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ABSTRACT
Vital signs (e.g., breathing and heart rates) and personal identities
are essential information for personalized medicine and health-
care. The popularity of augmented reality/virtual reality (AR/VR)
provides an excellent opportunity for enabling long-term health
monitoring in a broad range of scenarios, including virtual en-
tertainment, education, and telemedicine. However, commercial-
off-the-shelf AR/VR devices do not have dedicated biosensors for
providing vital signs and personal identities. In this work, we pro-
pose a novel framework that can generate fine-grained vital sign
signals and other personalized health information of an AR/VR user
through passive sensing on AR/VR devices. In particular, we find
that the user’s minute facial vibrations induced by breathing and
heart beating can impact the readily available motion sensors on
AR/VR headsets, which encode rich vital sign patterns and unique
biometrics. The proposed framework further estimates the breath-
ing and heartbeat rates, detects the gender and identity, and derives
the body fat percentage of the user. To mitigate the impacts of
body movement, we design an adaptive filtering scheme to can-
cel the spontaneous and non-spontaneous motion artifacts. We
also develop unique facial vibration features and deep learning
techniques to facilitate vital sign signal reconstruction and user
identification. Extensive experiments demonstrate that our frame-
work can achieve a low error of vital sign signal reconstruction
and rate measurement, along with 95.51% and 93.33% accuracy on
identity and gender recognition.

CCS CONCEPTS
• Human-centered computing→ Ubiquitous and mobile comput-
ing.

KEYWORDS
Health Monitoring; Facial Vibrations; AR/VR Headsets
ACM Reference Format:
Tianfang Zhang, Cong Shi, Payton Walker, Zhengkun Ye, Nitesh Saxena,
Yan Wang, Yingying Chen. 2023. Passive Vital Sign Monitoring via Facial
Vibrations Leveraging AR/VR Headsets. In The 21st Annual International

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MobiSys ’23, June 18–22, 2023, Helsinki, Finland
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0110-8/23/06. . . $15.00
https://doi.org/10.1145/3581791.3596848

Conference on Mobile Systems, Applications and Services (MobiSys ’23), June
18–22, 2023, Helsinki, Finland. ACM, New York, NY, USA, 14 pages. https:
//doi.org/10.1145/3581791.3596848

1 INTRODUCTION
The adoption of augmented reality/virtual reality (AR/VR) has risen
dramatically over the past few years across various sectors, includ-
ing immersive gaming, social events, education, and tourism. The
global market size of AR/VR is expected to reach 43.01 billion USD
at an annual growth rate of 27.5% in 2028 [5]. The emerging use
of AR/VR creates an excellent opportunity to promote pervasive
health monitoring since most AR/VR devices are already equipped
with decent sensing and computing technology and will interact
with users for a long time. In this work, we want to explore inno-
vative technologies enabling fine-grained health monitoring (e.g.,
vital signs and user identities) via AR/VR devices.

Importance of Health Monitoring in AR/VR. Enabling fine-
grained health monitoring in AR/VR adds a complementary factor
to remote healthcare monitoring to the general public. On the one
hand, it can provide real-time health information required in many
virtual healthcare and education applications. For instance, a VR
doctor can continuously monitor a patient’s vital signs during and
after the telemedicine session at home, which helps the doctor
to make more precise diagnoses [17]. A virtual educator can ex-
ploit the real-time vital signs of students to improve their learning
efficiency (e.g., reducing distraction) in a virtual classroom [14].
On the other hand, as people spend increasing time in cyberspace
(e.g., Metaverse [4]), continuous exposure to virtual environments
requires high concentration on the mind. Such effort may signif-
icantly increase the visual and psychological burden and cause
various health issues (e.g., anxiety, hypertension, and sleep disor-
ders) [6, 20, 44], especially for the younger generations who are
undergoing vision and brain development. Thus, monitoring vital
signs and providing timely health recommendations to users when
using AR/VR devices is essential.

Existing health monitoring solutions mostly rely on medical
instruments [23, 44] and dedicated biosensors (e.g., photoplethys-
mography (PPG) sensors and respiration monitoring belts) [26, 31].
While the current generation of AR/VR devices has various built-in
sensors (e.g., motion sensors, position sensors, and front cameras),
they are designed for immersive human-computer interactions in
virtual environments. Compared to biosensors, the sensors readily
available on AR/VR devices cannot provide health information di-
rectly. Note that PPG sensors are equipped in wearable devices, but
they are unlikely to be integrated into the current generation of
AR/VR devices, especially for low-cost headsets using a smartphone
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Figure 1: Illustration of the proposed health status moni-
toring framework leveraging facial vibrations captured by
built-in motion sensors of AR/VR headsets.

as the screen and processing unit. In addition, PPG sensors only
obtain heartbeat signals from the wrist and do not capture breath-
ing patterns. All these lead to a renewed search for an integrated
health monitoring solution that captures both types of vital sign
signals using sensors already embedded in AR/VR devices.

Proposed approach based on vital-sign-induced facial vi-
brations. In this work, we find that subtle facial vibrations in-
duced by breathing and heartbeat can impact built-in AR/VRmotion
sensors. The key insight is that the conductive vibrations going
through the user’s cranial bones and facial muscles will vibrate
face-mounted AR/VR headsets. The muscle contract and relaxation
related to the inhaling and exhaling in the breathing cycles inject
physiological traits (e.g., facial geometry, facial structure) into the
motion sensor readings. Furthermore, as the facial arteries normally
contact the AR/VR headset during usage, the AR/VR headset picks
up minute vibrations induced by the fluctuation of blood flow in
the human’s face, which encodes rich physiological traits of the
user’s cardiovascular system. It is similar to taking radial pulses on
the wrists using fingers. Inspired by these findings, we propose to
perform passive health monitoring by extracting vital-sign-induced
facial vibrations. Through the development of a novel deep learn-
ing technique, our framework continuously reconstructs vital sign
signals that bear similar signal quality as those captured by dedi-
cated medical instruments: head-mounted Arduino PPG sensors
and respiration monitoring belts. Based on the fine-grained wave-
forms of breathing and heart beating, the framework then estimates
the breathing and heartbeat rates, detects the gender and identity,
and even derives the user’s body fat percentage. Our framework
can serve as a general building block for many AR/VR healthcare
applications, such as well-being monitoring, symptom diagonal,
healthcare recommendations, etc. The concept of the proposed
vital-sign-induced vibration-based personalized health monitoring
framework is illustrated in Figure 1.

Difference fromExistingApproaches.Our healthmonitoring
framework manifests significant differences from existing health
monitoring methods (e.g., vital sign monitoring) using motion sen-
sors and various mobile and wearable devices. Several existing
works try to attach a smartphone to the users’ chests to measure
the vital-sign-related chest movements with the smartphone’s ac-
celerometer [29, 49]. These approaches, however, constrain the
user’s posture to lying down and interfere with other normal ac-
tivities. Differently, our framework can passively obtain vital sign
while the user is enjoying AR/VR applications. Developing a pas-
sive solution is far more challenging compared to the smartphone-
based approach as it requires capturing minute facial vibrations

caused by blood flow and nasal cavity motions. Our work is also
different from existing heartbeat monitoring solutions based on
the PPG sensors of wristbands/smartwatches, which cannot cap-
ture users’ breathing patterns. For our framework, it integrates
breathing and heart beating monitoring, gender recognition and
user identification capability into a single AR/VR headset without
installing/wearing additional sensors. In contrast, traditional and
medical approaches require users to attach different devices to mul-
tiple parts of their body (e.g., respiration belts, wearable devices,
PPG sensors) [18, 27, 42, 47]. It can be used in complement with
existing mobile healthcare applications [8, 53]. For instance, in AR-
enabled telehealth/telemedicine appointments, patients can put on
AR/VR headsets instead of multiple dedicated sensors to provide
necessary health information and verify their identity with the
doctor at home. In addition, our framework is passive as it does not
require any active user inputs (e.g., typing names and passwords). It
is thus friendly to users with disabilities or inconvenient to interact
with AR/VR devices.

Our contributions are three-fold:
(1) A Novel Health Monitoring Framework for AR/VR Users:

We develop a novel health monitoring framework that ex-
ploits facial vibrations to derive users’ personal health-related
information, including breathing patterns, heartbeat signals,
gender, identity, and body fat percentage. It is the first work
demonstrating that built-in motion sensors of commercial
AR/VR headsets can capture subtle vital-sign-induced facial
vibrations carrying biometrics and vital signs. The designed
framework can serve as a building block for various health-
care applications in future AR/VR paradigms.

(2) Fine-grained Physiological Traits Extraction: To enhance
the framework robustness under various motions in AR/VR
application scenarios, we design an adaptive algorithm to
remove both spontaneous and non-spontaneous body move-
ments. A sensor fusion scheme is further developed to con-
structively combine sensor readings, meanwhile mitigating
the influence of different wearing styles. We further design a
deep-learning-based technique to reconstruct precise breath-
ing and heartbeat signals, with signal quality approximat-
ing dedicated medical instruments, thereby enabling fine-
grained health monitoring. Extensive experiments on three
AR/VR headsets under various settings show that our frame-
work can achieve accurate breathing/heartbeat signal recon-
struction with low root mean square errors.

(3) Personalized Health Information Derivation: We design
a user identification scheme solely based on facial vibrations,
which personalizes the vital sign data for accurate diagnoses
of health conditions. Our scheme extracts representative
features to characterize the unique facial characteristics of
individual users (e.g., facial shape, geometries, fat content).
Our scheme also supports gender detection, which allows
applications to provide gender-specific health recommen-
dations. We further demonstrate that a correlation exists
between body fat percentage and facial vibrations by design-
ing a deep regression-based scheme. Extensive experiments
show that our scheme can achieve over 94% accuracy in both
user identification and gender detection and less than 13%
error rate in body fat percentage estimation.
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(b) Heartbeat-induced vibrations

Figure 2: Facial structures involved during human’s breath-
ing and heartbeat.

2 PRELIMINARIES
2.1 Potential Applications of Our Work
We envision that the precise breathing and heartbeat signals ex-
tracted from facial vibrations can be correlated with a broad array
of physiological and psychological statuses, which facilitates many
existing and emerging applications. We list a few potential applica-
tions of our system as follows:

Well-being Monitoring. Continuous and remote well-being
monitoring, especially vital sign tracking alongwith gender recogni-
tion, facilitate the timely detection of diseases and the identification
of medical parameters. For example, a doctor can use our framework
as an AR/VR medical service to obtain gender and vital sign infor-
mation, which helps to identify some gender-specific diseases, such
as breast cancer, osteoporosis and color blindness. Furthermore, the
body fat percentage information provided by our framework offers
additional information for detecting diseases related to overweight
and obesity, including diabetes, hypertension, fatty liver, etc. In
general, the proposed framework can enhance the effectiveness
of telehealth/telemedicine, which solely relies on voice and video
nowadays [25, 32]. It also allows patients to measure their vital
signs for the long term at home using low-cost AR/VR devices,
which provides more valuable and comprehensive health data to
doctors/medical specialists.

Virtual Education. AR/VR is bringing fundamental changes
to education by creating opportunities for virtual narrative or
demonstration [59], interactive training [57], and 3D art design [33].
Particularly, our framework could be incorporated into attention-
monitoring apps for virtual education. During virtual learning,
students interact with the instructor and virtual learning objects
in a virtual environment. The students could be inactivity due to
tiredness or distraction after long-term concentration. With our
framework, the instructors will be able to detect and locate inactive
students by analyzing the breathing and heartbeat signals, which
helps to quantify the students’ learning efficiency. Such knowledge
can help educators dynamically adjust their strategies and contents
to maximize teaching performance.

Cybersickness Detection/Mitigation. There has been active
research on mitigating cybersickness in the AR/VR community.
Cybersickness frequently occurs when people are exposed to vir-
tual environments, where the virtual motions conflict with the
expected ones from their brains. Existing approaches of detecting
cybersickness rely on questionnaires [20, 50] or heartbeat variation
monitoring using dedicated instruments (e.g., PPG [23, 44] and ECG

sensors [13, 39]). Such approaches are time-consuming and intru-
sive. Differently, our framework extracts vital sign signals based on
motion sensor data, which facilitates detecting cybersickness with-
out installing/wearing additional sensors. It may also benefit the
research on cybersickness by collecting fine-grained vital sign data
from a large group of AR/VR users (e.g., supporting HealthData.gov
programs [24]).

2.2 Vital-Sign-Induced Vibrations
There are two types of vital-sign-induced vibrations that can be
captured by AR/VR headsets: breathing- and heartbeat-induced
facial vibrations.

Breathing-Induced Vibrations. Breathing is closely related to
the contraction and relaxation of nasal cavities located in the upper
respiratory tract of humans’ heads. The inhaling (breathing in) and
exhaling (breathing out) contract and relax the nasal cavities, result-
ing in movements of facial muscles and tissues in a synchronous
fashion. In addition, the volume variations of paranasal sinuses,
which are in direct connection with the nasal cavities, also generate
vibrations correlated with human breathing. These vibrations of
nasal cavities and paranasal sinuses carry unique breathing charac-
teristics (e.g., amount of airflow, and breathing duration and mag-
nitude) and physiological traits (e.g., paranasal sinuses and nasal
muscle properties). During the usage of AR/VR headsets, users’
nasal cavities and paranasal sinuses are in direct contact with the
head-mounted devices, thereby impacting the built-in AR/VR mo-
tion sensors. The anatomy of nasal cavities, paranasal sinuses, and
their relative positions to the AR/VR headset are illustrated in Fig-
ure 2(a).

Heartbeat-InducedVibrations.The human heart pumps blood
through alternative contraction and relaxation, forming periodic
patterns of blood flow in vessels, including the arteries and veins
across the human face. A typical heartbeat cycle includes four major
phases (i.e., atrial systole, isovolumetric contraction, ventricular
ejection, and isovolumetric relaxation), and they induce a series of
systolic and diastolic points in the blood flow patterns [10]. When
wearing an AR/VR headset, the arteries/veins close to the levator
labii superioris [11] of the user intimately contact the headset,
thereby encoding the blood flow patterns as minute vibrations to
the headset, including the systolic and diastolic points. In addition,
the headset is in direct contact with the temple of the user’s head,
which is surrounded by rich arteries and produces facial vibrations
associatedwith heart beating.We show the blood vessel distribution
on the human’s face and their relative locations with respect to the
AR/VR headset in Figure 2(b).

2.3 Capturing Breathing and Heart Beating via
Facial Vibrations

Motion sensors (i.e., accelerometer and gyroscope) are built into
most AR/VR headsets for head motion tracking, either controlling
the AR/VR field of view or reconstructing the user’s head move-
ments in the virtual world. Besides measuring acceleration and
angular velocity, existing works have also proved that these sen-
sors are able to capture vibration signals [9, 52], thus also enabling
them to capture the aforementioned vital-sign-induced facial vibra-
tions.
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Figure 3: Breathing-induced facial vibrations on accelerom-
eter (y-axis and z-axis) readings of Meta Quest and NeuLog
NUL-236 Respiration Monitor Belt.

To examine the effects of breathing-induced facial vibrations, we
conduct a preliminary study by asking a user to wear a commercial
AR/VR headset (i.e., Meta Quest [38]), sit on a chair, and breathe
normally. A NeuLog NUL-236 respiration monitor belt is worn
on the user’s belly as shown in Figure 3(a) to collect the pressure
associatedwith the expansion and contraction of the belly as ground
truth. The sampling rates of the motion sensors and the respiration
monitor belt are 1000𝐻𝑧 and 50𝐻𝑧, respectively. We compare the
accelerometer readings (i.e., processed with a band-pass filter of
0.1𝐻𝑧 ∼ 0.5𝐻𝑧) and pressure measurements as shown in Figure 3(b).
The two types of readings exhibit similar waveforms and periodicity,
showing the sensitivity of the accelerometer to breathing-induced
vibrations. We conduct a similar experiment by asking the user to
wear a Meta Quest and a head-mounted Arduino PPG pulse sensor
as shown in Figure 4(a). Figure 4(b) illustrates a similar periodicity
in both the motion sensor readings (i.e., processed with a band-pass
filter of 0.8𝐻𝑧 ∼ 3.0𝐻𝑧) and the PPG measurements. An interesting
finding is that the systolic and diastolic points can also be captured
in motion sensor readings, validating the correlation between the
heartbeat patterns and the facial vibrations.

We further conduct an experiment to study the potential of
capturing unique breathing and heartbeat properties based on facial
vibrations. Figure 5(a) and (b) shows the breathing- and heartbeat-
induced vibrations of two different users. As a result of these studies,
we found that two users had different morphological properties
(e.g., breathing patterns, systolic and diastolic peaks) in both types
of facial vibrations, indicating that these properties can be used to
differentiate users. We will demonstrate that facial vibrations can be
leveraged for gender detection and body fat percentage estimation
in Section 6 and 7.

3 FRAMEWORK DESIGN
3.1 Challenges
Significant Impacts of Body Motions. During practical usage of
AR/VR headsets, a user interacts with the virtual world via different
scales of body motions, such as moving the controllers and rotating
his/her heads. Such motions significantly interfere with the facial
vibrations, distorting the embedded vital sign patterns. T have
orders of magnitude higher than those of minute vibrations induced
by vital signs, inducing a significant amount of noise. We need to
design a scheme to mitigate the impacts of such distortions.

Extracting Precise Breathing and Heartbeat Signals. Vital
sign patterns, especially some manifestations (e.g., systolic and
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Figure 4: Heartbeat-induced facial vibrations on accelerome-
ter (y-axis and z-axis) readings of Meta Quest and PPG read-
ings on a real user.
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Figure 5: Comparison of facial vibrations on accelerometer
(Z-axis) of two different users on Meta Quest.

diastolic points), are usually utilized for health status detection
and disease diagnosis [15, 46, 62]. However, motion sensors have
low sensitivity to such vital sign patterns/manifestations due to
their minute magnitude, making them sometimes “invisible” in raw
motion sensor readings. To facilitate healthcare applications, it is
essential to reconstruct waveforms of the respiration and heartbeat
patterns.

Biomarker and Biometric Derivation for Healthcare Moni-
toring. The framework based should have the capability to support
various healthcare applications, which require various kinds of
biomarkers (e.g., breathing rate, heartbeat rates) and biometrics
(e.g., user-specific characteristics). Thus, the framework needs to
extract various types of features that comprehensively characterize
the user’s physiological status.

3.2 Framework Overview
To address the aforementioned challenges, we design a health mon-
itoring framework leveraging vital-sign-induced facial vibrations
as illustrated in Figure 6. The key idea of our framework is to re-
construct precise vital sign signals from motion sensor readings,
which are passively collected during the usage of AR/VR devices.
We further showcase the feasibility of a suite of applications (i.e.,
breathing & heartbeat rate estimation, user identification, gender
detection, and body fat percentage estimation).

Facial Vibration Extraction. Our frameworks take time-series
accelerometer and gyroscope readings as input. When the data are
being collected, facial vibrations are mixed with body motions (e.g.,
head tremors, movements for VR interactions), which degrades the
sensitivity to vital sign patterns. To remove motion artifacts, we
design a Motion Artifact Cancellation module to adaptively cancel
these distortions leveraging neighboring segments without being
impacted by the motions. To combat the orientation dynamics of
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Figure 6: Overview of the proposed personalized health mon-
itoring framework.
the headset (e.g., when users rotate their heads to view moving
virtual objects), we design aDynamic Axes Fusion approach to select
and combine sensor readings from three axes on the accelerometer
and gyroscope, respectively.

Vital Sign Signal Reconstruction. Next, our framework sep-
arates facial vibrations of breathing and heart beating and recon-
structs precise vital sign signals, with signal quality approximating
medical sensors. As breathing and heart beating normally have
distinctive frequency ranges, we use two band-pass filters to isolate
the breathing and heartbeat vibrations, respectively. For each type
of vibration, we compute spectrograms as features, which reveal
small-step frequency variations of breathing/heart beating. Then, a
deep learning model is designed to reconstruct signals approximat-
ing pressure measurements of breathing and PPG-like patterns of
heart beating. Particularly, we explore bidirectional long short-term
memory (LSTM) units with an attention mechanism in our model
design, which facilitates learning a reliable mapping relationship
between facial vibrations and the vital sign signals across human
subjects. A model built on a group of people can be directly applied
to new users without additional training data. Besides signal re-
construction, our framework also extracts a set of representative
features of facial vibrations to support health applications.

Personalized Health Monitoring. We showcase four types
of applications built upon the reconstructed vital sign signals and
facial vibration features to support health monitoring: Breathing
& heartbeat Rate Estimation: Our framework estimates the breath-
ing and heartbeat rates by detecting the prominent frequencies of
the reconstructed breathing and heartbeat sign waveforms; User
Identification: The framework personalizes the health monitoring
process through identifying users. Particularly, we design a model
based on a convolution neural network (CNN) to derive representa-
tions correlated with users’ unique biometrics (e.g., facial geometry,
facial structure) for user identification; Gender Detection: As pathol-
ogy conditions are normally correlated with gender [3, 30], our
framework also performs gender detection. We build a lightweight
classifier based on a support vector machine (SVM) based on the

Body Movement

(a) Readings before cancellation (b) Readings after cancellation

Figure 7: Comparison of heartbeat-induced facial vibrations
on accelerometer (z-axis) before and after body movement
cancellation.

abstractions derived from the waveform reconstruction model to de-
tect the user’s gender; Body Fat Percentage Estimation: Prior research
shows the correlation relationship between breathing/heartbeat
signals (e.g., PPG, ECG) and body fat percentage [7, 56]. We demon-
strate such a correlation still exists when using the reconstructed
waveform of our framework, by designing a lasso-regression-based
approach to estimate the body fat percentage.

4 VITAL-SIGN-INDUCED FACIAL VIBRATION
EXTRACTION

4.1 Motion Artifact Cancellation
In practical scenarios, AR/VR users interact with the headsets
through different scales of bodymotions, especially non-continuous
movements such as intermittent walking and head rotations. To
achieve reliable facial vibration extraction, we need to decouple the
motion sensor readings associated with vital signs and those in-
duced by such motions. Particularly, we design a real-time scheme
based on dynamic filtering [48] to remove the artifacts of non-
continuous motions. Our scheme first computes time-series Short-
Time Energy (STE) upon motion sensor readings sampled with a
sliding time window, which reveals the regions with body move-
ments. The scheme then applies an adaptive filter on readings of
these regions to dynamically remove the motion artifacts.

Energy-based motion detection. Our scheme calculates STE
using a time window of length 𝑁 as: 𝑆𝑇𝐸 (𝑡) = ∑𝑡+𝑁

𝑛=𝑡 𝑥2 (𝑛), where
𝑥 (·) can be either time-series accelerometer or gyroscope readings.
We empirically choose a window size 𝑁 = 3000 (data of 3 seconds).
A threshold 𝜏 = 0.2 is used to detect starting and ending points in
the motion sensor readings, where the motion artifacts reside in,
while skipping the regions of breathing and heart beating.

Adaptive Filter.Our scheme then compute aweight vector𝑤 for
each region with motions. We model this process as an optimization
problem. Specifically, for the readings of each detected region, the
scheme finds the nearest data segment of the same length that is not
contaminated with body motions (i.e., 𝑆𝑇𝐸 is lower than threshold
𝜏 ). The segment is then used as the reference signal to compute a𝑤
rendering similar morphology characteristics in the contaminated
sensor readings. The objective function is defined as:

argmin
𝑤

𝑇∑
𝑡=1

##𝑟 (𝑡 ) − 𝑦 (𝑡 )
##2, 𝑡 ∈ [1,𝑇 ],

𝑠 .𝑡 . 𝑒 (𝑡 ) =
##𝑟 (𝑡 ) − 𝑦 (𝑡 )

##2,
𝑤 (𝑡 ) = 𝛼𝑤 (𝑡 ) + 𝜇𝑒 (𝑡 )𝑥 (𝑡 ), 𝑦 (𝑡 ) = 𝑤 (𝑡 )𝑥 (𝑡 ),

(1)
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where 𝑦, 𝑟 , and 𝑒 represent vectors of the denoised vibration sig-
nals, the reference signals, and the estimation error respectively. 𝑇
denotes the length of the vectors (i.e., the number of data points). 𝛼
is the leakage parameter of the filter and 𝜇 denotes the step size for
parameter updating. We conduct an experiment by asking a user
to wear Meta Quest and browse a webpage using a controller. A
comparison before and after cancellation is shown in Figure 7. After
filtering, the motion artifacts are mostly removed and replaced by
vital-sign-induced responses. The results confirms the effectiveness
of our scheme on removing non-continuous body motions.

4.2 Vibration Enhancement via Axes Fusion
Due to the variations of wearing positions/styles of the headset, the
three axes of the accelerometer and gyroscope exhibit differences
in their sensitivity to vital-sign-induced facial vibrations across
sessions. A subset of axes may show higher sensitivity than the
other axes, depending on the orientation of the headset. To re-
move the impact of headset orientation, we design an axes-fusion
scheme that dynamically selects of the three axes of motion sen-
sors. We leverage the fact that the sensitive axes normally show
higher magnitudes regarding periodic signals, which include both
breathing and heartbeat patterns in AR/VR settings. To quantify
the sensitivity, we apply Fisher’s Kappa [40, 41] upon the vibration
signals, which measure the periodicity strength on each axis of
accelerometers and gyroscopes:

𝑠𝑐𝑜𝑟𝑒
(
𝑥 (𝑡 )

)
=
𝑚𝑎𝑥

(
𝑃𝑆𝐷

(
𝑥 (𝑡 )

) )
∑𝑇

𝑖=1
𝑃𝑆𝐷

(
𝑥 (𝑖 )

)
𝑇
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= 𝑎𝑏𝑠
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𝐹𝐹𝑇

0.8∼3.0𝐻𝑧

(
𝑥 (𝑡 )

) )
,

(2)

where 𝑃𝑆𝐷 (·) represents the power spectral density of the sig-
nal 𝑥 (𝑡). Bandpass filters with the frequency range of heartbeat
(0.8𝐻𝑧 ∼ 3.0𝐻𝑧) [2] along with fast Fourier transform (FFT) are
applied to motion sensor readings to compute the power 𝑆 (𝑥 (𝑡))
within the frequency range. 𝑆 (𝑥 (𝑡)) is further utilized to compute
the PSD and Fisher’s Kappa scores for axes fusion. A higher score
refers that the sensor and its corresponding axis is more sensitive
to vital-sign-induced vibrations for this user. Particularly, the value
of Fisher’s Kappa of reading streams is computed from all sensor-
axis combinations and we choose the first three combinations with
the top Fisher’s Kappa per user. Note that we only quantify the
sensitivity to heart beating during the axes fusion. This is because
we empirically find that breathing induces larger vibrations than
heart beating, and the combined measurements using heartbeat are
also sensitive to breathing.

5 RECONSTRUCTION OF BREATHING AND
HEARTBEAT SIGNALS

5.1 Signal Separation of Facial Vibrations
The facial vibrations of breathing and heart beating are mixed in
the motion sensor readings. As these two types of vital signs have
distinctive frequency ranges, we use two band-pass filters with
different cut-off frequencies to separate the vibrations of breathing
and heart beating. Periods of human breathing are normally within
12 ∼ 16 repeats per minutes [1] (i.e., 0.1𝐻𝑧 ∼ 0.5𝐻𝑧), while heart

beating ranges 60 ∼ 100 beats per minutes [2] (i.e., 0.8𝐻𝑧 ∼ 3.0𝐻𝑧).
Thus, we use these two sets of frequencies as the cut-off frequencies
to decouple the breathing and heartbeat vibrations.

5.2 Waveform Reconstruction Model
Model Overview. As we capture facial vibrations in terms of vital
sign patterns using low-grade built-in motion sensors, the mor-
phological characteristics are more vulnerable to hardware noises
compared to those captured by medical instruments. For exam-
ple, the systolic and diastolic points are sometimes “missing” in
motion sensor readings due to their weak millimeter-level mag-
nitude. To mitigate such hardware noises and reconstruct precise
vital sign patterns, we have developed a deep-learning-based model.
Since vital sign signals indicate strong periodical and sequential
characteristics, we build a deep reconstruction model based on long-
short-term-memory (LSTM) to expose these features. Additionally,
to capture internal dependencies within each data segment, we
incorporate a self-attention mechanism [60] to establish the cor-
relations between our captured facial vibrations and ground truth
respiration and heartbeat signals. Through learning the correlation
along with temporal dependency, our model built on data of some
people can be directly applied to reconstruct vital sign signals of
new users, without the need of collecting data of new users from
medical instruments. We show the architecture of our reconstruc-
tion model in Figure 8. The model’s input consists of 3 channels,
𝐶1, 𝐶2 and 𝐶3, corresponding to 3 pre-selected combinations of
motion sensors and axes. For each channel, it takes a set of seg-
ments {𝑥1, ..., 𝑥𝑁 } (i.e., breathing or heartbeat vibrations) as input,
which contains 𝑁 segments of vibrations of length 𝑇 (i.e., number
of data points in 3 seconds). The ground truth set {𝑝1, ..., 𝑝𝑁 } is also
collected using the respiration monitoring belt and PPG sensor. For
each segment in {𝑥} and {𝑝}, we use Short-Time Fourier Transform
(STFT) to compute spectrograms that reveal small-step frequency
variations of breathing/heart beating. A temporal feature extractor
𝐷 (·) is then applied to convert the spectrograms of 𝑥 into a set of
vital-sign representations. Then, we train a waveform reconstructor
𝐺 (·) to learn to map the vibration spectrograms into derived from
𝑃 , making it capable of reconstructing signals approximating those
collected with medical instruments.

Objective. For the forward propagation of the reconstruction
model, a segment of breathing/heartbeat vibration 𝑥 is fed to a
temporal feature extractor 𝐷 (·) and a waveform reconstructor𝐺 (·),
with the signal 𝑦 as reconstruction output. Given the training data
{𝑥} and ground truth {𝑝}, we optimize both 𝐷 (·) and 𝐺 (·) based
on a 2D mean square error (MSE), which quantifies the difference
between the spectrograms of the reconstructed signals {𝑦} and
those of {𝑝}. The 2D MSE loss 𝐿 is defined as:

𝐿 (𝑦𝑖 ,𝑝𝑖 ) =
1
𝑇

· 1
𝐹

𝑇∑
𝑡=1

𝐹∑
𝑓 =1

(
𝑠 (𝑦𝑖 , 𝑡 , 𝑓 ) − 𝑠 (𝑝𝑖 , 𝑡 , 𝑓 )

)2
,

𝑠 .𝑡 . 𝑠 (𝑦𝑖 , 𝑡 , 𝑓 ) = 𝐺
(
𝐷
(
𝑠 (𝑥𝑖 , 𝑡 , 𝑓 )

) )
,

(3)

where 𝑠 (𝑦, 𝑡, 𝑓 ) represents the spectrogram, with 𝑡 and 𝑓 represent-
ing the time and frequency indices, respectively. During training,
features in both time and frequency dimensions are reconstructed
to match the ground truth. We define the overall objective of the
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Figure 8: Deep learning architecture for vital sign signal reconstruction.
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(b) Features on body fat

Figure 9: Time domain statistic features for distinguishing
users and different body fat percentages.

optimization process as: argmin𝐷,𝐺
∑𝑁
𝑖=1 𝐿(𝑦𝑖 , 𝑝𝑖 ), where 𝐷 and 𝐺

denote the weights of the extractor 𝐷 (·) and the reconstructor𝐺 (·),
respectively.

Temporal Feature Extractor. Vital sign signals normally ex-
hibit unique temporal patterns, with fiducial points appear one after
another. To capture such temporal patterns, we design a network
based on bidirectional long short-term memory (LSTM) units with
self-attention mechanism [51] as shown in Figure 8. The ability of
self-attention allows the model to automatically focus on critical
temporal regions for reconstructing the vital sign signals. We set
the filter numbers of the two bidirectional LSTM layers as 1024 and
512, respectively. For two self-attention layers, we make the query
(Q), key (K), and value (V) equal to the output of their connected
LSTM layers with ReLU as activation functions.

Waveform Reconstructor. Based on features from 𝐷 (·), we
develop a reconstructor to reconstruct spectrograms of vital sign
waveforms. The reconstructor consists of 2 fully-connected lay-
ers with ReLU as the activation function. The numbers of output
neurons are 512 and 256 in two layers.

5.3 Representative Feature Extraction
Besides reconstructing vital sign signals, we also extract features
to elicit biomarkers and biometrics embedded in facial vibrations,
which are physiological characteristics beyond breathing and heart-
beat patterns.

Time-Domain Statistic Features. In Section 2.3, we conduct
preliminary experiments and observe that the morphological pat-
terns of respiration and heartbeat differ significantly among dif-
ferent users. We believe the morphological characteristics of vital
signs capture unique face structures and muscle properties of each
individual, which result in distinct time-series vibration patterns.
These morphological patterns can be effectively represented with
time-domain statistic features. For example, the maximum value

of a signal segment reflects the strongest response of facial vibra-
tions for a specific user, while the range of a signal segment can
describe the amount of air inhalation or blood flow associated with
a person’s breathing and heartbeat. By leveraging these statistic
features, we are able to accurately capture individual differences
in vital sign patterns for different healthcare applications. To ex-
tract the time-domain characteristics of facial vibration signals, we
first split the signals into short segments of 3 seconds each, which
are very short-time periods in AR/VR scenarios. Subsequently, we
apply a sliding window with 256 points on our segmented short
frames of breathing/heartbeat vibrations and extract 13 features:
maximum, minimum, range, mean, variance, root mean square,
median, interquartile range, mean crossing rate, skewness, kurto-
sis, entropy, and power. The time-domain features are utilized for
user identification and body fat percentage estimation, which we
will introduce in Section 6.1 and Section 6.3. We example features
variance, minimum, and maximum of three users in Figure 9 (a).
We can find that the feature clusters are differentiable among the
users. Similarly, we observe in Figure 9 (b) that features form unique
clusters for different body fat percentages.

Frequency-domain Features. The breathing and heartbeat vi-
brations also introduce vibration patterns in the frequency domain,
which exhibit user-specific patterns. For instance, the strongest
responses vary among different users and are associated with the
cycles respiration/heartbeat and corresponding facial vibration in-
tensity. Moreover, some users exhibit more pronounced harmonics
of heartbeat vibrations, which may be attributed to differences in
their face structures and components. To capture these user-specific
characteristics from the frequency domain, we extract frequency-
domain features by applying Short Time Fourier Transform (STFT)
on breathing/heartbeat signal segments with 3 seconds lasting,
where the vibration responses at different frequencies can be re-
vealed. We demonstrate how we leverage the features for user
identification in Section 6.1.

Gender-Related Hidden Features. Prior works [34, 37] have
shown the correlations between gender and heartbeat patterns cap-
tured by PPG sensors in a large population. However, these studies
primarily focus on differentiating genders by analyzing systolic
and diastolic features, which could be distorted in the presence
of noise in motion sensor readings.Thus, it is more challenging to
extract gender-related features directly from vibration signals. In
this work, we proposed an innovative approach to extract gender-
related hidden features for gender recognition. Specifically, we
reuse the output of the first fully-connected layer (1 × 1024) in the
waveform reconstructor, as it reserves features from both motion
sensor readings and PPG waveforms. We find that these hidden

102



MobiSys ’23, June 18–22, 2023, Helsinki, Finland T. Zhang, C. Shi, P. Walker, Z. Ye, N. Saxena, Y. Wang, Y. Chen

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Frequency(Hz)

0

0.01

0.02

0.03

0.04

0.05

0.06

FF
T 

M
ag

ni
tu

de

Ground Truth
Reconstructed Signal

	�������� 
�����������������������


���������������������

(a) Response of breathing

1 1.5 2 2.5 3
Frequency(Hz)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

FF
T 

M
ag

ni
tu

de

Ground Truth
Reconstructed Signal

��������� ����������
�����	�
�

������������
�������
�

(b) Response of heartbeat

Figure 10: Frequency response distribution of reconstructed
breathing and heartbeat waveforms.

features well characterize the gender of users, with the techniques
introduced in Section 6.2.

6 PERSONALIZED HEALTH MONITORING
6.1 Breathing and Heart Rates Estimation
To estimate the breathing and heart beating rates, we apply time-
frequency analysis on the reconstructed breathing and heartbeat
signals. Specifically, Hann Window is utilized to reveal signal peri-
odicity and mitigate side lobe artifacts. Next, we apply FFT upon
the reconstructed breathing and heartbeat signals to reveal their
frequency responses. Finally, a peak selection algorithm is adopted
within the range of 0.1𝐻𝑧 ∼ 0.5𝐻𝑧 and 0.8𝐻𝑧 ∼ 3.0𝐻𝑧, which
are the common frequency ranges of human breathing and heart
beating, to respectively detect breathing and heartbeat frequencies.
Comparisons of the frequency responses between the reconstructed
vital sign frequency responses and the ground truth are shown in
Figure 10(a) and Figure 10(b). We observe that our framework can
accurately detect vital sign rates based on the peak-detection-based
approach.

6.2 User Identification
To realize user identification, we design a deep-learning model
consisting of a representation extractor and a deep-learning-based
classifier to identify users. It takes both time domain statistic fea-
tures and frequency spectrogram features as input. As features of
vital-sign-induced facial vibrations imply different properties in
time and frequency domains, we develop two separate CNNs to
extract the corresponding deep representations. These represen-
tations are then concatenated and fed into the classifier. Finally,
a classifier with two fully-connected layers and a softmax layer
is used for identity prediction (e.g., user’s identity). For training
the representation extractor and the identity classifier, we apply
categorical cross-entropy loss as the loss function.

6.3 Gender Detection
Wedesign a light-weighted classifier utilizing gender-related hidden
features to achieve gender recognition. Specifically, we utilize a
support vector machine (SVM) with a radial basis function (RBF)
kernel. Based on hidden features with gender labels, the model
learns to identify support vectors (high-dimension boundaries) to
differentiate male and female features. We empirically find that the
built support vectors based on a group of users can be applied to
new users without new training data.

�
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Figure 11: Commodity AR/VR headsets involved in the ex-
periments.

#1 Sitting and 
Watching Video

#2 Standing and 
Watching Video

#3 Using Controllers 
to Browse App Store

#4 Walking in the 
Virtual Environment

Figure 12: Illustration of four different scenarios.

6.4 Body Fat Percentage Estimation
Previous studies [54, 58] have demonstrated that breathing and
heartbeat patterns can be roughly correlated with the body fat
percentage. For instance, the mechanical effects of obesity will
cause airway narrowing and closure, thus increasing resistance on
human’s respiratory system [16]. High body fat percentage will
also alter users’ cardiovascular systems by clogging the arteries
with fat, blocking the blood flow and injecting distinctive traits
into the heartbeat waveforms [43], thus influence the patterns of
facial vibrations. Based on these insights, we develop a regression
model to correlate users’ body fat percentages with facial vibration
features. Specifically, we choose Lasso Regression Model to make re-
gression between time domain statistic features of facial vibrations
and ground truth body fat percentage, which is built based on the
least squares method with the Lasso constraint as below:

𝑀∑
𝑖=1

(𝑦𝑖 − 𝑦𝑖 ) =
𝑀∑
𝑖=1

(
𝑦𝑖 −

𝑝∑
𝑗=0

𝑤𝑗 × 𝑥𝑖 𝑗

)2
+ 𝜆

𝑀∑
𝑖=1

|𝑤𝑗 |, (4)

where 𝑥 , 𝑦, and 𝑤 represent the time-domain statistic features,
estimation results, and regression weights, respectively.𝑀 and 𝑝
represent the number of data samples and characteristics for the
regression model. 𝜆 works as the weight of the penalty term, which
helps to control how many variants we want to keep. Empirically,
we set it to be 0.5 in this task.

7 EVALUATION
7.1 Experimental Setup
AR/VR Headsets. We evaluate our framework on two standalone
headsets (Meta Quest [38] and HTC Vive Pro Eye [61]) and one
cardboard headset (Google Cardboard [12] with a Samsung Galaxy
S6 smartphone). The sampling rate of motion sensors on Meta
Quest, HTC Vive Pro Eye, and Samsung Galaxy S6 for our personal-
ized health monitoring framework are 1000𝐻𝑧, 1000𝐻𝑧, and 203𝐻𝑧,
which are the highest and most stable sample rates the headsets
can achieve.

AR/VR Scenarios. We evaluate our framework in practical
AR/VR scenarios involving different scales of body motions. Specif-
ically, we select data from 4 common and representative scenarios
as illustrated in Figure 12. 1) Sitting and Watching a Demo Video:
the participants are asked to sit in a chair and watch a demo video
for 1 minute. During the experiment, the participants only use the
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Table 1: Performance of reconstructed vital sign waveforms
(RW) under same-user and cross-user settings.

Meta Quest
Facial Vibration RW (same-user) RW (cross-user)

Breathing 8.13 0.14 (↓ 7.99) 1.73 (↓ 6.40)
Heartbeat 27.83 0.46 (↓ 27.37) 3.50 (↓ 24.33)

HTC Vive Pro Eye
Facial Vibration RW (same-user) RW (cross-user)

Breathing 9.11 0.32 (↓ 8.79) 2.10 (↓ 7.01)
Heartbeat 24.56 0.38 (↓ 24.18) 4.95 (↓ 19.61)

Google Cardboard
Facial Vibration RW (same-user) RW (cross-user)

Breathing 10.19 0.31 (↓ 9.88) 2.61 (↓ 7.58)
Heartbeat 30.24 0.79 (↓ 29.45) 5.72 (↓ 24.52)

head-mounted display (HMD) for interaction and remain in a static
position. 2) Standing and Watching a Demo Video: the participants
are requested to stand and watch a demo video for 1 minute. In
this scenario, participants may exhibit some non-spontaneous body
movements (e.g., body shaking) compared to more static and stable
sitting scenarios. 3) Using Controllers to Browse the App Store: dif-
ferent from previous scenarios of watching demo videos, partic-
ipants are requested to browse the application store using con-
trollers in this scenario. During the experiment, the participants
perform spontaneous arm and hand movements, which are sim-
ilar with arm lifting and dropping. Although we involve sponta-
neous motions in this scenario, these movements could not di-
rectly induce significant fluctuations on vibration signals captured
from motion sensors on the AR/VR headset. Nevertheless, this
scenario is more dynamic and complicated compared to the sce-
narios of watching demo video in a more static and stable manner.
4) Walking in the Virtual Environment: the participants are asked
to walk inside the virtual environment. Specifically, we ask the
participants to walk a distance of about 3 steps (about 2 meters
within the virtual environment) straight within roughly 3 seconds.
The action of walking introduces large scale spontaneous move-
ments different from aforementioned scenarios and directly induce
significant changes on AR/VR motion sensor readings since the ac-
celeration dramatically changes at the beginning and end of user’s
walking. We believe this scenario is able to summarize most types of
large-scale, spontaneous and even more complicated body motions,
such as head shaking, as they usually manifest similar significant
and sudden fluctuations of motion sensor readings different from
static scenarios.

Data Collection. Our experiments involve 40 participants, the
majority of whom are university students, with ages ranging from
20 to 44. Specifically, we have the same group of 25 users (17 males
and 8 females) for both Meta Quest and HTC Vive Pro Eye. Another
group of 15 participants (8 males and 7 females) is requested to
wear the Google Cardboard headset with Samsung Galaxy S6 for
data collection. Every participant is asked to wear the headset in
four aforementioned scenarios. Since there is no controller for the
Google Cardboard headset, participants are requested to perform
arm movements with a similar scale as those scenarios in which
participants are using Meta Quest or HTC Vive controllers. For all
experiments, the participant wears a NeuLog NUL-236 Respiration
Monitor Belt [36] and a NeuLog NUL-208 Photoplethysmography

Monitor [35] to collect ground truth breathing and heartbeat sig-
nals with the collection of motion sensor readings. The duration
of each experiment in each scenario is 1 minute. To evaluate the
performance of body fat percentage estimation, we use a RENPHO
Smart Body Fat Scale [45] to track the body fat percentage of 10
users for 1 month. Although the device only provides consumer
level of body fat estimation, we adopt them as the ground truth to
demonstrate our framework should be able to provide comparable
results to specialized medical devices. The data collection has been
approved by our university’s IRB.

EvaluationMetrics.1) Root Mean Square Error (RMSE). Weeval-
uate the performance of breathing/heartbeat pattern or waveform
reconstruction module through computing RMSE between our re-
constructed pattern of breathing or heartbeat cycle and patterns
collected from specialized medical sensors (e.g., respiration belt,
PPG sensors). 2) Absolute Error (AE). We quantify the breathing
and heartbeat rate estimation performance using absolute error
(AE), which is defined as 𝐴𝐸 = |𝑅𝑚 − 𝑅𝑔 |, where 𝑅𝑚 and 𝑅𝑔 de-
note the breathing/heartbeat rate or body fat ratio measured by
our framework and the ground truth from medical sensors, respec-
tively. Specifically, we utilize beats per minute (BPM) to measure
the breathing/heartbeat rate in our evaluations and compute num-
ber of breathing/heartbeat cycles missed in each measurement as
corresponding absolute errors, which intuitively reflects the differ-
ence between our breathing and heartbeat rate measurement and
ground truth rates captured by medical sensors. 3) Accuracy. For
user identification and gender recognition modules, the identifica-
tion/recognition accuracy is used to evaluate the user identification
and gender recognition performance, which denotes the percentage
of data segments correctly identified or recognized as belonging
to the correct labels (e.g., user class and gender label). 4) 𝑅2 score.
We evaluate the performance of body fat percentage estimation
using 𝑅2 score, which is used to determine whether the correlation
between the ground truth and estimated fat percentage exists. We
define 𝑅2 = 1 −

∑
𝑖 (𝑦𝑖−𝑓𝑖 )2∑
𝑖 (𝑦𝑖−𝑦)2

, where 𝑦 refers to the ground truth of
body fat percentage and 𝑓 represents the regression results. 𝑅2
score ranges from 0 to 1 and the correlation exists if 𝑅2 score is
higher than 0.5.

7.2 Performance of Breathing and Heartbeat
Waveform Reconstruction

To evaluate the performance of vital sign signal reconstruction, we
measure RMSEs between the reconstructed waveforms (RW) and
the ground truth. We present same-user performance (the dataset
is shuffled and split for training and testing) performance and cross-
user performance (80% users for training and other 20% users for
testing). The results are shown in Table 1. We compare the RMSEs
with bench facial vibrations passing bandpass filters with cut-off
frequencies matching breathing and heartbeat frequencies.

Performance on Standalone Headsets. For Meta Quest, the
average RMSEs of breathing/heartbeat pattern reconstruction are
0.14/0.46 and 1.73/3.50 for same-user and cross-user scenarios. Re-
construction examples are shown in Figure 13. We observe that
our framework can successfully reconstruct breathing and heart-
beat waveform from pre-selected readings, which exhibits similar
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(a) Facial vibration (0.1~0.5Hz)

(c) Reconstructed signal (overall)

(e) Reconstructed signal (cross-user)

(b) Facial vibration (0.8~3.0Hz)

(d) Reconstructed signal (overall)

(f) Reconstructed signal (cross-user)

Figure 13: Examples of vital sign signal reconstruction (x-
axis, y-axis of gyroscope and z-axis of accelerometer) and
heartbeat (x-axis of gyroscope and y-axis, z-axis of accelerom-
eter) using Meta Quest.

patterns compared to the ground truths. For HTC Vive Pro Eye,
the RMSEs achieve 0.32/0.38 and 2.10/4.95, which show that our
framework is effective even under challenging cross-user settings.

Performance on Low-end Headsets. For low-cost Google
Cardboard headsets, the RMSEs of breathing/heartbeat derivation
are all below 0.31/0.79 and 2.61/5.72. It demonstrates that our frame-
work still has good performance with a lower sampling rate and
less sensitive motion sensors of smartphones. Overall, after wave-
form reconstruction, RMSEs improve dramatically, which illustrates
the effectiveness of our design on breathing/heartbeat waveform
reconstruction.

7.3 Performance of Breathing and Heartbeat
Rate Estimation

To evaluate the performance of breathing and heartbeat rate es-
timation, we calculate the AEs between our breathing/heartbeat
measurement and ground truth rate captured by medical devices
in the four aforementioned scenarios. The results are shown in
Figure 14 leveraging cumulative distribution functions (CDF).

Performance on Standalone Headsets. Regarding breathing
rate estimation with Meta Quest, we can observe from Figure 14(a)
that the AEs are less than 2.0𝐵𝑃𝑀 , which indicates that less than 2
cycles of human’s respiration are missed with our proposed breath-
ing and heartbeat rate estimation module. For the results heartbeat
rate estimation on Meta Quest in Figure 14(b), the AEs are usu-
ally less than 5.0𝐵𝑃𝑀 . As for the performance of breathing and
heartbeat rate estimation using HTC Vive Pro Eye, we also achieve
comparable performance, with less than 2.5𝐵𝑃𝑀 and 5.0𝐵𝑃𝑀 AEs
for most measurements. The results demonstrate that our frame-
work can achieve accurate of estimation of vital sign rates under
various scenarios leveraging standalone AR/VR headsets.

Performance on Low-end Headsets. From the results dis-
played from Figure 14(a) and Figure 14(b), while the performance
of vital sign rate estimation using Google Cardboard with Sam-
sung Galaxy S6 has some degradation compared to standalone
AR/VR headsets, the AEs of breathing and heartbeat rate estima-
tion can also reach less than 2.0𝐵𝑃𝑀 and 7.5𝐵𝑃𝑀 is most cases of
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Figure 14: Cumulative Distribution Functions (CDF) on Abso-
lute Errors (AEs) of Beats Per Minute (BPM) from breathing
and heartbeat rate estimation.

measurements. The results manifest that our proposed breathing
and heartbeat rate estimation module can also perform well upon
low-end AR/VR headsets.

7.4 Performance of User Identification
For user identification, facial vibrations induced by breathing and
heartbeat are utilized separately to evaluate the performance. The
ratio of training and testing size is set to be 8 : 2. The performance
of user identification is shown in Figure 15(a).

Performance on Standalone Headsets. For Meta Quest, our
framework has achieved 90.43% accuracy using vibrations from
breathing, and 95.51% accuracy with vibrations from heartbeat.
Our framework also achieve more than 92.11% and 94.32% on user
identification on HTC Vive. High identification accuracy on two
types of commodity standalone AR/VR headsets demonstrates the
effectiveness of our framework on differentiate users.

Performance on Low-end Headsets. For Google Cardboard,
our framework can achieve more than 85.83% and 87.56% accuracy
leveraging breathing and heartbeat vibrations, respectively. Com-
pared to standalone AR/VR headsets, we find that cardboard devices
performs slightly worse for user identification. The reason could be
the hard cardboard device cannot well fit all face shapes of different
users, rendering less intensive facial vibrations induced by vital
signs. Nevertheless, the results have exhibited potentials of realiz-
ing user identification with less sensitive sensors on off-the-shelf
low-end headsets.

7.5 Performance of Gender Detection
We evaluate the gender detection performance for the three AR/VR
headsets. Figure 15(b) shows the gender recognition accuracy of
both same-user scenario (the user exists in the training data) and
cross-user testing (testing on new users).

Performance on Standalone Headsets. For Meta Quest, the
framework has achieved 98.23% accuracy for gender recognition
tasks on same-user setting and 90.57% accuracy in cross-user set-
ting. For HTC Vive Pro Eye, the framework can achieve more
than 98.23% and 93.33% accuracy in both settings, respectively.
The results demonstrate the robustness of gender-related hidden
feature extraction, even under the realistic and challenging cross-
user setting, and further indicate the effectiveness of our proposed
framework on gender detection.
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Figure 15: Recognition accuracy of user identification and
gender detection.
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Figure 16: 𝑅2 score and error rate of cross-user evaluation on
body fat percentage estimation.

Performance on StandaloneHeadsets. For Google Cardboard,
the framework can still achieve more than 96.54% and 84.58% ac-
curacy on same-user and cross-user scenarios. The high gender
detection accuracy shows that our system will also work well with
smartphone-based AR/VR headsets, which only have low-grade
motion sensors with limited sampling rates.

7.6 Performance of Body Fat Percentage
Estimation

To evaluate the performance of body fat percentage estimation, 𝑅2
scores are computed with cross-validation lasso regression. We also
evaluate the generalization performance by testing the regression
model on cross-user scenario. The results are shown in Figure 16.

Performance on StandaloneHeadsets.Using facial vibrations
induced by human’s breathing, the cross-validation 𝑅2 scores are
0.5464 and 0.5245, 0.5112 for Meta Quest and HTC Vive Pro Eye.
Utilizing heartbeat-induced vibrations, 𝑅2 scores can reach more
than 0.6848 and 0.6595 for two commodity standalone AR/VR head-
sets. We also evaluate the performance of the body fat percentage
estimation module on a group of samples from new users and the
results are shown in Figure 16. From the evaluation results of Meta
Quest and HTC Vive Pro Eye, the absolute error of body fat ratio
estimation is less than 2.6% in most measurements. The results
manifest that there exist correlations between fat percentage and
facial vibrations features and our proposed method can perform
well on estimating body fat percentage.

Performance On Low-end Headsets. For Google Cardboard,
the cross-validation 𝑅2 scores are 0.5112 and 0.6536 for breathing-
and heartbeat-induced vibrations. The absolute error for cross-
user testing is less than 5.0% in most cases, which illustrates the
possibility of estimating body fat percentage using low-end AR/VR
headsets.
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Figure 17: Absolute errors of breathing and heartbeat estima-
tion before (BC) and after motion artifact cancellation (AC).

7.7 Evaluation on Framework Robustness
To evaluate the robustness of the framework, we consider two
impacting factors and test its performance, including effects of
motion artifact cancellation and training size.

Effect of Motion Artifact Cancellation. To study the impact
of our proposed motion artifact cancellation scheme, we compute
the absolute errors of breathing and heartbeat rate estimation before
and after motion artifact cancellation. As shown in Figure 17, we
can observe some measurements with large absolute errors for
breathing and heartbeat rate estimation. After cancellation, the AEs
of breathing and heartbeat estimation have significant drops for
all 3 types of commodity AR/VR headsets, which demonstrate the
effectiveness of our motion artifact cancellation scheme.

Effect of Training Size. Intuitively, if the framework can achieve
high accuracy with less training samples, it demonstrates that users
can register for short time to function the framework. Thus, we
investigate the influence of training samples to demonstrate the
efficiency of our proposed framework. Specifically, we evaluate user
identification and gender recognition red with different training
samples, which is shown in Figure 18. It can be observed that the
framework still retains more than 88.13% and 90.11% accuracy for
user identification and gender detection with the training size of
6:4, which demonstrates that the framework will still work well
despite of short-time data collection from users.

8 RELATEDWORKS
Vital Sign and Health Status Monitoring. Approaches with
different sensors have been explored for acquiring vital sign in-
formation. Earlier works [55] showed the use of PPG and ECG
sensors to for heart rate monitoring. In addition, recent studies
have demonstrated the use of Radio Frequency (RF) for capturing
vital sign information. Some of the representative studies explore
the use of off-the-shelf WiFi infrastructures to measure vital signs.
For example, Liu et al. [28] propose to track the breathing rate
and heartbeat of users during sleep. As another example, Phase-
Beat [63] exploits the phase information in WiFi signals to sense
heart beating. Zheng et al. [67] present V2iFi that performs vital sign
monitoring using impulse radio signals. MoVi-Fi [] innovatively
employs approaches based on deep contrastive learning to recover
fine-grained vital signs waveform under major body movements,
and is demonstrated to perform well under various and compli-
cated practical scenarios. Although existing works have explored
the potential of health status monitoring through different ways,
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Figure 18: User identification and gender recognition accuracy with different numbers of training samples.

our work is the first health status monitoring framework deployed
on commodity AR/VR headsets leveraging built-in motion sensors.

Authentication on AR/VR Headsets. With the drastic devel-
opment of AR/VR applications, AR/VR authentications have also
experienced a presperity of rapid development and generation. The
work by Yada et al. [66] using PIN authentication in AR systems ac-
complished encouraging results. A recent study by George et al. [22]
evaluated the security and usability of SWIPE and PIN within the
VR environment and found that usability was comparable in per-
formance to the mobile version of PIN and SWIPE. Furthermore,
LookUnlock [21] allows users to input passwords by looking at
virtual objects in an encoded sequence. Wazir et al. [65] demon-
strated that it was also possible to recognize users using AR based
on their writing patterns. In addition, NodtoAuth [64], a AR/VR
authentication system, was proposed to allow users to unlock their
headsets by nodding. Shi et al. [52] demonstrate a vulnerability
where user identification can be accomplished using facial dynam-
ics captured by the motion sensors inside AR/VR headsets. In our
work, personalization can be achieved without specific interactions
with AR/VR devices, which is more convenient in daily usage.

9 DISCUSSION AND FUTUREWORKS
While our proposed vital sign monitoring system leveraging AR/VR
headsets showcases its potential in various healthcare functions,
such as breathing and heartbeat waveform reconstruction, breath-
ing and heartbeat rate estimation, user identification, gender recog-
nition and body fat ratio estimation, there is still much room for
improvement in terms of effectiveness, accuracy and robustness.

Involvement of Continuous Motions. In this work, we de-
sign an adaptive filter to dynamically cancel the impacts of motion
artifacts in facial vibrations. As the designed filter requires using
segments of reference signals (i.e., relatively static scenarios), it
may not work well under continuous motions in some rare AR/VR
scenarios, such as continuously walking and running. However,
these scenarios are not common since AR/VR systems normally
constrain the size of the play area, such as the Guardian in Meta
Quest. The user is only allowed to operate the headset and the
controllers within such areas. Moreover, it is always possible for
our proposed system to localize a signal segment of relatively static
posture before the continuous motions (e.g, a short-time break dur-
ing a VR game) as the reference signal. With such considerations,
our framework can still capture appropriate reference signals for
motion artifact cancellation. In the future, we plan to explore some
advanced deep-learning-based body movement artifact removal

techniques to improve the framework robustness under such ex-
treme cases with long-lasting and continuous motions. We will also
consider learning-based techniques to mitigate smaller-scale face
motions, such as talking, chewing, and laughing.

Improvements on Body Fat Ratio Estimation. Regarding the
body fat ratio estimation module, our current study has involved
10 users with body fat ratio ranging from 9% to 28%, and monitors
their body fat for 1 month, which has provided us with initial in-
sights into the potential of our system on body fat ratio estimation.
To further validate and generalize our findings, we plan to include
a more diverse group of participants and monitor their body fat
changes over longer periods of time. We also plan to involve hu-
man subjects with a wider range of body fat ratios and employ
commodity medical devices (e.g., InBody 570 Body Composition
Analyzer [19]) to acquire the ground truth, thus to improve the
robustness of our body fat percentage estimation module. This will
allow us to better understand the system’s performance across a
wider range of body types and further enhance the accuracy of our
body fat ratio estimation design.

10 CONCLUSION
In this paper, we propose a health monitoring framework on com-
modity AR/VR headsets, which utilizes vital-sign-induced facial
vibrations captured by motion sensors. We design an adaptive-filter-
basedmethod to removemotion artifacts and propose a vibration en-
hancement strategy via axis fusion. To realize healthcare functions,
we reconstruct precise breathing/heartbeat waveforms through a
LSTM-based model with self-attention scheme, with distinctive
biomarker extraction. We show the scalability of our framework
on four representative applications, including breathing/heartbeat
rate estimation, user identification, gender detection, and body fat
percentage estimation. We validate our framework via extensive
experiments on 3 different types of commodity AR/VR headsets and
demonstrate its effectiveness, robustness and generality. We believe
that our proposed framework will deliver innovative ideas of smart
and personalized healthcare functions in AR/VR community, thus
facilitates the development of more practical healthcare services
on commodity AR/VR devices.
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