Check for
Updates

Harnessing Public Code Repositories to Develop
Production-Ready ML Artifacts for Networking

Punnal Ismail Khan, Satyandra Guthula, Roman Beltiukov, Roland Schmid¥, Tobias
Biihler, Arpit Gupta, Laurent Vanbever+, Walter V\/illingerT

UC Santa Barbara

ACM Reference Format:

Punnal Ismail Khan, Satyandra Guthula, Roman Beltiukov, Roland
Schmidi, Tobias Bﬁhler¢, Arpit Gupta, Laurent Vanbeveri, Wal-
ter Willinger . 2024. Harnessing Public Code Repositories to De-
velop Production-Ready ML Artifacts for Networking. In Applied
Networking Research Workshop (ANRW 24), July 23, 2024, Van-
couver, AA, Canada. ACM, New York, NY, USA, 3 pages. https:
//doi.org/10.1145/3673422.3674898

Motivation: Despite decades of developing machine learn-
ing (ML) models for networking, achieving production-ready,
generalizable models remains a challenge. This difficulty of-
ten stems from the reliance on publicly available but poorly
specified training data, as highlighted in previous works [1,
11]. To enhance model generalizability, it is crucial to facili-
tate easier data collection that accurately reflects the diver-
sity of real-world network environments.

One method involves passively collecting network data
from production environments, but reliably labeling the col-
lected data for different learning problems is challenging.
An alternative strategy is to endogenously generate net-
work data that closely mimic real target settings at scale.
While recent efforts, like PINOT [4] and netUnicorn [5],
show promise, it is unclear how these methods can be scaled
to endogenously generate traffic that accurately represents
a wide range of network conditions and application behav-
iors. Thus, to develop generalizable ML models for learning
problems in networking, we need to simplify and scale net-
work traffic generation that mimics an unprecedented mix
of realistic networked applications/services for a wide range
of different (emulated) network conditions.

To realize this goal, we make two key observations. First,
there exists an abundance of diverse application logic readily
available through millions of publicly accessible code reposi-
tories hosted by entities such as GitHub [10], BitBucket [7],
etc. The set of these publicly accessible code repositories
is often referred to as “Big Code” [6], and previous work

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

ANRW 24, July 23, 2024, Vancouver, AA, Canada

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0723-0/24/07
https://doi.org/10.1145/3673422.3674898

¥ ETH Ziirich

100

T NIKSUN Inc.

has demonstrated that a significant portion (over 200 million
such repositories) contains code that, when run and deployed,
generates network traffic [8]. Specifically, this prior work
identified around 70 k GitHub repositories with container-
ized applications that can be easily orchestrated to generate
meaningful and diverse network traffic using the default
Docker-Compose files in these repositories.

Second, due to the widespread adoption of SDN, there
already exist several publicly accessible programmable plat-
forms that can be used to emulate diverse network condi-
tions. These platforms include NSF-supported research in-
frastructures, such as EdgeNet [14], ChiEdge [9], Fabric [3],
as well as on-demand infrastructures offered by different
cloud service providers, such as AWS, Azure, Digital Ocean,
GCP. Moreover, as recent efforts such as PINOT [4] and
P4Campus [12] demonstrate, even small or medium-sized
enterprise networks (e.g., university campus networks) can
be transformed into data collection infrastructures by using
off-the-shelf SDN devices and single-board computers.
Proposed Approach: In this paper, we propose a new ap-
proach that combines these two observations. In particular,
we describe our ongoing effort to develop netMosaic—a
data-collection platform that leverages existing public code
repositories and programmable network infrastructures to
simplify data collection for various learning problems under
a variety of different network conditions. By facilitating the
extraction and mapping of readily available application logic
from “Big Code” to different emulated network environments
that can be realized using already existing programmable
network infrastructures, netMosaic affords researchers un-
precedented opportunities to endogenously generate labeled
training data at scale for a wide range of popular networking-
relevant learning problems, such as traffic classification, APT
detection, and device/service fingerprinting. Unlike the exist-
ing datasets that capture only limited application logic from
a few network environments, the proposed approach enables
the iterative curation of well-specified datasets for millions
of applications interacting under diverse network conditions.
These datasets aim to address the urgent need for learning
models that are less prone to underspecification and thus
more likely to generalize. This approach offers enhanced
opportunities to develop generalizable models for different
learning problems in networking.

https://doi.org/10.1145/3673422.3674898
https://doi.org/10.1145/3673422.3674898
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3673422.3674898
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3673422.3674898&domain=pdf&date_stamp=2024-07-20

Figure 1: Overview of netMosaic: The yellow blocks
represent netMosaic’s key components.

As shown in Figure 1, for each repository, netMosaic first

follows the workflow described in previous work [8] to gen-
erate network traffic. It then uses this traffic to extract a con-
nectivity graph for different services (e.g., MongoDB, Elas-
ticSearch, etc.) and store it in a queryable database system.
Users can query this database as well as another database that
captures topological information of various programmable
network infrastructures. Through netMosaic’ user interface,
users can specify their intents, such as the attributes for
different links in a selected repository’s application graph
and the mapping between nodes in the application graph
and hosts in the network graph across one or more physi-
cal/virtual network infrastructures. netMosaic then synthe-
sizes the required commands and configurations for various
hosts to realize user intents with high fidelity and configures
them using infrastructure-specific deployment systems (e.g.,
SaltStack, Kubernetes). These nodes interact with the run-
time system for error handling and reporting the collected
data (i.e., packet traces, system/application logs).
Initial Feasibility Study and Evaluation: We implemented
an initial version of netMosaic and consider in the following
the use case of traffic classification, a much-studied learning
problem in the networking area, to demonstrate the capabil-
ities of netMosaic.

Does netMosaic enable the curation of diverse and realistic
datasets? We considered 16k (out of a total of 73k) GitHub
repositories that are capable of generating network traffic
data (e.g., see [8]). Running the Docker Compose files as-is for
these repositories, netMosaic generated network traffic in the
form of ~1.7 million distinct flows and ~54 million packets.
For the traffic classification challenge, we labeled the data
using port numbers and corresponding service names based
on IANA’s port mappings [2]. Though one might question
the need for an ML model when port numbers could identify
services in network traffic, the use of port numbers alone is
unreliable due to possible circumvention; for instance, traffic
could be encrypted via VPN, or users might deliberately
use non-standard port numbers to hide their service usage—
motivating an ML-based approach.

By leveraging service name mapping based on port num-
bers, we identified 264 unique services in our dataset, where

101

Table 1: Performance of models trained on Data A
(Model A) and Data B (Model B) and tested on unseen
Data C.

Model A Model B
Data A DataC DataB DataC
Random Forest 0.83 0.24 0.81 0.52
Decision Trees 0.81 0.10 0.80 0.28
Logistic Regression | 0.23 0.06 0.15 0.14
MLP 0.76 0.07 0.73 0.37

the top six services (present in most repositories) are: HTTPS,
Redis, PostgreSQL, Eforward, MongoDB, and MySQL. Com-
pared to existing publicly available datasets [15, 16], netMo-
saic not only allows for more distinct services but it also
offers the flexibility to generate more traffic associated with
minority classes and can therefore be used to curate datasets
that are balanced across different traffic classes.

Does netMosaic facilitate the development of generalizable

ML models? To demonstrate the capability of netMosaic to
curate datasets under various network conditions, we limited
our study to 256 GitHub repositories. For each repository,
we collected data under three scenarios: (a) the default set-
ting (Data A), with no specified network conditions; (b) a
low-congestion setting (Data B) with packet loss rates, la-
tency, and bandwidth set within the ranges of 0-30%, 0-3 ms,
and 500-1000 Mbps, respectively; and (c) a high-congestion
setting (Data C) with these metrics ranging from 60-90%,
6-9 ms, and 1-500 Mbps, respectively. We extracted flow-
level features using the CIC-Flowmeter [13] and trained four
learning models: Random Forest, Decision Trees, Logistic
Regression, and Multi-Layer Perceptron (MLP). The results,
displayed in Table 1, indicate that models trained on Data B
outperformed those trained on Data A when both were
tested on the high-congestion Data C. This suggests that
training data collected under realistic but controlled network
conditions can indeed improve model generalizability to new
and unseen network environments.
Conclusion and Future Directions: While our initial
findings show the potential of netMosaic in aiding the de-
velopment of more generalizable ML models that promise
to form the basis for designing production-ready ML arti-
facts, they also reveal that there still exists a significant gap
between test performance and desired deployment perfor-
mance. To address this gap, we plan to develop closed-loop
workflows inspired by netUnicorn [5]. These pipelines will
focus on identifying the network conditions that have the
most impact on data quality and providing insights into
which conditions affect model generalizability and influence
a trained model’s deployment performance. We also plan
to consider new learning problems such as flow completion
time, throughput prediction, and version fingerprinting (i.e.,
determining the version of identified services, such as Mon-
goDB).

REFERENCES

[1] Daniel Arp, Erwin Quiring, Feargus Pendlebury, Alexander Warnecke,
Fabio Pierazzi, Christian Wressnegger, Lorenzo Cavallaro, and Konrad

//doi.org/10.1145/3563766.3564084

CHI@Edge. 2023. https://www.chameleoncloud.org/experiment/
chiedge/ Accessed: 2024-04-16.

Rieck. 2022. Dos and don’ts of machine learning in computer security. (10] Github. 2023. https://www.github.com/ Accessed: 2024-04-16.

In 31st USENIX Security Symposium (USENIX Security 22). 3971-3988. [11] Arthur S Jacobs, Roman Beltiukov, Walter Willinger, Ronaldo A Fer-
[2] Internet Assigned Numbers Authority. [n.d.]. https: reira, Arpit Gupta, and Lisandro Z Granville. 2022. Ai/ml for network

[9

—

//www.iana.org/assignments/service-names-port-numbers/service-
names-port-numbers.xhtml

Ilya Baldin, Anita Nikolich, James Griffioen, Indermohan Inder S
Monga, Kuang-Ching Wang, Tom Lehman, and Paul Ruth. 2019. Fabric:
A national-scale programmable experimental network infrastructure.
IEEE Internet Computing 23, 6 (2019), 38—-47.

Roman Beltiukov, Sanjay Chandrasekaran, Arpit Gupta, and Walter
Willinger. 2023. Pinot: Programmable infrastructure for networking.
In Proceedings of the Applied Networking Research Workshop. 51-53.
Roman Beltiukov, Wenbo Guo, Arpit Gupta, and Walter Willinger. 2023.
In Search of netUnicorn: A Data-Collection Platform to Develop Gen-
eralizable ML Models for Network Security Problems. In Proceedings
of the 2023 ACM SIGSAC Conference on Computer and Communications
Security. 2217-2231.

security: The emperor has no clothes. In Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications Security. 1537
1551.

Hyojoon Kim, Xiaoqi Chen, Jack Brassil, and Jennifer Rexford. 2021.
Experience-driven research on programmable networks. ACM SIG-
COMM Computer Communication Review 51, 1 (2021), 10-17.

Arash Habibi Lashkari, Gerard Draper Gil, Mohammad Saiful Islam
Mamun, and Ali A Ghorbani. 2017. Characterization of tor traffic using
time based features. In International Conference on Information Systems
Security and Privacy, Vol. 2. SciTePress, 253-262.

Berat Can Senel, Maxime Mouchet, Justin Cappos, Olivier Fourmaux,
Timur Friedman, and Rick McGeer. 2021. Edgenet: A multi-tenant
and multi-provider edge cloud. In Proceedings of the 4th international
workshop on edge systems, analytics and networking. 49-54.

Pavol Bielik, Veselin Raychev, and Martin Vechev. 2015. Programming [15] Iman Sharafaldin, Arash Habibi Lashkari, Ali A Ghorbani, et al. 2018.
Toward generating a new intrusion detection dataset and intrusion
traffic characterization. ICISSp 1 (2018), 108-116.

[16] Thijs van Ede, Riccardo Bortolameotti, Andrea Continella, Jingjing Ren,
Daniel J. Dubois, Martina Lindorfer, David R. Choffnes, Maarten van
Steen, and Andreas Peter. 2020. FlowPrint: Semi-Supervised Mobile-
App Fingerprinting on Encrypted Network Traffic. Proceedings 2020
Network and Distributed System Security Symposium (2020). https:
//api.semanticscholar.org/CorpusID:211265114

—_
(=)
=

with" big code": Lessons, techniques and applications. In 1st Summit on
Advances in Programming Languages (SNAPL 2015). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik.

Bitbucket. 2023. https://bitbucket.org/ Accessed: 2024-04-16.

Tobias Biihler, Roland Schmid, Sandro Lutz, and Laurent Vanbever.
2022. Generating representative, live network traffic out of mil-
lions of code repositories. In Proceedings of the 21st ACM Workshop
on Hot Topics in Networks (Austin, Texas) (HotNets ’22). Associa-
tion for Computing Machinery, New York, NY, USA, 1-7. https:

— —
oo
[t

102

https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://bitbucket.org/
https://doi.org/10.1145/3563766.3564084
https://doi.org/10.1145/3563766.3564084
https://www.chameleoncloud.org/experiment/chiedge/
https://www.chameleoncloud.org/experiment/chiedge/
https://www.github.com/
https://api.semanticscholar.org/CorpusID:211265114
https://api.semanticscholar.org/CorpusID:211265114

	References

