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Abstract

We show that for every integer m ≥ 2 and large n, every

properly edge-colored graph on n vertices with at least

n(log n)53 edges contains a rainbow subdivision of Km. This

is sharp up to a polylogarithmic factor. Our proof method

exploits the connection between the mixing time of random

walks and expansion in graphs.
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1 INTRODUCTION

The Turán number of a graph H, denoted by ex(n,H), is the maximum possible number of edges in

an n-vertex graph that does not contain a copy of H. In this paper we study a rainbow variant of Turán

numbers, introduced by Keevash, Mubayi, Sudakov and Verstraëte [7]. A proper edge-coloring of a

graph is an assignment of colors to its edges so that edges that share a vertex have distinct colors.

A rainbow subgraph of an edge-colored graph is a subgraph whose edges have distinct colors. The

rainbow Turán number of a graph H, denoted by ex∗(n,H), is the maximum possible number of edges

in a properly edge-colored graph on n vertices with no rainbow copy of H. One can define ex(n,)

and ex∗(n,) analogously for a family of graphs .

It was shown in [7] that ex∗(n,H) = (1+o(1))ex(n,H) for non-bipartite H. Perhaps unsurprisingly,

little is known about rainbow Turán numbers of bipartite graphs. The authors of [7] raised two problems

concerning rainbow Turán numbers of even cycles, one concerning an even cycle of fixed length 2k and

the other concerning the family  of all cycles. For all k ≥ 2, they showed that ex∗(n,C2k) = Ω(n1+1∕k)

and conjectured that ex∗(n,C2k) = Θ(n1+1∕k). The authors of [7] verified the conjecture for k ∈ {2, 3}.
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Following further progress on the conjecture by Das, Lee and Sudakov [3], Janzer [4] recently resolved

the conjecture.

Regarding the rainbow Turán number of the family  of all cycles, Keevash, Mubayi, Sudakov

and Verstraëte [7] showed that ex∗(n,) = Ω(n log n), by considering a naturally defined proper

edge-coloring of the hypercube Qk, where k = ⌊log n⌋ (color the edge uv by color i if the u

and v differ in the coordinate i; it is easy to see that no cycle can be rainbow in this coloring).

They also showed that ex∗(n,) = O(n4∕3) and asked if ex∗(n,) = O(n1+o(1)) and furthermore,

if ex∗(n,) = O(n log n). Das, Lee and Sudakov [3] answered the first question affirmatively,

by showing that ex∗(n,) ≤ ne(log n)
1
2
+o(1)

. In 2022, Janzer [4] improved this bound by establish-

ing that ex∗(n,) = O
(
n(log n)4

)
, which is tight up to a polylogarithmic factor. Recently, Jiang,

Methuku and Yepremyan [6] proved the following generalization of Das, Lee and Sudakov [3] on

ex∗(n,).

Theorem 1.1 (Jiang, Methuku, Yepremyan [6]). For every integer m ≥ 2 there exists a

constant c > 0 such that for every integer n ≥ m the following holds. If G is a properly

edge-colored graph on n vertices with at least nec
√

log n edges, then G contains a rainbow

subdivision of Km, where each edge is subdivided at most 1300log2n times.

The method used in [6] utilizes robust expanders in the colored setting together with a density

increment argument, inspired in part by the method introduced by Sudakov and Tomon [16].

In this paper, we lower the eO(
√

log n) error term in Theorem 1.1 to a polylogarithmic term, which

in conjunction with the above-mentioned Ω(n log n) lower bound on ex∗(n,) determines the rainbow

Turán number of the family of Km-subdivisions up to a polylogarithmic factor.

Theorem 1.2. Fix an integer m ≥ 2 and let n be sufficiently large. Suppose that G is a

properly edge-colored graph on n vertices with at least n(log n)53 edges. Then G contains

a rainbow subdivision of Km, where each edge is subdivided at most (log n)6 times.

Theorem 1.2 provides the rainbow analog of a fundamental (and highly influential) result of

Mader [13] stating that for every integer m ≥ 2, there exists 𝑑 = 𝑑(m) such that every graph with aver-

age degree at least 𝑑 contains a subdivision of Km. Research on this problem has a long history, see

for example, Mader [14], Komlós and Szemerédi [9,10], and Bollobás and Thomason [2].

Our proof of Theorem 1.2 exploits the connection between mixing time of random walks and edge

expansion. This connection is used in conjunction with counting lemmas developed by Janzer in [4]

regarding homomorphisms of cycles in graphs. We also prove a strengthening of Theorem 1.2, regard-

ing ‘rooted’ rainbow subdivisions of Km in expanders (see Theorem 6.1). For this stronger version, in

addition to the ingredients used for proving Theorem 1.2, we use the framework of [6] and an additional

idea used by Letzter in [11] (see Lemma 3.7).

The rest of the paper is organized as follows. In Section 2, we give a short overview of our proofs,

namely the proof of Theorem 1.2 and a strengthening of it (Theorem 6.1). In Section 3, we men-

tion various preliminary results, regarding the existence of expanders which are close to being regular

and properties of expanders. In Section 4, we state three lemmas due to Janzer [4] and some conse-

quences of these lemmas. Section 5 contains the main new ideas of the paper, exploiting a connection

between the mixing time of a random walk and expansion properties in a graph. In Section 6, we prove

Theorem 1.2 and a strengthening of it regarding rooted subdivisions in almost regular expanders. We

complete the paper with concluding remarks in Section 7.

Throughout the paper, for convenience, we drop floor and ceiling signs for large numbers, and

logarithms are in base 2.
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2 OVERVIEW OF THE PROOFS

Our main idea is to use the connection between the mixing time of random walks, the notion of

‘conductance’ (see Definition 5.3) and our notion of expansion. It is a well-known and very useful fact

that ‘large’ conductance implies ‘small’ mixing time (see, e.g., Lovász [12]). Moreover, our notion

of expansion implies that our expanders have large conductance. Using these facts we show that if

additionally, such expanders are almost regular, then long enough walks are close to being uniformly

distributed. We also use two counting lemmas of Janzer from [4]. Below we describe these lemmas

and the main ideas in more detail.

In a properly edge-colored graph, say that a closed walk is degenerate if it is either not rainbow or

visits a vertex more than once. The first lemma from [4] implies that in a properly edge-colored graph

which is close to being regular, the number of degenerate closed 2k-walks is significantly smaller than

the number of closed 2k-walks, provided that k is sufficiently large.

Given two vertices x and y, a closed 2k-walk W is said to be hosted by x and y if it starts at x

and reaches y after k steps. We call a pair of vertices (x, y) good if the number of degenerate closed

2k-walks hosted by x and y is significantly smaller than the number of closed 2k-walks hosted by x and

y. The second lemma from [4] that we use shows that if a pair (x, y) is good then there are many short

pairwise color-disjoint and internally vertex-disjoint k-paths from x to y.

In fact, we use versions of these lemmas which are applicable to edge-weighted graphs. These

weighted versions can be easily deduced for the original unweighted versions.1 We will later apply

these weighted lemmas with a specific edge-weighting, namely where w(xy) =
1√

𝑑(x)𝑑(y)
. This weight

was chosen so that the weight of a walk W = x0 … xk is the probability that a random walk of length

k starting at x0 produces W, times
√

𝑑(xk)

𝑑(x0)
.

Using results about random walks on graphs, which relate mixing time to expansion, we show

that in an expander G on n vertices which is close to being regular, for k suitably large (at least poly-

logarithmic in n), the numbers of closed 2k-walks hosted by any two pairs of vertices are within a

suitable polylogarithmic factor (in n) of each other. This, combined with the fact that the number of

degenerate closed 2k-walks is small compared to the total number of closed 2k-walks (due to the first

lemma above), implies that almost all pairs of vertices are good. Thus, using Turán’s theorem, we find

a copy of Km in the graph formed by good pairs. This, together with the fact that there are many short

color-disjoint and internally vertex-disjoint rainbow paths between any good pair of vertices (due to

the second lemma above) allows us to greedily build the desired rainbow-subdivision of Km.

We also prove a stronger version of Theorem 1.2, Theorem 6.1, asserting that in an expander G

which is close to being regular and whose average degree is large enough, for any set S of m vertices,

there exists a rainbow Km-subdivision with the vertices of S being the branching vertices. The main

step in this proof shows that for any two vertices x and y in G there is a short rainbow x, y-path avoiding

a prescribed small set C of vertices and colours. By iterating this over all pairs of vertices in S, we can

build the desired rainbow Km-subdivision.

To show that there is a short rainbow x, y-path in G, we first apply tools due to Jiang, Methuku and

Yepremyan [6] and Letzter [11] to show that there is a set of vertices U of size Ω(n) such that for each

v ∈ U there is such a short rainbow x, v-path P(v) and a short rainbow y, v-path Q(v), both of which

avoid C, such that no color is used on too many of these paths P(v) and Q(v). It easily follows that for

almost all pairs (u, v) with u, v ∈ U, the paths P(u) and Q(v) are color-disjoint. This, combined with

1To deduce the weighted version of the first lemma, we actually need a multigraph version of Janzer’s original one, whose proof

is identical to the original version for simple graphs.
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the fact that most pairs in U are good (in the sense mentioned earlier), implies that there exists at least

one good pair (u, v) for which P(u) and Q(v) are color-disjoint. This allows us to find a suitable short

rainbow u, v-path L such that P(u)∪L∪Q(v) is a rainbow x, y-walk which contains the desired rainbow

x, y-path.

3 PRELIMINARIES

Let G be a graph. We denote by 𝑑(G) the average degree of G. For a subset S ⊆ V(G), let e(S) = e(G[S]),

and for subsets S,T ⊆ V(G), let e(S,T) = e(G[S,T]). We will use the notions of 𝑑-minimality and

expanders, defined below, following [6].

Definition 3.1. A graph G is said to be 𝑑-minimal if 𝑑(G) ≥ 𝑑 but 𝑑(H) < 𝑑 for every

proper subgraph H ⊆ G.

It is easy to see that every graph G contains a 𝑑(G)-minimal subgraph. The following observation

was used in [6]. For completeness, we include its short proof.

Observation 3.2. If G is 𝑑-minimal, then every subset S ⊆ V(G) satisfies e(S)+e(S, Sc) ≥
𝑑|S|

2
. In particular, 𝛿(G) ≥

𝑑

2
.

Proof. Suppose otherwise. Then e(Sc) ≥
𝑑|V|

2
−

𝑑|S|
2

≥
𝑑(|V|−|S|)

2
, contradicting

𝑑-minimality. ▪

Definition 3.3. Given 𝑑 ≥ 1, 𝜂 ∈ (0, 1) and 𝜀 ∈ (0,
1

2
], an n-vertex graph G is called a

(𝑑, 𝜂, 𝜀)-expander if G is 𝑑-minimal, and for every subset S ⊆ V(G) of size at most (1−𝜀)n,

we have 𝑑(S) ≤ (1 − 𝜂)𝑑.

Note that, by definition, for 0 < 𝜀′ ≤ 𝜀 ≤
1

2
and 0 < 𝜂 ≤ 𝜂′ < 1, every (𝑑, 𝜂′, 𝜀′)-expander is also a

(𝑑, 𝜂, 𝜀)-expander. Also, if G is a (𝑑, 𝜂, 𝜀)-expander then it is a (𝑑(G), 𝜂, 𝜀)-expander. It will be useful

to note the following ‘edge-expansion’ property of (𝑑, 𝜂, 𝜀)-expanders.

Observation 3.4. Let n, 𝑑 ≥ 1, let 𝜂 ∈ (0, 1) and let 𝜀 ∈ (0,
1

2
]. Suppose that G is

a (𝑑, 𝜂, 𝜀)-expander on n vertices. Then every S ⊆ V(G) with |S| ≤ (1 − 𝜀)n satisfies

e(S, Sc) ≥
𝜂𝑑

2
|S|.

Proof. Let S ⊆ V(G) satisfy |S| ≤ (1−𝜀)n. Since G is 𝑑-minimal and by Observation 3.2,

we have e(S) + e(S, Sc) ≥
𝑑|S|

2
. Since G is a (𝑑, 𝜂, 𝜀)-expander, by definition, we also have

e(S) =
𝑑(S)

2
|S| ≤ (1−𝜂)𝑑

2
|S|. It follows that e(S, Sc) ≥

𝜂𝑑

2
|S|, as claimed. ▪

Lemma 3.5 (Lemma 2.5 from [6]). Let n, 𝑑 ≥ 1, let 𝜀 ∈ (0,
1

2
] and let 𝜂 =

𝜀

2 log n
.

Suppose that G is a graph on n vertices with average degree 𝑑. Then G contains a

(𝑑′, 𝜂, 𝜀)-expander, with 𝑑′ ≥
𝑑

2
.

The following lemma from [6] asserts that in a properly edge-colored expander, one can reach

almost every vertex by a short rainbow path starting at a specified vertex.

Lemma 3.6 (Lemma 2.7 from [6]). Let n,𝓁, 𝑑,M ≥ 1, let 𝜂 ∈ (0, 1), and let 𝜀 ∈

(0,
1

2
]. Suppose that 𝓁 =

4 log n

𝜂
and 𝑑 ≥

4𝓁+8M

𝜂
. Let G be a properly edge-colored

(𝑑, 𝜂, 𝜀)-expander on n vertices, let x ∈ V(G) and let F be a set of vertices and colors of

size at most M. Then at least (1 − 𝜀)n vertices can be reached from x by a rainbow path

of length at most 𝓁 + 1 that avoids the vertices and colors in F.
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We will need a stronger version of the previous lemma, where we require that no color is used too

many times in the short rainbow paths. A similar idea was used in [11] (see Lemma 5) in the context

of tight paths.

Lemma 3.7. Let n,𝓁, 𝑑, q,M ≥ 1, let 𝜂 ∈ (0, 1) and let 𝜀 ∈ (0,
1

2
]. Suppose that 𝓁 =

4 log n

𝜂

and 𝑑 ≥
20q𝓁+8M

𝜂
. Let G be a properly edge-colored (𝑑, 𝜂, 𝜀)-expander on n vertices, let

x ∈ V(G), and let F be a set of colors and vertices of size at most M. Then there is a set

U ⊆ V(G) of size at least (1 − 𝜀)n, and a collection  = {P(u) ∶ u ∈ U} where for each

u ∈ U, P(u) is a rainbow path from x to u of length at most 𝓁 + 1 that avoids the vertices

and colors in F and no color appears in more than
n

q
of the paths in  .

Proof. Let U be a largest set satisfying that for every u ∈ U there is a rainbow path P(u)

from x to u of length at most 𝓁 + 1 that avoids F, such that no color appears in more than
n

q
of the paths P(u). Say that a color is bad if it appears on exactly

n

q
of the paths P(u) with

u ∈ U, and let Cbad be the set of bad colors. Since each path P(u) has length at most 𝓁+1,

we have

|Cbad| ≤
n(𝓁 + 1)

n∕q
≤ 2q𝓁.

Since 𝑑 ≥
20q𝓁+8M

𝜂
≥

4𝓁+8(M+|Cbad)|
𝜂

, by Lemma 3.6 with F∪Cbad playing the role of F, there

is a set U′ with |U′| ≥ (1−𝜀)n such that for every v ∈ U′, there is a rainbow path P′(v) from

x to v of length at most 𝓁+1 that avoids the colors and vertices in F∪Cbad. If |U| < (1−𝜀)n,

then there is a vertex v ∈ U′ ⧵ U. The set U ∪ {v} (along with the paths P(u) for u ∈ U

and P′(v)) contradicts the maximality of U. It follows that |U| ≥ (1 − 𝜀)n, as required. ▪

We would like to work with expanders that are close to regular. For this, we use the following

lemma, which is a slight adaptation of Lemma 3.2 of [15].

Lemma 3.8. Let n ≥ 2 and 𝑑 ≥ 36 log n. Let G be a bipartite graph on n vertices with

minimum degree at least 𝑑. Then there exists a subgraph H of G with average degree at

least
𝑑

12 log n
and maximum degree at most 𝑑.

Proof. Let {A,B} denote a bipartition of G with |A| ≥ |B|. Let G′ be obtained from G

by keeping exactly 𝑑 edges incident to each vertex in A. Then for each v ∈ A we have

𝑑G′ (v) = 𝑑, and hence e(G′) = 𝑑|A|.
Let m = ⌈log n⌉. For each i ∈ [m], let Bi = {v ∈ B ∶ 2i−1 ≤ 𝑑G′(v) < 2i}. Denoting the

set of isolated vertices in B by B0, we have B⧵B0 = ∪i∈[m]Bi. By the pigeonhole principle,

there exists an i ∈ [m] for which e(G′[A,Bi]) ≥
e(G′)

m
≥

𝑑|A|
2 log n

. Fix such i and let t = 2i−1.

Then, by definition, each v ∈ Bi has degree between t and 2t in G′[A,Bi]. If 2t ≤ 𝑑, then

G′[A,Bi] has maximum degree at most 𝑑 and average degree at least
2e(G′[A,Bi])

|A|+|Bi|
≥

𝑑

2 log n
.

So the lemma holds. Hence, we may assume that 2t > 𝑑.

Set p =
𝑑

4t
; then 0 < p <

1

2
. Now let A′ ⊆ A be chosen by including each ver-

tex in A independently with probability p. For convenience, write Gi = G′[A,Bi] and

G′
i = G′[A′,Bi]. Then

E[e(G′
i)] = p ⋅ e(Gi) ≥

p𝑑|A|
2 log n

. (1)

Now, let B′ = {v ∈ Bi ∶ 𝑑G′
i
(v) ≤ 𝑑}.
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For each v ∈ Bi, the degree 𝑑G′
i
(v) is binomially distributed with expectation p ⋅𝑑Gi

(v).

Since t ≤ 𝑑Gi
(v) ≤ 2t, we have

𝑑

4
= pt ≤ E[𝑑G′

i
(v)] ≤ 2pt =

𝑑

2
. Therefore, using

Chernoff’s bound (see, e.g., app. A of [1]), we have

E[|Bi ⧵ B′|] =
∑

v∈Bi

P(v ∈ Bi ⧵ B′) =
∑

v∈Bi

P

[
𝑑G′

i
(v) ≥ 𝑑

]
≤

∑

v∈Bi

P

[
𝑑G′

i
(v) ≥ 2E[𝑑G′

i
(v)]

]

≤
∑

v∈Bi

2 ⋅ exp

(
−

E[𝑑G′
i
(v)]

3

)
≤

∑

v∈Bi

2 ⋅ exp
(
−

𝑑

12

)
≤ n ⋅ 2e−3 log n <

1

n
.

This together with the fact that for any A′ and the corresponding B′, e(G′[A′,Bi ⧵ B′]) ≤

n|Bi ⧵ B′|, implies

E[e(G′[A′,Bi ⧵ B′])] ≤ n ⋅ E[|Bi ⧵ B′|] ≤ 1. (2)

By (1) and (2),

E[e(G′[A′,B′]) ≥
p𝑑|A|
2 log n

− 1.

Note that E[|A′|] = p|A|. Also, as t|Bi| ≤ e(G′[A,Bi]) ≤ 𝑑|A|, we have |B′| ≤ |Bi| ≤
𝑑

t
|A| = 4p|A|. Hence |A′| + |B′| ≤ 5p|A|. Let 𝑑0 =

𝑑

12 log n
. We have

E
[
e(G′[A′,B′]) − 𝑑0(|A′| + |B′|)

]
≥

p𝑑|A|
2 log n

− 1 −
5𝑑p|A|
12 log n

≥
p𝑑|A|

12 log n
− 1 ≥ 0,

where the last inequality used p𝑑|A| = 𝑑2|A|
4t

≥ 182(log n)2 ≥ 12 log n which holds since

t ≤ |A| and 𝑑 ≥ 36 log n. Thus, there is a choice of A′ for which e(G′[A′,B′]) − 𝑑0(|A′| +
|B′|) ≥ 0. Taking H = G′[A′,B′], we have 𝑑(H) ≥ 𝑑0 =

𝑑

12 log n
and Δ(H) ≤ 𝑑, as

desired. ▪

Our final preliminary result combines Lemmas 3.5 and 3.8 to show that every relatively dense

graph contains an expander which is close to regular.

Lemma 3.9. Let n, 𝑑 ≥ 1 and let 𝜀 ∈ (0,
1

2
], and suppose that 𝑑 ≥ 107(log n)3. Suppose

that G is a bipartite graph on n vertices with average degree at least 𝑑. Then G has a

subgraph H with the following properties.

1 H is a (𝑑′, 𝜂, 𝜀)-expander on n′ vertices, where 𝑑′ ≥
𝑑

2500(log n)2
and

𝜂 ≥
𝜀

100(log n′)2
,

2 H has maximum degree at most 2500(log n′)2𝑑′.

Proof. Let G0 = G. We run the following process, generating graphs Gi for i ≥ 0. For

each graph Gi, we write 𝑑i = 𝑑(Gi) and ni = |V(Gi)|.

a Let Hi be a subgraph of Gi with average degree at least
𝑑i

24 log ni

and maximum degree at

most 𝑑i. Such a subgraph Hi exists by Lemma 3.8, using the fact that every graph with

average degree 𝑑 contains a subgraph with minimum degree at least
𝑑

2
. To apply the

lemma we need to verify that 𝑑i ≥ 72 log ni, which we shall do below.
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b Write n′
i = |V(Hi)|. Let Gi+1 be a subgraph of Hi which is a (𝑑i+1, 𝜂i+1, 𝜀)-expander,

where 𝑑(Gi+1) = 𝑑i+1 ≥
𝑑(Hi)

2
≥

𝑑i

48 log ni

and 𝜂i+1 =
𝜀

2 log n′
i

. Such a subgraph exists

by Lemma 3.5, using the observation that if G is a (𝑑, 𝜂, 𝜀)-expander then it is a

(𝑑(G), 𝜂, 𝜀)-expander.

Claim 3.10. If 48 log ni <
√

48 log ni−1 for i ∈ [t] then the graphs G1, … ,Gt can be

defined as above and are non-empty.

Proof. Notice that to prove the statement, it suffices to show that for t as described, 𝑑i ≥

72 log ni for i ∈ [t − 1].

We prove this by induction. It is easy to check that the statement is true for t = 0

(note that the condition on t holds vacuously here). Indeed, we just need to check that

𝑑0 ≥ 72 log n0, which is the case as 𝑑0 = 𝑑, n0 = n and 𝑑 ≥ 107(log n)3.

Now suppose that 48 log ni <
√

48 log ni−1 for i ∈ [t] and that the inductive statement

holds for t′ ≤ t. This means that the process runs as described for all i ∈ [t], and it

remains to show that the (t + 1)-st step can be performed, namely that 𝑑t ≥ 72 log nt. By

the assumption on t, the following holds for every i ∈ [t].

48 log ni ≤ (48 log ni−1)
1∕2 ≤ … ≤ (48 log n0)

2−i

= (48 log n)2
−i

.

Since 𝑑i ≥
𝑑i−1

48 log ni−1

for i ∈ [t] (see (b)), it follows that

𝑑t ≥
𝑑t−1

48 log nt−1

≥ … ≥
𝑑0

48 log nt−1 ⋅ … ⋅ 48 log n0

≥
𝑑

(48 log n)2
0+…+2−(t−1)

≥
𝑑

(48 log n)2
.

(3)

Using 𝑑 ≥ 107 log n and n ≥ nt, we find that 𝑑t ≥ 103 log n > 72 log nt, as required. ▪

Let 𝓁 be minimum such that 48 log n𝓁 ≥
√

48 log n𝓁−1. We claim that such 𝓁 exists.

If not, then by the previous claim the process can be run forever and ni ≥ 1 for all i ≥ 0,

implying that (48 log ni)i≥0 is decreasing, and thus (ni)i≥0 is an infinite decreasing sequence

of positive integers, a contradiction.

We will show that G𝓁 satisfies the requirements of Lemma 3.9. Indeed, G𝓁 is a

(𝑑𝓁 , 𝜂𝓁 , 𝜀)-expander. Using the proof of the above claim, inequality (3) holds for t = 𝓁,

showing 𝑑𝓁 ≥
𝑑

2500(log n)2
. By choice of G𝓁 , we have 𝜂𝓁 =

𝜀

2 log n
𝓁−1

≥
𝜀

96(log n
𝓁
)2
≥

𝜀

100(log n
𝓁
)2

(using 48 log n𝓁 ≥
√

48 log n𝓁−1). It follows that property 1 of the lemma holds. To

see property 2, note that G𝓁 has maximum degree at most 𝑑𝓁−1 and 𝑑𝓁 ≥
𝑑
𝓁−1

48 log n
𝓁−1

≥

𝑑
𝓁−1

(48 log n
𝓁
)2
≥

𝑑
𝓁−1

2500(log n
𝓁
)2

(again using 48 log n𝓁 ≥
√

48 log n𝓁−1). ▪

4 COUNTING RAINBOW CYCLES IN WEIGHTED GRAPHS

In this section we state several lemmas regarding (weighted) counts of homomorphic copies of paths

and cycles in weighted graphs G. Three of these are weighted versions of lemmas from Janzer [4], and

we will show how to deduce these from the original, unweighted versions.

First, let us introduce some notation. Let G be a graph with a weighting 𝜔 ∶ E(G) → R≥0. We

denote by 𝜔max, 𝜔min the maximum and minimum edge weights; that is, 𝜔max = maxe∈E(G) 𝜔(e) and
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𝜔min = mine∈E(G) 𝜔(e). The weighted maximum degree of G, denoted Δ𝜔(G), is

Δ𝜔(G) ∶= max
u∈V(G)

∑

v∶uv∈E(G)

𝜔(uv).

For any t ≥ 1, the weight of a walk P ∶= u0u1 … ut is defined as 𝜔(P) ∶=
∏t−1

i=0𝜔(uiui+1), and the

weight of a closed walk C ∶= u0u1 … utu0 is defined as
∏t

i=0𝜔(uiui+1), where ut+1 = u0.

In a graph G, denote by Hom
(
P

xy

k

)
the family of walks of length k from x to y. Similarly, let

Hom
(
C

xy

2k

)
be the family of closed walks of length 2k that start at x and reach y after k steps. Write

hom
(
P

xy

k

)
= |Hom

(
P

xy

k

)
| and hom

(
C

xy

2k

)
= |Hom

(
C

xy

2k

)
|. Given a weighting 𝜔 ∶ E(G) → R≥0, we

define the weighted homomorphism counts as follows:

hom𝜔

(
P

xy

k

)
=

∑

P∈Hom(Pxy

k )

𝜔(P)

hom𝜔

(
C

xy

2k

)
=

∑

C∈Hom(Pxy

k )

𝜔(C)

The following relation between hom𝜔

(
P

xy

k

)
and hom𝜔

(
C

xy

2k

)
is very useful.

hom𝜔

(
C

xy

2k

)
=
(
homw

(
P

xy

k

))2
. (4)

We also define hom𝜔(C2k) to be the total weight of the homomorphic copies of C2k, namely

hom𝜔(C2k) =
∑

x,y∈V(G)

hom𝜔

(
C

xy

2k

)
.

Similarly, we define hom𝜔(Pk) =
∑

x,y∈V(G) hom𝜔

(
P

xy

k

)
. In a properly edge-colored graph G, let

Hom∗
(
C

xy

2k

)
be the family of all the closed walks in Hom

(
C

xy

2k

)
that do not form a rainbow cycle of

length 2k. Define hom∗
(
C

xy

2k

)
= |Hom∗

(
C

xy

2k

)
|. If the graph is weighted with a weighting 𝜔 ∶ E(G) →

R≥0, let hom∗
𝜔

(
C

xy

2k

)
=
∑

C∈Hom∗(Cxy

2k)
𝜔(C). Let

Hom∗(C2k) =
⋃

x,y∈V(G)

Hom∗
(
C

xy

2k

)
,

and write hom∗(C2k) = |Hom∗(C2k)| and hom∗
𝜔(C2k) =

∑
x,y∈V(G) hom∗

𝜔

(
C

xy

2k

)
.

We will make use of the following two lemmas from a recent paper of Janzer [4].

Lemma 4.1 (Multigraph version of Lemma 2.2 from [4]). Let k ≥ 2 be an integer and

let G = (V ,E) be a multigraph on n vertices. Let ∼ be a symmetric binary relation on V

such that for every u, v ∈ V , there are at most t edges vw (counted with multiplicity) for

which u ∼ w. Then the number of homomorphic 2k-cycles (x1, … , x2k) in G such that

xi ∼ xj for some i ≠ j is at most

32k3∕2t1∕2Δ(G)1∕2n
1

2k hom (C2k)
1−

1

2k .

Note that Lemma 2.2 in [4] is phrased for simple graphs, where the condition was that for every

u, v ∈ V there are at most t neighbors w for which u ∼ w. However, the same proof works for multi-

graphs with a modified condition as stated above. Similarly, the next lemma is a multigraph version of

Lemma 2.1 from [4], where again the same proof works.
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Lemma 4.2 (Multigraph version of Lemma 2.1 from [4]). Let k ≥ 2 be an integer and let

G = (V ,E) be a multigraph on n vertices. Suppose that ∼ is a symmetric binary relation

on E such that for every uv ∈ E and w ∈ V , there are at most t edges zw (counted with

multiplicity) for which uv ∼ zw. Then the number of homomorphic 2k-cycles (x1, … , x2k)

in G such that xixi+1 ∼ xjxj+1 for some i ≠ j is at most

32k3∕2t1∕2Δ(G)1∕2n
1

2k hom (C2k)
1−

1

2k .

The following lemma is a variant of Lemma 4.2 which is applicable for edge-weighted graphs.

Lemma 4.3. Let k ≥ 2 be an integer and let G = (V ,E) be a graph on n vertices with a

given weighting 𝜔 ∶ E(G) → R>0. Suppose that ∼ is a symmetric binary relation on E

such that for every uv ∈ E and w ∈ V , there are at most t edges wz for which uv ∼ wz. Let

hom∗
𝜔(C2k) be the sum of weights of homomorphic 2k-cycles (x1, … , x2k) in G such that

xixi+1 ∼ xjxj+1 for some i ≠ j. Then

hom∗
𝜔(C2k) ≤ 32k3∕2t1∕2

⋅ Δ𝜔(G)1∕2
⋅ 𝜔

1∕2
max ⋅ n

1

2k ⋅ hom𝜔 (C2k)
1−

1

2k .

We prove this lemma using Lemma 4.2.2

Proof of Lemma 4.3. We start by proving the lemma in the case where all the weights

given by 𝜔 are integers. Let G′ be the multigraph on V(G) where, for each edge e in G,

we add 𝜔(e) copies of e to G′. Notice that Δ(G′) = Δ𝜔(G). Let t′ ∶= t ⋅ 𝜔max and notice

that for every uv ∈ E(G′) and w ∈ V(G′), there are at most t′ edges zw such that uv ∼ zw.

Let h′ = hom(C2k) in G′. Observe that hom𝜔(C2k) in G equals h′, and that hom∗
𝜔(C2k) in

G is the number of homomorphic 2k-cycles (x1, … , x2k) in G′ such that xixi+1 ∼ xjxj+1

for some i ≠ j. Thus, by Lemma 4.2,

hom∗
𝜔(C2k) ≤ 32k3∕2(t′)1∕2Δ(G′)1∕2

⋅ n
1

2k ⋅ (h′)1−
1

2k

≤ 32k3∕2t1∕2Δ𝜔(G)1∕2
⋅ 𝜔

1∕2
max ⋅ n

1

2k ⋅ hom𝜔 (C2k)
1−

1

2k .

Now suppose that all weights given by w are rational. Then there exists a positive integer

L such that the weighting L𝜔 ∶ E(G) → R≥0 (defined as L𝜔(e) = L ⋅ 𝜔(e) for every

e ∈ E(G)) is integer-valued. By the previous paragraph,

hom∗
L𝜔(C2k) ≤ 32k3∕2t1∕2ΔL𝜔(G)1∕2

⋅ ((L𝜔)max)
1∕2

⋅ n
1

2k ⋅ homL𝜔 (C2k)
1−

1

2k .

Noting that hom∗
L𝜔(C2k) = L2k

⋅ hom∗
𝜔(C2k), homL𝜔(C2k) = L2k

⋅ hom𝜔(C2k), ΔL𝜔(G) =

L ⋅ Δ𝜔(G) and (L𝜔)max = L ⋅ 𝜔max, we get

hom∗
𝜔(C2k) ≤ 32k3∕2t1∕2Δ𝜔(G)1∕2

⋅ 𝜔
1∕2
max ⋅ n

1

2k ⋅ hom𝜔 (C2k)
1−

1

2k .

Finally, for a general positive weighting 𝜔, let (𝜔m) be a sequence of positive and rational

weightings such that limm→∞ 𝜔m(e) = 𝜔(e) for every edge e ∈ E. Then,

hom∗
𝜔m
(C2k) ≤ 32k3∕2t1∕2Δ𝜔m

(G)1∕2
⋅ (𝜔m)

1∕2
max ⋅ n

1

2k ⋅ hom𝜔m
(C2k)

1−
1

2k ,

2Alternatively, one can prove this by following the proof of Lemma 2.1 from [4] and adapting it straightforwardly to the weighted

version.
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for every m. Taking the limits as m tends to infinity, we get

hom∗
𝜔(C2k) ≤ 32k3∕2t1∕2Δ𝜔(G)1∕2

⋅ 𝜔
1∕2
max ⋅ n

1

2k ⋅ hom𝜔 (C2k)
1−

1

2k .

▪

Similarly, using Lemma 4.1 instead of Lemma 4.2, one can prove the following

Lemma 4.4. Let k ≥ 2 be an integer and let G = (V ,E) be a graph on n vertices with a

given weighting 𝜔 ∶ E(G) → R>0. Suppose that ∼ is a symmetric binary relation on V

such that for every u, v ∈ V there are at most t edges vw for which u ∼ w. Let hom∗
𝜔(C2k)

be the sum of weights of homomorphic 2k-cycles (x1, … , x2k) in G such that xi ∼ xj for

some i ≠ j. Then

hom∗
𝜔(C2k) ≤ 32k3∕2t1∕2

⋅ Δ𝜔(G)1∕2
⋅ 𝜔

1∕2
max ⋅ n

1

2k ⋅ hom𝜔 (C2k)
1−

1

2k .

Next we show that in an appropriately weighted almost-regular properly edge-colored graphs the

number of degenerate homomorphic copies of 2k-cycles is a ‘small’ proportion of all possible copies.

Here by degenerate we mean the copies which are either non-rainbow or are not isomorphic copies

of C2k.

Lemma 4.5. Let n, 𝑑, 𝜇, k, S ≥ 1 and let 𝜂 ∈ (0, 1). Suppose that 𝑑 ≥ 216𝜇3k3S2n1∕k. Let

G be a properly edge-colored graph with minimum degree at least
𝑑

2
and maximum degree

at most 𝜇𝑑, and define 𝜔 ∶ E(G) → R≥0 by setting 𝜔(xy) = 1∕
√
𝑑(x)𝑑(y) for every edge

xy. Then hom∗
𝜔(C2k) ≤

1

S
hom𝜔(C2k).

Proof. We first give a lower bound on hom𝜔(C2k). For this, note that

hom𝜔(Pk) =
∑

W∶ W=x0 … xk

𝜔(W) ≥ n ⋅

(
𝑑

2

)k

(𝜔min)
k ≥ n ⋅

(
1

2𝜇

)k

,

where in the last inequality we used that 𝜔min ≥
1

Δ(G)
≥

1

𝜇𝑑
. Hence,

hom𝜔(C2k) =
∑

x,y∈V(G)

(
hom𝜔

(
P

xy

k

))2

≥
1

n2

(
∑

x,y∈V(G)

hom𝜔

(
P

xy

k

)
)2

=
(

hom𝜔(Pk)

n

)2

≥

(
1

2𝜇

)2k

, (5)

where the first inequality follows by convexity.

Let ∼e be the binary relation on E(G) where e ∼e f if and only if e and f have the

same color. Because G is properly edge-colored, for every edge uv and vertex w, there is

at most one edge wz for which uv ∼e wz. Let ∼v be the binary relation defined on V(G)

where u ∼v w if and only if u = w. Then, trivially, for every u, v ∈ V there is at most one

edge vw (namely uv) for which u ∼v w. Apply Lemmas 4.3 and 4.4 with ∼e, ∼v in place

of ∼, respectively (so t is taken to be 1 in both lemmas), to obtain the desired upper bound

on hom∗
𝜔(C2k), as follows.

hom∗
𝜔(C2k) ≤ 64k3∕2

⋅ (Δ𝜔(G))1∕2
⋅ 𝜔

1∕2
max ⋅ n

1

2k ⋅ hom𝜔 (C2k)
1−

1

2k

≤ 64k3∕2
⋅ (2𝜇)1∕2

⋅

(
2

𝑑

)1∕2

⋅ n
1

2k ⋅ (2𝜇) ⋅ hom𝜔(C2k)
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=
28k3∕2𝜇3∕2n

1

2k

𝑑
1

2

⋅ hom𝜔(C2k)

≤
1

S
⋅ hom𝜔(C2k).

In the inequalities above we used that 𝜔max ≤
1

𝛿(G)
≤

2

𝑑
and Δ𝜔(G) ≤ Δ(G) ⋅ 𝜔max ≤ 2𝜇

and finally, the inequality hom𝜔(C2k) ≥
(

1

2𝜇

)2k

proved in (5). ▪

It would be useful to be able to find many pairwise color-disjoint and vertex-disjoint paths between

a given pair (x, y) of vertices. To that end, we use Lemma 4.7 which will immediately follow from

Lemma 4.6 stated below, whose proof uses the arguments of Theorem 3.7 in [4]. For a graph G, and

vertices x, y ∈ V(G), and walks P,Q ∈ Hom(Pk), let PQ denote the closed walk in Hom
(
C

xy

2k

)
obtained

by concatenating P and the reverse of Q.

Lemma 4.6. Let k, s ≥ 1 be integers. Let G be a graph with a given weighting𝜔 ∶ E(G) →

R>0 and let x, y ∈ V(G). Let  be a subfamily of Hom
(
C

xy

2k

)
satisfying

∑
F∈ 𝜔(F) <

1

s2
hom𝜔

(
C

xy

2k

)
. Then there exist walks P1, … ,Ps ∈ Hom

(
P

xy

k

)
such that PiPj ∉  for

every distinct i, j ∈ [s].

Proof. Randomly and independently choose s members P1, … ,Ps of Hom
(
P

xy

k

)
, where

for each i ∈ [s] and P ∈ Hom
(
P

xy
k

)
, we have P(Pi = P) =

𝜔(P)

homw(P
xy

k )
. Note that this is

indeed a probability distribution, and Hom
(
C

xy

2k

)
=

{
PQ ∶ P,Q ∈ Hom

(
P

xy

k

)}
. For any

distinct i, j ∈ [s] and any P,Q ∈ Hom
(
P

xy

k

)
,

P(Pi = P, Pj = Q) =
𝜔(P)

hom𝜔

(
P

xy

k

) ⋅
𝜔(Q)

hom𝜔

(
P

xy

k

) =
𝜔(PQ)

homw

(
C

xy

2k

) .

Thus, the probability that PiPj ∈  is
∑

F∈ 𝜔(F)

hom𝜔(C
xy

2k)
<

1

s2
. Hence, by the union bound, with

positive probability, PiPj ∉  for every distinct i, j ∈ [s]. ▪

Lemma 4.7. Let k, s ≥ 1 be integers. Let G be a properly edge-colored graph with a

given weighting 𝜔 ∶ E(G) → R>0 and let x, y ∈ V(G). Suppose that hom∗
𝜔

(
C

xy

2k

)
<

1

s2

hom𝜔

(
C

xy

2k

)
. Then there are s pairwise color-disjoint and internally vertex-disjoint rain-

bow paths of length k from x to y.

Proof. By Lemma 4.6 applied to  = Hom∗
(
C

xy

2k

)
there exist walks P1, … ,Ps ∈

Hom
(
P

xy

k

)
satisfying PiPj ∉ Hom∗

(
C

xy

k

)
for every distinct i, j ∈ [s]. In other words,

PiPj is a rainbow copy of C2k for every distinct i, j ∈ [s]. This means that P1, … ,Ps

are pairwise color-disjoint and internally vertex-disjoint paths of length k from x to y, as

desired. ▪

5 COUNTING WALKS IN EXPANDERS

In this section we exploit the connection between the mixing time of a random walk on a graph G and

expansion properties of G. A lot of the notation and results that we use can be found in [12].

Suppose G = (V ,E) is a connected graph where V = [n]. Consider a random walk on V(G), where

we start at some vertex v0 and at the i-th step we move from vi to one of its neighbors, denoted by
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vi+1, where each neighbor of vi is chosen as vi+1 with probability
1

𝑑(vi)
. The sequence of vertices (vi)i≥0

defines a Markov chain. Let M be the n × n matrix of transition probabilities of the Markov chain,

namely Mv,u is the probability of stepping from v to u; so Mv,u =
1

𝑑(v)
if vu ∈ E(G), and Mv,u = 0

otherwise. So the probability that a random walk starting at vertex v reaches u in t steps is (Mt)v,u.

Definition 5.1. Let G be a graph on the vertex set [n]. Let D = D(G) denote the diagonal

n × n matrix where Dv,v =
1

𝑑(v)
for each v ∈ [n]. Let A = A(G) be the adjacency matrix

of G, let M(G) = DA and let N(G) = D1∕2AD1∕2. Note that the matrix N(G) is symmetric,

so it has n real eigenvalues. Let 𝜆1(N) ≥ 𝜆2(N) ≥ … ≥ 𝜆n(N) denote the eigenvalues of

N ∶= N(G).

Lemma 5.2. Let G be a bipartite graph, with a bipartition {X,Y}, on the vertex set [n]

with m edges and no isolated vertices. Let M = D(G)A(G) and N = N(G). Then for every

v, u ∈ V(G) and integer k ≥ 1, we have

||||
(Mk)v,u −

𝑑(u)

2m

(
1 + (−1)k+𝟙(v∈X)+𝟙(u∈X)

)||||
≤

√
𝑑(u)

𝑑(v)
⋅ (𝜆2(N))k.

Note that Lemma 5.2 says that when k is even and both v, u are in the same part or when k is odd

and v, u are in different parts then
|||(M

k)v,u −
𝑑(u)

m

||| ≤
√

𝑑(u)

𝑑(v)
⋅ (𝜆2(N))k. Note that when k is even and v

and u are in different parts or when k is odd and v and u are in the same part then (Mk)v,u = 0.

Proof. For any vector w = (w1, … ,wn)
T , let w be the vector (w′

1, … ,w′
n)

T where w′
i = wi

when i ∈ X and w′
i = −wi when i ∈ Y . It is easy to check that Nw = −Nw. Hence, if w is

an eigenvector of N with eigenvalue 𝜆, then w is an eigenvector of N with eigenvalue −𝜆. It

follows that 𝜆i = −𝜆n+1−i for i ∈ [n]. In particular, |𝜆i| ≤ 𝜆2 for every i ∈ {2, … , n − 1}.

One can check that w1, defined as follows, is a unit eigenvector of N with eigenvalue 1.

w1 =
1√
2m

(√
𝑑(1),

√
𝑑(2), … ,

√
𝑑(n)

)T

.

By the Frobenius–Perron theorem, since the entries of N are non-negative and the entries

of w1 are positive, we have 𝜆1 = 1. As explained above, it follows that w1 is a unit eigen-

vector of N with eigenvalue 𝜆n = −1. Write wn = w1, and let wi be a unit eigenvector of

N with eigenvalue 𝜆i for i ∈ {2, … , n − 1}, such that w1, … ,wn are orthogonal to each

other. Note that wi is an eigenvector of Nk with eigenvalue (𝜆i)
k, for each i ∈ [n]. Since

Nk is a symmetric matrix and {w1, … ,wn} is an orthonormal eigenbasis for Nk, we may

write Nk in the spectral form as follows (using 𝜆1 = 1 and 𝜆n = −1).

Nk =

n∑

i=1

(𝜆i)
kwi(wi)

T = w1(w1)
T + (−1)k w1(w1)

T +

n−1∑

i=2

(𝜆i)
kwi(wi)

T .

We also have D1∕2ND−1∕2 = DA = M. Therefore,

Mk = D1∕2NkD−1∕2

= D1∕2w1(w1)
TD−1∕2 + (−1)kD1∕2 w1(w1)

TD−1∕2 +

n−1∑

i=2

(𝜆i)
kD1∕2wi(wi)

TD−1∕2
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Let Q = D1∕2w1(w1)
TD−1∕2 + (−1)kD1∕2 w1(w1)

TD−1∕2. Then

Mk = Q +

n−1∑

i=2

(𝜆i)
kD1∕2wi(wi)

TD−1∕2.

Hence

(Mk)v,u = Qv,u +

n−1∑

i=2

(𝜆i)
kwi,vwi,u

√
𝑑(u)

𝑑(v)
. (6)

Let W be the matrix whose rows are w1, … ,wn. Then WWT = I, implying WTW = I.

For each v ∈ [n], since (WTW)v,v = 1, we have
∑n

i=1|wi,v|2 = 1, so
∑n−1

i=2 |wi,v|2 ≤ 1. By

the Cauchy–Schwarz inequality,
∑n−1

i=2 |wi,vwi,u| ≤
√∑n−1

i=2 |wi,v|2
√∑n−1

i=2 |wi,u|2 ≤ 1. Since

|𝜆i| ≤ 𝜆2 for every i ∈ {2, … , n − 1}, the inequality in (6) implies

|||(M
k)v,u − Qv,u

||| ≤
n−1∑

i=2

|𝜆i|k|wi,uwi,v| ⋅
√

𝑑(u)

𝑑(v)
≤ (𝜆2)

k

√
𝑑(u)

𝑑(v)
.

Finally, a straightforward calculation shows that Qv,u =
𝑑(u)

2m

(
1 + (−1)k+𝟙(v∈X)+𝟙(u∈X)

)
for

all v, u ∈ [n], as desired. ▪

Definition 5.3. For a graph G with m edges, let 𝜋(v) =
𝑑(v)

2m
, and for any S ⊆ V(G), let

𝜋(S) ∶=
∑

s∈S 𝜋(s); observe that 𝜋(S) ≤ 1 for every S ⊆ V(G). Define the conductance of

a set S, denoted by Φ(S), as

Φ(S) ∶=
e(S, Sc)

2m ⋅ 𝜋(S)𝜋(Sc)
,

and let the conductance of a graph G, denoted by ΦG, be defined as

ΦG ∶= min
S⊆V(G)

Φ(S).

Theorem 5.4 (Theorem 5.3 in [12]). Let G be a graph and let 𝜆2 = 𝜆2(N(G)). Then

𝜆2 ≤ 1 −
Φ2

G

8
.

In light of Theorem 5.4 and Lemma 5.6, it will be useful to have a lower bound on ΦG for a

(𝑑, 𝜂, 𝜀)-expander G. This is easy to achieve, as can be seen in the following lemma.

Lemma 5.5. Let 𝑑 ≥ 1, 𝜂 ∈ (0, 1), 𝜀 ∈ (0,
1

2
]. Let G be a (𝑑, 𝜂, 𝜀)-expander on n vertices.

Then ΦG ≥
𝜂

3
.

Proof. Let S ⊆ V(G). Since Φ(S) = Φ(Sc), we may assume that |S| ≤ n

2
≤ (1−𝜀)n. Obser-

vation 3.4 thus implies e(S, Sc) ≥
1

2
𝜂𝑑|S|. Let 𝛾 be such that e(S, Sc) = 𝛾𝑑|S|, so 𝛾 ≥

𝜂

2
.

By definition of a (𝑑, 𝜂, 𝜀)-expander, G is also 𝑑-minimal. Hence e(G[S]) ≤
1

2
𝑑|S|. Hence,∑

v∈S 𝑑(v) = 2e(G[S]) + e(S, Sc) ≤ 𝑑|S| + 𝛾𝑑|S|. Also, observe that 𝜋(Sc) ≤ 1. Hence

Φ(S) =
e(S, Sc)

2e(G)𝜋(S)𝜋(Sc)
≥

e(S, Sc)∑
v∈S 𝑑(v)

≥
𝛾𝑑|S|

𝑑|S| + 𝛾𝑑|S| ≥
𝛾

1 + 𝛾
≥

𝜂

𝜂 + 2
≥

𝜂

3
.

The above inequality thus implies ΦG ≥
𝜂

3
. ▪
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Recall that given a graph G and two vertices x, y, the quantity hom𝜔

(
P

xy

k

)
denotes the sum of

weights of walks of length k from x to y. The following lemma and its immediate corollary will allow

us to compare the values of hom𝜔

(
P

xy

k

)
, where w(xy) =

1√
𝑑(x)𝑑(y)

for every edge xy, for different pairs

of vertices (x, y) in G.

Lemma 5.6. Let 𝑑 ≥ 1, 𝜂 ∈ (0, 1), 𝜀 ∈ (0,
1

2
]. Let G be a bipartite (𝑑, 𝜂, 𝜀)-expander on n

vertices with bipartition {X,Y}. Define a weighting 𝜔 ∶ E(G) → R≥0, such that for each

edge xy in G, 𝜔(xy) =
1√

𝑑(x)𝑑(y)
. The following holds for any two vertices x, y ∈ V(G) and

every integer k ≥ 1.

||||||

hom𝜔

(
P

xy

k

)√
𝑑(y)

∑
z∈V(G) hom𝜔

(
Pxz

k

)√
𝑑(z)

−
𝑑(y)

2e(G)

(
1 + (−1)k+𝟙(x∈X)+𝟙(y∈X)

)||||||
≤

√
𝑑(y)

𝑑(x)

(
1 −

𝜂2

72

)k

.

Proof. Let M = M(G), N = N(G) and let 𝜆2 be the second largest eigenvalue of N. Let

x be any vertex in G. Let W
x
k be a random walk of length k starting at x. For any walk

P = x0 … xk in G, where x0 = x,

P
[
W

x
k = P

]
=

1

𝑑(x0)
⋅ … ⋅

1

𝑑(xk−1)
.

Note that

𝜔(P) =
1√

𝑑(x0)𝑑(x1)
⋅ … ⋅

1√
𝑑(xk−1)𝑑(xk)

=

√
𝑑(x0)√
𝑑(xk)

⋅
1

𝑑(x0) ⋅ … ⋅ 𝑑(xk−1)
=

√
𝑑(x0)√
𝑑(xk)

⋅ P
[
W

x
k = P

]
.

For any vertex y in G, by definition,

P[Wx
k ends at y] =

∑

P∶=xx1 … xk−1y

P
(
W

x
k = P

)
=

√
𝑑(y)

√
𝑑(x)

∑

P∶P=xx1 … xk−1y

𝜔(P) = hom𝜔

(
P

xy
k

)
⋅

√
𝑑(y)

𝑑(x)
.

On the other hand, notice that

1 =
∑

z∈V(G)

P
[
W

x
kends at z

]
=

∑

z∈V(G)

hom𝜔

(
Pxz

k

)
⋅

√
𝑑(z)

𝑑(x)
.

Recall from our discussion before Definition 5.1, that the probability that a random walk

of length k starting at x ends at y is exactly (Mk)x,y, thus

(Mk)x,y = P
[
W

x
kends at y

]
=

hom𝜔

(
P

xy

k

)√
𝑑(y)

𝑑(x)

∑
z∈V(G) hom𝜔

(
Pxz

k

)√
𝑑(z)

𝑑(x)

=
hom𝜔

(
P

xy

k

)√
𝑑(y)

∑
z∈V(G) hom𝜔

(
Pxz

k

)√
𝑑(z)

.

By Lemma 5.2,

||||||

√
𝑑(y) hom𝜔

(
P

xy

k

)
∑

z∈V(G)

√
𝑑(z) hom𝜔

(
Pxz

k

) −
𝑑(y)

2e(G)

(
1 + (−1)k+𝟙(x∈X)+𝟙(y∈X)

)||||||
≤

√
𝑑(y)

𝑑(x)
⋅ (𝜆2)

k. (7)



JIANG ET AL. 639

Theorem 5.4 gives that 𝜆2 ≤ 1 −
Φ2

G

8
, and by Lemma 5.5 we have ΦG ≥

𝜂

3
. It follows that

𝜆2 ≤ 1 −
𝜂2

72
. Combining this inequality with (7), the lemma follows. ▪

Corollary 5.7. Let 𝑑 ≥ 1, 𝜂 ∈ (0, 1), 𝜀 ∈ (0,
1

2
]. Let G be a bipartite (𝑑, 𝜂, 𝜀)-expander

on n vertices with a bipartition {X,Y} and with a given weighting 𝜔 ∶ E(G) → R>0 such

that for each edge xy in G, 𝜔(xy) =
1√

𝑑(x)𝑑(y)
. The following holds for any two vertices

x, y ∈ X and even integer k ≥ 2.

|||||

hom𝜔

(
P

xy

k

)√
𝑑(y)

∑
z∈X hom𝜔

(
Pxz

k

)√
𝑑(z)

−
𝑑(y)

e(G)

|||||
≤
√

n

(
1 −

𝜂2

72

)k

.

Proof. Let x, y ∈ X be given. Since k is even, for each z ∈ Y , Hom
(
Pxz

k

)
= ∅. The claim

follows by applying Lemma 5.6 and the fact that
√

𝑑(y)

𝑑(x)
≤
√

n. ▪

The next lemma contains the main takeaway from our discussion about random walks in almost

regular bipartite expanders. It tells us that for relatively large k, and for the weighting defined by

w(xy) =
1√

𝑑(x)𝑑(y)
, the values of hom𝜔

(
C

xy

2k

)
do not differ by much over the range of pairs (x, y) where

x and y are in the largest part of the bipartition.

Lemma 5.8. Let n, 𝑑, 𝜇, k ≥ 1 and 𝜂 ∈ (0, 1), 𝜀 ∈ (0,
1

2
]. Suppose that k is an even

integer satisfying k ≥
29 log n

𝜂2
. Let G be a bipartite (𝑑, 𝜂, 𝜀)-expander with maximum degree

at most 𝜇𝑑 and with a given weighting 𝜔 ∶ E(G) → R>0 such that for each edge xy in G,

𝜔(xy) =
1√

𝑑(x)𝑑(y)
. Let {X,Y} be the bipartition of G and suppose that |X| ≥ n

2
. Let

𝜌min = min{hom𝜔

(
C

xy

2k

)
∶ x, y ∈ X}

𝜌max = max{hom𝜔

(
C

xy

2k

)
∶ x, y ∈ X}.

Then 𝜌max ≤ 210𝜇2
⋅ 𝜌min.

Proof. By Corollary 5.7, for every x, y ∈ X we have

|||||

hom𝜔

(
P

xy

k

)√
𝑑(y)

∑
z∈X hom𝜔

(
Pxz

k

)√
𝑑(z)

−
𝑑(y)

e(G)

|||||
≤
√

n

(
1 −

𝜂2

72

)k

≤
√

n ⋅ exp

(
−

k𝜂2

72

)
≤
√

n ⋅ exp(−4 log n) ≤
1

n3
≤

𝑑(y)

2e(G)
.

It follows that

𝑑(y)

2e(G)
≤

hom𝜔

(
P

xy

k

)√
𝑑(y)

∑
z∈X hom𝜔

(
Pxz

k

)√
𝑑(z)

≤
2𝑑(y)

e(G)
.

Writing the same for x,w ∈ X we obtain

𝑑(w)

2e(G)
≤

hom𝜔

(
Pxw

k

)√
𝑑(w)

∑
z∈X hom𝜔

(
Pxz

k

)√
𝑑(z)

≤
2𝑑(w)

e(G)
.
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Hence, every x, y,w ∈ X satisfy

hom𝜔

(
P

xy

k

)

hom𝜔

(
Pxw

k

) =
hom𝜔

(
P

xy

k

)√
𝑑(y)

hom𝜔

(
Pxw

k

)√
𝑑(w)

⋅

√
𝑑(w)

𝑑(y)
≤

4𝑑(y)

𝑑(w)
⋅

√
𝑑(w)

𝑑(y)
= 4

√
𝑑(y)

𝑑(w)
≤ 4

√
2𝜇,

where the second inequality follows from the fact that the minimum degree of G is at least
𝑑

2
(by Observation 3.2) and the maximum degree is at most 𝜇𝑑.

Observe that hom𝜔

(
P

xy

k

)
= hom𝜔(P

yx

k ) for x, y ∈ X. It follows that, for every

x, y, z,w ∈ X,

hom𝜔

(
P

xy

k

)

hom𝜔

(
Pzw

k

) =
hom𝜔

(
P

xy

k

)

hom𝜔

(
Pxz

k

) ⋅
hom𝜔

(
Pxz

k

)

hom𝜔

(
Pzw

k

) ≤ 32𝜇.

Let x, y, z,w ∈ X satisfy 𝜌max = hom𝜔

(
C

xy

2k

)
and 𝜌min = hom𝜔(C

zw
2k ). Then

𝜌max

𝜌min

=
hom𝜔

(
C

xy

2k

)

hom𝜔(C
zw
2k )

=

(
hom𝜔

(
P

xy

k

)

hom𝜔

(
Pzw

k

)
)2

≤ 210𝜇2,

proving the lemma. ▪

Recall that, by Lemma 4.7, pairs of vertices (x, y) for which hom∗
𝜔

(
C

xy

2k

)
is considerably smaller

than hom𝜔

(
C

xy

2k

)
can be used to build many color-disjoint and internally vertex-disjoint rainbow paths.

The following lemma shows that for large enough k and 𝑑, almost all pairs of vertices in one of the

parts of an almost regular bipartite expander satisfy this property.

Lemma 5.9. Let n, 𝑑, 𝜇, k, s, p ≥ 1 and 𝜂 ∈ (0, 1), 𝜀 ∈ (0,
1

2
]. Suppose that k is even and

satisfies k ≥
29 log n

𝜂2
and that 𝑑 ≥ 238k3𝜇7s4p2n1∕k. Let G be a bipartite (𝑑, 𝜂, 𝜀)-expander

on n vertices with maximum degree at most 𝜇𝑑 and with a given weighting 𝜔 ∶ E(G) →

R>0 such that for each edge xy in G, 𝜔(xy) =
1√

𝑑(x)𝑑(y)
. Let {X,Y} be the bipartition of

G and suppose that |X| ≥
n

2
. Then for all but at most

n2

p
pairs (x, y) with x, y ∈ X the

following holds.

hom∗
𝜔

(
C

xy

2k

)
≤

1

s2
hom𝜔

(
C

xy

2k

)
.

Proof. Let S = 211𝜇2s2p, and let 𝜌min and 𝜌max be defined as in the statement of

Lemma 5.8. Then, by the same lemma we have 𝜌max ≤ 210𝜇2𝜌min. Let A be the collection

of (ordered) pairs (x, y) with x, y ∈ X that satisfy hom∗
𝜔

(
C

xy

2k

)
≥

1

s2
hom𝜔

(
C

xy

2k

)
. Then

hom∗
𝜔(C2k) ≥

∑

(x,y)∈A

hom∗
𝜔

(
C

xy

2k

)
≥

1

s2

∑

(x,y)∈A

hom𝜔

(
C

xy

2k

)
≥

|A| ⋅ 𝜌min

s2
.

Note that
∑

x,y∈X hom𝜔

(
C

xy

2k

)
=

∑
x,y∈Y hom𝜔

(
C

xy

2k

)
, and so hom𝜔(C2k) =

2
∑

x,y∈X hom
(
C

xy

2k

)
. Hence, by Lemma 4.5 (which is applicable since 𝑑 ≥ 216𝜇3k3S2n1∕k),

hom∗
𝜔(C2k) ≤

1

S
⋅ hom𝜔(C2k) =

2

S

∑

x,y∈X

hom𝜔

(
C

xy

2k

)
≤

2n2
⋅ 𝜌max

S
.
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Combining the lower and upper bounds on hom∗
𝜔(C2k), we obtain the required inequality,

as follows.

|A| ≤ 2n2
⋅ s2

⋅ 𝜌max

S ⋅ 𝜌min

≤
n2

⋅ 211𝜇2s2

S
=

n2

p
,

as desired. ▪

6 RAINBOW PATHS AND SUBDIVISIONS IN EXPANDERS

We now prove our first main result about rainbow subdivisions.

Proof of Theorem 1.2. Let G′ be a bipartite subgraph of G with at least
e(G)

2
edges. Then

𝑑(G′) ≥ (log n)53. We apply Lemma 3.9 to obtain a subgraph H of G′ with the following

properties.

1 H is a (𝑑, 𝜂, 𝜀)-expander on n′ vertices, where 𝑑 ≥
𝑑(G′)

2500(log n)2
≥ (log n)50, 𝜀 =

1

2
and

𝜂 =
𝜀

100(log n′)2
=

1

200(log n′)2
,

2 H has maximum degree at most 𝜇𝑑, where 𝜇 = 2500(log n′)2.

Denote the bipartition of H by {X,Y}, and suppose that |X| ≥ n′

2
. Next, we aim to apply

Lemma 5.9 to H. With that in mind, we let k be the smallest even integer which is at least
29 log n′

𝜂2
, so k = Θ

(
(log n′)5

)
. Let s = 2

(
m

2

)
k and p = 8m. Let A be the set of pairs (x, y)

with x, y ∈ X that satisfy hom∗
𝜔

(
C

xy

2k

)
>

1

s2
hom𝜔

(
C

xy

2k

)
. Note that 238k3𝜇7s4p2(n′)1∕k =

Θ
(
(log n′)49

)
< 𝑑 and so, by Lemma 5.9, we have |A| ≤ (n′)2

p
=

(n′)2

8m
<

1

m−1

(
|X|
2

)
, noting

that n′ is sufficiently large.

Hence by Turán’s theorem, there is a subset Z ⊆ X of size m, such that (x, y) ∉ A for

every distinct x, y ∈ Z. By Lemma 4.7, for any two vertices x and y in Z, there exist s

many pairwise color-disjoint and internally vertex-disjoint rainbow paths of length k from

x to y. By the choice of s, one can find greedily
(

m

2

)
many paths of length k, which are

pairwise colour-disjoint and internally vertex-disjoint, and are internally vertex-disjoint

from Z, each of which connecting a different pair of vertices in Z. This gives us the desired

rainbow subdivision of Km. ▪

Given a set of m vertices in a graph G, a Km-subdivision rooted at Z is a subgraph consisting of
(

m

2

)

paths, each joining a different pair of distinct vertices in Z, whose interiors are pairwise vertex-disjoint

and disjoint from Z. By slightly adapting the proof of Theorem 1.2, one can show that any bipartite

(𝑑, 𝜂, 𝜀)-expander G (with suitable parameters) contains a rainbow Km-subdivision rooted at Z for

almost all the m-sets Z in V(G) (not just in X). By using some additional tools, we next show that in

a bipartite (𝑑, 𝜂, 𝜀)-expander with suitable parameters, in fact, one can find a rainbow Km-subdivision

rooted at Z for every m-set Z in V(G).

Theorem 6.1. Let n,L, 𝑑, 𝜇,m ≥ 2, 𝜂 ∈ (0, 1) and 𝜀 ∈ (0,
1

8
], and suppose that L =

210 log n

𝜂2
and 𝑑 ≥

2122m8𝜇7(log n)7

𝜂14
. Let G be a bipartite (𝑑, 𝜂, 𝜀)-expander with maximum degree

at most 𝜇𝑑, and let Z be a set of m vertices in G. Then there is a rainbow Km-subdivision,

rooted at Z, where every edge is subdivided at most L times.



642 JIANG ET AL.

Proof. Let 𝓁 =
4 log n

𝜂
and let k be the smallest even integer satisfying k ≥

29 log n

𝜂2
. One can

check that L ≥ 2(𝓁 + 1) + k. ▪

Claim 6.2. Let M be any set of colors and vertices such that |M| ≤ 2
(

m

2

)
(L + 1). Let x, y

be any two vertices in G. There exists a rainbow x, y-path of length at most L in G that

avoids M.

Proof of Claim 6.2. Let q = 256𝓁. By Lemma 3.7 (using 𝑑 ≥
20q𝓁+8[2

(
m

2

)
(L+1)]

𝜂
), there

exists a subset Ux ⊆ V(G) of size at least (1 − 𝜀)n and a collection of paths  = {P(u) ∶

u ∈ Ux}, where for each u ∈ Ux the path P(u) is a rainbow path from x to u of length

at most 𝓁 + 1 that avoids M, and no color appears in more than
n

q
of the paths in  .

Similarly, there exists a subset Uy ⊆ V(G) of size at least (1−𝜀)n and a collection of paths

 = {Q(u) ∶ u ∈ Uy} where for each u ∈ Uy the path Q(u) is a rainbow path from y to u

of length at most 𝓁 + 1 that avoids M, and no color appears in more than
n

q
of the paths in

. Write U = Ux ∩ Uy; then |U| ≥ (1 − 2𝜀)n ≥
3n

4
.

We call an ordered pair (u, v) with u, v ∈ U color-bad if there is a color that appears on

both paths P(u) and Q(v). We next show that the number of color-bad pairs in U is small

compared to the number of all pairs. Indeed, let H be the auxiliary graph on the vertex

set U where uv is an edge whenever at least one of (u, v) and (v, u) is color-bad. Note that

𝑑H(u) ≤
2(𝓁+1)n

q
, for every u ∈ U, since P(u) has length at most 𝓁 + 1 and any color on

P(u) appears at most
n

q
times in the collection  (and similarly with the roles of P and Q

reversed). Thus, e(H) ≤
(𝓁+1)n

q
|U| ≤ 2𝓁n

q
|U| ≤ n2

128
.

Let s = |M| + 2(𝓁 + 1) + 1; then s ≤ 2
(

m

2

)
(L + 1) + 2𝓁 + 3 ≤ 2m2L. Denote the

bipartition of G by {X,Y} and suppose that |X| ≥
n

2
. Call a pair (u, v), with u, v ∈ X,

s-bad if hom∗
𝜔(C

uv
2k) >

1

s2
hom(Cuv

2k). Applying Lemma 5.9 with p = 64 and verifying the

condition on 𝑑 (namely, that 𝑑 ≥ 238k3𝜇7s4p2(n)1∕k), at most
n2

64
ordered pairs (u, v), with

u, v ∈ X, are s-bad.

We claim that there is a pair (u, v), with u, v ∈ U ∩ X, which is neither color-bad nor

s-bad. Indeed, the total number of ordered pairs (u, v) with u, v ∈ U ∩ X where (u, v) is

either color-bad or s-bad is at most
n2

128
+

n2

64
≤

n2

32
. Since |U| ≥ 3n

4
and |X| ≥ n

2
, we have

|X ∩ U| ≥ n

4
, so the number of ordered pairs (u, v) with u, v ∈ U ∩ X is certainly more

than
n2

32
. Hence, there is a pair (u, v) which is neither color-bad nor s-bad, as claimed. Since

(u, v) is not s-bad, by Lemma 4.7 there are s many pairwise color-disjoint and internally

vertex-disjoint rainbow paths of length k from u to v. By the choice of s, there is at least one

such path T(uv) which shares no colors with the paths P(u) and Q(v) and also avoids M.

Since (u, v) is not color-bad, P(u) and Q(v) are color-disjoint. It follows that P(u)T(uv)Q(v)

is a rainbow x, y-walk avoiding M which contains a rainbow x, y-path, as desired.

Let (x1, y1), … , (x( m

2

), y( m

2

)) be an arbitrary ordering of the unordered pairs (x, y)

where x, y ∈ Z and x ≠ y. We iteratively build paths Pi for i ∈ [
(

m

2

)
], as follows. Let

P1 be any rainbow x1, y1-path of length at most L, which exists by Claim 6.2. In general,

suppose P1, … ,Pi have been defined, where i <
(

m

2

)
. We let Mi denote the set of ver-

tices and colors used in ∪i
j=1Pj and let Pi+1 be a rainbow xi+1, yi+1-path of length at most

L that avoids Mi ⧵ {xi+1, yi+1}. Since |Mi| ≤ 2
(

m

2

)
(L + 1), by Claim 6.2 such a path
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Pi+1 exists. Hence, we are able to find P1, … ,P(
m

2

) as described above. Now,
⋃

(
m

2

)

i=1 Pi

forms a rainbow Km-subdivision rooted at Z in which each edge is subdivided at most L

times. ▪

7 CONCLUSION

In this paper we showed that there is a constant c ≤ 53 such that for fixed m and sufficiently large n any

n-vertex properly edge-colored graph G with at least n(log n)c edges contains a rainbow subdivision

of Km. On the other hand, an immediate lower bound is given by the best known lower bound from [7]

on ex∗(n,), which is Ω(n log n). This shows that our bound is tight up to a polylogarithmic factor. We

pose the following question.

Question 7.1. Fix m ≥ 2. What is the smallest c such that for all sufficiently large n

the following holds: if G is a properly edge-colored graph on n vertices with at least

Ω(n(log n)c) edges, then it contains a rainbow subdivision of Km? In particular, is c = 1?

For the clarity of presentation, we did not optimize our arguments to obtain the best possible value

of c. However, to answer Question 7.1, new ideas will be needed. Note that even the correct order of

magnitude of ex∗(n,) is still unknown. On another note, as mentioned previously, Janzer [4] proved

ex∗(n,) = O(n(log n)4), using the counting lemmas on closed walks. It is worth to mention that

from our methods, an alternative proof of ex∗(n,) = O(n(log n)5) can be obtained by using the basic

expansion property of an expander (Lemma 3.7) and a digraph idea used by Letzter [11] regarding the

Turán number of the family of tight cycles.
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