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ABSTRACT

The natural determinant reference (NDR) or principal natural determinant is the Slater determinant comprised of the N most strongly occu-
pied natural orbitals of an N-electron state of interest. Unlike the Kohn-Sham (KS) determinant, which yields the exact ground-state density,
the NDR only yields the best idempotent approximation to the interacting one-particle reduced density matrix, but it is well-defined in com-
mon atom-centered basis sets and is representation-invariant. We show that the under-determination problem of prior attempts to define a
ground-state energy functional of the NDR is overcome in a grand-canonical ensemble framework at the zero-temperature limit. The result-
ing grand potential functional of the NDR ensemble affords the variational determination of the ground state energy, its NDR (ensemble), and
select ionization potentials and electron affinities. The NDR functional theory can be viewed as an “exactification” of orbital optimization and
empirical generalized KS methods. NDR functionals depending on the noninteracting Hamiltonian do not require troublesome KS-inversion

or optimized effective potentials.

Published under an exclusive license by AIP Publishing.

I. INTRODUCTION

A central proposition of density functional theory (DFT) is that
the ground state of a quantum many-body system generated by a
local multiplicative one-body potential v is uniquely determined by
its real-space one-body density p." In their seminal paper," Hohen-
berg and Kohn (HK) argue that the density is special because all
observables coming from a local multiplicative one-body poten-
tial are explicit density functionals, and the remaining parts of
the ground state energy are “universal” functionals of p, i.e., they
do not depend on v. Unlike the many-body wavefunction, whose
complexity increases factorially with the particle number N, the
dimensionality of the one-body density is independent of N; more-
over, the domain of admissible p is relatively simple,” obviating
the N-representability problem of other reduced-dimensional state
descriptors.

Despite, or perhaps precisely because of, the intuitive appeal of
the density and the revolutionary impact of DFT in computational
electronic structure theory, it is pertinent to ask whether the real-
space density is as special as suggested by HK. For nearly all practical
purposes, accurate ground-state energies are far more important
than densities, and the densities obtained from many modern den-
sity functionals can be surprisingly inaccurate.” Moreover, the HK

theorem does not hold for the vast majority of finite basis sets
presently in use, including virtually all atom-centered basis sets.
While this issue does not affect explicit functionals of the density, it
has confounded the development and widespread use of functionals
depending on the Kohn-Sham (KS) potential” " v, including KS
inversion and the large class of “orbital dependent” function-
als found on higher rungs of Jacob’s ladder of density functionals.
Among the suggested remedies, the use of large real-space grids
or regularization methods'’ is mostly impractical or undesirable,
whereas generalized KS (GKS) approaches are very practical but
somewhat ill-defined: In its current use, the term GKS refers to min-
imization of an energy functional with respect to the noninteracting
one-particle reduced density matrix (1-RDM), or, equivalently, the
occupied GKS orbitals, rather than the density.'® While this is
less of a concern for functionals depending explicitly on the GKS
1-RDM only, it does not address the problem of how v, can reliably
be obtained for v;-dependent functionals.” ~ DFT is fundamentally
representation-variant, since the density and the notion of a local
potential are tied to the real-space basis, whereas “no meaningful dis-
tinction between local and nonlocal operators™ is possible in most
other finite basis set representations. This problem has also limited
the scope of systematic or ab initio DFT, which aims to numerically
construct accurate density functionals by constrained search.
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We propose to address these limitations by choosing a
representation-invariant quantity rather than the density as a
reduced-dimensional state variable. At the same time, we also aim
to preserve other aspects of DFT that have been key for its suc-
cess, namely, the powerful concept of mapping an interacting to a
noninteracting problem”’ with an intuitive physical meaning, the
ground-breaking constrained search concept,””” and not least the
possibility to construct “almost universal” energy functionals using
model systems, exact constraints, and physical insight, an approach
pioneered and perfected by Perdew and co-workers.”” The 1-RDM
may seem an obvious candidate for such a state variable,” and
1-RDM theory is, indeed, representation-invariant. However,
the 1-RDM of an interacting state cannot be (directly) obtained
from an effective one-particle Hamiltonian,” at least at zero tem-
perature.” This complicates the construction of 1-RDM functionals,
and it re-introduces the basis-set convergence problem affecting
correlated wavefunction methods; for example, the natural occupa-
tion numbers of the 1-RDM of He atom exhibit a slow 1/(I+ 1/2)*
decrease with orbital angular momentum /.

A state variable satisfying the requirement of representation
invariance while retaining the computational efficiency and con-
ceptual simplicity of an effective noninteracting system is the best
noninteracting approximation to the 1-RDM. If we denote the inter-
acting 1-RDM by y, its best noninteracting approximation y, (in the
absence of degeneracies, see below) is idempotent but minimizes the
error in the 2- or Frobenius norm,

Iy =yel = VA=) " (r = 72)- ey

This idea is by no means new; an independent particle model based
on y, was already proposed in 1964 by Kutzelnigg and Smith
and named, rather unfortunately, the “best density approximation.”
The Slater determinant (SD) whose 1-RDM is y, coincides with the
“principal natural determinant” |®y), i.e., the SD constructed from
the N most strongly occupied natural orbitals (NOs). We will hence-
forth refer to |®¢) as the natural determinant reference (NDR), to
emphasize its meaning as a zero-order approximation to the inter-
acting many-body state. The best noninteracting 1-RDM has
also been proposed as a state descriptor in the context of cumulant
functionary " and 1-RDM theory.

We review the definition and key properties of the NDR in
Sec. II. Existing pure-state constrained-search definitions of NDR
energy functionals and their limitations are discussed in Sec.
The formalism is generalized to grand-canonical ensembles with a
real particle number in Sec. I'V; importantly, this leads to a unique
definition of the noninteracting Hamiltonian. A set of effective
one-particle equations to find the NDR and the exact ground-state
energy is presented in Sec. V, and the physical meaning of the NDR
orbitals and their energies is established. NDR functional approx-
imations are discussed in Sec. VI, and conclusions are presented
in Sec.

Throughout this paper, atomic (Hartree) units are employed.
Indices i,j, ... denote occupied spin orbitals, or strongly occupied
NOs, a, b, . .. denote virtual orbitals, or weakly occupied NOs, and
p>q>- - denote general orbitals. Many-electron density operators
are denoted by Y, and one-body order reduced density matrices
(1-RDMs) are denoted by p. The Hilbert space of normalizable N-
electron states is &(N), and the direct product of all &(N) is the
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Fock space &. The subsets of noninteracting states or SDs are &, and
F;. The Dirac bra-ket notation is used where practical; (-) denotes
the trace operation on &(1) x &(1), whereas (-)g is the trace on
F x F. Operators on F (“second quantized”) are denoted by a hat.

Il. NDR THEORY
A. Natural determinants

Consider a normalized N-electron state |¥)e &(N) with
1-RDM y[¥] = (¥|j|¥). The eigenstates of y[¥], denoted {|¢,)},
are the NOs of |¥), and the corresponding eigenvalues {v, } are the
natural occupation numbers (NONs),

Y[¥1l9p) = vplop)- )

Here and in the following, the dependence of the NOs and NONs on
|¥) is implied; moreover, the NOs and NONs are indexed such that
the sequence (vp)pen is nonincreasing. Since |¥) is a Fermion state,
vp € [0,1],” and the normalization of |¥) implies

(y) = z vp =N. (3)
P
The Fermi NON
Vp = VN +2VN+1 (4)

cannot be zero, since the rank of y[¥] is at least N (Ref. 3). On the
other hand, Eq. (3) requires that vg < 1. If v¢ = vy, then y[¥] has
a degeneracy at the Fermi NON. We say that v is k-fold degen-
erate if vy is k-fold degenerate. Moreover, NOs with occupation
numbers greater than or equal to vr are “strongly occupied,” and
correspondingly, NOs with occupation numbers less than vr are
“weakly occupied” for the purposes of this paper.

The NOs form an orthonormal basis of &(1), and we will
denote the corresponding electron creation and annihilation oper-
ators {?:;} and {¢}. Natural determinants (NDs) {|®,)} are all
possible N-electron SDs that can be constructed from these NOs;
see Theorem A.1 for other equivalent definitions. The NDs form an
orthonormal basis of &(N). Moreover, every ND is an eigenstate of
every NON operator 71, = E; Cps

ip| D) = 1pn| D). (5)

However, the corresponding NONs 7,,, are either 1 or 0, reflecting
the fact that NDs are noninteracting.

To further classify the NDs, we introduce the self-adjoint
operator,

A

S[¥] = (y[¥]) = X fpvyp. (6)
»

The expectation value of $[¥] for any state |E) € &N) equals the
(Frobenius) inner product of the 1-RDMs of [¥) and |E),

S[ENW) = (YIEIY[Y]) = (PIEID[¥]), (D)

where the Hermitian property of density matrices has been used.
Thus, the expectation value of S['¥'] measures the “overlap” of a state
&’s 1-RDM with the 1-RDM of |¥). In particular, for a SD |®),

(@3[¥]|0) = N-c[¥]/2- pl¥]-y[o]ls  ®

S[Y]IE) = (¥

(8
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[¥] = (y[¥] - y*[¥]) > 0 quantifies the nonidempotency of the
1-RDM of |¥) and has been proposed as a measure of
correlation. Since neither N nor ¢[¥] depends on @, Eq.
means that, for given ¥, (®|S[¥]|®) measures the squared deviation
of the 1-RDMs y[¥] and y[®]: The larger the overlap (®|S[¥]|D),
the smaller the error |y[¥] - y[®]| in the 2-norm. Moreover, it
follows from Eq. that all NDs are eigenstates of S[¥] with
eigenvalues

sn = (Y[Ou][y[¥]) = 22 npnvy- ©)
»

B. Natural determinant reference

NDR or principal natural determinant |®o) is the ND con-
structed from N (most) strongly occupied NOs of |¥), ie, N
NOs with the largest NONs. Equivalently, the NDR is the SD that
maximizes the overlap of its 1-RDM with y[¥], i.e.,

@) = arg max (D|S[¥]|D). (10)
®e& (N)

It follows that y[®o] = y, is the best idempotent approximation to
y[¥]; see also Theorem A.2.

In the absence of degeneracies of y[¥] at the Fermi NON, the
maximum eigenvalue sy = {®o|S[¥]|Do) is nondegenerate, and thus,
the NDR is unique up to a (physically irrelevant) global phase. If s
is degenerate, then the NDR is unique only up to a unitary trans-
formation within the eigenspace of so. In this case, it is necessary
to consider an equal-weight ensemble of all degenerate NDRs; see
Sec. IV.

The NDs are also eigenstates of the operator S[®y]. The eigen-
values are N for |@g), N — 1 for single excitations out of |®), ...,
and 0 for N-fold excitations. Since

(P[@]lY) = (@[$[¥]|®), (11)

the NDR is the SD that maximizes (¥|S[®]|¥) and thus min-
imizes the average excitation rank of W."” This property of the
NDR has been used to generate minimum-rank representations of
wavefunctions and other quantities.

C. Iso-NDR states

Section introduced a map from an arbitrary N-electron
state |¥') € &(N) to its NDR,

f: @y =arg max (OS[¥]|D). (12)

De&(N)
f[¥] is surjective, since every SD is the NDR of at least one state |¥),
namely, itself. However, f[¥] is not injective, because more than one

N-electron state can have the same NDR. The set of states sharing
the same NDR @,

S[®] = {|¥) e E(N)If[¥] = @)}, (13)

is nonempty, and every state |¥) € &(N) belongs to at least one such
set.
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1Il. PURE-STATE NDR ENERGY FUNCTIONALS
A. Definition by constrained search

NDs have found relatively limited use because they are con-
ventionally constructed from a many-electron state |¥') that must
be known in the first place. We aim to bypass this requirement by
defining an energy functional that is variationally minimized by the
ground-state NDR for a given external potential.

We consider many-electron Hamiltonians of the form

H=T+Ve+ V™, (14)

with 7' and Vee denoting the operators associated with the elec-
tron kinetic energy and electron-electron interaction; V' is a
general one-body operator, which may be nonlocal. In the spirit
of Levy-Lieb constrained search,””” we first find the lowest energy
expectation value on S[®] for a given SD O,

E[@]= Eig[fq)](\P|H|‘I/). (15)

Since every N-electron state has at least one NDR, the energy
of a nondegenerate ground state can then be obtained from
minimization of the ground-state energy E[®] as a functional
of @,

Ey= min E[QD] (16)
®e&(N)

The above functionals were previously proposed in similar
form by Taube.”” However, this approach has several drawbacks.
First, although the S[®] has a well-defined finite basis-set equiva-
lent, its definition is not particularly explicit, making it difficult to
implement the constraint. Even if this (somewhat technical) prob-
lem can be overcome, second, the constraint ¥ € S{®] does not
completely determine V. This can be shown, for example, by
noting that the 1-RDMs of different ¥ € S[®] generally differ, as
long as they commute with y,, and the eigenspaces belonging to
their N most strongly occupied NOs are identical. Since there is a
one-to-one correspondence between the 1-RDM and V *'*? (includ-
ing in finite basis sets), the members of S[®] do not generally
come from the same V. The same conclusion can be reached
by counting the number of independent (real) constraints, which
amounts to Nd + 1, where d is the dimension of the one-particle
basis.

The under-determination of V" in the pure-state formalism
also implies that, although the ground-state energy can, in principle,
be obtained by minimizing E[®], there is no unique noninteract-
ing Hamiltonian. As such, pure-state NDR theory violates a central
requirement of Sec. I and represents a step backward compared to
KS-DFT.

An analogous difficulty arises in orbital optimization (OO)
methods, where some energy functional is made stationary with
respect to a set of reference orbitals. Although it is often possi-
ble to “optimize” the energy functional by varying the orbitals,
there is no unique definition of the noninteracting Hamiltonian,
which is particularly confounding for approximate energy func-
tionals depending not merely on the orbitals but also their
energies.
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IV. ENSEMBLE NDR ENERGY FUNCTIONALS
A. Natural determinant reference ensemble

The difficulties of the pure-state NDR formalism are over-
come by generalizing it to ensembles or “mixed states” with real
particle number P = N + k&, where § € [0,1) and k € N is a degener-
acy index. Consider such an arbitrary particle number ensemble at
zero temperature with density matrix Y e x &, Y has a 1-RDM
y[¥] = (Y$) %, whose eigenstates and eigenvalues define the NOs
and NONs as in Eq. (2). All ensembles are normalized accord-
ing to (Y)g = 1, whereas the number operator expectation value is
(NY)g =P.

The NDR ensemble (NDRE) is defined as the noninteracting
P-particle ensemble Y, that maximizes the overlap of its 1-RDM
with y[Y]. Writing %,(P) for the set of all noninteracting P-particle
ensembles,

f:¥s=arg max ($[Y]A)g, (17)
AeF(P)

where $[Y] extends the definition

SIYT = (y[Y]) = Y fapvp (18)
p

to ensembles,

This maximization is conveniently carried out by maximizing the
functional

2[Yov] = (YS[Y]) - v(T. M) g (19)

the Lagrange multiplier v enforces the particle number constraint
(Ys)g = P. In analogy with statistical mechanics (see, for example,
Refs. 46 and 47), the necessary condition for a maximum of X yields

Yo(v) = @5(S[Y] - vN); (20)

©; denotes the Heaviside step distribution with ®5(0) = §. Since $
and N are one-body operators, so is Y. Choosing the NOs of y[Y]
as a one-particle basis, one arrives at

Te() = 3 mp() s 1)
P
with the NDRE one-particle occupation numbers
L vwp<w,
mp(v) =0@s(vp—v) =48, vy=v, (22)
0, Vp > V.

Imposing the particle number constraint determines v as a function
of P = N + k&, which generalizes the Fermi occupation number (4),

VN+1 — VN
—, 0=0

v(P) = vp = 2 (23)
YN+1, 0<d<1.

B. Constrained search

In analogy to Sec. , we define the set of iso-NDRE

ensembles as

S[Y:] = {Y e #Af[Y] = Y.} (24)
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Y, and all members of S[Y;] have the same particle number P
by definition. The ensemble version of the ground-state energy
functional is thus

E[Y,]= inf (AY)g (25)
VeV,

The ground ensemble grand potential Q(y) as a function of
the chemical potential y is the minimum of the grand potential
functional

QY] = E[Y,] - w(NY,) 5 (26)

4 can be chosen to constrain the particle number of Y; to P. The
ground-state energy as a function of P is the Legendre transform

E()(P) = Qo(y) + ‘uP, (27)
and thus,
a dEy(P)
b= (28)

is indeed the chemical potential of the physical ground ensemble.
The necessary condition for a minimum of Q[ Y, ] yields

Yo(u) = @5(F[Ys] - uN), (29)

where the self-adjoint effective one-particle Hamiltonian is the
functional derivative

AT = (30)

at the minimum.

In the pure-state case with a fixed integer particle number, y, is
rank N and determined by N(d — N) parameters, corresponding to
number-conserving “orbital rotations” between occupied and unoc-
cupied orbitals. These parameters amount to the Brillouin-Lowdin
conditions, i.e., the occupied-virtual block of the effective
one-particle Hamiltonian must be zero in the basis of NOs or,
equivalently, NDR orbitals. However, the occupied-occupied and
virtual-virtual blocks, and in particular the eigenvalues, of F remain
undetermined, as discussed in Sec. II1. In the ensemble constrained
search, the NDRE must be specified for arbitrary particle number
P and can have any rank between 1 and d. Thus, the NDRE con-
straint is more stringent than the pure-state NDR Brillouin-Léwdin
conditions, and it fully determines the effective noninteracting
one-particle Hamiltonian F[Y,]. Indeed, Eq. encompasses
the Brillouin-Lowdin conditions and Janak’s theorem,’’ as shown
below.

V. EFFECTIVE SINGLE-PARTICLE EQUATIONS
A. NDRE grand potential minimization

It is convenient to write the ground-state energy functional as a
functional of the noninteracting NDRE 1-RDM y, = y[Y],

E[ys] = E™ [y + EV [y, 31)

where EHF[yS] is the HF energy functional and the remainder
EV“[y,] accounts for correlation.
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To minimize the grand potential functional Q[Y,u] with
respect to y, we consider the Lagrangian

L[{I¢p)} {mp}> &1 5] = Q[{I9p) } {mp}o 1] = 3 20p(($pl0a) = Opq)

rq
=3 wp(np = 1p). (32)
4

The Hermitian Lagrange multiplier € enforces orthonormal-
ity of the orbitals. We further add the inequality constraint
np—nlz, >0 using x; to allow for the possibility of noninteger
occupation, we merely require x, > 0, and thus, only the weaker
(Karush-Kuhn-Tucker’”) conditions

Kp(np — n;) =0 (33)

are imposed. Stationarity with respect to the {|¢,)} produces the
effective single-particle equations

Elysll¢p)np = Z [pg)eqps (34)
q

with the effective one-particle Hamiltonian being, in agreement with
Eq. ,

_ OE[y]

F[y;] - 6)/ =T+ Vne + VHX[YS] + VVC[YS]' (35)

VX is the sum of the Hartree and nonlocal exchange potentials,
and VV© = 6EV“[y,]/dy, is the VC potential. The self-adjointness of
F[y,] and ¢ leads to the Brillouin-Léwdin condition

(np = ng) [Fys]],4 = 0, (36)

i.e., the matrix elements of F between orbitals with different occu-
pation numbers must vanish. Furthermore, we choose any orbitals
with identical occupation numbers such that F[y,] is diagonal, i.e.,
&g = Ogpnpep. This leads to the “canonical” NDRE single-particle
equations

Elys]ldp) = epl¢p) (37)

with orbital energies {&,}. The canonical NDRE orbitals {|¢ o))
generally differ from the NOs {|¢ )}
The Euler-Lagrange equations for the occupation numbers are
OE[y:]

6—1/11,_M_KP(1_211P):O' (38)

Choosing the lowest possible value of y, and noting that Eq.
amounts to Janak’s theorem

OE[ys]
=&, 39
anp & (39)
we arrive at
p—trp  mp=1,
& =1 th ny =9, (40)
u + Kp, ”P =

ARTICLE pubs.aip.org/aipl/jcp

Since xp > 0 (dual feasibility) is a necessary condition for a mini-
mum, all orbitals with noninteger occupation numbers are degen-
erate with orbital energy y, whereas fully occupied (1, = 1) orbitals
must have lower energies, and unoccupied (1, = 0) orbitals must
have higher energies. The Aufbau principle is thus a necessary
condition for a minimum of the grand potential under suitable
constraints.

B. Physical interpretation

The NDRE 1-RDM is by construction the closest noninter-
acting P-particle approximation to the interacting 1-RDM within
the 2-norm. In this sense, one-particle properties obtained from
the NDR are close, but generally not equal to, their interacting
equivalents.

Moreover, the canonical NDRE orbital energies have an appeal-
ing interpretation in terms of electron removal and addition ener-
gies: It follows from Egs. and that the energies of the highest
occupied (H) and the lowest unoccupied (L) NDRE orbitals equal
the negatives of the exact (first) ionization potentials I and electron
affinities A at an integer particle number. This result is analogous to
GKS, but not KS theory. An important consequence is that the
NDR gap

SL—EH:A—I (41)

equals the fundamental gap of the interacting system, whereas the
KS gap is well known to differ due to derivative discontinuities of
the (local) exchange-correlation potential.

Perdew and Levy have argued that higher stationary points of
the exact DFT energy functional correspond to exact excited state
energies.”” If an analogous argument can be made for the NDRE
energy functional, then NDRE orbital energies below e and above
e would correspond to certain higher ionization potentials and
electron affinities.

VI. APPROXIMATE FUNCTIONALS
A. Adiabatic connection

In analogy to adiabatic connection DFT (ACDFT), the
constrained-search definition of the ground-state energy as a func-
tional of the NDRE Y, can be extended to scaled electron—electron
interactions oche,

E Y] = Yei;}[% ]((T +aVe + VYY) g (42)

The Hellmann-Feynman theorem yields

dE.[Y,]

do = <Yavee)9> (43)

where Y, is the P-particle ensemble, which infimizes Ey [Ys] The
“adiabatic connection formula” for the ground-state VC energy
functional follows by coupling strength integration,

A

EVC [YS] = fl d(x((Ya — Ys)Vee>.%~ (44)
0
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The DFT analog of Eq. has been widely used to derive
orbital- and explicitly KS potential-dependent functionals.”” Com-
pared to the DFT case, the variational minimization of such func-
tionals is relatively straightforward in the NDRE context, because
the functionals are well-defined in general finite basis sets. Thus,
“functional self-consistency,” i.e, an exact implementation of
Eq. , is achievable without having to resort to large real-space
grids or regularization.

B. Uniform electron gas and semilocal functionals

For the uniform electron gas, V"' is a constant, and hence,
the one-electron potential correlation energy vanishes. As a result,
the NDRE correlation energy functional is obviously “universal” in
the uniform limit; it coincides with the local density approximation,
evaluated at the NDR density, which equals the interacting density
in the uniform case.

An immediate conclusion is that approximate NDRE func-
tionals can (and probably should®') be made exact in the uniform
limit. However, to meaningfully apply such functionals to nonuni-
form systems, approximations for the interacting 1-RDM may be
needed. In a first step, the difference between the interacting and
noninteracting densities could be obtained from existing semilocal
correlation hole models by removing the correlation sum rule
constraint. Moreover, the NOs of the uniform electron gas are iden-
tical to the NDRE orbitals, and their NONs are accurately known
functions of the noninteracting orbital energies.

C. GKS

From the present perspective, the NDRE single-particle equa-
tions constitute one possible “exactification” of the (empirical) GKS
scheme. Existing density functionals depending explicitly on the
GKS density matrix, such as meta-GGA or (local) hybrid function-
als, are among the most accurate and widely used density functional
approximations; these functionals can also be viewed as crude NDR
functional approximations.

D. Orbital optimization

NDR theory may also be viewed as an “exactification” of OO
methods. Despite its intuitive appeal, straightforward OO of
HEF-based energy functionals suffers from under-determination.
The NDRE constraint fixes the extra degrees of freedom introduced
by orbital optimization, and thus, NDRE functionals do not have this
issue. Indeed, correlated wavefunction methods with well-defined
grand-canonical extensions could be used in conjunction with the
NDRE adiabatic connection without much extra effort compared to
existing OO schemes.

VII. CONCLUSIONS

With relatively minor modifications, DFT can be liberated from
its real-space shackles. While adherents of the locality principle will
consider this work heresy, the present results suggest that weaken-
ing the exact density requirement of DFT to a best noninteracting
1-RDM requirement has many advantages. Chemists, in particular,
have long used off-diagonal elements of the 1-RDM as approximate
measures of chemical bond orders (“overlap populations™). Since
only noninteracting quantities are needed to obtain the ground-state

ARTICLE pubs.aip.org/aipl/jcp

energy, the basis-set requirements are modest, at least for explicit
NDR energy functionals.

The grand-canonical version of NDR functional theory leads
to a well-defined noninteracting Hamiltonian whose orbital ener-
gies are ionization potentials and electron affinities. Therefore, NDR
functional theory satisfies the conditions Bartlett has put forward for
an “exact correlated orbital theory” (COT),”" at least for the fron-
tier orbitals; the NDR noninteracting Hamiltonian is self-adjoint
and obtained as a functional derivative, whereas the COT effective
Hamiltonian is defined by (nonunitary) similarity transformation.
NDR functional theory provides a particularly attractive frame-
work for further development of higher-rung “potential-dependent”
functionals, because it does not require optimized effective poten-
tials. Although the NDRE energy functional is not explicitly known
for two-electron systems, it has a well-defined noninteracting
N-electron limit and is therefore amenable to extrapolation using
“weakly correlated” approaches, such as RPA’" or coupled cluster
theory.”” This may be contrasted with the 1-RDM energy functional,
which is explicitly known for two-electron systems, but has no
useful noninteracting N-electron limit, or the 2-RDM energy func-
tional, which is explicitly known for all systems, but its domain is
pathological. """ Another appealing aspect of NDRE functionals is
that a wealth of exact constraints and techniques underlying the
success of DFT can be carried over with relatively few modifications,
especially in the GKS realm.
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APPENDIX: NATURAL DETERMINANTS

Theorem A.1. Given an N-electron state |¥) with NOs {|(pp)},

let |@,) be a ND of |¥), i.e., a SD constructed from N NOs. Then, the
following statements are equivalent:

(i) The 1-RDM of |®,) is

Y@u] = tuplop)(9pl, (A1)
»

where N occupation numbers nyp are equal to 1 and all others
are zero.
(ii) The 1-RDMs y[¥] and y[®,] commute.
(iii)  (Brillouin-Lowdin condition)
sts

C;Ca

(¥

¥) =0, (A2)
where {|@,)} are occupied in |®,) and {|¢,)} are not occupied.

Proof. The equivalence of (i) and (ii) is elementary. For the
proof of (iii), see Ref. 45. o

Theorem A.2. Let |®o) be the NDR of |¥), i.e., the ND con-
structed from the N most strongly occupied natural orbitals of |¥).
The following statements are equivalent:

(i) The sequence of NONs of |q), (10 )pen, is nonincreasing.
(@) (y[@Iy[¥]) < (y[@o]ly[¥]) = ZpLy v = 5o.
(iii) |Do) minimizes |y[¥Y] — y[D]| for fixed V. Thus, y[Do] is the
best idempotent approximation to y[¥].
(iv) |®o) minimizes the particle and hole number expectation
values as functionals of a reference determinant.

Proof. The proof of equivalence of (i) and (ii) is well docu-
mented in the literature; see, for example, Refs. 78 and 79. It is only
sketched here. y[¥] and y[®,] have a shared set of eigenvectors;
therefore, we obtain for the Frobenius inner product

(Y[@a]ly[¥]) = D mpnvp = sm. (A3)
P

This value is maximized if (no,P )p eN are nonincreasing (simultane-
ous ordered spectral decomposition); therefore, s, < so. The equiv-
alence of (ii) and (iii) is given by Egs. (7) and (8). To prove the
equivalence of (ii) and (iv), define the particle and hole expectation
valuesas Nj, = N — (¥|S[®,]|¥) = N — s,. With these definitions, we
obtain Nj, < N§ = N — sq. o
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