
Noname manuscript No.
(will be inserted by the editor)

A Compact Coupling Interface Method with
Second-Order Gradient Approximation for Elliptic
Interface Problems

Ray Zirui Zhang · Li-Tien Cheng

the date of receipt and acceptance should be inserted later

Abstract We propose the Compact Coupling Interface Method (CCIM), a
finite difference method capable of obtaining second-order accurate approxi-
mations of not only solution values but their gradients, for elliptic complex
interface problems with interfacial jump conditions. Such elliptic interface
boundary value problems with interfacial jump conditions are a critical part
of numerous applications in fields such as heat conduction, fluid flow, mate-
rials science, and protein docking, to name a few. A typical example involves
the construction of biomolecular shapes, where such elliptic interface prob-
lems are in the form of linearized Poisson-Boltzmann equations, involving dis-
continuous dielectric constants across the interface, that govern electrostatic
contributions. Additionally, when interface dynamics are involved, the nor-
mal velocity of the interface might be comprised of the normal derivatives of
solution, which can be approximated to second-order by our method, result-
ing in accurate interface dynamics. Our method, which can be formulated in
arbitrary spatial dimensions, combines elements of the highly-regarded Cou-
pling Interface Method, for such elliptic interface problems, and Smereka’s
second-order accurate discrete delta function. The result is a variation and
hybrid with a more compact stencil than that found in the Coupling Interface
Method, and with advantages, borne out in numerical experiments involving
both geometric model problems and complex biomolecular surfaces, in more
robust error profiles.

Keywords Elliptic interface problems, Compact Coupling Interface Method,
complex interfaces, Second-order method for gradient

Ray Zirui Zhang
E-mail: zzirui@ucsd.edu
Li-Tien Cheng
E-mail: lcheng@math.ucsd.edu

Department of Mathematics, University of California, San Diego
9500 Gilman Drive, La Jolla, CA, 92093-0112, USA

2 Ray Zirui Zhang, Li-Tien Cheng

1 Introduction

1.1 Applications

Elliptic interface problems with interfacial jump conditions can be found at
the heart of a variety of physical and biological problems involving interfaces.
These interfaces may be material interfaces or phase boundaries, static or dy-
namic, and in subjects relating to heat conduction [1,2], fluid dynamics [3],
materials science [4,5], electromagnetics [6,7], or electrostatics [8,9,10], tumor
growth [11,12]. The interfacial jump conditions are due, frequently, to material
properties and sources that are discontinuous, or have discontinuous deriva-
tives, across the interface. This leads to solutions that also have discontinuities
in values or derivatives at the interface. These discontinuities, especially when
they are large, are what presents the main difficulties in this problem.

Our motivating application that fits into this framework involves biomolec-
ular shapes. Consider a set of solute atoms making up a biomolecule, or several
biomolecules, such as proteins involved in a docking process. One interest in
this situation is how the atoms affect the solvent that it resides in, usually a
solution resembling salt-water. The implicit solvation approach introduces an
interface to separate a continuously modeled solvent from the solute atoms and
vacuum [13,14] It additionally pairs with this a free energy involving contribu-
tions such as nonpolar van der Waals forces, surface effects, and electrostatics,
with the minimizer serving as the desired interface [15,9,16,17]. The elec-
trostatics portion here provides the elliptic interface problem with interfacial
jump conditions we are interested in, arising from linearization approximations
of the governing Poisson-Boltzmann equation [9,18,10,19,20].

1.2 Setup

Let Ω ⊂ Rd be a rectangular box and consider an orientable C1 hypersurface
Γ that separates it into an inside region Ω− and an outside region Ω+. Also
let n denote outward unit normal vectors on the interface (see Fig. 1). Then,
for given functions ϵ, f , a: Ω → R, possibly discontinuous across the interface,
and given functions τ , σ: Γ → R, our specific elliptic interface problem of
interest, with interfacial jump conditions, takes the form:

−∇ · (ϵ∇u) + au = f in Ω \ Γ,
[u] = τ, [ϵ∇u · n] = σ on Γ,

u = g on ∂Ω.

(1)

Here, for any v : Ω → R a function and x ∈ Γ , we employ the commonly used
notation of [v] to denote the jump of v across the interface at x:

[v] = v+ − v−. (2)

The superscript + or − denotes the limiting value of a function from Ω+ or
Ω−, respectively. Additionally, we will refer to ϵ∇u ·n as the flux; τ , σ: Γ → R

Compact Coupling Interface Method for Elliptic Interface Problems 3

as the value of the jump conditions; Ω as the computational domain; and g
as the value of the Dirichlet boundary conditions on ∂Ω. Note, we allow the
dimension d to be general for the formulation of our method, but restrict to
the case d = 3 for computations, which we find to have sufficient complexity
for many real-world problems.

In our motivating application, this form is achieved in a linearized Poisson-
Boltzmann equation for electric potential u, charge density f , and dielectric
coefficient ϵ, which can take on values of around 1 or 2 in the solute region
and 80 in the solvent region [8,10,9].

Fig. 1: Schematic for the elliptic interface problem. Γ is an interface that sep-
arates a cubical domain Ω with boundary ∂Ω into Ω+ and Ω−. The normal to
the interface is denoted as n. The dashed lines are the grid lines of the uniform
mesh. The circles are interiors points, where standard central difference can
be used. The disks are examples of on-front points, where special stencils are
required.

1.3 Interface Dynamics and Gradients

In applications that concern both such elliptic interface problems and moving
interfaces, the velocity of the interface may depend on the gradient of the so-
lution. This makes it imperative to accurately calculate not only the solution’s
values, but its gradient as well [11,21,9]. In fact, it is preferrable for errors to
be measured under the infinity norm, to obtain accurate pointwise velocities
that can be used in both front tracking methods and level-set methods for
interface dynamics.

In our motivating biomolecular application, gradient descent on the free-
energy functional can be used to capture the solute-solvent interface of interest

4 Ray Zirui Zhang, Li-Tien Cheng

[14]. This introduces a time variable and interface dynamics into the originally
static problem. Additionally, gradient descent in this case translates to a nor-
mal velocity that depends on the effective dielectric boundary force, which in
turn depends on the jump of the normal derivative of the electrostatic potential
at the interface [21,9].

In another and perhaps better known example, the Stefan problem [2,1] is
used to model an interface separating ice from water, where the interface moves
when ice melts or water freezes. In simple terms, for a given configuration of
the ice and water, an elliptic interface problem, with ϵ as thermal conductivity,
can be solved for the temperature u. The interface between the ice and water
then evolves due to this temperature, with its normal velocity depending on
the jump in the normal derivative of the temperature.

From these considerations, we can finally formulate our goal: to accurately
and efficiently solving elliptic interface problems with jump conditions for both
solution and gradient.

1.4 Finite Difference Methods

There are many existing approaches that solve elliptic interface problems with
jump conditions, however, they can roughly be categorized by the framework
they employ. An example is the Coupling Interface Method (CIM) [22], which
is a finite difference method, employing a fixed grid that provides ease in reso-
lution and in the construction of accurate schemes such as central differencing.
In fact, the main classes of methods found include finite difference, finite ele-
ment, boundary integral, finite volume, and deep learning methods, each with
their own inherent advantages and disadvantages and suitability for chosen
applications.

An example of such suitability involves elliptic interface problems with
their jump boundary conditions set on moving boundaries. In this setting, one
has the added concern of how well a chosen framework interacts with a chosen
numerical representation of the boundary interface. If the level-set method
[23,24] – a finite difference method that has proven itself in its handling of
complicated dynamics, especially topological changes – were used to represent
the interface, then a finite difference method for the elliptic interface problem
would be the natural fit; in fact, both methods could share the same underlying
grid.

This example, though, is exactly the reason that we decide to concen-
trate on finite difference methods in this paper. In our biomolecule applica-
tion of interest, under implicit solvation, where the solvent is represented as
a continuous medium, the goal is to capture the interface that separates a
biomolecule from the surrounding solvent. The Variational Implicit Solvation
Model (VISM) constructs the free energy of the system and seeks a minimiz-
ing interface [14,13,25]. One approach to obtaining the minimizer is gradient
descent on the energy, resulting in the flow of an initial interface to, in steady
state, a minimizer. This interface flow was handled, in [25,15,9], exactly by

Compact Coupling Interface Method for Elliptic Interface Problems 5

the level-set method. Thus, to build on the work and results there, in adding
electrostatic effects, which can be described by elliptic interface problems with
jump boundary conditions on the moving interfaces, we choose the finite dif-
ference method as our framework.

Again, this is not to say other frameworks are not, in other circumstances,
advantageous. We simply believe a finite difference method would best fit our
problem of interest in our application of interest and likely others as well.
Under other frameworks, we note especially the boundary integral methods of
[26,10,27,18]; finite volume methods of [3,28]; finite element methods of [29,
30,31,32], particularly those involving unfitted meshes that are suitable for
moving interfaces [33,34,35,36,37,38,39,40,41,42,43]; and, recently, the deep
learning methods of [44,45]. This list, furthermore, is by no means an exhaus-
tive account of methods under other frameworks. The topic of elliptic interface
problems with jump boundary conditions is a very active area of research with
a large body of literature on the algorithms, analysis, and applications.

As discussed in [22], within finite difference methods, there are essentially
three types of approaches: regularization, dimension unsplitting, and dimen-
sion splitting approaches. A regularizatation approach applies smoothing tech-
niques to discontinuous coefficients, or regularization techniques to singular
sources [46,47]. An major example of this that is related to our problem of
interest is the Immersed Boundary Method (IBM) [48,49]. In dimension un-
splitting approaches, finite difference methods are derived from local Taylor
expansions in multi-dimensions. One popular method in this category is the
Immersed Interface Method [50] and its various extensions, including the Max-
imum Principle Preserving Immersed Interface Method (MIIM)[51], the Fast
Immersed Interface Method (FIIM) [52], and the Augmented Immersed In-
terface Method (AIIM) [53]. For dimension splitting approaches, the finite
difference methods are derived from Taylor expansions in each dimension.
This category includes the Ghost Fluid Method [54,55,56], the Explicit-jump
Immersed Interface Method (EJIIM) [57], the Decomposed Immersed Inter-
face Method (DIIM) [58], the Matched Interface and Boundary Method (MIB)
[59,60,61], and CIM and its variation, Improved Coupling Interface Method
(ICIM) [22,8,62]. For a more detailed discussion on these different types, we
refer readers to [22].

In fact, towards our goal, we will be combining two pieces of work set in the
finite difference framework, namely CIM [22] and Smereka’s work on discrete
delta functions [63]. The former is able to produce second-order accurate solu-
tions and first order accurate derivatives of general elliptic interface problems
with jump boundary conditions, while the latter can perform second-order ac-
curate operations with a discrete delta function derived within a specific class
of elliptic interface problems with jump boundary conditions. To see the con-
nection between delta functions and elliptic interface problems, consider the
Green’s function for Laplace’s equation: ∆u = δΓ with u = 0 on ∂Ω, where
δΓ is the delta function supported on the interface Γ . This is equivalent to the
elliptic interface problem: ∆u = 0 with [u] = 0 and [∇u · n] = 1. This con-

6 Ray Zirui Zhang, Li-Tien Cheng

nection is used to construct a second-order accurate discrete approximation of
the delta function in [63].

1.5 The Coupling Interface Method

Among these finite difference methods, CIM is one of the top ones in terms
of accuracy, in both solutions values and gradients; ease of use; and detail
of study (see [22,8,62]). In CIM, the standard central differencing stencil is
used when the grid point is away from the interface. When the grid point is
next to the interface that forbids the use of the standard central differencing
stencil, CIM uses polynomial approximations on either side of the interface,
in each dimension, and connects them with jump conditions at the interface.
This leads to a coupled linear system of equations to be solved for the principal
second-order derivatives in terms of values at gridpoints.

One version of this approach, called CIM1, chooses linear polynomials and
lower-order approximations of mixed derivatives for a lower-order but widely
applicable approach; another, called CIM2, chooses quadratic polynomials and
higher-order approximations of mixed derivatives for a higher-order approach
that, however, requires certain larger stencils. CIM is a hybrid of these that
uses CIM2 approximations at points where the stencils allow, and CIM1 ap-
proximations at all other gridpoints, called exceptional points. Note, these
exceptional points do commonly exist but, as noted in [22], not in great num-
bers, allowing CIM to be second-order accurate in solution values under the
infinity norm. For gradients, however, this approach is only first-order accu-
rate, especially at exceptional points.

The Improved Coupling Interface Method (ICIM) [8] fixes this issue and
achieves uniformly second-order accurate gradient by incorporating two recipes
that handle exceptional points. One attempts to “shift”: at gridpoints where
it is difficult to achieve a valid first-order approximation of the principal or
mixed second-order derivative, the finite difference approximations at adja-
cent gridpoints, on the same side, are instead shifted over. The other attempts
to “flip”: at some gridpoints, the signature of the domain (inside or outside)
can be flipped, so that the usual second-order CIM2 discretization may ap-
ply, allowing for second-order accurate solutions and gradients for the flipped
interface. Extrapolation from neighboring nonflipped gridpoints originally on
the same side can then be used to recover the solutions and gradients of the
original and desired interface. Note, the decisions on when to use shifts and
when to use flips are listed in [8].

1.6 Our Proposed Method and Contributions

We propose what can be considered a hybrid that we call the Compact Cou-
pling Interface Method (CCIM). Our method combines elements of CIM [22]
and Smereka’s work on second-order accurate discrete delta functions by set-
ting up an elliptic interface problem with interfacial jump conditions [63]. The

Compact Coupling Interface Method for Elliptic Interface Problems 7

Fig. 2: Examples of a (1) CIM2 stencil and a (2) CCIM stencil at xi. The circles
and disks are grid points on different sides of the interface. The asterisks are
the intersections of the surface and the grid lines. In this case, CIM2 and
ICIM have the same stencil, which requires 2 points on the same side of the
interface in each dimension [22]. Points that does not satisfy this requirement
are handled in ICIM [8]. The CCIM stencil requires fewer points so it’s more
compact. Both CIM2 and CCIM need some extra grid points compared to the
standard central difference stencil.

use of Smereka’s setup, itself based on Mayo’s work in [64], allows us to re-
move the quadratic polynomial approximations of CIM2 and its need for two
points on either side of the interface in a direction that crosses the interface,
thus compacting the stencil and allowing more applicability in generating ac-
curate principal second-order derivatives. Additional schemes are introduced
to accurately handle mixed second-order derivatives by using more compact
stencils on the same side or stencils from the opposite side, with the help of
jump conditions, allowing for the removal of exceptional points. The result is
that our constructed CCIM has a more compact stencil (shown in Fig 2) and
it can approximate values and gradients of the solutions of elliptic interface
problems with jump conditions with second-order accuracy in infinity norm for
a variety interfaces, with observed advantages in robust convergence behavior
in complex situations.

Note, while ICIM improves on CIM2 through shifting or flipping, the cou-
pling equations remain largely the same, which only includes the principal
second-order derivatives, and similar finite difference stencils [8]. Our CCIM
expands the coupling equations to include first-order derivatives as well, and
utilizes more compact finite difference stencils, for the removal of additional
exceptional points.

8 Ray Zirui Zhang, Li-Tien Cheng

1.7 Outline

This paper is organized as follows. Section 2 outlines the derivation and algo-
rithm of CCIM. In Section 3, we show the convergence tests in three dimen-
sions on geometric surfaces and two complex protein surfaces. We also test
our method on a moving surface driven by the jump of the gradient at the
interface. Section 4 is the conclusion.

2 Method

In d dimensions, let Ω = [−1, 1]d and discretize the domain uniformly with
mesh size h = 2/N , where N is the number of subintervals on one side of
the region Ω. Let i = (i1, . . . , id) be the multi-index with ik = 0, 1, . . . , N for
k = 1, 2, . . . , d. The grid points are denoted as xi with the k-th coordinate
xk = −1 + ikh. Let ek, k = 1, 2, . . . , d be the unit coordinate vectors. We
also write u(xi) = ui. Here we use ∆u for the Laplacian of u and ∇2u for the
Hessian matrix of u. We use xixi+ek

to denote the grid segment between xi

and xi+ek
, and assume that the interface intersects with any grid segment at

most once.

Let xi be a grid point at which we try to discretize the PDE. For notational
simplicity, we drop the argument xi and the dependency on i is implicit. We
rewrite the PDE (1) at xi as

−
d∑

k=1

∂ϵ

∂xk

∂u

∂xk
− ϵ

d∑
j=1

∂2u

∂x2k
+ au = f (3)

We classify the grid points into two categories: if xi−ek
, xi and xi+ek

are
in the same region in each coordinate direction, then we call xi an interior
point, otherwise xi is called an on-front point. At interior points, standard
central differencing gives a local truncation error of O

(
h2
)
in ek direction.

Our goal is to construct finite difference schemes with O(h) local truncation
error at on-front points. The overall accuracy will still be second-order since
the on-front points belong to a lower dimensional set [50]. In this section, we
derive a first-order approximation for the term ∂u/∂xk and ∂2u

/
∂x2k in terms

of u-values on neighboring grid points. We denote the set of neighboring grid
points of xi as Br = {xj | ∥j− i∥∞ ≤ r} and call r the radius of our finite
difference stencil. As an example in 2, the CIM2/ICIM stencil has r = 2 and
the CCIM stencil has r = 1.

2.1 Dimension-by-dimension discretization

This section follows the derivation found in Smereka’s work [63]. Along the
coordinate direction ek, if the interface does not intersect the grid segment

Compact Coupling Interface Method for Elliptic Interface Problems 9

Fig. 3: The interface intersects the grid segment xixi+ek
at x̂k. u

− and u+

are the limits of u at x̂k from Ω− and Ω+. ui and ui+ek
are approximated by

Taylor’s expansion at the interface.

xixi+ek
, then by Taylor’s theorem,

ui+ek
− ui = h

∂u

∂xk
+
h2

2

∂2u

∂x2k
+O

(
h3
)
. (4)

Suppose the interface intersects the grid segment xixi+ek
at the interface point

x̂k. Let αk = ∥x̂k − xi∥ /h and βk = 1 − αk. Suppose xi is located in Ω−.
Denote the limit of u(x) as x approaches x̂k from Ω− by u− , and the limit
from the other side by u+ (see Fig 3). By Taylor’s theorem,

ui = u− − αkh
∂u−

∂xk
+

(αkh)
2

2

∂2u−

∂x2k
+O

(
h3
)
,

ui+ek
= u+ + βkh

∂u+

∂xk
+

(βkh)
2

2

∂2u+

∂x2k
+O

(
h3
)
.

(5)

Subtract the above two equations and write the right-hand side in terms of
jumps and quantities from Ω−:

ui+ek
− ui = [u] + βkh

[
∂u

∂xk

]
+ h

∂u−

∂xk
+

h2

2
β2
k

[
∂2u

∂x2k

]
+
h2

2
(β2

k − α2
k)
∂2u−

∂x2k
+O

(
h3
)
. (6)

We can approximate components of ∇u− and ∇2u− by

∂u−

∂xi
=

∂u

∂xi
+ αkh

∂2u

∂xi∂xk
+O

(
h2
)
, (7)

∂2u−

∂xi∂xk
=

∂2u

∂xi∂xk
+O(h). (8)

10 Ray Zirui Zhang, Li-Tien Cheng

with 1 ≤ i ≤ k ≤ d. Together with the given jump condition, [u] = τ , (6) can
be written as

ui+ek
− ui = τ + βkh

[
∂u

∂xk

]
+ h

(
∂u

∂xk
+ αkh

∂2u

∂x2k

)
+
h2

2
β2
k

[
∂2u

∂x2k

]
+
h2

2
(β2

k − α2
k)
∂2u

∂x2k
+O

(
h3
)
.

(9)

We emphasize that all the first and second-order derivatives in (9) are eval-
uated at the on-front point xi, and all the jump term [∂u/∂xk] and [∂2u

/
∂x2k]

are defined and evaluated at x̂k, which are intermediate quantities that will
be eliminated in the coupling equation.

2.2 Coupling Equation

This section then sets up coupling equations following the work of [22]. In
(9), suppose we can approximate the jump [∂u/∂xk] and [∂2u

/
∂x2k] in terms

of uj, ∂u/∂xk and ∂2u
/
∂x2k , with 1 ≤ k ≤ d and j ∈ Br for some stencil

radius r. Then in each coordinate direction, for 1 ≤ k ≤ d, we can write down
two equations, (9) or (4), by considering the two grid segments xixi+sek

for
s = ±1. In d dimensions we have 2d equations and 2d unknowns: the first-
order derivatives ∂u/∂xk and the principal second-order derivatives ∂2u

/
∂x2k

for 1 ≤ k ≤ d. This leads to a system of linear equations of the following form:

M

(
∂u
∂xk
∂2u
∂x2

k

)
1≤k≤d

=
1

h2
(
Lk,s(uj∈Br)

)
1≤k≤d,s=±1

+O(h) (10)

where Lk,s(uj∈Br
) is some affine function of u-values in the neighborhood Br.

We call (10) the coupling equation and M the coupling matrix. By inverting
M , we can approximate ∂u/∂xk and ∂2u

/
∂x2k in terms of u-values and obtain

the finite difference approximation of the PDE (3) at the on-front point xi.

In the next few sections, we describe the ingredients to construct the cou-
pling equation (10). We will use “y = L(x)” to denote “write the quantities
y in terms of affine function of quantities x”, where L represent a generic
affine function and it depends on the geometric quantities of the interface. In
Section 2.3, we derive expressions to approximate the jump of the first-order
derivatives [∂u/∂xk] in (9). In Section 2.4, we approximate the jump of the
principal second-order derivatives [∂2u

/
∂x2k] in (9). In Section 2.5, we dis-

cuss how to approximate the mixed derivatives, which is used to approximate
[∂u/∂xk] and [∂2u

/
∂x2k]. In Section 2.6, we combine all the ingredients and

describe our algorithm to obtain the coupling equation.

Compact Coupling Interface Method for Elliptic Interface Problems 11

2.3 Approximation of [∂u/∂xk]

Let n be the unit normal vector at the interface, and s1, . . . , sd−1 be the
unit tangent vectors. The tangent vectors can be obtained by projecting the
coordinate vectors onto the tangent plane. We can write

[∇u] = [∇u · n]n+
d−1∑
j=1

[∇u · sj]sj = [∇u · n]n+
d−1∑
j=1

(∇τ · sj)sj , (11)

because [∇u · sj] = ∇τ · sj for 1 ≤ j ≤ d− 1.

We use the following trick frequently to decouple the jump in subsequent
derivations:

[ϵv] = ϵ+[v] + [ϵ]v−. (12)

The jump condition [ϵ∇u · n] = σ can be rewritten as

[∇u · n] = 1

ϵ+
(σ − [ϵ]∇u− · n). (13)

Substitute (13) into (11), in direction ek, we have

[
∂u

∂xk

]
=

1

ϵ+
(σ − [ϵ]∇u− · n)(n · ek) +

d−1∑
j=1

(∇τ · sj)(sj · ek). (14)

Approximate ∇u− by Taylor’s theorem (7), we get

[
∂u

∂xk

]
=

1

ϵ+

σ − [ϵ]
d∑

j=1

(
∂u

∂xj
+ αkh

∂2u

∂xj∂xk

)
(n · ej)

 (n · ek)

+
d−1∑
j=1

(∇τ · sj)(sj · ek).

(15)

Notice that the jump in the first-order derivative [∂u/∂xk] can be written as
linear combinations of the first-order derivatives ∂u/∂xl , 1 ≤ l ≤ d and the
second-order derivatives ∂2u

/
∂xl∂xm , 1 ≤ l ≤ m:[
∂u

∂xk

]
= L(∇u,∇2u). (16)

where L represents the affine function in (15). Our goal is to approximate the
mixed derivatives ∂2u

/
∂xk∂xl , k ̸= l in terms of the neighboring u-values

uj, j ∈ Br, the first-order derivatives ∂u/∂xk , and the principal second-order
derivatives ∂2u

/
∂x2k , 1 ≤ k ≤ d (see Section 2.4 and 2.5), which are the terms

used in the coupling equation (10).

12 Ray Zirui Zhang, Li-Tien Cheng

2.4 Approximation of [∂2u
/
∂x2k]

To remove the jump of the principal second-order derivatives [∂2u
/
∂x2k], k =

1, 2, . . . , d in (9), we need to solve a system of linear equations, whose unknowns
are all the jump of the principal and the mixed second-order derivatives. This
idea is used in Smereka’s work [63] to arrive at the discrete approximation
of the delta function. The detailed derivation is given in the Appendix A.
However, we would like to note here our definition of the gradient of a vector
field as there is no standard one. For a vector field v, we define the matrix ∇v
to have entries in row i and column j:

(∇v)ij =
∂vj
∂xi

.

This particular form is used in our equations on the jumps of second deriva-
tives.

Tangential derivative of jump of tangential derivative: The first set
of equations are obtained by differentiating the interface boundary condition
in the tangential directions. For m = 1, · · · , d − 1 and n = m, · · · , d − 1, we
get d(d− 1)/2 equations

∇[∇u · sm] · sn = ∇(∇τ · sm) · sn. (17)

Expand each term, and with the help of (12) and (14), we get

sTn [∇2u]sm = sTn∇2τsm− 1

ϵ+
(σ− [ϵ]∇u− ·n)sTn∇nsm−(∇τ ·n)sTn∇nsm. (18)

Tangential derivative of flux jump: By differentiating the jump of flux
in the tangential directions, we get another d−1 equations form = 1, · · · , d−1,

∇[ϵ∇u · n] · sm = ∇σ · sm. (19)

After expansion,

sTm[∇2u]n =
1

ϵ+
∇σ · sm − [ϵ]

ϵ+
sTm∇2u−n− [ϵ]

ϵ+
sTm∇n∇u−

−
d−1∑
k=1

(∇τ · sk)sTm∇nsk − 1

(ϵ+)2
(∇ϵ+ · sm)(σ − [ϵ]∇u− · n)

− 1

ϵ+
[∇ϵ · sm](∇u− · n).

(20)

Jump of PDE: The final equation comes from the jump of the PDE:

[−∇ · (ϵ∇u) + au] = [f]. (21)

After expansion, we have

[∆u] = −
[
f

ϵ

]
+
a+

ϵ+
τ +

[a
ϵ

]
u−

− 1

ϵ+

d−1∑
k=1

(∇τ · sk)(∇ϵ+ · sk)−
[
∇ϵ
ϵ

]
· ∇u−.

(22)

Compact Coupling Interface Method for Elliptic Interface Problems 13

Combining (20), (18), and (22), we arrive at a system of linear equations whose
unknowns are the jump of the second-order derivatives:

G

([
∂2u

∂xk∂xl

])
1≤k≤l≤d

= L
(
u−,∇u−,∇2u−

)
. (23)

where G is a matrix that only depends on the normal and the tangent vec-
tors, L stands for the affine function in (18), (20) and (22). In two and three
dimensions, it can be shown that the absolute value of the determinant of G
is 1 (See Appendix A).

As an example of (23) in two dimensions, let s = [s1, s2]
T and n = [n1, n2]

T ,
and assume that ϵ(x) is a piecewise constant function, then the system of linear
equations (23) is given by s21 s22 2s1s2

s1n1 s2n2 s1n2 + s2n1
1 1 0

[uxx]
[uyy]
[uxy]

 =

 sT∇2τs− 1
ϵ+ (σ − [ϵ]∇u− · n) sT∇ns− (∇τ · n)sT∇ns

1
ϵ+∇σ · s− [ϵ]

ϵ+ (s
T∇2u−n+ sT∇n∇u−)− (∇τ · s)sT∇ns

−[fϵ] +
a+

ϵ+ τ − [aϵ]u
−

 .

(24)

By Taylor’s theorem as in (4), (7) and (8), u−, ∇u− and ∇2u− can all be
approximated by uj, j ∈ Br and components of ∇u and ∇2u at the grid point.
Therefore, after substitution, (23) has the form

G

([
∂2u

∂xk∂xl

])
1≤k≤l≤d

= L
(
uj∈Br

,∇u,∇2u
)

(25)

where j ∈ Br and L represent an updated affine function based on (23) after
substitution.

Recall that our goal is to write every quantities in terms of uj, j ∈ Br,
∂u/∂xk , ∂

2u
/
∂x2k , 1 ≤ k ≤ d, called “allowable terms”, which are the terms

in the coupling equation (10). Here we lay out the steps to achieve this goal.
Firstly, we approximated the mixed derivatives ∂2u

/
∂xk∂xl , k ̸= l, using the

allowable terms and the jump of the mixed derivatives (see Section 2.5):

∂2u

∂xk∂xl
= L

(
uj∈Br

,
∂u

∂xk
,
∂2u

∂x2k
,

[
∂2u

∂xk∂xl

])
(26)

where L represent the finite difference scheme to approximate the mixed
derivatives. Secondly, we substitute the above expressions (26) into (25) to
eliminate the mixed derivatives:

G

([
∂2u

∂xk∂xl

])
1≤k≤l≤d

= L

(
uj∈Br ,∇u,

(
∂2u

∂x2k

)
1≤k≤d

)
(27)

with an updated affine function G and L matrix based on (25). Notice that we
have eliminated the mixed derivatives in ∇2u in (25). Now the right hand side

14 Ray Zirui Zhang, Li-Tien Cheng

of (27) only contains the allowable terms. By solving the linear system of equa-
tions, we can write the jump of the second-order derivatives [∂2u

/
∂xk∂xl],

1 ≤ k ≤ l ≤ d using the allowable terms.
If jump of the second-order derivatives is used in (26), then we can substi-

tute the above expressions (27) into (26) to eliminate the jump of the second-
order derivatives, [∂2u

/
∂xk∂xl], 1 ≤ k < l ≤ d. This leads to

∂2u

∂xk∂xl
= L

(
uj∈Br ,

∂u

∂xk
,
∂2u

∂x2k

)
(28)

with some affine function L obtained by eliminating the jump of the second-
order derivatives in (26). Now the right hand side of (28), and hence (15), also
only contains the allowable terms.

Finally, we substitute the expressions of [∂u/∂xk], and [∂2u
/
∂x2k], both

only involve the allowable terms at this stage, into (9). After rearrangement,
we obtain one row of the coupling equation (10). The full algorithm will be
summarized in Section 2.6.

2.5 Approximation of the mixed derivative

Depending how the interface intersects the grid, different schemes are needed
to approximate the mixed derivative ∂2u

/
∂xk∂xl , k ̸= l at xi. Notice that we

are allowed to make use of the first-order and the second-order derivatives, as
they are the variables in the coupling equation (10).

In Section 2.5.1, we first describe the available finite difference schemes for
the mixed derivatives in different scenarios. In Section 2.5.2, we describe the
decision to choose different schemes when multiple schemes are available.

2.5.1 Schemes for the mixed derivatives

Though any O(h) approximation suffices, we prefer schemes with smaller local
truncation error. Therefore, in all the following formula, we also compute the
O(h) term explicitly. In Fig. 4, we demonstrate examples of different scenarios,
and we describe the schemes in the following:

Case 1 (central difference)

∂2u

∂xk∂xl
=

1

4h2
(ui+ek+el

− ui−ek+el
− ui+ek−el

+ ui−ek−el
) +O

(
h2
)
. (29)

Case 2 (biased differencing with rectangular stencil)

∂2u

∂xk∂xl
=

1

2h2
(ui+ek

− ui+ek−el
− ui−ek

+ ui−ek−el
)

+
1

2
h

∂3u

∂xk∂x2l
+O

(
h2
) (30)

Compact Coupling Interface Method for Elliptic Interface Problems 15

(a) case 1 (b) case 2 (c) case 3

(d) case 4 (e) case 5 (f) case 6

Fig. 4: Approximation of the mixed derivative ∂2u
/
∂xk∂xl at xi. The circles

and disks are grid points in Ω− and Ω+. The u-values at the squares are used
to approximate the mixed derivative. Case 1 is the usual central difference.
Case 2 and 3 are biased difference. Case 4 uses the first-order derivatives at at
xi. Case 5 uses the first-order and the second-order derivatives at at xi. Case
6 uses the jump [∂2u

/
∂xk∂xl] at x̂k and the mixed second-order derivative

on the other side at xi+ek
, which is approximated by central difference.

Case 3 (biased differencing with square stencil)

∂2u

∂xk∂xl
=

1

h2
(ui − ui−ek

− ui−el
+ ui−ek−el

)

+
1

2
h

(
∂3u

∂xk∂x2l
+

∂3u

∂x2k∂xl

)
+O

(
h2
) (31)

Case 4 (triangular stencil with first-order derivatives) In case 4,
we can make use of the first-order derivatives

∂2u

∂xk∂xl
=

1

2h2

(
2h

∂u

∂xk
+ ui+ek−el

− ui−ek−el

)
+

1

2
h

(
∂3u

∂xk∂x2l
+

1

3

∂3u

∂x3k

)
+O

(
h2
) (32)

Case 5 (triangular stencil with first and second-order derivatives)
In case 5, we can make use of the first-order and the principal second-order

16 Ray Zirui Zhang, Li-Tien Cheng

derivatives

∂2u

∂xk∂xl
=

1

h2

(
h
∂u

∂xk
− h2

2

∂2u

∂x2k
− ui−el

+ ui−ek−el

)
+

1

2
h

(
∂3u

∂xk∂x2l
+

∂3u

∂x2k∂xl
+

1

3

∂3u

∂x3k

)
+O

(
h2
) (33)

Case 6 (shifting to the other side) When there are not enough grid
points on the same side, we can make use of the mixed derivative on the other
side of the interface and the jump of the mixed derivative

∂2u

∂xk∂xl
=

∂2u

∂xk∂xl
(xi+ek

)−
[

∂2u

∂xk∂xl

]
x̂k

+O(h) (34)

where ∂2u
/
∂xk∂xl (xi + hek) can be approximated by u-values on the other

side of the interface using central difference as in case 1 to 3. In case 6, the finite
difference stencil will have a radius r = 2, as u-values of more than one grid
point away are used. For example, as shown in Fig. 4 (case 6), u(xi+2ek+el

) is
used to approximate the mixed derivative at xi.

Case 7 (shifting to the same side) Though not illustrated in Fig. 4, it’s
also possible to approximate the mixed derivative at xi by the mixed derivative
of xi’s direct neighbor that is on the same side of the region:

∂2u

∂xk∂xl
=

∂2u

∂xk∂xl
(xi+sem

) +O(h), (35)

where s = ±1 and 1 ≤ m ≤ d, and xi+sem
is on the same side of the interface

as xi. Then the ∂2u
/
∂xk∂xl (xi+sem

) can be approximated using case 1, 2 or
3, which only involves u-values on the same side of the interface. This is the
same as the “shifting” strategy used in ICIM [8]. If m = k or l, that is, we
are shifting in the kl-plane, then the stencil have a radius r = 2. Otherwise,
we are shifting out of the kl-plane, and the stencil would have a radius r = 1.
Therefore, shifting out of plane is preferred for a more compact stencil.

We note that Case 1, 2 and 3, which approximate the mixed derivatives by
neighboring u-values, are the default choices in CIM and hence ICIM. When
such approximations cannot be found, Case 7 (shifting to the same side) is
considered in ICIM. Case 4 and 5 are unique to our CCIM, as they make
use the first-order derivatives. These two techniques are not allowed in the
CIM and ICIM, because their coupling equations do not involve the first-order
derivatives. Case 6 (shifting to the other side) is also unique to our CCIM, as
it makes use of the jump of the mixed derivatives. These techniques (case 4,
5 and 6) help to make our stencil more compact, and allow us to handle very
complicated interface even when the grid is relatively coarse.

2.5.2 Ordering of Different Schemes

Multiple schemes to approximate the mixed derivatives might be available at
the same grid point, and a natural question is which one to choose. Here we

Compact Coupling Interface Method for Elliptic Interface Problems 17

Fig. 5: An example of CCIM stencil at xi. The grid points in the stencil are
labelled from 1 to 12. The disks and the circles are the grid points outside and
inside the surface. (1,10,11) are used to approximate uyz(xi) (see Fig. 4 case 4).
(1, 3, 12) are used to approximate uzx(xi) (Fig. 4 case 5). (8, 9, 10, 11) can be
used to approximate uxy(xi). Alternatively, uxy(xi) can be approximated by
using uxy at the other side (any one of 2, 4, 5, 6 or 7) and the jump condition
(see Fig. 4 case 6).

discuss the criteria for choosing the scheme. Overall, we would like the scheme
to be simple, compact and accurate, both in terms of the local truncation error
and the condition number of the coupling matrix.

Simplicity For simplicity, we prefer schemes that only use u-values as
they are easy to implement. Therefore case 1, 2 and 3, which using central
differencing or biased differencing are preferred. When the derivatives have
to be involved, case 4 only use first derivatives, and is preferred over case 5,
which also uses second derivatives.

Compactness For compactness, we want to have a smaller radius r for
our finite difference stencil. Therefore case 6a (shifting to the other side) is
the least preferable. When case 7 (shifting to the same side) has to be used,
we prefer shifting out-of-plane than shifting in-plane.

Local truncation error For accuracy, we look at the O(h) of the local
truncation error. Central differencing (case 1) is preferred over biased differ-
encing (and case 2 over case 3). Case 3 or case 4 has similar local truncation

18 Ray Zirui Zhang, Li-Tien Cheng

error. In general, case 6 (shifting) will leads to larger local truncation error
compared with case 1 to 5.

Condition number of the coupling equation Another consideration
for accuracy is the condition number of the coupling equation. Solving a lin-
ear system with large condition number is prone to large numerical errors.
Therefore, in cases where both case 3 and case 4 are available, we choose the
scheme that leads to the coupling matrix with a smaller estimated condition
number computed by [65]. The approximate condition number provide a good
estimate of the actual condition number, which is computationally expensive
to compute. The effect is shown in Section 3.

Ordering As a summary of the above discussion on the criteria of choos-
ing the differencing schemes for approximating the mixed derivatives, here is
how we rank the schemes from the most preferable to the least preferable: case
1 (central differencing); case 2 (biased differencing with rectangular stencil);
case 3 (biased differencing with square stencil); or case 4 (triangular stencil
with first-order derivatives), whichever leads to coupling matrix with smaller
estimated condition number; case 5 (triangular stencil with first and second-
order derivatives); case 7 (shifting to the same side); case 6 (shifting to the
other side); When multiple schemes are available to approximate the mixed
derivatives, we use the most preferable scheme available. Though we can con-
struct surfaces for a specific grid size such that none of the above schemes
works, for smooth surfaces we can refine the grid such that the above schemes
suffice. We note that case 5 and case 6 can be removed by refining the grid,
while case 4 cannot, which is proved in [8].

2.6 Algorithm

We describe our method to obtain the coupling equation at an on-front point
in algorithmic order in Algorithm 1. Once we have the coupling equations (10),
by inverting the coupling matrix, ∂u/∂xk and ∂2u

/
∂x2k , 1 ≤ k ≤ d can be

approximated by linear functions of uj, j ∈ Br

To get more stable convergence results, at grid points where case 1 and 2
not available, but case 3 and 4 are available, we use the algorithm to obtain
two systems of coupling equations, and choose the system with a smaller esti-
mated condition number of the coupling matrix. The effect of this criterion is
demonstrated in Section 3.1.

Let Au = f be the system of linear equations obtained from the finite
difference approximation of the PDE (3), where u is the vector of unknown
u-values at the grid points. The algorithm to assemble the system of linear
equations Au = f is summarized in Algorithm 2.

3 Numerical results

We test our method in three dimensions with different surfaces. The first set
of tests contains six geometric surfaces that are used in [8]. And the second set

Compact Coupling Interface Method for Elliptic Interface Problems 19

Algorithm 1 Coupling equation at an on-front point xi

Notation: we use y = L(x) to denote “write the quantities y in terms of affine function of
quantities x”, where L represent a generic affine function.

1: for 1 ≤ k ≤ d do
2: for s = ±1 do
3: if the interface intersects xixi+sek at x̂k then
4: for 1 ≤ j ≤ d, j ̸= k do
5: As described in Section 2.5

∂2u

∂xk∂xj
= L

(
uj∈Br ,

∂u

∂xk
,
∂2u

∂x2
k

,

[
∂2u

∂xk∂xj

])

6: end for
7: As described in Section 2.4,

[
∂2u

∂xk∂xj

]
1≤k≤j≤d

= L

uj∈Br ,

(
∂u

∂xj

)
1≤j≤d

,

(
∂2u

∂x2
j

)
1≤j≤d


8: By back substitution

(
∂2u

∂xk∂xj

)
1≤j≤d

= L

uj∈Br ,

(
∂u

∂xj

)
1≤j≤d

,

(
∂2u

∂x2
j

)
1≤j≤d


9: Substitute the expression for the mixed derivatives into (15)

[
∂u

∂xk

]
= L

uj∈Br ,

(
∂u

∂xj

)
1≤j≤d

,

(
∂2u

∂x2
j

)
1≤j≤d


10: Substituting [∂u/∂xk] and [∂2u

/
∂x2

k] into (9), and after rearrangement, this
gives one row of the coupling equations (10).

11: else
12: Direct application of Taylor’s theorem (4) gives one row of the coupling equa-

tions (10).
13: end if
14: end for
15: end for

Algorithm 2 Linear systems of equations for the elliptic interface problem

1: for Every grid point xi do
2: if xi is an on-front point then
3: Use Algorithm 1 to obtain the coupling equation at xi. Solve the coupling equation

to obtain the finite difference approximations of ∂u/∂xk and ∂2u
/
∂x2

k , 1 ≤ k ≤ d.
4: else
5: Use standard central difference to approximate ∂u/∂xk and ∂2u

/
∂x2

k , 1 ≤ k ≤ d.
6: end if
7: Substitute the approximations of ∂u/∂xk and ∂2u

/
∂x2

k , 1 ≤ k ≤ d, into the PDE
(3), and obtain one row of the linear system of equations.

8: end for

20 Ray Zirui Zhang, Li-Tien Cheng

of tests uses two complex biomolecular surfaces. These two sets are compared
with our implementation of ICIM [8] with the same setup. As tests in [8] do
not include the a(x) term, the third set of tests are the same six geometric
surfaces with the a(x) term. The last test is a sphere expanding under a normal
velocity given by the derivative of the solution in normal direction. Let ue be
the exact solution of (1), and u be the numerical solution.

For tests with a static interface, we look at the maximum error of the
solution at all grid points, denoted as ∥ue − u∥∞, and the maximum error of
the gradient at all the intersections of the interface and the grid lines, denoted
as ∥∇ue −∇u∥∞,Γ . For the expanding sphere, we look at the maximum error
and the Root Mean Square Error (RMSE) of the radius at all the intersections
of the interface and the grid lines. All the tests are performed on a 2017 iMac
with 3.5 GHz Intel Core i5 and 16GB memory. We use the AMG method
implemented in the HYPRE library [66] to solve the sparse linear systems to
a tolerance of 10−9.

In our work, the interface is represented by a level set function. To obtain
the location of the interface on the grid segment, we use a degree-6 interpo-
lating polynomial of the level set function and find the root using regula-falsi
method. For our numerical tests, and in many applications [8,9,10], we have
the expression of τ(x, y, z) and σ(x, y, z). The quantities ∇τ , ∇2τ , ∇σ, the
normal vectors and the tangent vectors are all approximated numerically by
central differencing at the grid point, and then interpolated to the interface
location. We believe that our method only requires these geometric quanti-
ties to be approximated to second-order accuracy for computational purposes.
And this is verified empirically in our numerical tests. We note that since we
assume interface Γ and the interfacial jump condition τ and σ are all smooth,
we can consider any smooth extension of τ and σ off the interface. Even if such
smooth extensions are not available in an analytical form, the extensions can
be computed to second order accuracy by algorithm such as the fast marching
method [67].

3.1 Example 1

We test several geometric interfaces as in [8]. The surfaces are shown in Fig.6.
Their level set functions are given below:

– Eight balls: ϕ(x, y, z) = min0≤k≤7

√
(x− xk)2 + (y − yk)2 + (z − zk)2 −

0.3, where (xk, yk, zk) = ((−1)⌊k/4⌋ × 0.5, (−1)⌊k/2⌋ × 0.5, (−1)k × 0.5)
– Ellipsoid: ϕ(x, y, z) = 2x2 + 3y2 + 6z2 − 1.3
– Peanut: ϕ(x, y, z) = ϕ(r, θ, ψ) = r − 0.5− 0.2 sin(2θ) sin(ψ)

– Donut: ϕ(x, y, z) = (
√
x2 + y2 − 0.6)2 + z2 − 0.42

– Banana: ϕ(x, y, z) = (7x+6)4+2401y4+3601.5z4+98(7x+6)2(y2+z2)+
4802y2z2 − 94(7x+ 6)2 + 3822y2 − 4606z2 + 1521

Compact Coupling Interface Method for Elliptic Interface Problems 21

– Popcorn:

ϕ(x, y, z) =
√
x2 + y2 + z2 − r0

−
11∑
k=0

exp
(
25((x− xk)

2 + (y − yk)
2 + (z − zk)

2)
)

where

(xk, yk, zk)

=
r0√
5

(
2 cos

(
2kπ

5
− ⌊k

5
⌋
)
, 2 sin

(
2kπ

5
− ⌊k

5
⌋
)
, (−1)⌊

k
5 ⌋
)
, 0 ≤ k ≤ 9

= r0(0, 0, (−1)k−10), 10 ≤ k ≤ 11.

The computational domain is Ω = [−1, 1]3. Let Ω+ = {ϕ < 0} and Ω− =
{ϕ > 0}, which are the interior and exterior of the surface respectively. The
boundary condition is u = 0 on the boundary of the computational domain.
The setup in this example is the same as that in [22,8]: we take a = 0 and use
use the same exact solution (36) and the coefficient (37):

ue(x, y, z) =

{
xy + x4 + y4 + xz2 + cos

(
2x+ y2 + z3

)
if (x, y, z) ∈ Ω+

x3 + xy2 + y3 + z4 + sin
(
3(x2 + y2)

)
if (x, y, z) ∈ Ω−

(36)
and

ϵ(x, y, z) =

{
ϵ+ if (x, y, z) ∈ Ω+

ϵ− if (x, y, z) ∈ Ω− . (37)

with ϵ+ = 80 and ϵ− = 2. The source term and the jump conditions are
calculated accordingly.

Fig 7 shows the convergence result of the six interfaces. The convergence of
the solution at grid points is second-order, and the convergence of the gradient
at the interface is close to second-order.

3.1.1 Effect of different schemes for the mixed derivatives

Next we demonstrate the effect of choosing the approximation schemes for the
mixed derivatives based on the estimated condition numbers of the coupling
matrices. As mentioned in Section 2.5, when both case 3 and case 4 are avail-
able to approximate the mixed derivatives, we choose the scheme that gives
a smaller estimated condition number of the coupling matrix. We denote this
scheme as “CCIM”. Alternatively, we can fix the order of preference for differ-
ent methods. In “scheme 1”, we always prefer case 4 (triangular stencil with
first-order derivatives) to case 3 (biased differencing with square stencil).

Fig. 8 demonstrates the effect of this decision using the banana shape
surface as an example. For different N and for both schemes, Fig. 8a plots the
maximum condition numbers (not the estimation from [65]) of all the coupling

22 Ray Zirui Zhang, Li-Tien Cheng

Fig. 6: The six interfaces (a) eight balls; (b) ellipsoid; (c) peanut; (d) donut;
(e) banana; (f) popcorn

matrices, and Fig. 8b plots the convergence results of these two schemes. From
Fig. 8a, we can see that the maximum condition numbers in CCIM are almost
always smaller than those in scheme 1 (except at N = 75, due to the estimation
error [65]). As shown in Fig. 8b, for most of the tests, CCIM and scheme 1
have roughly the same maximum error. We noticed that for N = 110, with
scheme 1, at the interface point with the maximum error in the gradient, the
coupling matrix has an exceptionally large condition number. By choosing
the method with a smaller estimated condition number, we can get smaller
error and obtain more stable convergence result in the gradient. If we prefer
case 3 to case 4, then the results are similar to scheme 1: at some grid points
large condition number is correlated to large error, and CCIM has more stable
convergence behavior.

3.1.2 Investigation of the outlier error

Though we can get a more stable convergence behavior by considering the
condition number of the coupling matrices, there is an outlier of the error
of the gradient for the banana interface at N = 110 in Fig. 8b. A detailed
analysis of the error reveals that it is caused by relatively large local truncation
error when approximating uxz. Fig. 9 shows the contour line of the mixed
derivative uxz. However, due to the alignment of the surface with the grid, at
xi,k, our algorithm uses the 4-point stencil xi,k, xi−1,k, xi,k−1 and xi−1,k−1

Compact Coupling Interface Method for Elliptic Interface Problems 23

1.6 1.7 1.8 1.9 2 2.1 2.2
log10(N)

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

lo
g
10
(E
rr
o
r)

(a) 8 balls

Solution:m=-2.006
Gradient:m=-1.775

1.6 1.7 1.8 1.9 2 2.1 2.2
log10(N)

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

lo
g
10
(E
rr
o
r)

(b) peanut

Solution:m=-1.992
Gradient:m=-1.881

1.6 1.7 1.8 1.9 2 2.1 2.2
log10(N)

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

lo
g
10
(E
rr
o
r)

(c) ellipsoid

Solution:m=-2.001
Gradient:m=-1.922

1.6 1.7 1.8 1.9 2 2.1 2.2
log10(N)

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

lo
g
10
(E
rr
or
)

(d) donut

Solution:m=-2.056
Gradient:m=-1.824

1.6 1.7 1.8 1.9 2 2.1 2.2
log10(N)

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

lo
g
10
(E
rr
or
)

(e) banana

Solution:m=-1.989
Gradient:m=-1.879

1.6 1.7 1.8 1.9 2 2.1 2.2
log10(N)

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

lo
g
10
(E
rr
or
)

(f) popcorn

Solution:m=-1.974
Gradient:m=-1.976

Fig. 7: The log-log plot of the error versus N for the six surfaces. In each figure,
N ranges from 50 to 140 with the increment ∆N = 5. Circles are the maximum
errors of the solution ∥ue − u∥∞. Diamonds are the maximum errors of the
gradient at interface ∥∇ue −∇u∥∞,Γ . m is the slope of the fitting line.

to approximate uxz(xi,k) and has a local truncation error 0.160723. If we use
the three point stencil xi,k, xi−1,k, xi−1,k+1, the local truncation error would
be 0.041853, and the coupling matrix does not have large condition number.
With this surgical fix, the final error would be in line with the rest of the data
points, as shown in Fig 8b at N = 110, marked as “Surgical fix”. This type of
outliers happens rarely and does not affect the overall order of convergence.
We apply this surgical fix only at this specific grid point to demonstrate a
possible source of large error in the gradient.

In summary, though the overall order of convergence is second-order no
matter which scheme is used to approximate the mixed second-order deriva-
tives, a relatively large error can be caused by a large condition number of
the coupling matrix, or a large local truncation error when approximating
the mixed second-order derivative. When different schemes to approximate
the mixed second-order derivatives are available, ideally we prefer the scheme
that produces smaller local truncation error and smaller condition number of
the coupling matrix. However, these two goals might be incompatible some-
times. It’s time consuming to search through all the available schemes and find
the one that leads the smallest condition number of the coupling matrix. It’s
also difficult to tell a priori which scheme gives smaller local truncation error.
Therefore we try to find a middle ground by only considering the condition

24 Ray Zirui Zhang, Li-Tien Cheng

50 60 70 80 90 100 110 120 130 140

N

3.5

4

4.5

5

5.5

6

lo
g

1
0
(C

o
n

d
)

Scheme 1

CCIM

(a) maximum condition number

1.6 1.7 1.8 1.9 2 2.1 2.2

log
10

(N)

-4

-3.5

-3

-2.5

-2

-1.5

-1

lo
g

1
0
(E

rr
o

r)

Scheme 1, solution

Scheme 1, gradient

CCIM, solution

CCIM, gradient

Surgical fix

(b) Convergence

Fig. 8: Comparison of maximum condition numbers and convergence results
with banana surface between scheme 1 and CCIM. In scheme 1, case 4 is pre-
ferred to case 3. In CCIM, case 3 and case 4 are chosen based on estimated con-
dition numbers of the coupling matrices. (a) The maximum condition number
of coupling matrices with different methods. (b) Log-log plot of the maximum
errors in solution and gradient at the interface. The relatively large error at
N = 110 for CCIM can be reduced by a surgical fix that choose the stencil
with a smaller local truncation error.

Fig. 9: Contour lines of uxz at the grid point where the maximum error in the
gradient occurs for the banana interface at N = 110 The disks and the circles
are grid points outside and inside the surface. Grid points marked with squares
(Fig. 4 case 3) are used to approximate uxz(xi,k) due to its simplicity, but has
a local truncation error 0.160723, The three points stencil (Fig. 4 case 4) with
xi,k, xi−1,k, xi−1,k+1 has a smaller local truncation error of 0.041853. Use this
stencil to approximate uxz(xi,k) would reduce the error in the gradient at this
grid point.

Compact Coupling Interface Method for Elliptic Interface Problems 25

number when both case 1 and 2 are not available but case 3 and case 4 are
available.

The resulting linear system for the PDE is sparse and asymmetric, and can
be solved with any “black-box” linear solvers. Fig. 10 shows the log-log plot for
the number of iterations versus N . We used Biconjugate Gradient Stabilized
Method with ILU preconditioner (abbreviated as BICG) and Algebraic Multi-
grid Method (AMG), both are implemented in the HYPRE library [66]. The
number of iterations grows linearly with N for BiCGSTAB and sub-linearly
for AMG. Though AMG has better scaling property, for the range of N in
Fig 10, both solvers take approximately the same CPU time. Fig. 11 shows
the log-log plot of the CPU time versus N3 log10(N) for the six surfaces using
AMG. The slopes of the regression lines are close to 1. This scaling behavior
is on par with that in ICIM (see Fig.14 in [8]). All the tests are performed on
an Apple M2 Max CPU.

Empirically, our method does not encounter issue when the interface points
are very close to the grid points: the minimum α among all the test cases in
Fig. 7 is 2.3282e-18. In addition, in Appendix B, we show that our method
can handle high contrast problems with a large difference in the coefficients
ϵ+ and ϵ−.

3.2 Example 2

Next we test our method on two complex molecular surfaces and compare
CCIM with our implementation of ICIM [8]. The solvent accessible surface
describes the interface between solute and solvent. Such interfaces are complex
and important in applications. We construct the surfaces as in [8]: from the
PDB file of 1D63 [68] and MDM2 [69], we use the PDB2PQR [70] software to
assign charges and radii using the AMBER force field. The PQR files contain
information of the positions pi and radii ri of the atoms. We scale the positions
and radii such that the protein fit into our computation box. Then we construct
the level set function of the interface as the union of smoothed bumps:

ϕ(x) = c−
∑
i

χη(ri − ∥x− pi∥), (38)

where χη is a smoothed characteristic function

χη =
1

2

(
1 + tanh

(
x

η

))
. (39)

The molecule 1D63 has 486 atoms and has a double-helix shape, as shown
in Fig. 12(a). MDM2 has 1448 atoms, and the surface has a deep pocket to
which other proteins can bind, as shown in Fig 13(a). We also implement ICIM
[8] and compare the convergence results between CCIM and ICIM in Fig. 12
and Fig. 13.

26 Ray Zirui Zhang, Li-Tien Cheng

1.6 1.7 1.8 1.9 2 2.1 2.2
log10(N)

1.4

1.5

1.6

1.7

1.8

1.9

2

lo
g
1
0
(I
te
ra
ti
on
)

(a) 8 balls

BICG:m=0.768
AMG:m=0.536

1.6 1.7 1.8 1.9 2 2.1 2.2
log10(N)

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

lo
g
1
0
(I
te
ra
ti
on
)

(b) peanut

BICG:m=0.963
AMG:m=0.548

1.6 1.7 1.8 1.9 2 2.1 2.2
log10(N)

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

lo
g
1
0
(I
te
ra
ti
on
)

(c) ellipsoid

BICG:m=0.856
AMG:m=0.620

1.6 1.7 1.8 1.9 2 2.1 2.2
log10(N)

1.5

1.6

1.7

1.8

1.9

2

lo
g
10
(I
te
ra
ti
o
n
)

(d) donut

BICG:m=0.861
AMG:m=0.484

1.6 1.7 1.8 1.9 2 2.1 2.2
log10(N)

1.4

1.5

1.6

1.7

1.8

1.9

2

lo
g
10
(I
te
ra
ti
o
n
)

(e) banana

BICG:m=0.875
AMG:m=0.456

1.6 1.7 1.8 1.9 2 2.1 2.2
log10(N)

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

lo
g
10
(I
te
ra
ti
o
n
)

(f) popcorn

BICG:m=0.818
AMG:m=0.555

Fig. 10: The log-log plot of the number of iterations versus N for the six sur-
faces. In each figure, N ranges from 50 to 140 with the increment ∆N = 5.
Circles are the numbers of iterations using Biconjugate Gradient Stabilized
Method with ILU preconditioner (abbreviated as BICG). Diamonds are the
numbers of iterations using AMG. m is the slope of the fitting line. Though
AMG has better scaling (smaller m), we report that both solvers take approx-
imately the same CPU time in this range of N .

As shown in Fig. 12 and Fig. 13, compared with our implementation of
ICIM, the convergence results of CCIM is very robust even for complex in-
terfaces. There is little fluctuation in the convergence results. In our ICIM
implementation, the order of convergence exceeds second-order because large
errors at coarse grid points skew the fitting line to have a more negative slope.
The results demonstrate the advantage of the compactness in our CCIM for-
mulation when dealing with complex surfaces.

3.3 Example 3

We also test our problem with the same exact solution ue (36) and coefficients
ϵ (37), but with a non-zero a(x, y, z) term:

a(x, y, z) =

2
(
sin(x) + ey

2
)

if (x, y, z) ∈ Ω−

80
(
cos(z) + e−y2

)
if (x, y, z) ∈ Ω+.

(40)

Compact Coupling Interface Method for Elliptic Interface Problems 27

5 5.5 6 6.5 7
log10(N

3 log10(N))

-0.5

0

0.5

1

1.5

lo
g

1
0
(T

im
e)

(a) 8 balls

Time:m=1.025

5 5.5 6 6.5 7
log10(N

3 log10(N))

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

lo
g

1
0
(T

im
e)

(b) peanut

Time:m=1.032

5 5.5 6 6.5 7
log10(N

3 log10(N))

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

lo
g

1
0
(T

im
e)

(c) ellipsoid

Time:m=1.053

5 5.5 6 6.5 7
log10(N

3 log10(N))

-0.5

0

0.5

1

1.5

lo
g

10
(T

im
e)

(d) donut

Time:m=1.034

5 5.5 6 6.5 7
log10(N

3 log10(N))

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

lo
g

10
(T

im
e)

(e) banana

Time:m=1.029

5 5.5 6 6.5 7
log10(N

3 log10(N))

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

lo
g

10
(T

im
e)

(f) popcorn

Time:m=1.012

Fig. 11: The log-log plot of the CPU time versus N3 log10(N) for the six
surfaces using AMG. m is the slope of the fitting line.

Fig. 12: Convergence result for 1D63 interface with c = 0.25 and η = 1/40.
(a) The smooth surface of 1D63. (b) log-log plot of error by CCIM. (b) log-log
plot of error by ICIM. N ranges from 100 to 340 with the increment ∆N = 5.

This term is not tested in CIM [22] and ICIM[8]. In Fig. 14, we show the con-
vergence result of the six surfaces. The grids are perturbed by some uniformly
distributed random numbers between 0 and mesh size h in each coordinate.
This changes the alignment of the surface with the grid lines compared with
Fig. 7. We can see the convergence of the solution at grid points and the
convergence of the gradient at the interface are second-order.

28 Ray Zirui Zhang, Li-Tien Cheng

Fig. 13: Convergence result for MDM2 interface with c = 0.25 and η = 1/30.
(a) The smooth surface of MDM2. (b) log-log plot of error by CCIM. (b)
log-log plot of error by ICIM. N ranges from 100 to 340 with the increment
∆N = 5.

1.6 1.7 1.8 1.9 2 2.1 2.2
log10(N)

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

lo
g
10
(E

rr
or
)

(a) 8 balls

Solution:m=-2.010
Gradient:m=-1.862

1.6 1.7 1.8 1.9 2 2.1 2.2
log10(N)

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

lo
g
10
(E

rr
or
)

(b) peanut

Solution:m=-2.006
Gradient:m=-1.939

1.6 1.7 1.8 1.9 2 2.1 2.2
log10(N)

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

lo
g
10
(E

rr
or
)

(c) ellipsoid

Solution:m=-2.049
Gradient:m=-1.963

1.6 1.7 1.8 1.9 2 2.1 2.2
log10(N)

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

lo
g
10
(E

rr
or
)

(d) donut

Solution:m=-2.091
Gradient:m=-1.891

1.6 1.7 1.8 1.9 2 2.1 2.2
log10(N)

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

lo
g
10
(E

rr
or
)

(e) banana

Solution:m=-1.997
Gradient:m=-1.972

1.6 1.7 1.8 1.9 2 2.1 2.2
log10(N)

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

lo
g
10
(E

rr
or
)

(f) popcorn

Solution:m=-2.008
Gradient:m=-1.916

Fig. 14: The log-log plot of error with a(x) term versus N for the six surfaces.
In each figure, N ranges from 50 to 140 with the increment ∆N = 5. The grids
are perturbed by some uniformly distributed random numbers between 0 and
mesh size h in each coordinate. Circles are the maximum errors of the solution
∥ue − u∥∞. Diamonds are the maximum errors of the gradient at interface
∥∇ue −∇u∥∞,Γ . m is the slope of the fitting line.

Compact Coupling Interface Method for Elliptic Interface Problems 29

3.4 Example 4

In this example we look at the evolution of an interface driven by the jump of
the normal derivative of the solution using the level set method [23]. Suppose
the surface Γ is evolved with normal velocity vn = [∇u · n]. ϕ = ϕ(x, t) is a
level set function representing the evolving surface Γ = Γ (t), i.e., Γ (t) = {x |
ϕ(x, t) = 0}. The dynamics of the interface is given by the level set equation,

ϕt + vn|∇ϕ| = 0. (41)

We use the forward Euler method for first-order accurate time discretization,
Godunov scheme for the Hamiltonian, and the Fast Marching Method [67] to
extend vn to the whole computational domain.

We start with the radially symmetric exact solution

ue(x) =

{
1

1+∥x∥2 x ∈ Ω−

− 1
1+∥x∥2 x ∈ Ω+

(42)

and

a(x) =

{
2 sin(∥x∥) x ∈ Ω−

80 cos(∥x∥) x ∈ Ω+
. (43)

The coefficient ϵ is the same as (37). The source term and the jump conditions
are calculated accordingly.

If the surface is a sphere of radius r, by symmetry, the normal velocity is
uniform over the sphere and is given by

vn(r) = [∇u · n] = 4r

(1 + r2)2
. (44)

Let the initial surface be a sphere of radius 0.5, then the motion of the surface
is described by the ODE

dr

dt
= vn(r), r(0) = 0.5 (45)

which can be computed to high accuracy. The result is a sphere expanding at
varying time-dependent speeding.

In Fig. 15a, we look at the maximum error and the Root Mean Squared
Error (RMSE) of all the radii obtained from the intersections of the surface
and the grid lines at the final time t = 0.1 for different grid size N . The
results are second-order accurate. In Fig. 15b, we plot the initial and final
surface for N = 20. The shape is well-preserved. Without accurate gradient
approximation, the surface might become distorted or oscillatory.

30 Ray Zirui Zhang, Li-Tien Cheng

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

log
10

(N)

-5.2

-5

-4.8

-4.6

-4.4

-4.2

-4

-3.8

-3.6

-3.4

-3.2

lo
g

1
0
(E

rr
o
r)

Max: m = -2.01

RMSE: m = -2.26

(a) Error for radii at final time. (b) Initial (inner) and final (outer) surface

Fig. 15: (a) Maximum error and Root Mean Squared error (RMSE) of the radii
measured at all the intersections of the surface and the grid lines. N ranges
from 20 to 85 with the increment ∆N = 5. (b) Initial surface (inner) and final
surface (outer) for N = 20.

4 Conclusions

In this paper, we proposed the Compact Coupling Interface Method (CCIM) to
solve elliptic interface boundary value problems in any dimension. Our method
combines elements from the Coupling Interface Method (CIM) and Mayo’s ap-
proach to Poisson’s equation on irregular regions. Standard central difference
schemes are used at interior points. At on-front points, coupling equations of
the first-order derivatives and principal second-order derivatives are derived
in a dimension-splitting approach by differentiating the jump conditions. Our
method obtains second-order accurate solution at the grid points and second-
order accurate gradient at the interface. The accurate approximation for the
gradient is important in applications where the dynamics of the surface is
driven by the jump of the solution gradient at the interface. Our method has
more compact finite difference stencils compared with those in CIM2 and is
suitable for complex interfaces. We tested our method in three dimensions with
complex interfaces, including two protein surfaces, and demonstrated that the
solution and the gradient at the interface are uniformly second-order accurate,
and the convergence results are very robust. We also tested our method with
a moving surface whose normal velocity is given by the jump in the gradient
at the interface and achieved second-order accurate interface at the final time.

Acknowledgement

This work was funded by NSF Awards 1913144 and 2208465. The authors
would like to thank Professor Bo Li for helpful discussions, guidance and sup-

Compact Coupling Interface Method for Elliptic Interface Problems 31

port in numerical aspects of the paper. The second author would like to thank
Professor Yu-Chen Shu for helpful discussions on CIM.

References

1. F. Gibou, R. Fedkiw, Journal of Computational Physics 202(2), 577 (2005). DOI
10.1016/j.jcp.2004.07.018

2. F. Gibou, R.P. Fedkiw, L.T. Cheng, M. Kang, Journal of Computational Physics 176(1),
205 (2002). DOI 10.1006/jcph.2001.6977

3. D. Bochkov, F. Gibou, Journal of Computational Physics 407, 109269 (2020). DOI
10.1016/j.jcp.2020.109269

4. T.Y. Hou, Z. Li, S. Osher, H. Zhao, Journal of Computational Physics 134(2), 236
(1997). DOI 10.1006/jcph.1997.5689

5. R. Kafafy, T. Lin, Y. Lin, J. Wang, International Journal for Numerical Methods in
Engineering 64(7), 940 (2005). DOI 10.1002/nme.1401

6. S. Zhao, Journal of Computational Physics 229(9), 3155 (2010). DOI 10.1016/j.jcp.
2009.12.034

7. G. Hadley, Journal of Lightwave Technology 20(7), 1210 (2002). DOI 10.1109/JLT.
2002.800361

8. Y.C. Shu, I.L. Chern, C.C. Chang, Journal of Computational Physics 275, 642 (2014).
DOI 10.1016/j.jcp.2014.07.017

9. S. Zhou, L.T. Cheng, J. Dzubiella, B. Li, J.A. McCammon, Journal of Chemical Theory
and Computation 10(4), 1454 (2014). DOI 10.1021/ct401058w

10. Y. Zhong, K. Ren, R. Tsai, Journal of Computational Physics 359, 199 (2018). DOI
10.1016/j.jcp.2018.01.021

11. P. Macklin, J. Lowengrub, Journal of Computational Physics 203(1), 191 (2005). DOI
10.1016/j.jcp.2004.08.010

12. P. Macklin, J.S. Lowengrub, Journal of Scientific Computing 35(2), 266 (2008). DOI
10.1007/s10915-008-9190-z

13. J. Dzubiella, J.M.J. Swanson, J.A. McCammon, Physical Review Letters 96(8), 087802
(2006). DOI 10.1103/PhysRevLett.96.087802

14. J. Dzubiella, J.M.J. Swanson, J.A. McCammon, The Journal of Chemical Physics
124(8), 084905 (2006). DOI 10.1063/1.2171192

15. Z. Wang, J. Che, L.T. Cheng, J. Dzubiella, B. Li, J.A. McCammon, Journal of Chemical
Theory and Computation 8(2), 386 (2012). DOI 10.1021/ct200647j

16. Z. Zhang, C.G. Ricci, C. Fan, L.T. Cheng, B. Li, J.A. McCammon, Journal of Chemical
Theory and Computation (2021). DOI 10.1021/acs.jctc.0c01109

17. R.Z. Zhang, L.T. Cheng, SIAM Journal on Scientific Computing pp. B618–B645 (2023).
DOI 10.1137/22M1508339

18. F. Izzo, Y. Zhong, O. Runborg, R. Tsai. Corrected Trapezoidal Rule-IBIM for linearized
Poisson-Boltzmann equation (2022). DOI 10.48550/arXiv.2210.03699

19. M. Holst, F. Saied, Journal of Computational Chemistry 14(1), 105 (1993). DOI
10.1002/jcc.540140114

20. M. Holst, R.E. Kozack, F. Saied, S. Subramaniam, Proteins 18(3), 231 (1994). DOI
10.1002/prot.340180304

21. B. Li, SIAM Journal on Mathematical Analysis 40(6), 2536 (2009). DOI 10.1137/
080712350

22. I.L. Chern, Y.C. Shu, Journal of Computational Physics 225(2), 2138 (2007). DOI
10.1016/j.jcp.2007.03.012

23. S. Osher, R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces. Applied Math-
ematical Sciences (Springer-Verlag, New York, 2003). DOI 10.1007/b98879

24. S. Osher, J.A. Sethian, Journal of Computational Physics 79(1), 12 (1988). DOI
10.1016/0021-9991(88)90002-2

25. L.T. Cheng, Z. Wang, P. Setny, J. Dzubiella, B. Li, J.A. McCammon, The Journal of
Chemical Physics 131(14), 144102 (2009). DOI 10.1063/1.3242274

32 Ray Zirui Zhang, Li-Tien Cheng

26. JT. Beale, SIAM JOURNAL ON NUMERICAL ANALYSIS 42(2), 599 (2004). DOI
10.1137/S0036142903420959

27. R. Guo, X. Zhang, Journal of Computational Physics 441, 110445 (2021). DOI 10.
1016/j.jcp.2021.110445

28. A. Guittet, M. Lepilliez, S. Tanguy, F. Gibou, Journal of Computational Physics 298,
747 (2015). DOI 10.1016/j.jcp.2015.06.026

29. ZM. Chen, J. Zou, NUMERISCHE MATHEMATIK 79(2), 175 (1998). DOI 10.1007/
s002110050336

30. JG. Huang, J. Zou, IMA JOURNAL OF NUMERICAL ANALYSIS 22(4), 549 (2002).
DOI 10.1093/imanum/22.4.549

31. ZL. Li, WC. Wang, IL. Chern, MC. Lai, SIAM JOURNAL ON SCIENTIFIC COM-
PUTING 25(1), 224 (2003). DOI 10.1137/S106482750139618X

32. H. Guo, X. Yang, Journal of Computational Physics 356, 46 (2018). DOI 10.1016/j.
jcp.2017.11.031

33. R. Guo, T. Lin, Y. Lin, Journal of Scientific Computing 79(1), 148 (2019). DOI
10.1007/s10915-018-0847-y

34. R. Guo, SIAM Journal on Numerical Analysis 59(2), 797 (2021). DOI 10.1137/
20M133508X

35. Y. Gong, B. Li, Z. Li, SIAM Journal on Numerical Analysis 46(1), 472 (2008). DOI
10.1137/060666482

36. R. Becker, E. Burman, P. Hansbo, Computer Methods in Applied Mechanics and En-
gineering 198(41), 3352 (2009). DOI 10.1016/j.cma.2009.06.017

37. E. Burman, Comptes Rendus Mathematique 348(21), 1217 (2010). DOI 10.1016/j.
crma.2010.10.006

38. C.C. Chu, I.G. Graham, T.Y. Hou, Mathematics of Computation 79(272), 1915 (2010)
39. P. Zunino, L. Cattaneo, C.M. Colciago, Applied Numerical Mathematics 61(10), 1059

(2011). DOI 10.1016/j.apnum.2011.06.005
40. N. Barrau, R. Becker, E. Dubach, R. Luce, Comptes Rendus Mathematique 350(15),

789 (2012). DOI 10.1016/j.crma.2012.09.018
41. S. Adjerid, I. Babuška, R. Guo, T. Lin, Computer Methods in Applied Mechanics and

Engineering 404, 115770 (2023). DOI 10.1016/j.cma.2022.115770
42. A. Massing, M.G. Larson, A. Logg, M.E. Rognes, Journal of Scientific Computing 61(3),

604 (2014). DOI 10.1007/s10915-014-9838-9
43. J. Guzmán, M.A. Sánchez, M. Sarkis, Journal of Scientific Computing 73(1), 330 (2017).

DOI 10.1007/s10915-017-0415-x
44. W.F. Hu, T.S. Lin, M.C. Lai. A Discontinuity Capturing Shallow Neural Network for

Elliptic Interface Problems (2021). DOI 10.48550/arXiv.2106.05587
45. H. Guo, X. Yang, Communications in Computational Physics 31(4), 1162 (2022). DOI

10.4208/cicp.OA-2021-0201
46. A.K. Tornberg, B. Engquist, Journal of Computational Physics 200(2), 462 (2004). DOI

10.1016/j.jcp.2004.04.011
47. A.K. Tornberg, B. Engquist, Journal of Scientific Computing 19(1), 527 (2003). DOI

10.1023/A:1025332815267
48. CS. Peskin, in ACTA NUMERICA 2002, VOL 11, Acta Numerica, vol. 11, ed. by

A. Iserles (CAMBRIDGE UNIV PRESS, THE PITT BUILDING, TRUMPINGTON
ST, CAMBRIDGE CB2 1RP, CAMBS, ENGLAND, 2002), pp. 479–517. DOI 10.1017/
S0962492902000077

49. CS. PESKIN, JOURNAL OF COMPUTATIONAL PHYSICS 25(3), 220 (1977). DOI
10.1016/0021-9991(77)90100-0

50. R.J. LeVeque, Z. Li, SIAM Journal on Numerical Analysis 31(4), 1019 (1994). DOI
10.1137/0731054

51. Z. Li, K. Ito, SIAM Journal on Scientific Computing 23(1), 339 (2001). DOI 10.1137/
S1064827500370160

52. Z. Li, SIAM Journal on Numerical Analysis 35(1), 230 (1998). DOI 10.1137/
S0036142995291329

53. Z. Li, H. Ji, X. Chen, SIAM Journal on Numerical Analysis 55(2), 570 (2017). DOI
10.1137/15M1040244

54. X.D. Liu, T. Sideris, Mathematics of Computation 72(244), 1731 (2003). DOI 10.1090/
S0025-5718-03-01525-4

Compact Coupling Interface Method for Elliptic Interface Problems 33

55. X.D. Liu, R.P. Fedkiw, M. Kang, Journal of Computational Physics 160(1), 151 (2000).
DOI 10.1006/jcph.2000.6444

56. R.P. Fedkiw, T. Aslam, B. Merriman, S. Osher, Journal of Computational Physics
152(2), 457 (1999). DOI 10.1006/jcph.1999.6236

57. A. Wiegmann, KP. Bube, SIAM JOURNAL ON NUMERICAL ANALYSIS 37(3), 827
(2000). DOI 10.1137/S0036142997328664

58. PA. Berthelsen, JOURNAL OF COMPUTATIONAL PHYSICS 197(1), 364 (2004).
DOI 10.1016/j.jcp.2003.12.003

59. Y.C. Zhou, S. Zhao, M. Feig, G.W. Wei, Journal of Computational Physics 213(1), 1
(2006). DOI 10.1016/j.jcp.2005.07.022

60. S. Yu, Y. Zhou, G.W. Wei, Journal of Computational Physics 224(2), 729 (2007). DOI
10.1016/j.jcp.2006.10.030

61. S. Yu, G.W. Wei, Journal of Computational Physics 227(1), 602 (2007). DOI 10.1016/
j.jcp.2007.08.003

62. Y.C. Shu, C.Y. Kao, I.L. Chern, C.C. Chang, JOURNAL OF COMPUTATIONAL
PHYSICS 229(24), 9246 (2010). DOI 10.1016/j.jcp.2010.09.001

63. P. Smereka, Journal of Computational Physics 211(1), 77 (2006). DOI 10.1016/j.jcp.
2005.05.005

64. A. Mayo, SIAM Journal on Numerical Analysis 21(2), 285 (1984). DOI 10.1137/0721021
65. W.W. Hager, SIAM Journal on Scientific and Statistical Computing 5(2), 311 (1984).

DOI 10.1137/0905023
66. R.D. Falgout, U.M. Yang, in Computational Science — ICCS 2002, ed. by P.M.A. Sloot,

A.G. Hoekstra, C.J.K. Tan, J.J. Dongarra (Springer, Berlin, Heidelberg, 2002), Lecture
Notes in Computer Science, pp. 632–641. DOI 10.1007/3-540-47789-6 66

67. J.A. Sethian, Proceedings of the National Academy of Sciences 93(4), 1591 (1996). DOI
10.1073/pnas.93.4.1591

68. D.G. Brown, M.R. Sanderson, E. Garman, S. Neidle, Journal of Molecular Biology
226(2), 481 (1992). DOI 10.1016/0022-2836(92)90962-J

69. P.H. Kussie, S. Gorina, V. Marechal, B. Elenbaas, J. Moreau, A.J. Levine, N.P.
Pavletich, Science (New York, N.Y.) 274(5289), 948 (1996). DOI 10.1126/science.274.
5289.948

70. T.J. Dolinsky, J.E. Nielsen, J.A. McCammon, N.A. Baker, Nucleic Acids Research
32(suppl 2), W665 (2004). DOI 10.1093/nar/gkh381

71. E. Burman, J. Guzmán, M.A. Sánchez, M. Sarkis, IMA Journal of Numerical Analysis
38(2), 646 (2018). DOI 10.1093/imanum/drx017

72. E. Burman, P. Zunino, in Frontiers in Numerical Analysis - Durham 2010, ed.
by J. Blowey, M. Jensen, Lecture Notes in Computational Science and Engineering
(Springer, Berlin, Heidelberg, 2012), pp. 227–282. DOI 10.1007/978-3-642-23914-4 4

34 Ray Zirui Zhang, Li-Tien Cheng

Statements and Declarations

Funding

This work was funded by NSF Awards 1913144 and 2208465.

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Data Availability

The code is available at https://github.com/Rayzhangzirui/ccim.

https://github.com/Rayzhangzirui/ccim

Compact Coupling Interface Method for Elliptic Interface Problems 35

A Differentiation of the jump condition

In this appendix, we detail the calculation of the formula for approximation of [∂2u
/
∂x2

k],
through equations involving terms of [∇2u], as found in Section 2.4. In the following deriva-
tion, quantities related to f , a, ϵ and τ are all known. Our final goal is to write the jump of
the second derivatives [∇2u] in terms of the known quantities and the one-sided derivatives
∇u−, ∇2u−. Since our interface is smooth, we can consider any smooth extension of τ and
σ off the interface, therefore quantities such as ∇2τ and ∇τ · n are well-defined.

We first consider jumps of the first derivatives of u at the interface, especially in terms
of jumps of the normal and tangential derivatives of u. Taking tangential derivatives on both
sides of u+ − u− = [u] = τ , we get

[∇u · sj] = ∇u+ · sj −∇u− · sj = ∇τ · sj ,

for j = 1, . . . , d− 1. On the other hand, with

[ϵv] = ϵ+[v] + [ϵ]v−, (12 revisited)

we can get, when v = ∇u · n,

[∇u · n] =
1

ϵ+
(σ − [ϵ](∇u− · n)). (13 revisited)

These equations for the jumps of the normal and tangential derivatives of u can then
be used to get [∇u], from

[∇u] = [∇u · n]n+

d−1∑
j=1

(∇τ · sj)sj . (11 revisited)

Thus having handled jumps of first derivatives of u, we now turn our attention jumps of
second derivatives and derive equations for the terms of [∇2u] in three ways.

Tangential derivative of jump of tangential derivative: We can get equations on
terms of [∇2u] by starting with the jump of the tangential derivative of u along sm, namely
[∇u ·sm], and taking its tangential derivative along sn, giving ∇[∇u ·sm] ·sn. This quantity
can be written as

∇ [∇u · sm] · sn = ∇(∇τ · sm) · sn.
However, we also have, using (11), that

∇ [∇u · sm] · sn = sTn
[
∇2u

]
sm + sTn∇sm [∇u]

= sTn
[
∇2u

]
sm +

1

ϵ+

(
σ − [ϵ]∇u− · n

)
sTn∇smn+

d−1∑
j=1

(∇τ · sj)sTn∇smsj

and, additionally, that

∇(∇τ · sm) · sn = sTn∇2τsm + sTn∇sm∇τ

= sTn∇2τsm + (∇τ · n)sTn∇smn+

d−1∑
j=1

(∇τ · sj)sTn∇smsj .

Thus, equating these and solving for the term with jumps in second derivatives of u, espe-
cially simplifying using the fact that

∇n sj = −∇sjn, j = 1, . . . , d− 1,

from taking the gradient on both sides of n · sj = 0 for j = 1, . . . , d− 1, we get (18):

sTn [∇2u]sm = sTn∇2τsm −
1

ϵ+
(σ − [ϵ]∇u− · n)sTn∇nsm − (∇τ · n)sTn∇nsm.

36 Ray Zirui Zhang, Li-Tien Cheng

Tangential derivative of flux jump: For more equations on terms of [∇2u], we
consider the tangential derivative of the jump [ϵ∇u · n] along sm, which satisfies

∇[ϵ∇u · n] · sm = ∇σ · sm,

where σ is the jump of the flux. Expanding, we can get

∇ [ϵ∇u · n] · sm = sTm∇
(
ϵ+ [∇u] + [ϵ]∇u−)n+ sTm∇n(ϵ+ [∇u] + [ϵ]∇u−)

= ϵ+sTm
[
∇2u

]
n+ sTm∇ϵ+[∇u] · n+ [ϵ] sTm∇2u−n+ sTm [∇ϵ]∇u− · n

+ϵ+sTm∇n [∇u] + [ϵ] sTm∇n∇u−.

Now, substituting [∇u] by equation (11) and rearranging, we get (20):

sTm[∇2u]n =
1

ϵ+
∇σ · sm −

[ϵ]

ϵ+
sTm∇2u−n−

[ϵ]

ϵ+
sTm∇n∇u−

−
d−1∑
k=1

(∇τ · sk)sTm∇nsk −
1

(ϵ+)2
(∇ϵ+ · sm)(σ − [ϵ]∇u− · n)

−
1

ϵ+
[∇ϵ · sm](∇u− · n).

Jump of PDE: For our final equations on terms of [∇2u], we consider the original
PDE. In Ω+, we have

−ϵ+∆u+ −∇ϵ+ · ∇u+ + a+u+ = f+,

while in Ω−, we have
−ϵ−∆u− −∇ϵ− · ∇u− + a−u− = f−.

Dividing these equations by ϵ+ and ϵ−, respectively, and finding the jump from their differ-
ence, we get

[∆u] = −
[
f

ϵ

]
−
[
∇ϵ

ϵ
· ∇u

]
+
[a
ϵ
u
]

= −
[
f

ϵ

]
−

∇ϵ+

ϵ+
· [∇u]−

[
∇ϵ

ϵ

]
· ∇u− +

a+

ϵ+
[u] +

[a
ϵ

]
u−

= −
[
f

ϵ

]
−
[
∇ϵ

ϵ

]
· ∇u− +

a+

ϵ+
[u] +

[a
ϵ

]
u−

−
1

ϵ+

[∇u · n] (∇ϵ+ · n) +
d−1∑
j=1

(∇τ · sj)(∇ϵ+ · sj)

 ,

which is (22).
The left hand side of equations (18) (20) and (22):

sTn [∇2u]sm, sTm[∇2u]n, [∆u] for m = 1, . . . , d− 1 and n = m, . . . , d− 1

where [∇2u] are the unknown quantities, can be written as in the form of a matrix-vector
product

G

([
∂2u

∂xk∂xl

])
1≤k≤l≤d

.

where G is a matrix that only depends on the normal and the tangent vectors, and the
vector is a half-vectorization of the jump of the symmetric Hessian matrix [∇2u].

We can show that the absolute value of the determinant of G is 1 in two and three
dimensions. Since the equations are obtained at some interface point x̂, we can use a local
coordinate system such that si = ei for i = 1, . . . , d− 1 and n = ed. By choosing a specific

Compact Coupling Interface Method for Elliptic Interface Problems 37

ordering for the equations and the half-vectorization, we can write the matrix-vector product
in 2D as s1[∇2u]s1

s1[∇2u]n
[∆u]

 =

1 0 0
1 1 0
0 0 1

[uxx]
[uxy]
[uyy]


And in 3D 

s1[∇2u]s1
s2[∇2u]s2

[∆u]
s1[∇2u]s2
s1[∇2u]n
s2[∇2u]n

 =


1 0 0 0 0 0
0 1 0 0 0 0
1 1 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




[uxx]
[uxy]
[uyy]
[uxy]
[uxz]
[uyz]


Therefore, the determinant of G is ±1, depending on the ordering of the equations and the
half-vectorization.

B High Contrast Problem

One difficulty of interface problems is the so-called large contrast problem, where the ra-
tio of the coefficients ϵ+/ϵ− ≫ 1. There are several works that analyze the high-contrast
problems in the context of unfitted Nitsche finite element method [71] and unfitted finite
element methods [38,43,72,71]. For example, it can be shown that the flux error estimate
is independent of the contrast for a class of unfitted Nitsche finite element methods [71].

Here we numerically demonstrate that our method is robust for high contrast problems.
We consider the same exact solution (36) and coefficients (37) as in Example 1, but with ϵ− =
1 and ϵ+ = 1 or ϵ+ = 1e6. Fig 16 shows the convergence result of the six interfaces. We see
that both the solution and the gradient at the interface are uniformly second-order accurate
for both cases. We also see that the error between the two cases is similar, demonstrating
the robustness of our method for high contrast problems. The theoretical analysis of the
high contrast problem is beyond the scope of this paper and will be studied in the future.

38 Ray Zirui Zhang, Li-Tien Cheng

1.6 1.7 1.8 1.9 2 2.1 2.2
log10(N)

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

lo
g
10
(E

rr
o
r)

(a) 8 balls

0+=1e6, Sol:m=-2.029
0+=1e6, Grad:m=-1.783
0+=1, Sol:m=-1.994
0+=1, Grad:m=-1.825

1.6 1.7 1.8 1.9 2 2.1 2.2
log10(N)

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

lo
g
10
(E

rr
o
r)

(b) peanut

0+=1e6, Sol:m=-1.987
0+=1e6, Grad:m=-1.882
0+=1, Sol:m=-2.012
0+=1, Grad:m=-1.855

1.6 1.7 1.8 1.9 2 2.1 2.2
log10(N)

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

lo
g
10
(E

rr
o
r)

(c) ellipsoid

0+=1e6, Sol:m=-2.003
0+=1e6, Grad:m=-1.910
0+=1, Sol:m=-2.006
0+=1, Grad:m=-1.925

1.6 1.7 1.8 1.9 2 2.1 2.2
log10(N)

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

lo
g
10
(E

rr
or
)

(d) donut

0+=1e6, Sol:m=-2.039
0+=1e6, Grad:m=-1.805
0+=1, Sol:m=-2.032
0+=1, Grad:m=-1.887

1.6 1.7 1.8 1.9 2 2.1 2.2
log10(N)

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

lo
g
10
(E

rr
or
)

(e) banana

0+=1e6, Sol:m=-1.987
0+=1e6, Grad:m=-2.123
0+=1, Sol:m=-2.031
0+=1, Grad:m=-1.829

1.6 1.7 1.8 1.9 2 2.1 2.2
log10(N)

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

lo
g
10
(E

rr
or
)

(f) popcorn

0+=1e6, Sol:m=-1.953
0+=1e6, Grad:m=-1.937
0+=1, Sol:m=-2.011
0+=1, Grad:m=-1.960

Fig. 16: The log-log plot of the error versus N for the six surfaces. ϵ− = 1 and
ϵ+ = 1 or ϵ+ = 1e6. In each figure, N ranges from 50 to 140 with the increment
∆N = 5. “Sol” denotes maximum errors of the solution ∥ue − u∥∞. “Grad”
denotes the maximum errors of the gradient at interface ∥∇ue −∇u∥∞,Γ . m
is the slope of the fitting line.

	Introduction
	Method
	Numerical results
	Conclusions
	Differentiation of the jump condition
	High Contrast Problem

