graph. Fig. 11b shows the most dramatic difference. However,
for each example in Fig. 11, the mapper graph reveals some variation
in the structure.

Maintenance of Homological Features. Community-drive skele-
tonization often preserves some homological structures, tunnels in
particular. However, these methods make no guarantees of the preserva-
tion of these features. In particular, community-based methods struggle
with dense graphs where extremities are lost, and no structure is visible
in the core of the graph. Fig. 11d and 11e are the best examples of
this, where the output community-based graphs are hairballs, and the
mapper on graphs graphs provide insights into the graph structure.

n=2, ϵ=0 n=20, ϵ=0 n=40, ϵ=0 Input Graph

(a) BIO-CELEGANS: PageRank, modularity clustering

n=10, ϵ=0 n=20, ϵ=0 n=40, ϵ=0 Input Graph

(b) HIC 5K NET 7: density (equalized), connected components

Fig. 8: A series of small input graphs demonstrating how mapper on
graphs retains the prominent homological structure of the input graph
as the number of cover elements, n, is varied.

4.4 Human-Subject Evaluation
To test if our approach captures the overall homology of the graph, we
ran an IRB-approved human-subject evaluation on Mechanical Turk.

4.4.1 Experiment Design
We generated 1140 stimuli (i.e., mapper graphs) by computing all
permutations of the following parameters:

• Small graphs from Tab. 2 / Fig. 13b (19 total)
• Number of cover elements: n = {6, 10, 20, 30}
• Clustering methods: {connected components, modularity cluster-

ing, asynchronous label propagation}
• Topological lens: {AGD, density, eccentricity, Fiedler vector,

PageRank}
• Graphs were laid out using the approach in [38] to ensure consis-

tency.

For each trial, subjects were exposed to one input graph and four
mapper graphs (see Fig. 13a): two of the mapper graphs were generated
from the input graph using different topological lenses selected at
random; the other two mapper graphs were generated from randomly
selected graphs and parameters. The subject was asked: “Which picture
has the most similar structure to the reference picture?” The idea was
that we were trying to capture if their concept of the graph shape was
preserved by our approach. They could select one of the four mapper
graphs or an “Unsure” option.

4.4.2 Subjects and Trials
The study was conducted using 25 subjects. The experiment took 5-10
minutes, and subjects were compensated $1.50 USD. Two subjects
failed to complete the experiment and were excluded for a total of
23 subjects. In terms of age, subjects reported: 7 × [25, 34]; 11 ×
[35, 44]; 1× [45, 54]; and 4× [55, 64]. In terms of gender, 10 reported
female, and 13 reported male. In terms of visualization experience, 10
reported minimal or none, 8 reported casual, and 5 reported regular
or extensive experience. The 23 subjects were each exposed to one
warm-up question and 37 trials (amounting to each input graph seen
twice) for a total of 851 trials. The 15-second timer expired for 11
trials, leaving a total of 840 trials for analysis.

4.4.3 Analysis
We predicted that the subjects would select mapper graphs associated
with the input graph with high accuracy. Since each subject was ex-
posed to two stimuli from the input graph, the null hypothesis was that
they would select one of the correct graphs 50% of the time.

Fig. 13b summarizes the results of the survey. Accuracy is defined
as Ncorrect/(Ncorrect +Nincorrect +Nunsure). In the final overall
column, the results show that subjects had a 79% accuracy at picking
one of the two correct answers, well above the 50% null hypothesis.
A binomial test, which is appropriate for testing whether the expected
distribution of a binary outcome (correct vs. incorrect) matches the
observed distribution, was run to determine if the difference was sta-
tistically significant with a p-value p < 0.001, thus confirming our
hypothesis.

Fig. 13b also reports on the results for individual graphs. Participants
performed well with most of the input graphs, except the CIRCULAR
LADDER and the CONNECTED CAVEMAN. Upon further inspection, we
discovered that several challenging examples were generated for these
graphs (see Fig. 14). In these cases, the combination of the topological
lens, the clustering algorithm, and the level of aggregation (n) made
the relationship difficult to identify, leading to lower scores.

4.4.4 Ecological Validity
Our experimental question was intentionally vague in order to elicit a
response that captured subjects’ instincts about what makes two graph
visualizations similar. Within this narrow context, our experiment has
high ecological validity. In other words, if the visual analytics task
is to determine if two graphs have the same “structure”, our experi-
ment showed that participants largely found our approach to satisfy that



n=4, ϵ=0 n=10, ϵ=0 n=40, ϵ=0 Input Graph

(a) COLLABORATION NETWORK: eccentricity, connected components

ϵ=0, n=2 ϵ=0, n=8 ϵ=0, n=40 Input Graph

(b) BIO-DISEASOME: Fiedler vector, modularity clustering

ϵ=0, n=6 ϵ=0, n=10 ϵ=0, n=20 Input Graph

(c) BN-MOUSE-VISUAL-CORTEX-2: Fiedler vec. (equalized), async. label prop.

ϵ=0, n=8 ϵ=0, n=10 ϵ=0, n=20 Input Graph

(d) ENRON-EMAIL: AGD, asynchronous label propagation

Fig. 9: Continuation of Fig. 8.

ϵ=0, n=4 ϵ=0, n=8 ϵ=0, n=10 ϵ=0, n=20 ϵ=0, n=30 ϵ=0, n=40

(a) AMAZON0302 (|N | = 262, 111, |E| = 899, 792), normalized Fiedler vector, connected components

ϵ=0, n=6 ϵ=0, n=8 ϵ=0, n=10 ϵ=0, n=20 ϵ=0, n=30 ϵ=0, n=40

(b) COM-AMAZON (|N | = 334, 863, |E| = 925, 872), PageRank, connected components

ϵ=0, n=4 ϵ=0, n=6 ϵ=0, n=10 ϵ=0, n=20 ϵ=0, n=40 ϵ=0, n=100

(c) COM-YOUTUBE (|N | = 1, 134, 890, |E| = 2, 987, 624), normalized Fiedler vector, connected components

Fig. 10: Examples of large input graphs demonstrating how a mapper on graphs can reveal certain prominent topological structure of graphs so
large that meaningful node-link diagrams are difficult to draw.

requirement. Furthermore, the layout itself, which was randomly initial-
ized, did not significantly impact the results. Therefore, our experiment
validates that our approach preserves homology and that homology-
preservation is important. However, we note that this is not the overall
use case for our approach, which is multi-scale homology-preserving

skeletonizations of graphs.

5 CONCLUSION AND DISCUSSION

In this paper, we present a TDA-based approach for graph visualization
using a construction called mapper on graphs. The approach is effec-
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Fig. 11: Community-based skeletonization (top) compared to mapper on graphs skeletonization (bottom). Parameters were chosen so that graphs
generally had a similar number of nodes. We observe that while community-based techniques sometimes preserve homology, (a-e) mapper on
graphs provides multiple perspectives on the graph, and in some cases, (d-e) community-based approaches do not capture any structure.

tive at creating skeletonizations of graphs that capture the structure
across multiple scales and from multiple perspectives using different
topological lenses.

Parameter Selection. The flexibility of the mapper on graphs
framework comes at a cost. It appears to have a number of parameters
(e.g., the lens f , the cover parameters n, and ϵ) that can lead to different
skeletonizations of the data. The selection of these parameters is largely
data-dependent to the point where an exploration of the parameter space
may be required. In our case, we accomplished this using a small-
multiple interface that allowed us to examine different topological
lenses and numbers of cover elements. This interface is part of the web
demo linked previously.

For cover parameter selection, there are recent works on automatic
parameter selection for mapper based on statistics [22] and information
criteria [26]. For topological lens selection, the process is not neces-
sarily obvious or intuitive. A general guideline is that the chosen lens
reflects the geometric or topological property of interest to a user. For
instance, the PageRank lens captures node importance, where input
nodes that are close to each other and those of similar importance are
grouped together to form a mapper graph node. As a consequence, the
corresponding skeletonization encodes the distribution of input node
importance. We plan to explore (semi-)automatic parameter selection
methods in the future.

Graph Layout. As pointed out earlier, the mapper on graphs tech-
nique is agnostic to the graph layout method. However, further study is

Type 1: Hub Airports 
(ANC, HNL, LAS, LAX, 
MSP, PHX, SEA, SLC,
SFO)

Type 1: Hub 
Airports 
(DFW, ORD)

Type 1: Hub Airports 
(ATL, BOS, DEN, 

DTW, EWR, MCO, 
MIA, PHL , PIT, STL)

Type 4: Fans with 
limited access

Type 3: Connectors 
between 2 hub 
groups

Type 2: 
Connected to 
all 3 hub 
groups

Input 
Graph

𝑛 = 3𝑛 = 6

𝑛 = 10

(a) Input graph and three levels of aggregation (b) Annotation of the airport group types

Fig. 12: Case study of the USAIR97 dataset using the PageRank topo-
logical lens and modularity clustering. (a) The input graph is shown
along with three mapper graphs that have ϵ= 0 across different the
number of cover elements. (b) An annotated version of the n = 3
mapper graph highlights the different airport groups identified.

needed to identify the best graph layout methods and create coherency
in the layout for different parameter configurations. One possible ap-
proach would be to apply our previous method [38].

Flexibility vs. Scalability. To achieve scalability, we have shown
that limiting topological lenses to the Fiedler vector or PageRank and
limiting clustering to connected components lead to highly scalable
algorithms that are practical for large graphs. We will expand upon
scalable topological lenses and clustering algorithms in the future.

Relationship to Spectral Clustering. There is a connection between
mapper on graphs, spectral clustering, and graph min-cut. The Fiedler
vector l2 can be used to bi-partition the graph G (i.e., based on l2(v) >
0 or l2(v) ≤ 0). Such a partition could also be realized by computing
the mapper graph with l2 as the lens and setting n=2 and ϵ=0. Such
an output not only provides a generalization of spectral clustering but
also preserves the connections (which form the min-cut) between the
clusters (for appropriately chosen ϵ > 0). Exploring such a connection
in detail would be quite interesting.
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