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1 | INTRODUCTION

The Turdn number of a graph H, denoted by ex(n, H), is the maximum possible number of edges in
an n-vertex graph that does not contain a copy of H. In this paper we study a rainbow variant of Turan
numbers, introduced by Keevash, Mubayi, Sudakov and Verstraéte [7]. A proper edge-coloring of a
graph is an assignment of colors to its edges so that edges that share a vertex have distinct colors.
A rainbow subgraph of an edge-colored graph is a subgraph whose edges have distinct colors. The
rainbow Turdn number of a graph H, denoted by ex*(n, H), is the maximum possible number of edges
in a properly edge-colored graph on n vertices with no rainbow copy of H. One can define ex(n, H)
and ex*(n, H) analogously for a family of graphs H.

It was shown in [7] that ex*(n, H) = (1 +o0(1))ex(n, H) for non-bipartite H. Perhaps unsurprisingly,
little is known about rainbow Turan numbers of bipartite graphs. The authors of [7] raised two problems
concerning rainbow Turdn numbers of even cycles, one concerning an even cycle of fixed length 2k and
the other concerning the family C of all cycles. For all k > 2, they showed that ex* (1, Co) = Q(n'+1/%)
and conjectured that ex*(n, Cy;) = @(n'*!/%). The authors of [7] verified the conjecture for k € {2,3}.
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Following further progress on the conjecture by Das, Lee and Sudakov [3], Janzer [4] recently resolved
the conjecture.

Regarding the rainbow Turdn number of the family C of all cycles, Keevash, Mubayi, Sudakov
and Verstraéte [7] showed that ex*(n,C) = Q(nlogn), by considering a naturally defined proper
edge-coloring of the hypercube Qy, where k = [logn| (color the edge uv by color i if the u
and v differ in the coordinate i; it is easy to see that no cycle can be rainbow in this coloring).
They also showed that ex*(n,C) = On*/?) and asked if ex*(n,C) = O(n'+*°) and furthermore,
if ex*(n,C) = O(nlogn). Das, Lee and Sudakov [3] answered the first question affirmatively,

+o(1)

1
by showing that ex*(n,C) < ne'°e™?"" In 2022, Janzer [4] improved this bound by establish-
ing that ex*(n,C) = O (n(log n)4), which is tight up to a polylogarithmic factor. Recently, Jiang,
Methuku and Yepremyan [6] proved the following generalization of Das, Lee and Sudakov [3] on
ex*(n,C).

Theorem 1.1 (Jiang, Methuku, Yepremyan [6]). For every integer m > 2 there exists a
constant ¢ > 0 such that for every integer n > m the following holds. If G is a properly
edge-colored graph on n vertices with at least necViogn edges, then G contains a rainbow
subdivision of K, where each edge is subdivided at most 1300log*n times.

The method used in [6] utilizes robust expanders in the colored setting together with a density
increment argument, inspired in part by the method introduced by Sudakov and Tomon [16].

In this paper, we lower the e2V1°2" error term in Theorem 1.1 to a polylogarithmic term, which
in conjunction with the above-mentioned Q(n log n) lower bound on ex*(n, C) determines the rainbow
Turan number of the family of K,,-subdivisions up to a polylogarithmic factor.

Theorem 1.2. Fix an integer m > 2 and let n be sufficiently large. Suppose that G is a
properly edge-colored graph on n vertices with at least n(log n)>* edges. Then G contains
a rainbow subdivision of K,,, where each edge is subdivided at most (log n)® times.

Theorem 1.2 provides the rainbow analog of a fundamental (and highly influential) result of
Mader [13] stating that for every integer m > 2, there exists d = d(m) such that every graph with aver-
age degree at least d contains a subdivision of K,,. Research on this problem has a long history, see
for example, Mader [14], Komlds and Szemerédi [9,10], and Bollobas and Thomason [2].

Our proof of Theorem 1.2 exploits the connection between mixing time of random walks and edge
expansion. This connection is used in conjunction with counting lemmas developed by Janzer in [4]
regarding homomorphisms of cycles in graphs. We also prove a strengthening of Theorem 1.2, regard-
ing ‘rooted’ rainbow subdivisions of K, in expanders (see Theorem 6.1). For this stronger version, in
addition to the ingredients used for proving Theorem 1.2, we use the framework of [6] and an additional
idea used by Letzter in [11] (see Lemma 3.7).

The rest of the paper is organized as follows. In Section 2, we give a short overview of our proofs,
namely the proof of Theorem 1.2 and a strengthening of it (Theorem 6.1). In Section 3, we men-
tion various preliminary results, regarding the existence of expanders which are close to being regular
and properties of expanders. In Section 4, we state three lemmas due to Janzer [4] and some conse-
quences of these lemmas. Section 5 contains the main new ideas of the paper, exploiting a connection
between the mixing time of a random walk and expansion properties in a graph. In Section 6, we prove
Theorem 1.2 and a strengthening of it regarding rooted subdivisions in almost regular expanders. We
complete the paper with concluding remarks in Section 7.

Throughout the paper, for convenience, we drop floor and ceiling signs for large numbers, and
logarithms are in base 2.
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2 | OVERVIEW OF THE PROOFS

Our main idea is to use the connection between the mixing time of random walks, the notion of
‘conductance’ (see Definition 5.3) and our notion of expansion. It is a well-known and very useful fact
that ‘large’ conductance implies ‘small’ mixing time (see, e.g., Lovasz [12]). Moreover, our notion
of expansion implies that our expanders have large conductance. Using these facts we show that if
additionally, such expanders are almost regular, then long enough walks are close to being uniformly
distributed. We also use two counting lemmas of Janzer from [4]. Below we describe these lemmas
and the main ideas in more detail.

In a properly edge-colored graph, say that a closed walk is degenerate if it is either not rainbow or
visits a vertex more than once. The first lemma from [4] implies that in a properly edge-colored graph
which is close to being regular, the number of degenerate closed 2k-walks is significantly smaller than
the number of closed 2k-walks, provided that k is sufficiently large.

Given two vertices x and y, a closed 2k-walk W is said to be hosted by x and y if it starts at x
and reaches y after k steps. We call a pair of vertices (x,y) good if the number of degenerate closed
2k-walks hosted by x and y is significantly smaller than the number of closed 2k-walks hosted by x and
y. The second lemma from [4] that we use shows that if a pair (x, y) is good then there are many short
pairwise color-disjoint and internally vertex-disjoint k-paths from x to y.

In fact, we use versions of these lemmas which are applicable to edge-weighted graphs. These
weighted versions can be easily deduced for the original unweighted versions.! We will later apply
these weighted lemmas with a specific edge-weighting, namely where w(xy) = L__ This weight

Vdx)d(y)

was chosen so that the weight of a walk W = xj ... x; is the probability that a random walk of length
k starting at xo produces W, times ZEZ);

Using results about random walks on graphs, which relate mixing time to expansion, we show
that in an expander G on n vertices which is close to being regular, for k suitably large (at least poly-
logarithmic in n), the numbers of closed 2k-walks hosted by any two pairs of vertices are within a
suitable polylogarithmic factor (in n) of each other. This, combined with the fact that the number of
degenerate closed 2k-walks is small compared to the total number of closed 2k-walks (due to the first
lemma above), implies that almost all pairs of vertices are good. Thus, using Turan’s theorem, we find
a copy of K, in the graph formed by good pairs. This, together with the fact that there are many short
color-disjoint and internally vertex-disjoint rainbow paths between any good pair of vertices (due to
the second lemma above) allows us to greedily build the desired rainbow-subdivision of K,,,.

We also prove a stronger version of Theorem 1.2, Theorem 6.1, asserting that in an expander G
which is close to being regular and whose average degree is large enough, for any set S of m vertices,
there exists a rainbow K,,-subdivision with the vertices of S being the branching vertices. The main
step in this proof shows that for any two vertices x and y in G there is a short rainbow x, y-path avoiding
a prescribed small set C of vertices and colours. By iterating this over all pairs of vertices in S, we can
build the desired rainbow K,,,-subdivision.

To show that there is a short rainbow x, y-path in G, we first apply tools due to Jiang, Methuku and
Yepremyan [6] and Letzter [11] to show that there is a set of vertices U of size Q(n) such that for each
v € U there is such a short rainbow x, v-path P(v) and a short rainbow y, v-path Q(v), both of which
avoid C, such that no color is used on too many of these paths P(v) and Q(v). It easily follows that for
almost all pairs (u,v) with u,v € U, the paths P(«) and Q(v) are color-disjoint. This, combined with

'To deduce the weighted version of the first lemma, we actually need a multigraph version of Janzer’s original one, whose proof
is identical to the original version for simple graphs.
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the fact that most pairs in U are good (in the sense mentioned earlier), implies that there exists at least
one good pair (&, v) for which P(x) and Q(v) are color-disjoint. This allows us to find a suitable short
rainbow u, v-path L such that P(u) ULU Q(v) is a rainbow x, y-walk which contains the desired rainbow
X, y-path.

3 | PRELIMINARIES

Let G be a graph. We denote by d(G) the average degree of G. For a subset.S C V(G), lete(S) = e(G[S]),
and for subsets S,T C V(G), let e(S,T) = e(G[S, T]). We will use the notions of d-minimality and
expanders, defined below, following [6].

Definition 3.1. A graph G is said to be d-minimal if d(G) > d but d(H) < d for every
proper subgraph H C G.

It is easy to see that every graph G contains a d(G)-minimal subgraph. The following observation
was used in [6]. For completeness, we include its short proof.

Observation 3.2. If G is d-minimal, then every subset S C V(G) satisfies e(S)+e(S, S¢) >
481 1n particular o(G) > d

> -Inp s 25
Proof. Suppose otherwise. Then e(S¢) > % — @ > @, contradicting
d-minimality. [

Definition 3.3. Givend > 1,7 € (0,1) and € € (0, %], an n-vertex graph G is called a
(d, n, e)-expander if G is d-minimal, and for every subset S C V(G) of size at most (1 —¢)n,
we have d(S) < (1 —n)d.

Note that, by definition, for 0 < &’ <& < % and0 <5 <#' < 1,every (d,n,€)-expander is also a
(d, n, €)-expander. Also, if G is a (d, 1, €)-expander then it is a (d(G), 1, €)-expander. It will be useful
to note the following ‘edge-expansion’ property of (d, #, €)-expanders.

a (d,n, e)-expander on n vertices. Then every S C V(G) with |S| < (1 — €)n satisfies
e(S, 5% = |s|.

Observation 3.4. Let n,d > 1,let n € (0,1) and let € € (0, %]. Suppose that G is

Proof. LetS C V(G) satisfy |S| < (1 —¢)n. Since G is d-minimal and by Observation 3.2,
we have e(S) + e(S, §¢) > @. Since G is a (d, n, €)-expander, by definition, we also have
e(S) = @m < %m. It follows that (S, S¢) > %|S|, as claimed. .

Lemma 3.5 (Lemma 2.5 from [6]). Let n,d > 1, let ¢ € (0, %] and let n = 21§gn.
Suppose that G is a graph on n vertices with average degree d. Then G contains a

(d', n, €)-expander, with d’ > %,

The following lemma from [6] asserts that in a properly edge-colored expander, one can reach
almost every vertex by a short rainbow path starting at a specified vertex.

Lemma 3.6 (Lemma 2.7 from [6]). Let n,2,d,M > 1,let n € (0,1), and let € €
(O, %]. Suppose that £ = 4](’% and d > 4“%. Let G be a properly edge-colored
(d, n, €)-expander on n vertices, let x € V(G) and let F be a set of vertices and colors of
size at most M. Then at least (1 — €)n vertices can be reached from x by a rainbow path
of length at most ¢ + 1 that avoids the vertices and colors in F.
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We will need a stronger version of the previous lemma, where we require that no color is used too
many times in the short rainbow paths. A similar idea was used in [11] (see Lemma 5) in the context
of tight paths.

Lemma 3.7. Letn,?,d,q,M > 1,letn € (0, 1)andlet e € (0, %]. Suppose that ¢ = 410%

20g£+8M
anddZL

x € V(G), an”d let F be a set of colors and vertices of size at most M. Then there is a set
U C V(G) of size at least (1 — €)n, and a collection P = {P(u) : u € U} where for each
u € U, P(u) is a rainbow path from x to u of length at most ¢ + 1 that avoids the vertices
and colors in F and no color appears in more than 3 of the paths in P.

. Let G be a properly edge-colored (d, n, €)-expander on n vertices, let

Proof. Let U be a largest set satisfying that for every u € U there is a rainbow path P(u)
from x to u of length at most £ + 1 that avoids F, such that no color appears in more than
g of the paths P(u). Say that a color is bad if it appears on exactly g of the paths P(u) with
u € U, and let Cy,q be the set of bad colors. Since each path P(u) has length at most £ + 1,
we have

| Cpaa| <

e+l 24f.
nflqg

2()qf+8M

Sinced > > 4f+8(M+|C"ﬂ")| , by Lemma 3.6 with FUCy,q4 playing the role of F, there
isaset U’ W1th U] > (- e)n such that for every v € U’, there is a rainbow path P’ (v) from
xtovoflength at most £+1 that avoids the colors and vertices in FUCyyg. If |U| < (1—¢)n,
then there is a vertex v € U’ \ U. The set U U {v} (along with the paths P(u) for u € U
and P’'(v)) contradicts the maximality of U. It follows that |U| > (1 — €)n, as required. m

We would like to work with expanders that are close to regular. For this, we use the following
lemma, which is a slight adaptation of Lemma 3.2 of [15].

Lemma 3.8. Let n > 2 and d > 36logn. Let G be a bipartite graph on n vertices with
minimum degree at least d. Then there exists a subgraph H of G with average degree at

d .
least 12108 and maximum degree at most d.
n

Proof. Let {A, B} denote a bipartition of G with |A| > |B|. Let G’ be obtained from G
by keeping exactly d edges incident to each vertex in A. Then for each v € A we have
de(v) = d, and hence e(G') = d|A|.

Letm = [logn].Foreachi € [m],letB; = {v € B : 2! < dg(v) < 2'}. Denoting the
set of isolated vertices in B by By, we have B\ By = U;emB;. By the pigeonhole principle,
there exists an i € [m] for which e(G'[A, B;]) > e(G) > 3 llAl Fix such i and let t = 271,
Then, by definition, each v € B; has degree between tand 2t in G'[A, B;]. If 2t < d, then

G'[A, B;] has maximum degree at most d and average degree at least % > 21:“.

So the lemma holds. Hence, we may assume that 2¢ > d.

Setp = 4%; then 0 < p < % Now let A’ C A be chosen by including each ver-
tex in A independently with probability p. For convenience, write G; = G'[A, B;] and
G} = G'[A’, B;]. Then

Ele(G)] =p - e(G) = PAAL
2logn

ey

Now, letB' = {v € B, : dg(v) < d}.
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For each v € B;, the degree dGlf_(v) is binomially distributed with expectation p - dg,(v).
Since ¢ < dg,(v) < 2t, we have % =pt < E[d(;;(v)] < 2pt = %. Therefore, using

Chernoff’s bound (see, e.g., app. A of [1]), we have

E(B\B'[1= Y P(v e B\ B) = Z]P’[dcr(v) > d] ZP[dc/(V) > 2E[dg (V)]

VEB; VEB; VEB;
Elde(v)]
< 22 ex < G( > < Zz,exp<_i> Sn,ze—Slogn<l‘
VEB; 3 VEB; 12 n

This together with the fact that for any A’ and the corresponding B’, e(G'[A’, B; \ B']) <
n|B; \ B'|, implies

Ele(G'TA", B\ BDI <n-E[|B;\B'[] < 1. (@)

By (1) and (2),

E[e(G'[A', B ])>1”‘1'|A| 1.
2logn

Note that E[|A’|] = p|A|. Also, as t|B;| < e(G'[A, B;] ) < d|A|, we have |B’| < |Bj| <
21A| = 4p|A|. Hence |A'| +|B'| < 5plA|. Let dg = -—. We have

121

dIAI 5dplA| _ pd|A]

Ele(G'[A", B]) — do(|A'| + |B'])] > 2221 1 > -
[e( [ D= dolAT] +1 l)] ~ 2log 12logn — 12logn

where the last inequality used pd|A| = % > 18%(logn)® > 12logn which holds since
t £ |A| and d > 361ogn. Thus, there is a choice of A’ for which e(G’[A’, B']) — do(|A"| +
|B') > 0. Taking H = G'[A’,B'], we have d(H) > dy = Tiogn and A(H) < d, as
desired. n

Our final preliminary result combines Lemmas 3.5 and 3.8 to show that every relatively dense
graph contains an expander which is close to regular.

Lemma 3.9. Let n,d > 1 and let € € (0, %], and suppose that d > 107 (logn)*. Suppose
that G is a bipartite graph on n vertices with average degree at least d. Then G has a
subgraph H with the following properties.

' ’ d
1 Hisa (d n, €)-expander on n' vertices, where d' > T500toaz @ 0og ) and

nz 100(10g w2’
2 H has maximum degree at most 2500(log n’)?d’.

Proof. Let Gy = G. We run the following process, generating graphs G; for i > 0. For
each graph G;, we write d; = d(G;) and n; = |V(G;)|.

a Let H; be a subgraph of G; with average degree at least and maximum degree at

241
most d;. Such a subgraph H; exists by Lemma 3.8, using the fact that every graph with
average degree d contains a subgraph with minimum degree at least g. To apply the

lemma we need to verify that d; > 72 log n;, which we shall do below.
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b Write n] = |V(H;)|. Let G4 be a subgraph of H; which is a (di11, 741, €)-expander,
where d(Giy1) = diy1 > @ > ﬁ"gni and 9.1 = 210;”;. Such a subgraph exists
by Lemma 3.5, using the observation that if G is a (d,n, €)-expander then it is a

(d(G), n, €)-expander.

Claim 3.10. If 48logn; < \/48logn,_; for i € [t] then the graphs Gy, ... ,G, can be
defined as above and are non-empty.

Proof. Notice that to prove the statement, it suffices to show that for ¢ as described, d; >
72logn; fori € [t — 1].

We prove this by induction. It is easy to check that the statement is true for r = 0
(note that the condition on ¢ holds vacuously here). Indeed, we just need to check that
do > 721og ngy, which is the case as dy = d, np =nand d > 107(10g n)3.

Now suppose that 48 logn; < 4/48logn;_; for i € [¢] and that the inductive statement
holds for ¥ < r. This means that the process runs as described for all i € [f], and it
remains to show that the (z + 1)-st step can be performed, namely that d;, > 72 log n;. By
the assumption on ¢, the following holds for every i € [¢].

48logn; < (48logni_1)'/2 < ... < (@8logng)? = (48logn)* .

Since d; > ™ ldo"; for i € [t] (see (b)), it follows that
ni_y
4> S>> do > O —
48logn,_1 48logm—y - ... -48logny — (48logn)?+--+27"" T (48logn)?

3)
Using d > 10" logn and n > n;, we find that d, > 10° logn > 72 logn,, as required. (]

Let # be minimum such that 48 logn, > 1/48logn,_;. We claim that such £ exists.
If not, then by the previous claim the process can be run forever and n; > 1 for all i > 0,
implying that (48 log ;);>0 is decreasing, and thus (7;);>¢ is an infinite decreasing sequence
of positive integers, a contradiction.

We will show that G, satisfies the requirements of Lemma 3.9. Indeed, G, is a
(d¢,ne, €)-expander. Using the proof of the above claim, inequality (3) holds for t = 7,

. d . £ I3 I3
showing d, > ————. By choice of we have 5, =
894 2 50t0gny” Y Ge, M= Tiogn,, = %Qogn,? = 100(ogn,)?

(using 48logn, > +/48logn,_;). It follows that property 1 of the lemma holds. To

see property 2, note that G, has maximum degree at most dy_; and d, > ﬁ >
-1
dpy d, | . . \/7
8logn,)? > 2500002, 2 (again using 48 logny > 1/48logns_1). n

4 | COUNTING RAINBOW CYCLES IN WEIGHTED GRAPHS

In this section we state several lemmas regarding (weighted) counts of homomorphic copies of paths
and cycles in weighted graphs G. Three of these are weighted versions of lemmas from Janzer [4], and
we will show how to deduce these from the original, unweighted versions.

First, let us introduce some notation. Let G be a graph with a weighting @ : E(G) — R, We
denote by @max, @min the maximum and minimum edge weights; that is, ®max = max.cg) @(e) and
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@min = MiNepG) @0(e). The weighted maximum degree of G, denoted A, (G), is

A(G) 1= max Z o(uv).
ueV(G) | . e G)

For any ¢t > 1, the weight of a walk P := ugu, ... u, is defined as w(P) := H;l)w(uium), and the
weight of a closed walk C := ugu; ... u;ug is defined as Hfzoa)(uium), where w41 = uyp.

In a graph G, denote by Hom (ka’ ) the family of walks of length k from x to y. Similarly, let
Hom (C;Z) be the family of closed walks of length 2k that start at x and reach y after k steps. Write
hom (P") = [Hom (P;”) | and hom (C3};) = [Hom (C3}) |. Given a weighting @ : E(G) - R, we
define the weighted homomorphism counts as follows:

hom, (PY) = Y a(P)

PEHom(P;" )
hom, (C3}) = Y, (C)
CeHom(P;")

The following relation between hom,, (P;”) and hom,, (C3;) is very useful.
hom, (C3;) = (hom, (P))" “
We also define hom,,(Cy;) to be the total weight of the homomorphic copies of Cy;, namely

hom,,(Co) = )" hom,, (C3}) .

xVEV(G)

Similarly, we define hom,(Py) = zx,er(G) hom,, (P,x(y ) In a properly edge-colored graph G, let
Hom™* (C3;) be the family of all the closed walks in Hom (C3;) that do not form a rainbow cycle of
length 2k. Define hom* (C3;) = [Hom* (C3}) |. If the graph is weighted with a weighting w : E(G) —
R0, let hom;, (C3}) = ZCGHG”I*(C;D w(C). Let

Hom*(Cy) = U Hom* (C3}),
x,yeV(G)

and write hom*(Cy) = [Hom*(Cx)| and hom;,(Cx) = ¥, (i) hom;, (C%).
We will make use of the following two lemmas from a recent paper of Janzer [4].

Lemma 4.1 (Multigraph version of Lemma 2.2 from [4]). Let k > 2 be an integer and
let G = (V,E) be a multigraph on n vertices. Let ~ be a symmetric binary relation on V
such that for every u,v € V, there are at most t edges vw (counted with multiplicity) for
which u ~ w. Then the number of homomorphic 2k-cycles (x1, ... ,xo) in G such that
x; ~ x; for some i # j is at most

3263212 A(G)/2n hom (Cy)' 5.

Note that Lemma 2.2 in [4] is phrased for simple graphs, where the condition was that for every
u,v € V there are at most ¢ neighbors w for which u ~ w. However, the same proof works for multi-
graphs with a modified condition as stated above. Similarly, the next lemma is a multigraph version of
Lemma 2.1 from [4], where again the same proof works.
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Lemma 4.2 (Multigraph version of Lemma 2.1 from [4]). Let k > 2 be an integer and let
G = (V,E) be a multigraph on n vertices. Suppose that ~ is a symmetric binary relation
on E such that for every uv € E and w € V, there are at most t edges zw (counted with
multiplicity) for which uv ~ zw. Then the number of homomorphic 2k-cycles (x1, ... ,Xo)
in G such that x;x;y1 ~ Xjxj;1 for some i # j is at most

3263212 A(G)/2n hom (Cy)' "%
The following lemma is a variant of Lemma 4.2 which is applicable for edge-weighted graphs.

Lemma 4.3. Let k > 2 be an integer and let G = (V, E) be a graph on n vertices with a
given weighting @ : E(G) — R>°. Suppose that ~ is a symmetric binary relation on E
such that for every uv € E and w € V, there are at most t edges wz for which uv ~ wz. Let
hom,(Coy) be the sum of weights of homomorphic 2k-cycles (x1, ... ,xx) in G such that
XiXiy1 ~ XjXjy1 for some i # j. Then

homi(Cox) < 3262472 - A(G)'/? - wopfsx - ' - hom,, (Cop)! .

We prove this lemma using Lemma 4.2.2

Proof of Lemma 4.3. We start by proving the lemma in the case where all the weights
given by w are integers. Let G’ be the multigraph on V(G) where, for each edge e in G,
we add w(e) copies of e to G’. Notice that A(G') = A,(G). Let ¥ := ¢ - wmax and notice
that for every uv € E(G’) and w € V(G'), there are at most ¢’ edges zw such that uv ~ zw.
Let // = hom(Cy) in G’. Observe that hom,(Cy) in G equals /’, and that homj,(Cy) in
G is the number of homomorphic 2k-cycles (xy, ... ,xz) in G’ such that x;x;4; ~ XjXjy1
for some i # j. Thus, by Lemma 4.2,

hom?(Ca) < 32K72(¢Y 2 AGH)? - n - (W)
< 323212 A (G)? - @M - % - homy, (Cay)! 5.

Now suppose that all weights given by w are rational. Then there exists a positive integer
L such that the weighting Lo : E(G) — R2° (defined as Lw(e) = L - w(e) for every
e € E(G)) is integer-valued. By the previous paragraph,

hom},(Cat) < 326212 A1, (G)'/? - (L)' * - 0¥ - homp, (Ca)' 5.

Noting that homj,(Co;) = L?* - hom}(Cy), homy,(Cy) = L* - hom,,(Ca), Aro(G) =
L-A,(G) and (L®)max = L+ Omax, We get
hom,(Car) < 32637212 A ,(G)'2 - il - n - hom,, (CZk)l_ﬁ-

Finally, for a general positive weighting o, let (w,,) be a sequence of positive and rational
weightings such that lim,,—, , w,,(€) = w(e) for every edge e € E. Then,

homy, (Cax) < 32642 A, (G)/2 - (@)Wl - n¥ - hom,, (Cu)' "%,

2 Alternatively, one can prove this by following the proof of Lemma 2.1 from [4] and adapting it straightforwardly to the weighted
version.
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for every m. Taking the limits as m tends to infinity, we get

hom,(Car) < 326212, (G)'/ - ol - n - hom, (C)' .

Similarly, using Lemma 4.1 instead of Lemma 4.2, one can prove the following

Lemma 4.4. Let k > 2 be an integer and let G = (V, E) be a graph on n vertices with a
given weighting o : E(G) — R>°. Suppose that ~ is a symmetric binary relation on V
such that for every u,v € V there are at most t edges vw for which u ~ w. Let homg,(Cy)
be the sum of weights of homomorphic 2k-cycles (x1, ... ,xy) in G such that x; ~ x; for
some i # j. Then

homy,(Cy) < 326°721/% - A, (G)'/2 - Cl)rln/azx  nE - hom,, (Czk)l_z_lk.

Next we show that in an appropriately weighted almost-regular properly edge-colored graphs the
number of degenerate homomorphic copies of 2k-cycles is a ‘small’ proportion of all possible copies.
Here by degenerate we mean the copies which are either non-rainbow or are not isomorphic copies
of C2k~

Lemma 4.5. Let n,d, u,k,S > 1 and let n € (0, 1). Suppose that d > 216y3k3S2n1/k. Let
G be a properly edge-colored graph with minimum degree at least g and maximum degree

at most ud, and define @ : E(G) — R=Y by setting w(xy) = 1/4/d(x)d(y) for every edge
xy. Then hom;,(Co) <  homy,(Ca).

Proof. We first give a lower bound on hom,,(Cy;). For this, note that

d\* 1\
hom,,(Py) = Z oW)>n- <§> (@min)* > 11 - < > s

W W=x;...x; 2”
. . . 1 1
where in the last inequality we used that @i, > 20 > wh Hence,
N2

hom,,(Cay) = Z (hom,, (P"))
x,yeV(G)
| *hom (PO\? 1\

—2( )y homw(P’k‘V)> = (Fomet) z() : )

n xyeV(G) n 2u

where the first inequality follows by convexity.

Let ~, be the binary relation on E(G) where e ~, f if and only if e and f have the
same color. Because G is properly edge-colored, for every edge uv and vertex w, there is
at most one edge wz for which uv ~, wz. Let ~, be the binary relation defined on V(G)
where u ~, w if and only if u = w. Then, trivially, for every u,v € V there is at most one
edge vw (namely uv) for which u ~, w. Apply Lemmas 4.3 and 4.4 with ~,, ~, in place
of ~, respectively (so ¢ is taken to be 1 in both lemmas), to obtain the desired upper bound
on hom;,(Csy), as follows.

hom:)(CZk) < 64k3/2 : (Aw(G))l/z . Cl)rln/azx . nzl_k . hOmw (CZk)l_ﬁ

172
< 64K - 2p0) /2 - (%) 1% - ) - homy(Cx)
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281372 325
= =" - hom,(Cx)
d2
1
<-=- homw(Cgk).
S
In the inequalities above we used that W < % < 3 and A,(G) < A(G) - 0max < 24
2%k
and finally, the inequality hom,(Cy;) > (i) proved in (5). [ ]

It would be useful to be able to find many pairwise color-disjoint and vertex-disjoint paths between
a given pair (x,y) of vertices. To that end, we use Lemma 4.7 which will immediately follow from
Lemma 4.6 stated below, whose proof uses the arguments of Theorem 3.7 in [4]. For a graph G, and
vertices x, y € V(G), and walks P, QO € Hom(Py), let PQ denote the closed walk in Hom (C;{) obtained
by concatenating P and the reverse of Q.

Lemma 4.6. Letk,s > 1 beintegers. Let G be a graph with a given weighting o . E(G) —
R>Y and let x,y € V(G). Let B be a subfamily of Hom (CZ{) satisfying Y pepz @(F) <
Sizhomw (Cﬁ) Then there exist walks Py, ... ,P; € Hom (kav) such that P.P; & B for
every distinct i,j € [s].

Proof. Randomly and independently choose s members P, ... , P, of Hom (P’,iy ), where

for each i € [s] and P € Hom (P}’ ), we have P(P; = P) = honz’(l(;)) 5 Note that this is
Wy

indeed a probability distribution, and Hom (C3;) = {PQ : P,Q € Hom (P;") }. For any
distinct i,j € [s] and any P, Q € Hom (P;"),

. ®P @@  _  aoPQ)
PR P b= 0= o (PD) home, (P2) ~ hom, (C3)

Thus, the probability that P;P; € B is }E::”’(agf ) < Siz Hence, by the union bound, with
A

positive probability, P;P; & BB for every distinct i,j € [s]. n

Lemma 4.7. Let k,s > 1 be integers. Let G be a properly edge-colored graph with a
given weighting w : E(G) — R>" and let x,y € V(G). Suppose that hom;, (C3;) < Ai,
hom,, (Cﬁ) Then there are s pairwise color-disjoint and internally vertex-disjoint rain-
bow paths of length k from x to y.

Proof. By Lemma 4.6 applied to B = Hom® (C;;) there exist walks Py, ... ,P, €
Hom (P;") satisfying P;P; ¢ Hom* (C") for every distinct i,j € [s]. In other words,
P;P; is a rainbow copy of Cy for every distinct i,j € [s]. This means that Py, ... , Py
are pairwise color-disjoint and internally vertex-disjoint paths of length k from x to y, as
desired. n

5 | COUNTING WALKS IN EXPANDERS

In this section we exploit the connection between the mixing time of a random walk on a graph G and

expansion properties of G. A lot of the notation and results that we use can be found in [12].
Suppose G = (V, E) is a connected graph where V = [n]. Consider a random walk on V(G), where

we start at some vertex vg and at the i-th step we move from v; to one of its neighbors, denoted by
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vi+1, where each neighbor of v; is chosen as v;;; with probab1hty — The sequence of vertices (v;)i>0
defines a Markov chain. Let M be the n X n matrix of transmon probablhtles of the Markov chain,
namely M, , is the probability of stepping from v to u; so M, , = m if vu € E(G), and M,, = 0
otherwise. So the probability that a random walk starting at vertex v reaches u in ¢ steps is (M"), ,,.

Definition 5.1. Let Gbe a graph on the vertex set [n]. Let D = D(G) denote the diagonal

n X n matrix where D,,, = m for each v € [n]. Let A = A(G) be the adjacency matrix

of G, let M(G) = DA and let N(G) = D'/?AD'/?. Note that the matrix N(G) is symmetric,
so it has n real eigenvalues. Let A;(N) > 1,(N) > ... > 4,(N) denote the eigenvalues of

N :=N(G).

Lemma 5.2. Let G be a bipartite graph, with a bipartition {X, Y}, on the vertex set [n]
with m edges and no isolated vertices. Let M = D(G)A(G) and N = N(G). Then for every
v,u € V(G) and integer k > 1, we have

oo d@) K+ (vEX)+T(UeX) d(u)
‘(M)V,M 19 14 ) )| <q/5

Note that Lemma 5.2 says that when k is even and both v, u are in the same part or when £ is odd
) d(“ - (A2(N))¥. Note that when k is even and v

and v, u are in different parts then |(M")M -
and u are in different parts or when k is odd and v and u are in the same part then (M*), , = 0.

(),

Proof. Forany vectorw = (wy, ... ,w,)T, letw be the vector (w}, ... ,wp)" where w! = w;
when i € X and w} = —w; when i € Y. It is easy to check that Nw = —Nw. Hence, if w is
an eigenvector of N with eigenvalue A, then W is an eigenvector of N with eigenvalue —A. It
follows that A; = —A,,41—; for i € [n]. In particular, |4;| < 4, foreveryi € {2, ... ,n—1}.

One can check that wy, defined as follows, is a unit eigenvector of N with eigenvalue 1.

1 T
Wi = m(,/da), VdQ), ... ,\/d(n)> :

By the Frobenius—Perron theorem, since the entries of N are non-negative and the entries
of w; are positive, we have A; = 1. As explained above, it follows that wy is a unit eigen-
vector of N with eigenvalue 4, = —1. Write w,, = wy, and let w; be a unit eigenvector of
N with eigenvalue 4; fori € {2, ... ,n — 1}, such that wy, ... ,w, are orthogonal to each
other. Note that w; is an eigenvector of N* with eigenvalue (4K, for each i € [n]. Since
N¥isa symmetric matrix and {wy, ... ,w,} is an orthonormal eigenbasis for N* we may
write N¥ in the spectral form as follows (using A; = 1 and 4, = —1).

n—1

Zu,) wiwy)| = wiwp)” + (=1 wl(wl)T+Zu Vowitwi)!.

We also have D'/2ND~1/2 = DA = M. Therefore,

Mk — Dl/ZNkD—l/Z
n—1
= D' Pwiw)) D77 4+ (=1)!D'> Wi D77 4 Y (4D Pwiw) DTV
i=2
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Let Q = DY2w (w))TD~Y2 4+ (=1)*D'/2 w7 (wy)' D~1/2. Then

n—1
=0+ ) (A)D"Pwiwy) D2,

i=2

Hence
n—1
d(u)
Mk v,u — v,u + i k Lviu 6
M) = Q Z()ww i) 6)
Let W be the matrix whose rows are w1, ... ,w,. Then WW7” = I, implying wTw

For each v € [n], since (W'W),, = 1, we have Y _ [w;,|* = 1,50 X", |w,v| <1 By

the Cauchy—Schwarz inequality, Zi=2 [Wiwia| < \/ |w,v|2\/ > 1|w, «|2 < 1. Since
|Ai| < Ay foreveryi € {2, ... ,n— 1}, the inequality in (6) implies

(Mk)v,u - Qv,u

n—1
IS - ()] K [dw
sgw bwiawinl -/ 50 < Y Gy

Finally, a straightforward calculation shows that Q,,, = % (1 + (—1)k+“(V€X)+“(u€X)) for
all v, u € [n], as desired. n

Definition 5.3. For a graph G with m edges, let z(v) = dz(‘) and for any S C V(G), let
7(S) := Y g 7(s); observe that z(S) < 1 for every S C V(G). Define the conductance of
a set S, denoted by ®(S), as

e(S, S°)

) : 2m 7(S)7(S¢)’

and let the conductance of a graph G, denoted by @, be defined as

O 1= Srcr{/l(l‘cl; )<I>(S)
Theorem 5 4 (Theorem 5.3 in [12]). Let G be a graph and let 4, = Ay(N(G)). Then
A <1- ?

In light of Theorem 5.4 and Lemma 5.6, it will be useful to have a lower bound on ®¢ for a
(d, n, e)-expander G. This is easy to achieve, as can be seen in the following lemma.

Lemma 5.5. Letd > 1,1 € (0,1),e € (0, %]. Let G be a (d,n, €)-expander on n vertices.
Then ®g > g

Proof. LetS C V(G). Since ®(S) = O(S¢), we may assume that |S| < g < (1—¢)n. Obser-
vation 3.4 thus implies e(S, S¢) > %ndlSI. Let y be such that e(S, S) = yd|S|,soy > g

By definition of a (d, #, €)-expander, G is also d-minimal. Hence e(G[S]) < %d |S]. Hence,
Yes A1) = 2e(GIS]) + (S, §) < d|S| + yd|S]|. Also, observe that 7(S) < 1. Hence

oS,8) o eSS o ydISI oy o n

"l
>
2e(G)m(S)m(S) — Y esd) — d|S|+yd|S| T 1+y " n+2

O(S) =

. \

The above inequality thus implies ®g > g n
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Recall that given a graph G and two vertices x, y, the quantity hom,, (P;") denotes the sum of

weights of walks of length k from x to y. The following lemma and its immediate corollary will allow

us to compare the values of hom,, (P;"), where w(xy) = m for every edge xy, for different pairs

of vertices (x,y) in G.

Lemma 5.6. Letd > 1,n€ (0,1),e € (0, %]. Let G be a bipartite (d, n, €)-expander on n
vertices with bipartition {X,Y}. Define a weighting @ : E(G) — R2Y, such that for each
L The following holds for any two vertices x,y € V(G) and

edge xy in G, o(xy) = T
every integer k > 1.
< [10) <1 _ n)
ZzEV(G) hom,, (P;:Z) \Vd(z) 2e(G) - d(x) 72
Proof. Let M = M(G), N = N(G) and let 1, be the second largest eigenvalue of N. Let

x be any vertex in G. Let W7 be a random walk of length k starting at x. For any walk
P =xq ... xy in G, where xo = x,

hom,, (P}) 1/d() d®y) (1 +(_1)k+ﬂ<xe)()+ﬂ(yex))

1 1

PIWE=Pl= G dwy

Note that

wo(P) = ! C !

Vd(xo)d (x1) v d(X—1)d (xi)
v d(XO) 1 V d(XO) P [W’,: — P] )

T VG dGo)- o dGe) T fdGo

For any vertex y in G, by definition,

P[W5 ends at y] = Z P(W;=P) =" a0) w(P) = hom,, (P') - a0

Pr=xxg . x )y \ d(x)P5P=X;~-Xk—1Y 4

On the other hand, notice that

1= Z]P’[ Tends at z]: Z homw(Pff)- %

2€V(G) Z€V(G)

Recall from our discussion before Definition 5.1, that the probability that a random walk
of length k starting at x ends at y is exactly (M), , thus

homy, (PY) /5 hom, (P?) VAG)

2 ev(6 homo (PY) % Zevi homo (PY7) Vd()

(Mk)x,y =P [Wiends at y] =

By Lemma 5.2,
4/d(y) hom,, (PI?) _ d(y) (1 + (_1)k+ﬂ(xex)+ﬂ(yex)) < L@ . (Az)k_ D
ZzEV(G) \/d(z) hom,, (P}‘(Z ) 2e(G) =V am
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Theorem 5 4 gives that 4, < 1 — -2, and by Lemma 5.5 we have @5 > ” . It follows that
M <1- Comblmng this 1nequa11ty with (7), the lemma follows. n

Corollary 57. Letd > 1,n € (0,1), € € (0, 5]. Let G be a bipartite (d,n, €)-expander

on n vertices with a bipartition {X, Y} and with a given weighting o : E(G) = R>" such
1

that for each edge xy in G, w(xy) = e The following holds for any two vertices
X,y € X and even integer k > 2. )
hom,, (P") VdG») _ dw| _

’L
ZzGX homw (Pzz) V d(Z) E(G) < 2

Proof. Letx,y € X be given. Since k is even, for each z € Y, Hom (P{°) = . The claim
follows by applying Lemma 5.6 and the fact that , / % < \/ﬁ ]

\]

The next lemma contains the main takeaway from our discussion about random walks in almost
regular bipartite expanders. It tells us that for relatively large k, and for the weighting defined by
! the values of hom,, (C;;) do not differ by much over the range of pairs (x, y) where

W) = T

x and y are in the largest part of the bipartition.

Lemma 5.8. Let n,d, u,k > 1 and n € (0,1), ¢ € (0, %]. Suppose that k is an even

20 logn

integer satisfying k > . Let G be a bipartite (d, n, €)-expander with maximum degree

at most ud and with a glven weighting w . E(G) — R>° such that for each edge xy in G,

_ 1 o n
wxy) = WrSTToR Let {X,Y} be the bipartition of G and suppose that |X| > > Let

pmin = min{hom,, (C3;) : x,y € X}
Pmax = max{hom,, (CZ() D x,y € X}

Then Pmax < 210/12 * Pmin-

Proof. By Corollary 5.7, for every x,y € X we have

hom, (P{') vd®) d(y)’ < \/Z<1 - nz>k
ZZEX hom,, ( kz) Vd(2) e(G) 72

2
<\/n- exp< k7’12> <\/ﬁ exp(— 410gn)< a)

n3 = 2¢(G)’

It follows that

diy)  _hom, (P) VdB) _2d(y)
2e(G) 7 ¥ _yhom,, (PY) y/d(z) ~ €O

Writing the same for x, w € X we obtain

d(w) _ _hom, (Py") Vd(w) < 2dw)
2¢G) = ¥ hom,, (PF) /A  €G)
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Hence, every x,y, w € X satisfy

hom,, (P;") _ hom, (P}’) [dw) _4do)  [dw) _, [dO) _,
hom,, (P{*) ~ hom, (P \/d(w d (y) dw) d(y) dw) —
where the second inequality follows from the fact that the minimum degree of G is at least
% (by Observation 3.2) and the maximum degree is at most pud.

Observe that hom,, (P;’) = hom,(P}") for x,y € X. It follows that, for every

xX,y,Z,w €X,
hom,, (P{)  hom,, (P;”) hom,, (P)
= : <32u.
hom,, (Piw) hom,, (P"kz) hom,, ( iw)

Let x,y,z, w € X satisfy pp.x = hom,, (Cg{) and ppin = hom,,(C5}). Then

' i 2
pmax _ 0o (S) _ ( homo (P) <102
Pmin  hom,(C3}) hom,, (P") | ~ '

proving the lemma. [

Recall that, by Lemma 4.7, pairs of vertices (x, y) for which homy, (C’z(,t) is considerably smaller
than hom,, (Cﬁ) can be used to build many color-disjoint and internally vertex-disjoint rainbow paths.
The following lemma shows that for large enough k and d, almost all pairs of vertices in one of the
parts of an almost regular bipartite expander satisfy this property.

Lemma 5.9. Let n,d, u,k,s,p > 1andn € (0,1), e € (0, %]. Suppose that k is even and
satisfies k > 29:1# and that d > 2%k3 17 s*p>n'/*. Let G be a bipartite (d, n, €)-expander

on n vertices with maximum degree at most ud and with a given weighting o : E(G) —
>0 . _ 1 . ..
R>Y such that for each edge xy in G, w(xy) = TR Let {X, Y} be the bipartition of

n

G and suppose that | X| > 7 Then for all but at most %2 pairs (x,y) with x,y € X the
following holds.

N 1 ,
hom;, (C3;) <  hom,, (Cx)-
Proof. Let § = 211u2s2p, and let pn, and pn. be defined as in the statement of

Lemma 5.8. Then, by the same lemma we have ppax < 2102 u pmm Let A be the collection
of (ordered) pairs (x,y) with x,y € X that satisfy hom;, (C5;) > 5 homw (C3). Then

homg,(Cy) > Z hom;, (C3;) > sl2 Z hom,, (C) > M

2
(rwed (rwed §
Note that Zx,yex hom,, (C;}c) = Zx,yEY hom,, (C‘;Z), and so hom,(Cy) =
2%, jex hom (C3;). Hence, by Lemma 4.5 (which is applicable since d > 216,33 82p1 /Ky,

* 1 2 2. max
hom,(Cae) < - homy,(Ca) = Z hom,, (C3;) < = Pm,
xVEX
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Combining the lower and upper bounds on hom;,(C,;), we obtain the required inequality,
as follows.
n2. n2 .ol 202 2
IA| s “Pmax 2wt _ ’
S Pmin S p

as desired. m

6 | RAINBOW PATHS AND SUBDIVISIONS IN EXPANDERS

We now prove our first main result about rainbow subdivisions.

Proof of Theorem 1.2. Let G’ be a bipartite subgraph of G with at least e(G) edges. Then

d(G") > (logn)>>. We apply Lemma 3.9 to obtain a subgraph H of G’ w1th the following
properties.

d(G")

50 1
£ =
= 2500(logny? = )™

1 Hisa(d,n,e)-expander on n’ vertices, where d > 3 and
_ £ _ 1
n= 100logn’)> — 200(logn’)?’

2 H has maximum degree at most ud, where y = 2500(log /).

> (logn

Denote the bipartition of H by {X, Y}, and suppose that | X| > "5’ Next, we aim to apply
Lemma 5.9 to H. With that in mind, we let k be the smallest even integer which is at least

N “e' 5ok =© ((logn')?). Lets = 2(';)k and p = 8m. Let A be the set of pairs (x, y)
with x,y € X that satisfy hom;, (C3;) > éhomw (C3,)- Note that 2%%3 7 s*p?(n') /¥ =

© ((logn')*) < d and so, by Lemma 5.9, we have |A| < ("%2 = % < ﬁ('i' ), noting

that n’ is sufficiently large.

Hence by Turan’s theorem, there is a subset Z C X of size m, such that (x,y) ¢ A for
every distinct x,y € Z. By Lemma 4.7, for any two vertices x and y in Z, there exist s
many pairwise color-disjoint and internally vertex-disjoint rainbow paths of length k from
x to y. By the choice of s, one can find greedily <’2”> many paths of length k, which are
pairwise colour-disjoint and internally vertex-disjoint, and are internally vertex-disjoint
from Z, each of which connecting a different pair of vertices in Z. This gives us the desired
rainbow subdivision of K,,,. n

Given a set of m vertices in a graph G, a K,,-subdivision rooted at Z is a subgraph consisting of ( '; )
paths, each joining a different pair of distinct vertices in Z, whose interiors are pairwise vertex-disjoint
and disjoint from Z. By slightly adapting the proof of Theorem 1.2, one can show that any bipartite
(d,n,e)-expander G (with suitable parameters) contains a rainbow K,-subdivision rooted at Z for
almost all the m-sets Z in V(G) (not just in X). By using some additional tools, we next show that in
a bipartite (d, , €)-expander with suitable parameters, in fact, one can find a rainbow K,-subdivision
rooted at Z for every m-set Z in V(G).

Theorem 6.1. Let n,L,d,yu,m > 2, n € (0,1) and € € (0, 1], and suppose that L =

10 122

2 ;Og" andd > w . Let G be a bipartite (d, y, €)-expander with maximum degree
at most ud, and let Z be a set of mvertices in G. Then there is a rainbow K,,-subdivision,
rooted at Z, where every edge is subdivided at most L times.
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Proof. Let? = 4l°g" and let k be the smallest even integer satisfying k > 2 log” . One can

check that L > 2(f +D+k =
Claim 6.2. Let M be any set of colors and vertices such that |M| < 2( )(L +1). Let x,y

be any two vertices in G. There exists a rainbow x, y-path of length at most L in G that
avoids M.

. ) 20qu’+8[2< " )(L+l)]
Proof of Claim 6.2. Let g = 256¢. By Lemma 3.7 (using d > ——————), there
exists a subset U, C V(G) of size at least (1 — €)n and a collection of paths P = {P(u) :
u € U,}, where for each u € U, the path P(u) is a rainbow path from x to u of length
at most £ + 1 that avoids M, and no color appears in more than g of the paths in P.
Similarly, there exists a subset U, C V(G) of size at least (1 — £)n and a collection of paths
O ={0Q) : u € Uy} where for each u € U, the path Q(u) is a rainbow path from y to u
of length at most £ + 1 that avoids M, and no color appears in more than g of the paths in
Q. Write U = U, n Uy; then |U| > (1 — 2e)n > %

We call an ordered pair (1, v) with u, v € U color-bad if there is a color that appears on
both paths P(x) and Q(v). We next show that the number of color-bad pairs in U is small
compared to the number of all pairs. Indeed, let H be the auxiliary graph on the vertex
set U where uv is an edge whenever at least one of (u, v) and (v, u) is color-bad. Note that
dy(u) < W%, for every u € U, since P(u) has length at most £ + 1 and any color on

P(u) appears at most ﬂ times in the collection Q (and similarly with the roles of P and Q

reversed). Thus, e(H) < (“;)"|U| < 2f"|U| < 128

Lets = |[M|+2( + 1)+ 1;thens < 2( >(L+ 1) + 2¢ + 3 < 2m?L. Denote the
bipartition of G by {X, Y} and suppose that |X| > E' Call a pair (&, v), with u,v € X,
s-bad if hom;,(C%)) > Siz hom(C%)). Applying Lemma 5.9 with p = 64 and verifying the
condition on d (namely, that d > 2383 ;i7s*p2(n)'/%), at most 2721 ordered pairs (u, v), with
u,v € X, are s-bad.

We claim that there is a pair (u,v), with u,v € U N X, which is neither color-bad nor
s-bad. Indeed, the total number of ordered pairs (u,v) with u,v e UnX where (u,v) is
either color—bad or s-bad is at most —2 + —4 < 3; Since |U| > 3 and | X > =, we have
X N U | > =, so the number of ordered pairs (u,v) with u,v € U NnXis certalnly more
than Z 3—2. Hence, there is a pair (u, v) which is neither color-bad nor s-bad, as claimed. Since
(u,v) is not s-bad, by Lemma 4.7 there are s many pairwise color-disjoint and internally
vertex-disjoint rainbow paths of length k from u to v. By the choice of s, there is at least one
such path T'(uv) which shares no colors with the paths P(u) and Q(v) and also avoids M.
Since (u, v) is not color-bad, P(x) and Q(v) are color-disjoint. It follows that P(u) T (uv)Q(v)
is a rainbow x, y-walk avoiding M which contains a rainbow x, y-path, as desired.

Let (x1,y1), ... ,(x<r;),y<,;)) be an arbitrary ordering of the unordered pairs (x,y)

where x,y € Z and x # y. We iteratively build paths P; for i € [('Z )], as follows. Let
P; be any rainbow xj, y;-path of length at most L, which exists by Claim 6.2. In general,
suppose P, ... , P; have been defined, where i < ( ) We let M; denote the set of ver-

tices and colors used in U]’.zle and let P, be a rainbow x;41, y;+1-path of length at most

L that avoids M; \ {xi+1,Vi+1}. Since |M;| < 2(';)(L + 1), by Claim 6.2 such a path
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P, exists. Hence, we are able to find Py, ... , P/, as described above. Now, Ui=1

2
forms a rainbow K,-subdivision rooted at Z in which each edge is subdivided at most L
times. L]

7 | CONCLUSION

In this paper we showed that there is a constant ¢ < 53 such that for fixed m and sufficiently large n any
n-vertex properly edge-colored graph G with at least n(logn)° edges contains a rainbow subdivision
of K,,,. On the other hand, an immediate lower bound is given by the best known lower bound from [7]
on ex*(n, C), which is Q(n log n). This shows that our bound is tight up to a polylogarithmic factor. We
pose the following question.

Question 7.1. Fix m > 2. What is the smallest ¢ such that for all sufficiently large n

the following holds: if G is a properly edge-colored graph on n vertices with at least
Q(n(logn)°) edges, then it contains a rainbow subdivision of K,,? In particular, isc = 1?

For the clarity of presentation, we did not optimize our arguments to obtain the best possible value
of ¢. However, to answer Question 7.1, new ideas will be needed. Note that even the correct order of
magnitude of ex*(n, C) is still unknown. On another note, as mentioned previously, Janzer [4] proved
ex*(n,C) = O(n(logn)*), using the counting lemmas on closed walks. It is worth to mention that
from our methods, an alternative proof of ex*(n, C) = O(n(log n)°) can be obtained by using the basic
expansion property of an expander (Lemma 3.7) and a digraph idea used by Letzter [11] regarding the
Turan number of the family of tight cycles.
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