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Abstract

Understanding the relationship between intraspecific trait variability (ITV) and its
biotic and abiotic drivers is crucial for advancing population and community ecol-
ogy. Despite its importance, there is a lack of guidance on how to effectively sam-
ple ITV and reduce bias in the resulting inferences. In this study, we explored how
sample size affects the estimation of population-level ITV, and how the distribu-
tion of sample sizes along an environmental gradient (i.e., sampling design) impacts
the probabilities of committing Type | and Il errors. We investigated Type | and Il
error probabilities using four simulated scenarios which varied sampling design and
the strength of the ITV-environment relationships. We also applied simulation sce-
narios to empirical data on populations of the small mammal, Peromyscus manicula-
tus across gradients of latitude and temperature at sites in the National Ecological
Observatory Network (NEON) in the continental United States. We found that
larger sample sizes reduce error rates in the estimation of population-level ITV
for both in silico and Peromyscus maniculatus populations. Furthermore, the influ-
ence of sample size on detecting ITV-environment relationships depends on how
sample sizes and population-level ITV are distributed along environmental gradi-
ents. High correlations between sample size and the environment result in greater
Type | error, while weak ITV-environmental gradient relationships showed high
Type Il error probabilities. Therefore, having large sample sizes that are even across
populations is the most robust sampling design for studying ITV-environment re-
lationships. These findings shed light on the complex interplay among sample size,

sampling design, ITV, and environmental gradients.
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1 | INTRODUCTION

A central focus of ecology is to understand how species relate to
their biotic and abiotic environments. Species traits have long been
used as a currency for linking species to environmental gradients (de
Bello et al., 2021; McGill et al., 2006) and assessing the influence of
biotic interactions on biodiversity patterns (Read, Baiser, et al., 2018;
Whittaker, 1972). Traits are commonly used to predict species re-
sponses to climatic change and habitat loss (Hoffmann & Sgro, 2011;
Maclean & Beissinger, 2017), assess how assemblages and food
webs reorganize following colonization or emigration of new species
(e.g., invasion; Baiser et al., 2010; Baiser & Lockwood, 2011; Miehls
et al., 2009), and unravel large-scale patterns in species distribu-
tions across geographic gradients (Carvalho et al., 2023; Montafio-
Centellas et al., 2020; Siders et al., 2022).

Although functional traits mediate species-environment rela-
tionships at the individual level, intraspecific trait variation (ITV) has
long been neglected in ecological studies. It was only in the past de-
cade that the field of trait-based ecology experienced a resurgence
in the use of individual-level trait measures to advance population
and community ecology (Bolnick et al., 2011; Violle et al., 2012).
In contrast to the mean-trait approach, ITV reflects niche width,
providing insights into organism-environment interactions and the
mechanisms driving biodiversity patterns (Fajardo & Siefert, 2019).
For example, ITV has been shown to influence coexistence among
species (Hogle et al., 2022; Holdridge & Vasseur, 2022; Jordani
et al., 2019; Stump et al., 2022), macroecological relationships
(Read, Baiser, et al., 2018; Read, Grady, et al., 2018), the estab-
lishment of invasive species (Helsen et al.,, 2020; Westerband
et al., 2021), and species distributions across space and time (Fang
et al., 2019; Guisan et al., 2019; He et al.,, 2021; Violle et al., 2012)
with implications for community assembly and structure (Lavorel
& Garnier, 2002; Siefert et al.,, 2015; Westerband et al.,, 2021;
Wickman et al., 2022).

Intraspecific trait variation can be studied at a variety of spatial
scales (i.e., grains and extents; Wiens, 1989), providing information
on the level of biological organization of interest (e.g., populations,
communities, ecosystems). For example, in studies that aim to assess
patterns of trait variation for a species (e.g., body size variation along
latitudinal gradients; Bergmann's Rule, 1847), the spatial extent can
be the entire species' geographical range. In such an approach, the
spatial grain is often locations of individuals opportunistically col-
lected across the species range (e.g., Guralnick et al., 2020; Riemer
et al., 2018). On the opposite end of the spectrum, the spatial extent
and grain may be a single location where individuals are exhaustively
sampled and measured to capture population-level ITV from a single
population (e.g., Pease & Mattson, 1999). Exhaustive sampling can
also be conducted at several locations (e.g., across an environmental
gradient) to capture population-level ITV for multiple populations
(e.g., Westerband et al., 2021). Furthermore, population-level ITV
can be calculated for multiple populations of co-occurring species
in a given location to give insight into the trait overlap of coexisting
species within a community (Read, Baiser, et al., 2018).

Regardless of the spatial extent or grain or whether an ITV study
focuses on one species or an entire community, accurately quan-
tifying ITV is challenging for several reasons. First, estimating ITV
hinges on the successful capture and measurement of multiple in-
dividuals, which can be constrained by cost, time, and capture rate
among other challenges. Second, there is little to no guidance on the
number of individuals necessary to accurately estimate ITV. In many
studies, researchers set an a priori sample size based on available
resources or select n=10 as a sample size (Gotelli & Ellison, 2004). In
other studies, ITV is simply calculated based on the number of indi-
viduals that end up being sampled (or obtained from museum speci-
mens), which can vary across populations, species, or environmental
gradients (e.g., Read, Baiser, et al., 2018). Previous simulations based
on in silico populations and empirical data revealed that sample sizes
greater than 20 individuals significantly improved the accuracy of
population-level ITV estimation (Yang et al., 2020). However, there
are many factors that may influence our conclusions about ITV and
its relationship with environmental gradients that have yet to be ex-
plored, such as sample size and sample design.

The lack of information on ITV or bias in ITV estimates can
limit the understanding of how species respond to environmental
changes. Without accurately capturing ITV, scientists may overlook
the adaptive potential of individuals, leading to inaccurate predic-
tions of species survival, invasion, adaptation, and ecosystem resil-
ience (Moran et al., 2016). In this study, we explored how sample size
affects the estimation of population-level ITV, and how the distribu-
tion of sample sizes along an environmental gradient (i.e., sampling
design) affects the inferences we can draw regarding relationships
between population-level ITV and environmental gradients. We
sought to understand when different sampling designs along an en-
vironmental gradient would lead to the conclusion of a significant
ITV-environment relationship when there was none (i.e., Type |
error) or to the rejection of an ITV-environment relationship when
one existed (i.e., Type Il error). We simulated four Scenarios where we
varied the number of individuals sampled from each population, the
sample size-environmental gradient relationship, the ITV of the pop-
ulations, and the underlying population ITV-environmental gradient
relationship. We performed these simulations for in silico popula-
tions, as well as empirical populations of a small mammal (Peromyscus
maniculatus). We used our simulations to calculate the probabilities
of Type | and Il errors associated with different sampling designs to
inform future studies of population-level ITV.

2 | MATERIALS AND METHODS

We ran three sets of simulations to explore how sample size and
sampling design influence the estimation of population-level ITV
and the detection of ITV-environment relationships. The basis of the
first two sets of simulations was a collection of 98 in silico popula-
tions, each with 100 individuals. Each population had a log-normally
distributed theoretical trait with a mean of 15, and the standard de-
viation varied across populations at 98 even intervals between 0.01
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and 15. For the third set of simulations, we used empirical data on
body size variation of Peromyscus maniculatus populations across
the continental United States collected by the National Ecological
Observatory Network (NEON). For a detailed summary of the simu-
lation parameters, see Table S1.

2.1 | Insilico simulations
2.1.1 | 1% set of simulations: In silico sample size
simulation

In our first simulation, we explored how sample size influenced the
estimation of population-level ITV. From each in silico population
described above (n=98), we randomly sampled from 2 to 99 indi-
viduals without replacement and measured ITV as the coefficient of
variation (standard deviation/mean; CV) of the individuals sampled.
We denoted this estimate of ITV as CV. We repeated this process
1000 times and calculated root mean square error (RMSE) between
the 1000 CV values and true population-ITV (measured as the CV
of all 100 individuals in a population) for each sample size-standard
deviation combination. Therefore, for this first set of simulations, we
gathered a total of 9604 RMSE values, one for each sample size-true
population-level ITV combination.

21.2 | 2" set of simulations: In silico sample
size-environmental gradient simulations

Our second set of simulations assessed ITV for in silico populations

evenly arrayed across a theoretical environmental gradient (e.g.,

(a)
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(c)

Scenario 1

Fixed ITV

Varied n
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elevation for illustration in Figure 1), which was given an arbitrary
range of values from 1 to 10 in increments of one. For a set of 10
populations (see also Figures S5 and Sé for simulations with 5 and 15
populations), we simulated relationships between true population-
level ITV, sample size, and an environmental gradient in four dif-
ferent Scenarios. In Scenarios one and two, true population-level
ITV remained constant along the gradient (Figure 1a,b), whereas
in Scenarios three and four, true population-level ITV was signifi-
cantly correlated with the gradient (Figure 1c,d). Thus, in Scenarios
one and two, we explored Type | error rates (i.e., false positives) in
ITV-environmental gradient relationships, and in Scenarios three
and four, we explored Type Il error rates (i.e., false negatives). For
schematic examples of the simulation process for each scenario, see
Figures S1-S4.

In silico scenarios one and two

In Scenario one (Figure 1a), there was no relationship between the
environmental gradient and true population-level ITV (i.e., each of
the 10 populations in the simulation had identical trait distribu-
tions). However, the number of individuals sampled from each pop-
ulation varied and was correlated with the environmental gradient
(e.g., capture probability decreased with elevation; Figure 1a). The
sample sizes for this Scenario ranged from 2 to 99 individuals, with
values evenly distributed across the 10 populations (i.e., 2, 13, 24,
34, 45, 56, 67, 77, 88, 99 individuals). We conducted all possible
permutations of these 10 values of sample size relative to the gra-
dient, resulting in 3,628,800 arrangements of sample size along
the gradient. Then, we randomly selected 100 arrangements that
corresponded to sample size-environmental gradient correlations
(r) evenly spaced between 0.01 and 1 (Figure S1). For a given sam-
ple size-environmental gradient correlation, we randomly sampled

(b)

A
A

Scenario 2
Fixed ITV

/\ Fixed n
N YN
A Scenario 4
Varied ITV
Fixed n

FIGURE 1 Schematicillustration representing the four simulation Scenarios where the mountain (i.e., elevation) represents an
environmental gradient, the blue circles represent the sample size and the green parabolas represent the intraspecific trait variation (ITV) of
the in silico populations. (a) Scenario one represents the case where true population-level ITV remained the same along the environmental
gradient (i.e., fixed ITV), and the researcher varied the number of individuals (n) collected along an environmental gradient (i.e., varied n). (b)
Scenario two represents the case where both ITV and sample sizes are constant along the gradient (i.e., Fixed ITV and Fixed n). (c) In Scenario
three, ITV and sample size varied along the gradient (i.e., Varied ITV and Varied n). (d) In Scenario four, the true population-level ITV changed
along the environmental gradient (Varied ITV), but the sample size collected from each population was constant (Fixed n).
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the corresponding number of individuals from each population
and estimated ITV as the CV of the samples. We then regressed
cv against the environmental gradient and extracted the result-
ing p-value. We repeated this process 1000 times and used the
frequency of p<.05 out of 1000 regressions as a measure of Type
| error (see Figure 2, for stepwise schematic). We ran this simula-
tion for all combinations of sample size-environmental gradient
correlation (r) and population-level ITV (n=9800).

Like Scenario one, in Scenario two (Figure 1b), there was no rela-
tionship between the environmental gradient and true population-
level ITV (i.e., testing of Type | error). However, the number of
individuals sampled from each population was the same across the
gradient (i.e., this is a Scenario where the researcher sets an equal
a priori number of individuals to sample from each population).
We tested sample sizes ranging from 2 to 99 for all levels of true
population-level ITV (Figure S2). For a given combination of sample
size and true population-level ITV, we randomly drew the number
of individuals from each of the 10 populations and estimated the cv
for each sample. We then regressed cv against the environmental

gradient and extracted the p-value of the regression. We repeated

AVAVAVAVAVAVAVAWAWA

1Ene

CV CV CV CV CV CV CV CV CV CV

this process 1000 times and used the frequency of p<.05 out of
1000 regressions as a measure of Type | error. We ran this simu-
lation for all combinations of sample size and true population-level
ITV (h=9604).

In silico scenarios three and four

In Scenarios three and four, we tested the probability of a Type Il
error. For these two Scenarios, true population-level ITV varied
along the environmental gradient (Figure 1c,d). To simulate correla-
tions between ITV and the environmental gradient, we selected 10
populations with true population-level ITV ranging from SD=0.01
to 15, which is equivalent to CV=0.001 to 1 since all the popula-
tions were set to have the same mean of 15. The CV values were
evenly distributed across the 10 populations (i.e., CV=0.001, 0.11,
0.23, 0.33, 0.45, 0.54, 0.65, 0.76, 0.86, 1). We conducted all pos-
sible permutations of these 10 values of ITV relative to the gradi-
ent, resulting in 3,628,800 arrangements of ITV that corresponded
to ITV-environmental gradient correlations (r) ranging from 0.01 to
0.99. However, because we wanted to test for a Type Il error in this

Scenario where the alternative hypothesis of true population-level

Step 1

Simulate populations
of true population-
level ITV based on the

scenario

Step 2

Draw n individuals
per population based

o [ J ® o [ ] [ J [ J o [ J ®
[ J d ®
o [
P-value = 0.45 .
- —— = M
Environment

Environment

on the scenario and
estimate ITV of
samples as CV

Step 3
Regress v against
the environment and
extract p-value.

Step 4
Repeat steps 2 and 3
1000 times, resulting

in 1000 p-values.

Step 5
Calculate the frequency
of significant (or non-
significant) p-values to
guantify Type | (or Type
I1) error probability.

FIGURE 2 Workflow of the simulation
process. After setting the number of
individuals to be sampled and the ITV

for each population along the gradient
according to a given Scenario, we followed
these steps to assess the probabilities

of Type | and Il errors. In step one, we
define the true population-level ITV of
each population and the relationship to
the environmental gradient. In step two,
we sampled the number of individuals

(n) from each population based on the
Scenario and estimated ITV as CV for

each of the samples. In step three, the
CVs calculated in step two become the
response variable for a regression against
the environmental variable and the p-value
of the regression is extracted. In step four,
steps one through three are repeated
1000 times to generate 1000 p-values.

In step five, we used the frequency of
p-values <.05 (or p-values>.05) (blue lines)
out of 1000 regressions to calculate the
probability of a Type | (or Type Il) error.
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ITV being correlated with the environmental gradient was true, we
filtered correlations for those with p-values<.05, which resulted in
37 correlations that ranged between r=.63 and 1. In other words,
only 37 arrangements of ITV values along the gradient guaranteed
statistically significant correlations between the theoretical envi-
ronment and true population-level ITV.

For Scenario 3 (Figure 1c), the number of individuals sampled
from each of the 10 populations was correlated to the environmental
gradient (see Scenario one). For a given combination of sample size-
environmental gradient and true ITV-environmental gradient cor-
relations, we randomly drew the number of individuals from each of
the 10 populations and calculated the CV for each sample (Figure S3).
We then regressed cv against the environmental gradient and ex-
tracted the p-value of the regression. We repeated this process 1000
times and used the frequency of p>.05 out of 1000 regressions to
calculate the probability of a Type Il error. We ran this simulation for
all combinations of correlations between sample size-environmental
gradient and true ITV-environmental gradient (n=3700).

In Scenario four, there was a relationship between true
population-level ITV and the environmental gradient, but the same
number of individuals were sampled for each of the 10 populations
(Figure 1d). We created the relationship between true population-
level ITV and the environmental gradient using the methods de-
tailed for Scenario three and tested sample sizes ranging from 2 to
99 individuals (Figure S4). For a given combination of sample size
and true ITV-environmental gradient correlation, we randomly drew
the number of individuals from each of the 10 populations and cal-
culated CV for the samples. Then, we regressed cv against the envi-
ronmental gradient and extracted the p-value of the regression. We
repeated this process 1000 times and used the frequency of p-values
> .05 out of 1000 regressions to calculate the probability of a Type Il
error. We ran this simulation for all combinations of sample size and
ITV-gradient correlation (n=3626).

2.2 | 3" set of simulations: Empirical simulations
with Peromyscus maniculatus in the United States

To explore how sampling design can influence Type | and Il errors
with empirical data, we used data from Peromyscus maniculatus (deer
mice) populations collected by the National Ecological Observatory
Network (NEON). NEON covers a wide range of taxa, and its spe-
cialized sampling design optimizes sampling practices for each taxo-
nomic group surveyed, requiring different sampling methods to
increase detection probability and reduce observer bias. NEON sam-
ples small mammal diversity at 47 terrestrial field sites distributed
across ecoclimatic domains in the continental US, Hawaii, and Puerto
Rico. We gathered data collected from 2013 to 2023 (NEON, 20233,
https://doi.org/10.48443/p4re-p954; Generated: January 27,
2023). Small mammal sampling plots are 90mx90m (180m?) and
consist of a trapping grid of 100 box traps separated by 10m. Each
NEON site has 3-11 small mammal sampling plots. Plots are sam-
pled in 1-3-night sampling bouts per month depending on weather

Ecology and Evolution 50f 12
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conditions and site type with a minimum of 4 and a maximum of 6
sampling bouts per year. Each trapped small mammal is identified
to species, weighed, sexed, aged, and checked for reproductive sta-
tus. Full sampling protocols are available in Paull (2022). NEON also
collected site-level environmental variables (NEON, 2023b, version
from March 09, 2023; https://www.neonscience.org/field-sites/
explore-field-sites).

We selected P.maniculatus as a focal species because it is cap-
tured in high abundance across many NEON sites (Table S2). Our
goal with the P.maniculatus data was to simulate the Scenarios above
on empirical data as a proof-of-concept and test the probability of
getting Type | and Il errors when studying the relationship between
ITV in body size and environmental gradients. We selected the 10
sites with the largest numbers of individuals (min=186, max=415,
mean=278, and SD=73) because we wanted our empirical example
to be comparable to our simulations and because we needed large
sample sizes for each population. We used the coefficient of varia-
tion of body weight (g) of all adult individuals sampled at a site as a
measure of population-level ITV.

For Scenarios one and two (i.e., testing Type | error), we used lat-
itude as the environmental gradient because it had no significant
relationship with population ITV (R*=.018 and p=.7098, Figure S7).
For Scenarios three and four (i.e., testing for Type Il error), we were
unable to find a significant relationship with any environmental vari-
ables for our 10 populations, but we did find a significant relation-
ship between population-level ITV and mean annual temperature
when we removed one site (R?=.462 and p=.044, Figure S8). As
a result, we used 10 sites for Scenarios one and two and nine sites
for Scenarios three and four (Figures S7 and S8). Since there was a
known relationship between true P. maniculatus population-level ITV
and the environmental gradients (i.e., no significant correlation with
latitude or significant negative correlation with temperature), we did
not vary the ITV-environmental gradient relationship in the empiri-

cal simulations.

2.21 | Empirical sample size simulation

We explored how sample size influenced the estimation of
population-level ITV for 10 populations of P.maniculatus. From each
population we sampled from 2 to 99 individuals and measured ITV
as the coefficient of variation (CV) of the individuals sampled. We
denoted this estimate of ITV as CV. We repeated this process 1000
times and calculated RMSE between the 1000 CV values and true

population-ITV for each sample size.

2.2.2 | Empirical sample size-environmental
gradient simulations

Empirical scenarios one and two
In empirical Scenario one, we determined the number of individuals

to sample from each of the 10 populations based on a series of 97
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sample size-latitude correlations (r) ranging from 0.01 to 0.97. For
each correlation value, we randomly drew the number of individuals
from each of the 10 populations and estimated ITV as the CV of each
sample. We then regressed cv against latitude and extracted the
p-value of the regression. We repeated this 1000 times and used the
frequency of p<.05 out of 1000 regressions to calculate the prob-
ability of a Type | error.

For Scenario two, again, the empirical relationship between true
population-level ITV and latitude was not significant (Figure S7 and
Table S3). However, in this Scenario, the same number of individu-
als were sampled from each population along the environmental
gradient. For each sample size ranging from 2 to 99 individuals, we
randomly drew the number of individuals from each of the 10 pop-
ulations and estimated the CV of the samples. We then regressed
cv against latitude and extracted the p-value of the regression. We
repeated this 1000 times and used the frequency of p<.05 out of
1000 regressions to calculate the probability of a Type | error.

Empirical scenarios three and four
Inempirical Scenario three, there was an observed significant negative
relationship between mean annual temperature and true population-
level ITV for the nine populations (Figure S8 and Table S3). We de-
termined the number of individuals to sample from each of the nine
populations based on 98 sample size-temperature correlations (r)
ranging from 0.01 to 0.98. For each correlation value, we randomly
drew the number of individuals from each of the nine populations
and estimated the CV of the samples. Then, we regressed the cv
against temperature and extracted the p-value of the regression. We
repeated this process 1000 times and used the frequency of p>.05
out of 1000 regressions to calculate the probability of a Type Il error.
Empirical Scenario four also had an observed significant negative
relationship between temperature and true population-level ITV for
the nine sites (Figure S8 and Table S3). However, like Scenario two,
the same number of individuals were sampled from each population
along the gradient. For each sample size ranging from 2 to 99, we
randomly drew the number of individuals from each of the nine pop-
ulations and estimated ITV of each sample as cv. Then, we regressed
cv against temperature and extracted the p-value of the regression.
We repeated this process 1000 times and used the frequency of
p>.05 out of 1000 regressions to calculate the probability of a Type
Il error.

3 | RESULTS

Our study explored how sample size affects the estimation of
population-level ITV and the inferences we can draw regarding re-
lationships between population-level ITV and environmental gra-
dients. Overall, we found that increasing sample size reduces error
for estimates of ITV, but the influence of sample size on detect-
ing ITV-environment relationships depends on how sample sizes
and true population-level ITV are distributed along environmental
gradients.

3.1 | Insilico simulations
3.1.1 | Insilico sample size simulation

To explore the role of sample size on the estimation of population-
level ITV, we resampled in silico populations with different levels
of ITV across a range of sample sizes. The root mean square error
(RMSE) for the estimate of the coefficient of variation (a/) for a hy-
pothetical trait increased with population-level ITV and decreased

with larger sample sizes (Figure 3).

3.1.2 | Insilico sample size-environmental gradient
simulations

In silico scenarios one and two
The results of Scenario one (Figure 4a) showed that Type | error prob-
ability increased with the correlation between sample size and the
environmental gradient. The Type | error probability crossed the
threshold of 0.05 at a correlation of r~.3 between sample size and
the environmental gradient for most values of true population-level
ITV (Figure 4a). There was minimal effect of true population-level
ITV on Type | error probability with more variable populations show-
ing slightly greater Type | error at higher correlations between sam-
ple size and the environmental gradient.

Scenario two results showed no relationship between either
true population-level ITV or sample size and Type | error probability
(Figure 4b). The Type | error probability was ~0.05 for all sample

sizes.

In silico scenarios three and four

Scenario three (Figure 4c) showed that Type Il error increased as
the relationship between true population-level ITV and the envi-
ronmental gradient decreased. However, it was only when the true
population-level ITV was highly correlated (r>.8) with the envi-
ronmental gradient that we observed a Type Il error rate under
5%, and this was only in a few instances (Figure 4c). On the other
hand, for weaker trait-environment relationships (r<.7), Type Il
error was always greater than 5%. Note that in our simulations,
the lowest significant correlation of population-level ITV along
the environmental gradient was r=0.63. Permutations of true
population-level ITV along the environmental gradient (see meth-
ods for Scenarios three and four) did not yield significant (p <.05)
relationships at lower correlations, so they could not be used to
test for Type Il error.

Our results for Scenario four (Figure 4d) showed that Type Il error
increased as the strength of the true ITV-environmental gradient re-
lationship decreased, similar to Scenario three. However, in Scenario
four, sample size moderated the effect of the true ITV-environment
relationship on Type Il error. At the lowest sample sizes (e.g., n=2
individuals) Type Il error was >5% for even the strongest true ITV-
environmental gradient relationships (e.g., r=0.99) whereas larger
sample sizes decreased Type Il error rates below 5% even for weaker
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FIGURE 3 Influence of sample size

and true population-level ITV on the 05
root mean square error (RMSE) of the
population-level ITV estimate (CV) for in 0.4
silico populations.

i 7 of 12
Ecology and Evolution
= W1 LEY- 7o

Sample size
99

>
@ 03
w
()
=
o 02
0.1
0.0
0.0 02 0.4 0.6 0.8 10
True population—level ITV
@ Scenario one ) (b) Scenario two e
= ! 00 Fixed ITV Fixed ITV | population-level
= Varied n Fixed n A
_8 075 15.00
Q
o
Q
= 050 10.00
=
3 0.25 5.00
(0]
S —
L X e e e e e T I e e et e s e et o
(c) Scenario three (d) Scenario four o
> 1.00 Varied ITV - Varied ITV | population-level
E | mmmmmmmT T T T T T T e Varied n S~ - Fixed n ITV-env r
8 ors = = —E A A 0.99
S | | He | | e
5 - 0.90
o 050
o
= 0.80
g 0.25
2 S 0.70
& 000 - 063
0.00 0.25 0.50 0.75 1.00 0 25 50 75 100 :
Correlation of sample size and environment (r) Sample size

FIGURE 4 Simulation results across four Scenarios based on in silico and empirical data. Colored lines show the results from simulated
in silico populations and dashed black lines represent the results from Peromyscus maniculatus empirical populations. The red line indicates
a 5% error threshold. Scenarios one (a) and two (b) show Type | error probability across true population-level ITV for different sample size-
environmental gradient correlations and sample sizes, respectively. Scenarios three (c) and four (d) show Type Il error probability across
ITV-environmental gradient relationships for different sample size-environment correlations and sample sizes, respectively. Note that for
Peromyscus maniculatus populations (dashed black line) the environmental gradient is latitude in (a) and (b) and temperature in (c) and (d).

ITV-environmental gradient relationships (i.e., r=0.64). Even with
the maximum of 99 individuals sampled, the ITV-environmental gra-
dient relationships of r=0.63 yielded a Type |l error probability of
44% (Figure 4d).

We conducted the above simulation with 5 and 15 populations
(see Figure S5 and Sé for details). Outcomes were qualitatively sim-
ilar to the 10 population simulation results. An expected pattern
emerged in Scenarios three and four of increased power (i.e., lower

Type Il error) with an increasing number of populations.
3.2 | Empirical simulations: Peromyscus
maniculatus

Overall, results from the P.maniculatus simulations were generally
congruent with our theoretical simulations from in silico populations.

3.2.1 | Empirical sample size simulation

The RMSE of CV for population-level P. maniculatus body size de-
creased with sample size and slightly increased with population-
level body size ITV (Figure 5). The relationships between RMSE with
sample size and population-level ITV qualitatively matched those of
our theoretical simulations (Figure 3) over the same range of true
population-level ITV (i.e., CV=0.1-0.2).

3.2.2 | Empirical sample size-environmental
gradient simulations

Empirical scenarios one and two
The results of empirical Scenario one showed that Type | error
probability was <5% for all sample size-environmental gradient
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FIGURE 5 Influence of sample size
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relationships (Figure 4a dashed line). This means that for populations
with relatively low ITV, like Peromyscus maniculatus (CV ranges from
0.14 to 0.21), the sample size-environmental gradient relationship
does not have a strong influence on Type | error probability, espe-
cially in the context of an a=.05.

In empirical Scenario two, there was a decrease in Type | error
probability with increasing sample size (Figure 4b dashed line). The
lowest sample sizes resulted in Type | errors >5%, but sample sizes
greater than 4 individuals consistently resulted in Type | error prob-
abilities <5%. In addition, sample sizes >32 individuals consistently
resulted in Type | error probabilities <0.01. Our empirical results de-
viated from the in silico population simulations, which similarly had
low Type | error probabilities but did not decrease with increasing

sample size.

Empirical scenarios three and four
Empirical Scenario three showed that Type Il error was highest at
low to intermediate sample size-temperature correlations and
slightly decreased around a sample size-temperature correlation of
r=.5 (Figure 4c, dashed line). However, the probability of a Type Il
error was consistently between 65% and 90%. Thus, regardless of
the correlation between the number of individuals sampled from P.
maniculatus populations and temperature, the observed relationship
between body size and latitude was difficult to recover. High Type Il
error was expected because the observed correlation between ITV
and temperature (r=.68) was at the lower end of our in silico popula-
tion simulations (Figure 4c; purple lines).

Empirical Scenario four showed that the probability of a Type
Il error decreased with sample size (Figure 4d dashed line), which
matched the results from the in silico population simulations
(Figure 4d). The lowest sample size of 2 individuals had Type Il error
rates of 93% and error rates declined to 60% when a maximum of 99
individuals were sampled per population.

4 | DISCUSSION

The study of intraspecific trait variation (ITV) requires the success-
ful capture and measurement of multiple individuals, which can be

costly in terms of time and money at best, and nearly impossible
due to low capture rates among other logistical challenges at worst.
As ITV studies within populations and communities from local to
macroecological scales have grown over the past decade, little to
no guidance has emerged for how many individuals are necessary
to accurately estimate ITV (but see Yang et al., 2020). Here, we
show that larger sample sizes reduce error rates in the estimation of
population-level ITV for both in silico populations and populations
of Peromyscus maniculatus. While this result is intuitive, we further
show that the influence of sample size on detecting ITV-environment
relationships depends on how sample sizes and true population-level
ITV are distributed along environmental gradients. High correlations
between sample size and the environment result in greater Type |
error, while weak ITV-environmental gradient relationships are dif-
ficult to detect (i.e., greater Type Il error) but larger sample sizes help
reduce this error.

Simulations based on in silico populations and empirical data
have already proven to be a fruitful path to advance methods for
quantifying ITV. Yang et al. (2020) found that sample sizes >20 in-
dividuals significantly improved the accuracy of ITV estimation. Our
estimates of sample size for individual in silico and P.maniculatus
populations qualitatively agree with Yang et al. (2020). When fewer
than ~20 individuals are sampled, there is a rapid increase in error
for the estimation of population-level ITV regardless of the underly-
ing true population ITV. However, the study of population-level ITV
is often extended from one to multiple populations (Costa-Pereira
et al., 2018; Evangelista et al., 2019; Musseau et al., 2020; Stinson
et al., 2018; Westerband et al., 2021; Yan et al., 2018) which in many
cases, are distributed across environmental gradients to answer the
question: Are populations more (or less) variable under certain con-
ditions (Helsen et al., 2017)? We show that the influence of sample
size on estimating population-level ITV is not straightforward in this
context.

Based on our simulations, the detection of ITV-environmental
gradient relationships can be influenced by: (1) the underlying rela-
tionship between true population-level ITV and the environmental
gradient; and (2) the relationship between sample size and the envi-
ronmental gradient. When there is no underlying ITV-environmen-
tal gradient relationships (i.e., Scenarios one and two; Figure 1a,b), it
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is better to have no relationship between sample size and the envi-
ronment (e.g., most easily achieved by sampling the same number of
individuals from each population across the gradient) regardless of
sample size and true population-level ITV. When there is a correla-
tion between sample size and the environment where r>~0.3, Type
| error exceeds 5%. On the other hand, when systems do have an un-
derlying population-level ITV-environmental gradient relationship
(i.e., Scenarios 3 and 4, Figure 1c,d), weak gradients are difficult to
detect and increased sample size can reduce Type Il error.

What information do our simulations yield regarding sampling
design for ITV researchers? The first challenge in answering this
question is that in most cases, there is no a priori knowledge of the
strength of the relationship between ITV-environmental gradient
(i.e., in most cases, that is why the study is being conducted in the
same first place). However, it is clear that the component we can
control—the sample size-environment relationship—should not show
a high correlation. If a new experiment is being designed, research-
ers should plan on sampling the same number of individuals from
each population along the gradient. If data have already been col-
lected (e.g., museum specimens or previous studies) the correlation
between sample size and gradients of interest should be assessed.
If there is a moderate to strong relationship (r>.4), samples should
be rarified to the sample with the fewest individuals. The second
recommendation garnered from our simulations, which is intuitive, is
that both sample sizes and the number of populations should be as
large as possible to reduce Type Il error.

Interestingly, while greater true population-level ITV increases
error in the estimate of ITV for individual populations (Figures 3 and
5), it has little effect on Type | error probability when considering
multiple populations across a gradient (Figure 4a,b). Regardless of
whether populations are extremely variable for a given trait or if
they show almost no ITV, sample size and sample size-environment
relationship don't exert a strong influence on Type | error.

Our results show that some knowledge of the exact elements
that are under investigation in an ITV-environment study is neces-
sary to avoid Type | and Il errors. Namely, the underlying population-
level ITV and its relationship with environmental gradients. One way
to solve this conundrum is to leverage known information on traits,
taxa, and environmental gradients. For example, if ITV-environment
relationships are expected to be strong for a given trait and taxo-
nomic group based on natural history or previous studies (e.g.,
positive influence of temperature on height ITV of herbs; Helsen
et al., 2017; Kuppler et al., 2020; Lemke et al., 2012, 2015), fewer
individuals per population would be needed to detect that relation-
ship than if ITV-environment relationships were generally expected
to be weak. Collection of this information from previous and future
studies will build knowledge to guide sampling design and sample
size for population-level ITV studies for different taxa, traits, and
environmental gradients.

Our empirical example using P.maniculatus population-level ITV
for body size across latitudinal and temperature gradients in the con-
tinental United States confirmed many of the findings from the in
silico population simulations. For the relationship between body size
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ITV and latitude, we found low rates of Type | error (<5%) regardless
of the sample size or sample size-environment correlation. However,
at higher sample size-environment correlations, we noticed a slight
increase in the Type | error rate, although not as large as the increase
seen in the in silico populations. The decrease in Type | error rate for
P.maniculatus with sample size in Scenario two differs from the flat
line observed for the in silico populations. This is likely due to the
natural complexity of the empirical data: although the underlying re-
lationship between true population-level ITV and the environmental
gradient was not significant in both cases, the in silico populations
had the same abundance, mean and variance while these parameters
varied for P.maniculatus populations (but not in relation to latitude).
We conclude that the sampling designs represented in empirical sce-
narios one and two, where we tested the relationship between P.
maniculatus population-level body size ITV and latitude, are robust
to Type | errors even under sample sizes as low as 5 individuals.

However, such small sample sizes are not enough to avoid Type
Il error when assessing the relationship between P.maniculatus
population-level ITV for body size and temperature. In fact, Type
Il error never dropped below 50% for any sample size or sample
size-environment correlation for the range of sampling designs in
Scenarios three and four. In other words, the negative relationship
between P.maniculatus population-level body size ITV and tempera-
ture was detected less than 50% of the time. This study was under-
powered and would require a larger number of populations to detect
the ITV-gradient relationship of r=0.68 which is consistent with the
results from our in silico population simulations for Scenarios three
and four.

The best practices that emerge from this study are as follows:
(1) While it may seem self-evident, having large sample sizes of indi-
viduals and populations is important for increasing the power to de-
tect ITV-environmental gradients. (2) Avoid sampling designs where
sample size is correlated with the environmental gradient. In cases
where data have already been collected and sample sizes are ran-
dom across populations, we recommend examining the correlation
between sample size and environment. If this correlation is found
to be strong, its effects can be minimized by rarefying down to the
sample size of the population with the fewest individuals. If the re-
sults from the rarefied data are similar to those found using the full
dataset, researchers can be more confident that the results are not
biased by differences in sample sizes across populations.

While we address sample size and design for population-
level ITV, ITV studies often address questions about trait varia-
tion at the scale of a species' range (e.g., Guralnick et al., 2020;
Riemer et al., 2018), between closely related species (e.g., Read,
Grady, et al., 2018) and, at the community scale (Mungee &
Athreya, 2021; Siefert et al., 2015; Violle et al., 2012). Expanding
the scope of future studies to include multiple species and mul-
tivariate environmental gradients in empirical or simulation con-
texts would provide insights into broader ecological patterns and
evolutionary dynamics. However, determining how many individ-
uals are necessary to quantify ITV in a range-wide or community
context likely consists of a different set of challenges and sampling
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design considerations. Applying what we have learned in our study
to other taxa or multiple species in communities arrayed along a
gradient may work in some instances, but in others, species may
have vastly different abundances (e.g., common or rare), capture
probabilities and different underlying ITV-environmental gradient
relationships. Furthermore, ITV-environmental gradient relation-
ships may also depend on the trait or number of traits selected for
analysis. For example, traits associated with movement may have
different environmental responses than traits associated with for-
aging strategy (Dalmolin et al., 2020). Thus, considering multiple
traits and their covariation may provide a more detailed under-
standing of how sample size and sampling design influence Type
| and Type Il errors. Further simulations are likely needed to gain
insight into sampling design for range-wide and community-level
ITV as well as ITV derived from multiple traits.

Our study advances our understanding of “How many individu-
als do you need to quantify ITV?”. Unfortunately, there is no golden
number. For single populations, our simulations concur with those
of Yang et al. (2020) that ~20 individuals can reduce error in the
estimate ITV as measured by CV. We show that when estimating
ITV-environmental gradient relationships for multiple populations,
the relationship between sample size and the environmental gra-
dient, and the nature of the relationship between underlying true
population-level ITV and the environment must be considered in the

sampling design to avoid Type | and Il errors.

AUTHOR CONTRIBUTIONS

Isadora E. Fluck: Conceptualization (lead); data curation (lead); for-
mal analysis (lead); investigation (lead); methodology (lead); valida-
tion (equal); visualization (lead); writing - original draft (lead). Sydne
Record: Conceptualization (supporting); data curation (supporting);
formal analysis (supporting); funding acquisition (equal); investiga-
tion (supporting); methodology (supporting); supervision (support-
ing). Angela Strecker: Conceptualization (supporting); data curation
(supporting); formal analysis (supporting); funding acquisition (equal);
investigation (supporting); methodology (supporting). Phoebe L.
Zarnetske: Conceptualization (supporting); data curation (support-
ing); formal analysis (supporting); funding acquisition (equal); inves-
tigation (supporting); methodology (supporting). Benjamin Baiser:
Conceptualization (equal); data curation (supporting); formal analysis
(supporting); funding acquisition (equal); investigation (supporting);
methodology (equal); supervision (lead); validation (equal); visualiza-

tion (supporting); writing - original draft (supporting).

ACKNOWLEDGMENTS

This research was supported by the National Science Foundation
Macrosystems Award to P.L. Zarnetske (NSF MSB-NES #1926567),
S. Record (NSF MSB-NES #2242804), B. Baiser (NSF MSB-NES #
1926569), and A. Strecker (NSF MSB-NES #1926610). Additionally,
for SR the project was supported by the USDA National Institute of
Food and Agriculture, Hatch Project Number MEQ-22425 through
the Maine Agricultural and Forest Experiment Station.

CONFLICT OF INTEREST STATEMENT

The authors declare no conflict of interest.

DATA AVAILABILITY STATEMENT

All data sources utilized in this research are cited in-text and in the
references section. All data are publicly available in a permanent
FigShare repository (https://doi.org/10.6084/m9.figshare.24849
444.\1).

STATEMENT OF INCLUSION

Our study synthesizes local data from multiple regions across the
vast expanse of the United States. We emphasize the inclusive na-
ture of our study and ensure a comprehensive consideration of dif-
ferent perspectives by collaborating with authors from several U.S.
states and one other country (Brazil), who were actively involved in
the research and study design from the beginning. While our study
focuses primarily on a simulation with a case study to demonstrate
our proposed approach, it inherently encompasses various biologi-
cal, ecological, and statistical viewpoints and enriches the discourse

within functional ecology.

ORCID

Isadora E. Fluck "= https://orcid.org/0000-0002-3101-9818
Sydne Record "= https://orcid.org/0000-0001-7293-2155
Angela Strecker " https://orcid.org/0000-0001-9387-1654

Phoebe L. Zarnetske "= https://orcid.org/0000-0001-6257-6951

Benjamin Baiser "= https://orcid.org/0000-0002-3573-1183

REFERENCES

Baiser, B., & Lockwood, J. L. (2011). The relationship between functional
and taxonomic homogenization. Global Ecology and Biogeography,
20(1), 134-144. https://doi.org/10.1111/j.1466-8238.2010.
00583.x

Baiser, B., Russell, G. J., & Lockwood, J. L. (2010). Connectance deter-
mines invasion success via trophic interactions in model food webs.
Oikos, 119(12), 1970-1976. https://doi.org/10.1111/j.1600-0706.
2010.18557.x

Bergmann, C. (1847). Uber die Verhaltnisse der warmeokonomie der
Thiere zu uber Grosso. Gottinger studien, 3, 595-708.

Bolnick, D. I., Amarasekare, P., Aratjo, M. S., Biirger, R., Levine, J. M.,
Novak, M., Rudolf, V. H. W., Schreiber, S. J., Urban, M. C., & Vasseur,
D. A.(2011). Why intraspecific trait variation matters in community
ecology. Trends in Ecology & Evolution, 26(4), 183-192. https://doi.
org/10.1016/j.tree.2011.01.009

Carvalho, W. D, Fluck, I. E., de Castro, I. J., Hilario, R. R., Martins, A. C.
M., de Toledo, J. J., da Silva Xavier, B., Dambros, C., & Bobrowiec,
P. E. D. (2023). Elevation drives taxonomic, functional and phyloge-
netic g-diversity of phyllostomid bats in the Amazon biome. Journal
of Biogeography, 50(1), 70-85. https://doi.org/10.1111/jbi.14533

Costa-Pereira, R., Rudolf, V. H. W,, Souza, F. L., & Aradjo, M. S. (2018).
Drivers of individual niche variation in coexisting species. Journal
of Animal Ecology, 87(5), 1452-1464. https://doi.org/10.1111/1365-
2656.12879

Dalmolin, A. D., Tozetti, A. M., & Pereira, M. J. R. (2020). Turnover or in-
traspecific trait variation: Explaining functional variability in a neo-
tropical anuran metacommunity. Aquatic Sciences, 82, 1-15. https://
doi.org/10.1007/s00027-020-00736-w

d ‘6 “¥TOT "8SLLSYOT

ssdyy wouy

ASUAOIT SuOWIWO)) 2ANeAIL) d[qeordde oy Aq pauraA0S a1k sa[onIR V() fasn Jo safni 10§ AIeIqIT dUUQ A3[IA\ UO (SUONIPUOD-PUB-SULIA)/W00 A3[IM"AIRIqI[oul[uo//:sdiy) SUONIpuo) pue SWId |, 3y 39S [$707/60/ST] U0 A1eiqi auruQ A3 © eisnSny 1e autejy Jo ANSIOAIUN - 1003y SUPAS Aq 0STOL €999/2001°01/10p/W0d KM


https://doi.org/10.6084/m9.figshare.24849444.v1
https://doi.org/10.6084/m9.figshare.24849444.v1
https://orcid.org/0000-0002-3101-9818
https://orcid.org/0000-0002-3101-9818
https://orcid.org/0000-0001-7293-2155
https://orcid.org/0000-0001-7293-2155
https://orcid.org/0000-0001-9387-1654
https://orcid.org/0000-0001-9387-1654
https://orcid.org/0000-0001-6257-6951
https://orcid.org/0000-0001-6257-6951
https://orcid.org/0000-0002-3573-1183
https://orcid.org/0000-0002-3573-1183
https://doi.org/10.1111/j.1466-8238.2010.00583.x
https://doi.org/10.1111/j.1466-8238.2010.00583.x
https://doi.org/10.1111/j.1600-0706.2010.18557.x
https://doi.org/10.1111/j.1600-0706.2010.18557.x
https://doi.org/10.1016/j.tree.2011.01.009
https://doi.org/10.1016/j.tree.2011.01.009
https://doi.org/10.1111/jbi.14533
https://doi.org/10.1111/1365-2656.12879
https://doi.org/10.1111/1365-2656.12879
https://doi.org/10.1007/s00027-020-00736-w
https://doi.org/10.1007/s00027-020-00736-w

FLUCK ET AL.

de Bello, F., Lavorel, S., Hallett, L. M., Valencia, E., Garnier, E., Roscher,
C., Conti, L., Galland, T., Goberna, M., & Majekova, M. (2021).
Functional trait effects on ecosystem stability: Assembling the jig-
saw puzzle. Trends in Ecology & Evolution, 36(9), 822-836. https://
doi.org/10.1016/j.tree.2021.05.001

Evangelista, C., Olden, J. D., Lecerf, A., & Cucherousset, J. (2019). Scale-
dependent patterns of intraspecific trait variations in two globally
invasive species. Oecologia, 189, 1083-1094. https://doi.org/10.
1007/s00442-019-04374-4

Fajardo, A., & Siefert, A. (2019). The interplay among intraspecific leaf
trait variation, niche breadth and species abundance along light and
soil nutrient gradients. Oikos, 128(6), 881-891. https://doi.org/10.
1111/0ik.05849

Fang, S., Cadotte, M. W.,, Yuan, Z., Lin, F,, Ye, J., Hao, Z., & Wang, X.
(2019). Intraspecific trait variation improves the detection of de-
terministic community assembly processes in early successional
forests, but not in late successional forests. Journal of Plant Ecology,
12(4), 593-602. https://doi.org/10.1093/jpe/rty053

Gotelli, N. J., & Ellison, A. M. (2004). A primer of ecological statistics (Vol.
1, pp. 1-640). Sinauer Associates.

Guisan, A.,Mod, H.K., Scherrer, D., Miinkemdiller, T., Pottier, J., Alexander,
J. M., & d'Amen, M. (2019). Scaling the linkage between environ-
mental niches and functional traits for improved spatial predictions
of biological communities. Global Ecology and Biogeography, 28(10),
1384-1392. https://doi.org/10.1111/geb.12967

Guralnick, R., Hantak, M. M., Li, D., & McLean, B. S. (2020). Body size
trends in response to climate and urbanization in the widespread
north American deer mouse, Peromyscus maniculatus. Scientific
Reports, 10(1), 8882. https://doi.org/10.1038/s41598-020-
65755-x

He, D., Biswas, S.R., Xu, M.-S., Yang, T.-H., You, W.-H., & Yan, E.-R. (2021).
The importance of intraspecific trait variability in promoting func-
tional niche dimensionality. Ecography, 44(3), 380-390. https://doi.
org/10.1111/ecog.05254

Helsen, K., Acharya, K. P., Brunet, J., Cousins, S. A. O., Decocq, G.,
Hermy, M., Kolb, A., Lemke, I. H., Lenoir, J., Plue, J., Verheyen, K.,
De Frenne, P., & Graae, B. J. (2017). Biotic and abiotic drivers of
intraspecific trait variation within plant populations of three herba-
ceous plant species along a latitudinal gradient. BMC Ecology, 17(1),
38. https://doi.org/10.1186/s12898-017-0151-y

Helsen, K., van Cleemput, E., Bassi, L., Graae, B. J., Somers, B., Blonder,
B., & Honnay, O. (2020). Inter- and intraspecific trait variation
shape multidimensional trait overlap between two plant invaders
and the invaded communities. Oikos, 129(5), 677-688. https://doi.
org/10.1111/0ik.06919

Hoffmann, A. A., & Sgro, C. M. (2011). Climate change and evolutionary
adaptation. Nature, 470(7335), 479-485. https://doi.org/10.1038/
nature09670

Hogle, S. L., Hepolehto, I., Ruokolainen, L., Cairns, J., & Hiltunen, T.
(2022). Effects of phenotypic variation on consumer coexistence
and prey community structure. Ecology Letters, 25(2), 307-319.
https://doi.org/10.1111/ele.13924

Holdridge, E. M., & Vasseur, D. A. (2022). Intraspecific variation pro-
motes coexistence under competition for essential resources.
Theoretical Ecology, 15, 225-244. https://doi.org/10.1007/s1208
0-022-00539-9

Jordani, M., Mouquet, N., Casatti, L., Menin, M., Rossa-Feres, D., &
Albert, C. (2019). Intraspecific and interspecific trait variability in
tadpole meta-communities from the Brazilian Atlantic rainforest.
Ecology and Evolution, 9, 4025-4037. https://doi.org/10.1002/ece3.
5031

Kuppler, J., Albert, C. H., Ames, G. M., Armbruster, W. S., Boenisch, G.,
Boucher, F. C., Campbell, D. R., Carneiro, L. T., Chacén-Madrigal,
E., Enquist, B. J., Fonseca, C. R., Gémez, J. M., Guisan, A., Higuchi,
P., Karger, D. N., Kattge, J., Kleyer, M., Kraft, N. J. B., Larue-Konti¢,
A.-A. C., ... Junker, R. R. (2020). Global gradients in intraspecific

Ecology and Evolution 11 0f 12
=t e W1 LEY- |12

variation in vegetative and floral traits are partially associated with
climate and species richness. Global Ecology and Biogeography, 29(6),
992-1007. https://doi.org/10.1111/geb.13077

Lavorel, S., & Garnier, E. (2002). Predicting changes in community com-
position and ecosystem functioning from plant traits: Revisiting the
holy grail. Functional Ecology, 16(5), 545-556. https://doi.org/10.
1046/j.1365-2435.2002.00664.x

Lemke, I. H., Kolb, A., & Diekmann, M. R. (2012). Region and site con-
ditions affect phenotypic trait variation in five forest herbs. Acta
Oecologica, 39, 18-24. https://doi.org/10.1016/j.actao.2011.11.
001

Lemke, I. H., Kolb, A., Graae, B. J., De Frenne, P., Acharya, K. P., Blandino,
C., Brunet, J,, Chabrerie, O., Cousins, S. A. O., Decocq, G., Heinken,
T., Hermy, M., Liira, J., Schmucki, R., Shevtsova, A., Verheyen, K.,
& Diekmann, M. (2015). Patterns of phenotypic trait variation in
two temperate forest herbs along a broad climatic gradient. Plant
Ecology, 216(11), 1523-1536. https://doi.org/10.1007/s1125
8-015-0534-0

MacLean, S. A., & Beissinger, S. R. (2017). Species' traits as predictors
of range shifts under contemporary climate change: A review and
meta-analysis. Global Change Biology, 23(10), 4094-4105. https://
doi.org/10.1111/gcb.13736

McGill, B. J., Enquist, B. J., Weiher, E., & Westoby, M. (2006). Rebuilding
community ecology from functional traits. Trends in Ecology &
Evolution, 21(4), 178-185. https://doi.org/10.1016/j.tree.2006.02.
002

Miehls, A. L. J., Mason, D. M., Frank, K. A, Krause, A. E., Peacor, S. D,
& Taylor, W. W. (2009). Invasive species impacts on ecosystem
structure and function: A comparison of Oneida Lake, New York,
USA, before and after zebra mussel invasion. Ecological Modelling,
220(22), 3194-3209. https://doi.org/10.1016/j.ecolmodel.2009.
07.020

Montafio-Centellas, F. A., McCain, C., & Loiselle, B. A. (2020). Using func-
tional and phylogenetic diversity to infer avian community assem-
bly along elevational gradients. Global Ecology and Biogeography,
29(2), 232-245. https://doi.org/10.1111/geb.13021

Moran, E. V., Hartig, F., & Bell, D. M. (2016). Intraspecific trait variation
across scales: Implications for understanding global change re-
sponses. Global Change Biology, 22, 137-150. https://doi.org/10.
1111/gch.13000

Mungee, M., & Athreya, R. (2021). Intraspecific trait variability and com-
munity assembly in hawkmoths (Lepidoptera: Sphingidae) across
an elevational gradient in the eastern Himalayas, India. Ecology and
Evolution, 11(6), 2471-2487. https://doi.org/10.1002/ece3.7054

Musseau, C., Vincenzi, S., Santoul, F., Boulétreau, S., Jesensek, D., &
Crivelli, A. J. (2020). Within-individual trophic variability drives
short-term intraspecific trait variation in natural populations.
Journal of Animal Ecology, 89(3), 921-932. https://doi.org/10.1111/
1365-2656.13149

NEON (National Ecological Observatory Network). (2023a). Small mam-
mal box trapping (DP1.10072.001), RELEASE-2023. https://doi.
org/10.48443/p4re-p954 Accessed May 12, 2023.

NEON (National Ecological Observatory Network). (2023b). NEON Field
Site Metadata. https://www.neonscience.org/field-sites/explo
re-field-sites Version from Marck 09, 2023 (Accessed August 31,
2023).

Paull, S. (2022). TOS Protocol and Procedure: MAM-Small Mammal
Sampling. NEON.DOC.000481N. NEON (National Ecological
Observatory Network).

Pease, C. M., & Mattson, D. J. (1999). Demography of the Yellowstone
grizzly bears. Ecology, 80(3), 957-975. https://doi.org/10.1890/
0012-9658(1999)080[0957:DOTYGB]2.0.CO;2

Read, Q. D., Baiser, B., Grady, J. M., Zarnetske, P. L., Record, S., &
Belmaker, J. (2018). Tropical bird species have less variable body
sizes. Biology Letters, 14(1), 20170453. https://doi.org/10.1098/
rsbl.2017.0453

d ‘6 “¥TOT "8SLLSYOT

ssdyy wouy

ASUAOIT SuOWIWO)) 2ANeAIL) d[qeordde oy Aq pauraA0S a1k sa[onIR V() fasn Jo safni 10§ AIeIqIT dUUQ A3[IA\ UO (SUONIPUOD-PUB-SULIA)/W00 A3[IM"AIRIqI[oul[uo//:sdiy) SUONIpuo) pue SWId |, 3y 39S [$707/60/ST] U0 A1eiqi auruQ A3 © eisnSny 1e autejy Jo ANSIOAIUN - 1003y SUPAS Aq 0STOL €999/2001°01/10p/W0d KM


https://doi.org/10.1016/j.tree.2021.05.001
https://doi.org/10.1016/j.tree.2021.05.001
https://doi.org/10.1007/s00442-019-04374-4
https://doi.org/10.1007/s00442-019-04374-4
https://doi.org/10.1111/oik.05849
https://doi.org/10.1111/oik.05849
https://doi.org/10.1093/jpe/rty053
https://doi.org/10.1111/geb.12967
https://doi.org/10.1038/s41598-020-65755-x
https://doi.org/10.1038/s41598-020-65755-x
https://doi.org/10.1111/ecog.05254
https://doi.org/10.1111/ecog.05254
https://doi.org/10.1186/s12898-017-0151-y
https://doi.org/10.1111/oik.06919
https://doi.org/10.1111/oik.06919
https://doi.org/10.1038/nature09670
https://doi.org/10.1038/nature09670
https://doi.org/10.1111/ele.13924
https://doi.org/10.1007/s12080-022-00539-9
https://doi.org/10.1007/s12080-022-00539-9
https://doi.org/10.1002/ece3.5031
https://doi.org/10.1002/ece3.5031
https://doi.org/10.1111/geb.13077
https://doi.org/10.1046/j.1365-2435.2002.00664.x
https://doi.org/10.1046/j.1365-2435.2002.00664.x
https://doi.org/10.1016/j.actao.2011.11.001
https://doi.org/10.1016/j.actao.2011.11.001
https://doi.org/10.1007/s11258-015-0534-0
https://doi.org/10.1007/s11258-015-0534-0
https://doi.org/10.1111/gcb.13736
https://doi.org/10.1111/gcb.13736
https://doi.org/10.1016/j.tree.2006.02.002
https://doi.org/10.1016/j.tree.2006.02.002
https://doi.org/10.1016/j.ecolmodel.2009.07.020
https://doi.org/10.1016/j.ecolmodel.2009.07.020
https://doi.org/10.1111/geb.13021
https://doi.org/10.1111/gcb.13000
https://doi.org/10.1111/gcb.13000
https://doi.org/10.1002/ece3.7054
https://doi.org/10.1111/1365-2656.13149
https://doi.org/10.1111/1365-2656.13149
https://doi.org/10.48443/p4re-p954
https://doi.org/10.48443/p4re-p954
https://www.neonscience.org/field-sites/explore-field-sites
https://www.neonscience.org/field-sites/explore-field-sites
https://doi.org/10.1890/0012-9658(1999)080%5B0957:DOTYGB%5D2.0.CO;2
https://doi.org/10.1890/0012-9658(1999)080%5B0957:DOTYGB%5D2.0.CO;2
https://doi.org/10.1098/rsbl.2017.0453
https://doi.org/10.1098/rsbl.2017.0453

FLUCK ET AL.

12 of 12 .
Ecol Evol
WI LE Y-Ec°logy and Evolution

Read, Q. D., Grady, J. M., Zarnetske, P. L., Record, S., Baiser, B., Belmaker,
J., Tuanmu, M.-N., Strecker, A., Beaudrot, L., & Thibault, K. M.
(2018). Among-species overlap in rodent body size distributions
predicts species richness along a temperature gradient. Ecography,
41(10), 1718-1727. https://doi.org/10.1111/ecog.03641

Riemer, K., Guralnick, R. P., & White, E. P. (2018). No general relationship
between mass and temperature in endothermic species. elife, 7,
e27166. https://doi.org/10.7554/elLife.27166

Siders, Z. A., Trotta, L. B., Caltabellotta, F. P., Loesser, K. B., Baiser, B., &
Ahrens, R. N. M. (2022). Functional and phylogenetic diversity of
sharks in the northeastern Pacific. Journal of Biogeography, 49(7),
1313-1326. https://doi.org/10.1111/jbi.14383

Siefert, A., Violle, C., Chalmandrier, L., Albert, C. H., Taudiere, A., Fajardo,
A., Aarssen, L. W., Baraloto, C., Carlucci, M. B., Cianciaruso, M.
V., Dantas, V. D. L., De Bello, F., Duarte, L. D. S., Fonseca, C. R,,
Freschet, G. T., Gaucherand, S., Gross, N., Hikosaka, K., Jackson, B.,
... Wardle, D. A. (2015). A global meta-analysis of the relative extent
of intraspecific trait variation in plant communities. Ecology Letters,
18(12), 1406-1419. https://doi.org/10.1111/ele.12508

Stinson, K. A., Wheeler, J. A., Record, S., & Jennings, J. L. (2018). Regional
variation in timing, duration, and production of flowers by aller-
genic ragweed. Plant Ecology, 219(9), 1081-1092. https://doi.org/
10.1007/s11258-018-0860-0

Stump, S. M., Song, C., Saavedra, S., Levine, J. M., & Vasseur, D. A. (2022).
Synthesizing the effects of individual-level variation on coexis-
tence. Ecological Monographs, 92(1), e01493. https://doi.org/10.
1002/ecm.1493

Violle, C., Enquist, B. J., McGill, B. J., Jiang, L., Albert, C. H., Hulshof,
C., Jung, V., & Messier, J. (2012). The return of the variance:
Intraspecific variability in community ecology. Trends in Ecology &
Evolution, 27(4), 244-252. https://doi.org/10.1016/j.tree.2011.11.
014

Westerband, A. C., Funk, J. L., & Barton, K. E. (2021). Intraspecific trait
variation in plants: A renewed focus on its role in ecological pro-
cesses. Annals of Botany, 127(4), 397-410. https://doi.org/10.1093/
aob/mcab011

Open Access,

Whittaker, R. H. (1972). Evolution and measurement of species diversity.
Taxon, 21(2-3), 213-251. https://doi.org/10.2307/1218190

Wickman, J., Koffel, T., & Klausmeier, C. A. (2022). A theoretical frame-
work for trait-based eco-evolutionary dynamics: Population struc-
ture, intraspecific variation, and community assembly. The American
Naturalist, 201(4), 501-522. https://doi.org/10.1086/723406

Wiens, J. A. (1989). Spatial scaling in ecology. Functional Ecology, 3,
385-397.

Yan, E.-R., Zhou, L.-L., Chen, H. Y., Wang, X.-H., & Liu, X.-Y. (2018).
Linking intraspecific trait variability and spatial patterns of subtrop-
ical trees. Oecologia, 186, 793-803. https://doi.org/10.1007/s0044
2-017-4042-x

Yang, J., Lu, J., Chen, Y., Yan, E., Hu, J., Wang, X., & Shen, G. (2020). Large
underestimation of intraspecific trait variation and its improve-
ments. Frontiers in Plant Science, 11(53), 1-9. https://doi.org/10.
3389/fpls.2020.00053

SUPPORTING INFORMATION
Additional supporting information can be found online in the
Supporting Information section at the end of this article.

How to cite this article: Fluck, I. E., Record, S., Strecker, A.,
Zarnetske, P. L., & Baiser, B. (2024). The influence of sample
size and sampling design on estimating population-level intra
specific trait variation (ITV) along environmental gradients.
Ecology and Evolution, 14, €70250. https://doi.org/10.1002/
ece3.70250

d ‘6 “¥TOT "8SLLSYOT

:sdy woxy

:sdpy) suonIpuoy) pue SWLId L, Ay 39S *[$707/60/ST] U0 A1eiqr] auruQ A1 © BISNSNY 18 QUIRJA JO ANSIOATUN - PI0IY SUPAS Aq 0STOL €399/2001 0 1/10p/WOd" K[IM"

KoM

ASURDIT SUOWILO)) dANEAI)) o[qeaijdde oYy Aq pauIoA0S a1k Sa[d1IE V() SN JO I[N 10§ AIRIQIT duUI[UQ AJ[IAN UO (¢


https://doi.org/10.1111/ecog.03641
https://doi.org/10.7554/eLife.27166
https://doi.org/10.1111/jbi.14383
https://doi.org/10.1111/ele.12508
https://doi.org/10.1007/s11258-018-0860-0
https://doi.org/10.1007/s11258-018-0860-0
https://doi.org/10.1002/ecm.1493
https://doi.org/10.1002/ecm.1493
https://doi.org/10.1016/j.tree.2011.11.014
https://doi.org/10.1016/j.tree.2011.11.014
https://doi.org/10.1093/aob/mcab011
https://doi.org/10.1093/aob/mcab011
https://doi.org/10.2307/1218190
https://doi.org/10.1086/723406
https://doi.org/10.1007/s00442-017-4042-x
https://doi.org/10.1007/s00442-017-4042-x
https://doi.org/10.3389/fpls.2020.00053
https://doi.org/10.3389/fpls.2020.00053
https://doi.org/10.1002/ece3.70250
https://doi.org/10.1002/ece3.70250

	The influence of sample size and sampling design on estimating population-­level intra specific trait variation (ITV) along environmental gradients
	Abstract
	1|INTRODUCTION
	2|MATERIALS AND METHODS
	2.1|In silico simulations
	2.1.1|1st set of simulations: In silico sample size simulation
	2.1.2|2nd set of simulations: In silico sample size-environmental gradient simulations
	In silico scenarios one and two
	In silico scenarios three and four


	2.2|3rd set of simulations: Empirical simulations with Peromyscus maniculatus in the United States
	2.2.1|Empirical sample size simulation
	2.2.2|Empirical sample size-­environmental gradient simulations
	Empirical scenarios one and two
	Empirical scenarios three and four



	3|RESULTS
	3.1|In silico simulations
	3.1.1|In silico sample size simulation
	3.1.2|In silico sample size-­environmental gradient simulations
	In silico scenarios one and two
	In silico scenarios three and four


	3.2|Empirical simulations: Peromyscus maniculatus
	3.2.1|Empirical sample size simulation
	3.2.2|Empirical sample size-­environmental gradient simulations
	Empirical scenarios one and two
	Empirical scenarios three and four



	4|DISCUSSION
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT

	STATEMENT OF INCLUSION
	REFERENCES


