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Abstract
Understanding the relationship between intraspecific trait variability (ITV) and its 
biotic and abiotic drivers is crucial for advancing population and community ecol-
ogy. Despite its importance, there is a lack of guidance on how to effectively sam-
ple ITV and reduce bias in the resulting inferences. In this study, we explored how 
sample size affects the estimation of population-level ITV, and how the distribu-
tion of sample sizes along an environmental gradient (i.e., sampling design) impacts 
the probabilities of committing Type I and II errors. We investigated Type I and II 
error probabilities using four simulated scenarios which varied sampling design and 
the strength of the ITV-environment relationships. We also applied simulation sce-
narios to empirical data on populations of the small mammal, Peromyscus manicula-
tus across gradients of latitude and temperature at sites in the National Ecological 
Observatory Network (NEON) in the continental United States. We found that 
larger sample sizes reduce error rates in the estimation of population-level ITV 
for both in silico and Peromyscus maniculatus populations. Furthermore, the influ-
ence of sample size on detecting ITV-environment relationships depends on how 
sample sizes and population-level ITV are distributed along environmental gradi-
ents. High correlations between sample size and the environment result in greater 
Type I error, while weak ITV–environmental gradient relationships showed high 
Type II error probabilities. Therefore, having large sample sizes that are even across 
populations is the most robust sampling design for studying ITV-environment re-
lationships. These findings shed light on the complex interplay among sample size, 
sampling design, ITV, and environmental gradients.
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1  |  INTRODUC TION

A central focus of ecology is to understand how species relate to 
their biotic and abiotic environments. Species traits have long been 
used as a currency for linking species to environmental gradients (de 
Bello et al., 2021; McGill et al., 2006) and assessing the influence of 
biotic interactions on biodiversity patterns (Read, Baiser, et al., 2018; 
Whittaker, 1972). Traits are commonly used to predict species re-
sponses to climatic change and habitat loss (Hoffmann & Sgrò, 2011; 
MacLean & Beissinger,  2017), assess how assemblages and food 
webs reorganize following colonization or emigration of new species 
(e.g., invasion; Baiser et al., 2010; Baiser & Lockwood, 2011; Miehls 
et  al., 2009), and unravel large-scale patterns in species distribu-
tions across geographic gradients (Carvalho et al., 2023; Montaño-
Centellas et al., 2020; Siders et al., 2022).

Although functional traits mediate species-environment rela-
tionships at the individual level, intraspecific trait variation (ITV) has 
long been neglected in ecological studies. It was only in the past de-
cade that the field of trait-based ecology experienced a resurgence 
in the use of individual-level trait measures to advance population 
and community ecology (Bolnick et  al., 2011; Violle et  al., 2012). 
In contrast to the mean-trait approach, ITV reflects niche width, 
providing insights into organism-environment interactions and the 
mechanisms driving biodiversity patterns (Fajardo & Siefert, 2019). 
For example, ITV has been shown to influence coexistence among 
species (Hogle et  al.,  2022; Holdridge & Vasseur,  2022; Jordani 
et  al.,  2019; Stump et  al.,  2022), macroecological relationships 
(Read, Baiser, et  al.,  2018; Read, Grady, et  al.,  2018), the estab-
lishment of invasive species (Helsen et  al.,  2020; Westerband 
et al., 2021), and species distributions across space and time (Fang 
et al., 2019; Guisan et al., 2019; He et al., 2021; Violle et al., 2012) 
with implications for community assembly and structure (Lavorel 
& Garnier,  2002; Siefert et  al.,  2015; Westerband et  al.,  2021; 
Wickman et al., 2022).

Intraspecific trait variation can be studied at a variety of spatial 
scales (i.e., grains and extents; Wiens, 1989), providing information 
on the level of biological organization of interest (e.g., populations, 
communities, ecosystems). For example, in studies that aim to assess 
patterns of trait variation for a species (e.g., body size variation along 
latitudinal gradients; Bergmann's Rule, 1847), the spatial extent can 
be the entire species' geographical range. In such an approach, the 
spatial grain is often locations of individuals opportunistically col-
lected across the species range (e.g., Guralnick et al., 2020; Riemer 
et al., 2018). On the opposite end of the spectrum, the spatial extent 
and grain may be a single location where individuals are exhaustively 
sampled and measured to capture population-level ITV from a single 
population (e.g., Pease & Mattson, 1999). Exhaustive sampling can 
also be conducted at several locations (e.g., across an environmental 
gradient) to capture population-level ITV for multiple populations 
(e.g., Westerband et  al., 2021). Furthermore, population-level ITV 
can be calculated for multiple populations of co-occurring species 
in a given location to give insight into the trait overlap of coexisting 
species within a community (Read, Baiser, et al., 2018).

Regardless of the spatial extent or grain or whether an ITV study 
focuses on one species or an entire community, accurately quan-
tifying ITV is challenging for several reasons. First, estimating ITV 
hinges on the successful capture and measurement of multiple in-
dividuals, which can be constrained by cost, time, and capture rate 
among other challenges. Second, there is little to no guidance on the 
number of individuals necessary to accurately estimate ITV. In many 
studies, researchers set an a priori sample size based on available 
resources or select n = 10 as a sample size (Gotelli & Ellison, 2004). In 
other studies, ITV is simply calculated based on the number of indi-
viduals that end up being sampled (or obtained from museum speci-
mens), which can vary across populations, species, or environmental 
gradients (e.g., Read, Baiser, et al., 2018). Previous simulations based 
on in silico populations and empirical data revealed that sample sizes 
greater than 20 individuals significantly improved the accuracy of 
population-level ITV estimation (Yang et al., 2020). However, there 
are many factors that may influence our conclusions about ITV and 
its relationship with environmental gradients that have yet to be ex-
plored, such as sample size and sample design.

The lack of information on ITV or bias in ITV estimates can 
limit the understanding of how species respond to environmental 
changes. Without accurately capturing ITV, scientists may overlook 
the adaptive potential of individuals, leading to inaccurate predic-
tions of species survival, invasion, adaptation, and ecosystem resil-
ience (Moran et al., 2016). In this study, we explored how sample size 
affects the estimation of population-level ITV, and how the distribu-
tion of sample sizes along an environmental gradient (i.e., sampling 
design) affects the inferences we can draw regarding relationships 
between population-level ITV and environmental gradients. We 
sought to understand when different sampling designs along an en-
vironmental gradient would lead to the conclusion of a significant 
ITV–environment relationship when there was none (i.e., Type I 
error) or to the rejection of an ITV–environment relationship when 
one existed (i.e., Type II error). We simulated four Scenarios where we 
varied the number of individuals sampled from each population, the 
sample size-environmental gradient relationship, the ITV of the pop-
ulations, and the underlying population ITV-environmental gradient 
relationship. We performed these simulations for in silico popula-
tions, as well as empirical populations of a small mammal (Peromyscus 
maniculatus). We used our simulations to calculate the probabilities 
of Type I and II errors associated with different sampling designs to 
inform future studies of population-level ITV.

2  |  MATERIAL S AND METHODS

We ran three sets of simulations to explore how sample size and 
sampling design influence the estimation of population-level ITV 
and the detection of ITV-environment relationships. The basis of the 
first two sets of simulations was a collection of 98 in silico popula-
tions, each with 100 individuals. Each population had a log-normally 
distributed theoretical trait with a mean of 15, and the standard de-
viation varied across populations at 98 even intervals between 0.01 
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and 15. For the third set of simulations, we used empirical data on 
body size variation of Peromyscus maniculatus populations across 
the continental United States collected by the National Ecological 
Observatory Network (NEON). For a detailed summary of the simu-
lation parameters, see Table S1.

2.1  |  In silico simulations

2.1.1  |  1st set of simulations: In silico sample size 
simulation

In our first simulation, we explored how sample size influenced the 
estimation of population-level ITV. From each in silico population 
described above (n = 98), we randomly sampled from 2 to 99 indi-
viduals without replacement and measured ITV as the coefficient of 
variation (standard deviation/mean; CV) of the individuals sampled. 
We denoted this estimate of ITV as ĈV. We repeated this process 
1000 times and calculated root mean square error (RMSE) between 
the 1000 ĈV values and true population-ITV (measured as the CV 
of all 100 individuals in a population) for each sample size–standard 
deviation combination. Therefore, for this first set of simulations, we 
gathered a total of 9604 RMSE values, one for each sample size–true 
population-level ITV combination.

2.1.2  |  2nd set of simulations: In silico sample 
size-environmental gradient simulations

Our second set of simulations assessed ITV for in silico populations 
evenly arrayed across a theoretical environmental gradient (e.g., 

elevation for illustration in Figure 1), which was given an arbitrary 
range of values from 1 to 10 in increments of one. For a set of 10 
populations (see also Figures S5 and S6 for simulations with 5 and 15 
populations), we simulated relationships between true population-
level ITV, sample size, and an environmental gradient in four dif-
ferent Scenarios. In Scenarios one and two, true population-level 
ITV remained constant along the gradient (Figure  1a,b), whereas 
in Scenarios three and four, true population-level ITV was signifi-
cantly correlated with the gradient (Figure 1c,d). Thus, in Scenarios 
one and two, we explored Type I error rates (i.e., false positives) in 
ITV-environmental gradient relationships, and in Scenarios three 
and four, we explored Type II error rates (i.e., false negatives). For 
schematic examples of the simulation process for each scenario, see 
Figures S1–S4.

In silico scenarios one and two
In Scenario one (Figure 1a), there was no relationship between the 
environmental gradient and true population-level ITV (i.e., each of 
the 10 populations in the simulation had identical trait distribu-
tions). However, the number of individuals sampled from each pop-
ulation varied and was correlated with the environmental gradient 
(e.g., capture probability decreased with elevation; Figure 1a). The 
sample sizes for this Scenario ranged from 2 to 99 individuals, with 
values evenly distributed across the 10 populations (i.e., 2, 13, 24, 
34, 45, 56, 67, 77, 88, 99 individuals). We conducted all possible 
permutations of these 10 values of sample size relative to the gra-
dient, resulting in 3,628,800 arrangements of sample size along 
the gradient. Then, we randomly selected 100 arrangements that 
corresponded to sample size-environmental gradient correlations 
(r) evenly spaced between 0.01 and 1 (Figure S1). For a given sam-
ple size–environmental gradient correlation, we randomly sampled 

F I G U R E  1 Schematic illustration representing the four simulation Scenarios where the mountain (i.e., elevation) represents an 
environmental gradient, the blue circles represent the sample size and the green parabolas represent the intraspecific trait variation (ITV) of 
the in silico populations. (a) Scenario one represents the case where true population-level ITV remained the same along the environmental 
gradient (i.e., fixed ITV), and the researcher varied the number of individuals (n) collected along an environmental gradient (i.e., varied n). (b) 
Scenario two represents the case where both ITV and sample sizes are constant along the gradient (i.e., Fixed ITV and Fixed n). (c) In Scenario 
three, ITV and sample size varied along the gradient (i.e., Varied ITV and Varied n). (d) In Scenario four, the true population-level ITV changed 
along the environmental gradient (Varied ITV), but the sample size collected from each population was constant (Fixed n).

 20457758, 2024, 9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.70250 by Sydne R

ecord - U
niversity of M

aine at A
ugusta , W

iley O
nline Library on [25/09/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



4 of 12  |     FLUCK et al.

the corresponding number of individuals from each population 
and estimated ITV as the ĈV of the samples. We then regressed 
ĈV against the environmental gradient and extracted the result-
ing p-value. We repeated this process 1000 times and used the 
frequency of p ≤ .05 out of 1000 regressions as a measure of Type 
I error (see Figure 2, for stepwise schematic). We ran this simula-
tion for all combinations of sample size–environmental gradient 
correlation (r) and population-level ITV (n = 9800).

Like Scenario one, in Scenario two (Figure 1b), there was no rela-
tionship between the environmental gradient and true population-
level ITV (i.e., testing of Type I error). However, the number of 
individuals sampled from each population was the same across the 
gradient (i.e., this is a Scenario where the researcher sets an equal 
a priori number of individuals to sample from each population). 
We tested sample sizes ranging from 2 to 99 for all levels of true 
population-level ITV (Figure S2). For a given combination of sample 
size and true population-level ITV, we randomly drew the number 
of individuals from each of the 10 populations and estimated the ĈV 
for each sample. We then regressed ĈV against the environmental 
gradient and extracted the p-value of the regression. We repeated 

this process 1000 times and used the frequency of p ≤ .05 out of 
1000 regressions as a measure of Type I error. We ran this simu-
lation for all combinations of sample size and true population-level 
ITV (n = 9604).

In silico scenarios three and four
In Scenarios three and four, we tested the probability of a Type II 
error. For these two Scenarios, true population-level ITV varied 
along the environmental gradient (Figure 1c,d). To simulate correla-
tions between ITV and the environmental gradient, we selected 10 
populations with true population-level ITV ranging from SD = 0.01 
to 15, which is equivalent to CV = 0.001 to 1 since all the popula-
tions were set to have the same mean of 15. The CV values were 
evenly distributed across the 10 populations (i.e., CV = 0.001, 0.11, 
0.23, 0.33, 0.45, 0.54, 0.65, 0.76, 0.86, 1). We conducted all pos-
sible permutations of these 10 values of ITV relative to the gradi-
ent, resulting in 3,628,800 arrangements of ITV that corresponded 
to ITV-environmental gradient correlations (r) ranging from 0.01 to 
0.99. However, because we wanted to test for a Type II error in this 
Scenario where the alternative hypothesis of true population-level 

F I G U R E  2 Workflow of the simulation 
process. After setting the number of 
individuals to be sampled and the ITV 
for each population along the gradient 
according to a given Scenario, we followed 
these steps to assess the probabilities 
of Type I and II errors. In step one, we 
define the true population-level ITV of 
each population and the relationship to 
the environmental gradient. In step two, 
we sampled the number of individuals 
(n) from each population based on the 
Scenario and estimated ITV as ĈV for 
each of the samples. In step three, the 
ĈVs calculated in step two become the 
response variable for a regression against 
the environmental variable and the p-value 
of the regression is extracted. In step four, 
steps one through three are repeated 
1000 times to generate 1000 p-values. 
In step five, we used the frequency of 
p-values < .05 (or p-values > .05) (blue lines) 
out of 1000 regressions to calculate the 
probability of a Type I (or Type II) error.
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ITV being correlated with the environmental gradient was true, we 
filtered correlations for those with p-values ≤ .05, which resulted in 
37 correlations that ranged between r = .63 and 1. In other words, 
only 37 arrangements of ITV values along the gradient guaranteed 
statistically significant correlations between the theoretical envi-
ronment and true population-level ITV.

For Scenario 3 (Figure  1c), the number of individuals sampled 
from each of the 10 populations was correlated to the environmental 
gradient (see Scenario one). For a given combination of sample size–
environmental gradient and true ITV–environmental gradient cor-
relations, we randomly drew the number of individuals from each of 
the 10 populations and calculated the ĈV for each sample (Figure S3). 
We then regressed ĈV against the environmental gradient and ex-
tracted the p-value of the regression. We repeated this process 1000 
times and used the frequency of p > .05 out of 1000 regressions to 
calculate the probability of a Type II error. We ran this simulation for 
all combinations of correlations between sample size–environmental 
gradient and true ITV–environmental gradient (n = 3700).

In Scenario four, there was a relationship between true 
population-level ITV and the environmental gradient, but the same 
number of individuals were sampled for each of the 10 populations 
(Figure 1d). We created the relationship between true population-
level ITV and the environmental gradient using the methods de-
tailed for Scenario three and tested sample sizes ranging from 2 to 
99 individuals (Figure S4). For a given combination of sample size 
and true ITV–environmental gradient correlation, we randomly drew 
the number of individuals from each of the 10 populations and cal-
culated ĈV for the samples. Then, we regressed ĈV against the envi-
ronmental gradient and extracted the p-value of the regression. We 
repeated this process 1000 times and used the frequency of p-values 
> .05 out of 1000 regressions to calculate the probability of a Type II 
error. We ran this simulation for all combinations of sample size and 
ITV–gradient correlation (n = 3626).

2.2  |  3rd set of simulations: Empirical simulations 
with Peromyscus maniculatus in the United States

To explore how sampling design can influence Type I and II errors 
with empirical data, we used data from Peromyscus maniculatus (deer 
mice) populations collected by the National Ecological Observatory 
Network (NEON). NEON covers a wide range of taxa, and its spe-
cialized sampling design optimizes sampling practices for each taxo-
nomic group surveyed, requiring different sampling methods to 
increase detection probability and reduce observer bias. NEON sam-
ples small mammal diversity at 47 terrestrial field sites distributed 
across ecoclimatic domains in the continental US, Hawaii, and Puerto 
Rico. We gathered data collected from 2013 to 2023 (NEON, 2023a, 
https://​doi.​org/​10.​48443/​​p4re-​p954; Generated: January 27, 
2023). Small mammal sampling plots are 90 m × 90 m (180 m2) and 
consist of a trapping grid of 100 box traps separated by 10 m. Each 
NEON site has 3–11 small mammal sampling plots. Plots are sam-
pled in 1–3-night sampling bouts per month depending on weather 

conditions and site type with a minimum of 4 and a maximum of 6 
sampling bouts per year. Each trapped small mammal is identified 
to species, weighed, sexed, aged, and checked for reproductive sta-
tus. Full sampling protocols are available in Paull (2022). NEON also 
collected site-level environmental variables (NEON, 2023b, version 
from March 09, 2023; https://​www.​neons​cience.​org/​field​-​sites/​​
explo​re-​field​-​sites​).

We selected P. maniculatus as a focal species because it is cap-
tured in high abundance across many NEON sites (Table S2). Our 
goal with the P. maniculatus data was to simulate the Scenarios above 
on empirical data as a proof-of-concept and test the probability of 
getting Type I and II errors when studying the relationship between 
ITV in body size and environmental gradients. We selected the 10 
sites with the largest numbers of individuals (min = 186, max = 415, 
mean = 278, and SD = 73) because we wanted our empirical example 
to be comparable to our simulations and because we needed large 
sample sizes for each population. We used the coefficient of varia-
tion of body weight (g) of all adult individuals sampled at a site as a 
measure of population-level ITV.

For Scenarios one and two (i.e., testing Type I error), we used lat-
itude as the environmental gradient because it had no significant 
relationship with population ITV (R2 = .018 and p = .7098, Figure S7). 
For Scenarios three and four (i.e., testing for Type II error), we were 
unable to find a significant relationship with any environmental vari-
ables for our 10 populations, but we did find a significant relation-
ship between population-level ITV and mean annual temperature 
when we removed one site (R2 = .462 and p = .044, Figure S8). As 
a result, we used 10 sites for Scenarios one and two and nine sites 
for Scenarios three and four (Figures S7 and S8). Since there was a 
known relationship between true P. maniculatus population-level ITV 
and the environmental gradients (i.e., no significant correlation with 
latitude or significant negative correlation with temperature), we did 
not vary the ITV-environmental gradient relationship in the empiri-
cal simulations.

2.2.1  |  Empirical sample size simulation

We explored how sample size influenced the estimation of 
population-level ITV for 10 populations of P. maniculatus. From each 
population we sampled from 2 to 99 individuals and measured ITV 
as the coefficient of variation (CV) of the individuals sampled. We 
denoted this estimate of ITV as ĈV. We repeated this process 1000 
times and calculated RMSE between the 1000 ĈV values and true 
population-ITV for each sample size.

2.2.2  |  Empirical sample size-environmental 
gradient simulations

Empirical scenarios one and two
In empirical Scenario one, we determined the number of individuals 
to sample from each of the 10 populations based on a series of 97 
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sample size-latitude correlations (r) ranging from 0.01 to 0.97. For 
each correlation value, we randomly drew the number of individuals 
from each of the 10 populations and estimated ITV as the ĈV of each 
sample. We then regressed ĈV against latitude and extracted the 
p-value of the regression. We repeated this 1000 times and used the 
frequency of p ≤ .05 out of 1000 regressions to calculate the prob-
ability of a Type I error.

For Scenario two, again, the empirical relationship between true 
population-level ITV and latitude was not significant (Figure S7 and 
Table S3). However, in this Scenario, the same number of individu-
als were sampled from each population along the environmental 
gradient. For each sample size ranging from 2 to 99 individuals, we 
randomly drew the number of individuals from each of the 10 pop-
ulations and estimated the ĈV of the samples. We then regressed 
ĈV against latitude and extracted the p-value of the regression. We 
repeated this 1000 times and used the frequency of p ≤ .05 out of 
1000 regressions to calculate the probability of a Type I error.

Empirical scenarios three and four
In empirical Scenario three, there was an observed significant negative 
relationship between mean annual temperature and true population-
level ITV for the nine populations (Figure S8 and Table S3). We de-
termined the number of individuals to sample from each of the nine 
populations based on 98 sample size-temperature correlations (r) 
ranging from 0.01 to 0.98. For each correlation value, we randomly 
drew the number of individuals from each of the nine populations 
and estimated the ĈV of the samples. Then, we regressed the ĈV 
against temperature and extracted the p-value of the regression. We 
repeated this process 1000 times and used the frequency of p > .05 
out of 1000 regressions to calculate the probability of a Type II error.

Empirical Scenario four also had an observed significant negative 
relationship between temperature and true population-level ITV for 
the nine sites (Figure S8 and Table S3). However, like Scenario two, 
the same number of individuals were sampled from each population 
along the gradient. For each sample size ranging from 2 to 99, we 
randomly drew the number of individuals from each of the nine pop-
ulations and estimated ITV of each sample as ĈV. Then, we regressed 
ĈV against temperature and extracted the p-value of the regression. 
We repeated this process 1000 times and used the frequency of 
p > .05 out of 1000 regressions to calculate the probability of a Type 
II error.

3  |  RESULTS

Our study explored how sample size affects the estimation of 
population-level ITV and the inferences we can draw regarding re-
lationships between population-level ITV and environmental gra-
dients. Overall, we found that increasing sample size reduces error 
for estimates of ITV, but the influence of sample size on detect-
ing ITV-environment relationships depends on how sample sizes 
and true population-level ITV are distributed along environmental 
gradients.

3.1  |  In silico simulations

3.1.1  |  In silico sample size simulation

To explore the role of sample size on the estimation of population-
level ITV, we resampled in silico populations with different levels 
of ITV across a range of sample sizes. The root mean square error 
(RMSE) for the estimate of the coefficient of variation (ĈV) for a hy-
pothetical trait increased with population-level ITV and decreased 
with larger sample sizes (Figure 3).

3.1.2  |  In silico sample size-environmental gradient 
simulations

In silico scenarios one and two
The results of Scenario one (Figure 4a) showed that Type I error prob-
ability increased with the correlation between sample size and the 
environmental gradient. The Type I error probability crossed the 
threshold of 0.05 at a correlation of r ~ .3 between sample size and 
the environmental gradient for most values of true population-level 
ITV (Figure 4a). There was minimal effect of true population-level 
ITV on Type I error probability with more variable populations show-
ing slightly greater Type I error at higher correlations between sam-
ple size and the environmental gradient.

Scenario two results showed no relationship between either 
true population-level ITV or sample size and Type I error probability 
(Figure 4b). The Type I error probability was ~0.05 for all sample 
sizes.

In silico scenarios three and four
Scenario three (Figure  4c) showed that Type II error increased as 
the relationship between true population-level ITV and the envi-
ronmental gradient decreased. However, it was only when the true 
population-level ITV was highly correlated (r > .8) with the envi-
ronmental gradient that we observed a Type II error rate under 
5%, and this was only in a few instances (Figure 4c). On the other 
hand, for weaker trait-environment relationships (r < .7), Type II 
error was always greater than 5%. Note that in our simulations, 
the lowest significant correlation of population-level ITV along 
the environmental gradient was r = 0.63. Permutations of true 
population-level ITV along the environmental gradient (see meth-
ods for Scenarios three and four) did not yield significant (p ≤ .05) 
relationships at lower correlations, so they could not be used to 
test for Type II error.

Our results for Scenario four (Figure 4d) showed that Type II error 
increased as the strength of the true ITV–environmental gradient re-
lationship decreased, similar to Scenario three. However, in Scenario 
four, sample size moderated the effect of the true ITV–environment 
relationship on Type II error. At the lowest sample sizes (e.g., n = 2 
individuals) Type II error was >5% for even the strongest true ITV–
environmental gradient relationships (e.g., r = 0.99) whereas larger 
sample sizes decreased Type II error rates below 5% even for weaker 
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ITV–environmental gradient relationships (i.e., r = 0.64). Even with 
the maximum of 99 individuals sampled, the ITV–environmental gra-
dient relationships of r = 0.63 yielded a Type II error probability of 
44% (Figure 4d).

We conducted the above simulation with 5 and 15 populations 
(see Figure S5 and S6 for details). Outcomes were qualitatively sim-
ilar to the 10 population simulation results. An expected pattern 
emerged in Scenarios three and four of increased power (i.e., lower 
Type II error) with an increasing number of populations.

3.2  |  Empirical simulations: Peromyscus 
maniculatus

Overall, results from the P. maniculatus simulations were generally 
congruent with our theoretical simulations from in silico populations.

3.2.1  |  Empirical sample size simulation

The RMSE of ĈV for population-level P. maniculatus body size de-
creased with sample size and slightly increased with population-
level body size ITV (Figure 5). The relationships between RMSE with 
sample size and population-level ITV qualitatively matched those of 
our theoretical simulations (Figure  3) over the same range of true 
population-level ITV (i.e., CV = 0.1–0.2).

3.2.2  |  Empirical sample size-environmental 
gradient simulations

Empirical scenarios one and two
The results of empirical Scenario one showed that Type I error 
probability was <5% for all sample size–environmental gradient 

F I G U R E  3 Influence of sample size 
and true population-level ITV on the 
root mean square error (RMSE) of the 
population-level ITV estimate (ĈV) for in 
silico populations.

F I G U R E  4 Simulation results across four Scenarios based on in silico and empirical data. Colored lines show the results from simulated 
in silico populations and dashed black lines represent the results from Peromyscus maniculatus empirical populations. The red line indicates 
a 5% error threshold. Scenarios one (a) and two (b) show Type I error probability across true population-level ITV for different sample size-
environmental gradient correlations and sample sizes, respectively. Scenarios three (c) and four (d) show Type II error probability across 
ITV-environmental gradient relationships for different sample size-environment correlations and sample sizes, respectively. Note that for 
Peromyscus maniculatus populations (dashed black line) the environmental gradient is latitude in (a) and (b) and temperature in (c) and (d).
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8 of 12  |     FLUCK et al.

relationships (Figure 4a dashed line). This means that for populations 
with relatively low ITV, like Peromyscus maniculatus (CV ranges from 
0.14 to 0.21), the sample size–environmental gradient relationship 
does not have a strong influence on Type I error probability, espe-
cially in the context of an α = .05.

In empirical Scenario two, there was a decrease in Type I error 
probability with increasing sample size (Figure 4b dashed line). The 
lowest sample sizes resulted in Type I errors >5%, but sample sizes 
greater than 4 individuals consistently resulted in Type I error prob-
abilities <5%. In addition, sample sizes >32 individuals consistently 
resulted in Type I error probabilities <0.01. Our empirical results de-
viated from the in silico population simulations, which similarly had 
low Type I error probabilities but did not decrease with increasing 
sample size.

Empirical scenarios three and four
Empirical Scenario three showed that Type II error was highest at 
low to intermediate sample size–temperature correlations and 
slightly decreased around a sample size–temperature correlation of 
r = .5 (Figure 4c, dashed line). However, the probability of a Type II 
error was consistently between 65% and 90%. Thus, regardless of 
the correlation between the number of individuals sampled from P. 
maniculatus populations and temperature, the observed relationship 
between body size and latitude was difficult to recover. High Type II 
error was expected because the observed correlation between ITV 
and temperature (r = .68) was at the lower end of our in silico popula-
tion simulations (Figure 4c; purple lines).

Empirical Scenario four showed that the probability of a Type 
II error decreased with sample size (Figure  4d dashed line), which 
matched the results from the in silico population simulations 
(Figure 4d). The lowest sample size of 2 individuals had Type II error 
rates of 93% and error rates declined to 60% when a maximum of 99 
individuals were sampled per population.

4  |  DISCUSSION

The study of intraspecific trait variation (ITV) requires the success-
ful capture and measurement of multiple individuals, which can be 

costly in terms of time and money at best, and nearly impossible 
due to low capture rates among other logistical challenges at worst. 
As ITV studies within populations and communities from local to 
macroecological scales have grown over the past decade, little to 
no guidance has emerged for how many individuals are necessary 
to accurately estimate ITV (but see Yang et  al.,  2020). Here, we 
show that larger sample sizes reduce error rates in the estimation of 
population-level ITV for both in silico populations and populations 
of Peromyscus maniculatus. While this result is intuitive, we further 
show that the influence of sample size on detecting ITV-environment 
relationships depends on how sample sizes and true population-level 
ITV are distributed along environmental gradients. High correlations 
between sample size and the environment result in greater Type I 
error, while weak ITV–environmental gradient relationships are dif-
ficult to detect (i.e., greater Type II error) but larger sample sizes help 
reduce this error.

Simulations based on in silico populations and empirical data 
have already proven to be a fruitful path to advance methods for 
quantifying ITV. Yang et al.  (2020) found that sample sizes >20 in-
dividuals significantly improved the accuracy of ITV estimation. Our 
estimates of sample size for individual in silico and P. maniculatus 
populations qualitatively agree with Yang et al. (2020). When fewer 
than ~20 individuals are sampled, there is a rapid increase in error 
for the estimation of population-level ITV regardless of the underly-
ing true population ITV. However, the study of population-level ITV 
is often extended from one to multiple populations (Costa-Pereira 
et al., 2018; Evangelista et al., 2019; Musseau et al., 2020; Stinson 
et al., 2018; Westerband et al., 2021; Yan et al., 2018) which in many 
cases, are distributed across environmental gradients to answer the 
question: Are populations more (or less) variable under certain con-
ditions (Helsen et al., 2017)? We show that the influence of sample 
size on estimating population-level ITV is not straightforward in this 
context.

Based on our simulations, the detection of ITV–environmental 
gradient relationships can be influenced by: (1) the underlying rela-
tionship between true population-level ITV and the environmental 
gradient; and (2) the relationship between sample size and the envi-
ronmental gradient. When there is no underlying ITV–environmen-
tal gradient relationships (i.e., Scenarios one and two; Figure 1a,b), it 

F I G U R E  5 Influence of sample size 
and true population-level ITV on the 
root mean square error (RMSE) of the 
population-level ITV estimate (ĈV) for 
Peromyscus maniculatus populations in the 
continental United States.
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is better to have no relationship between sample size and the envi-
ronment (e.g., most easily achieved by sampling the same number of 
individuals from each population across the gradient) regardless of 
sample size and true population-level ITV. When there is a correla-
tion between sample size and the environment where r > ~0.3, Type 
I error exceeds 5%. On the other hand, when systems do have an un-
derlying population-level ITV–environmental gradient relationship 
(i.e., Scenarios 3 and 4, Figure 1c,d), weak gradients are difficult to 
detect and increased sample size can reduce Type II error.

What information do our simulations yield regarding sampling 
design for ITV researchers? The first challenge in answering this 
question is that in most cases, there is no a priori knowledge of the 
strength of the relationship between ITV–environmental gradient 
(i.e., in most cases, that is why the study is being conducted in the 
same first place). However, it is clear that the component we can 
control—the sample size-environment relationship—should not show 
a high correlation. If a new experiment is being designed, research-
ers should plan on sampling the same number of individuals from 
each population along the gradient. If data have already been col-
lected (e.g., museum specimens or previous studies) the correlation 
between sample size and gradients of interest should be assessed. 
If there is a moderate to strong relationship (r > .4), samples should 
be rarified to the sample with the fewest individuals. The second 
recommendation garnered from our simulations, which is intuitive, is 
that both sample sizes and the number of populations should be as 
large as possible to reduce Type II error.

Interestingly, while greater true population-level ITV increases 
error in the estimate of ITV for individual populations (Figures 3 and 
5), it has little effect on Type I error probability when considering 
multiple populations across a gradient (Figure 4a,b). Regardless of 
whether populations are extremely variable for a given trait or if 
they show almost no ITV, sample size and sample size-environment 
relationship don't exert a strong influence on Type I error.

Our results show that some knowledge of the exact elements 
that are under investigation in an ITV-environment study is neces-
sary to avoid Type I and II errors. Namely, the underlying population-
level ITV and its relationship with environmental gradients. One way 
to solve this conundrum is to leverage known information on traits, 
taxa, and environmental gradients. For example, if ITV-environment 
relationships are expected to be strong for a given trait and taxo-
nomic group based on natural history or previous studies (e.g., 
positive influence of temperature on height ITV of herbs; Helsen 
et al., 2017; Kuppler et al., 2020; Lemke et al., 2012, 2015), fewer 
individuals per population would be needed to detect that relation-
ship than if ITV-environment relationships were generally expected 
to be weak. Collection of this information from previous and future 
studies will build knowledge to guide sampling design and sample 
size for population-level ITV studies for different taxa, traits, and 
environmental gradients.

Our empirical example using P. maniculatus population-level ITV 
for body size across latitudinal and temperature gradients in the con-
tinental United States confirmed many of the findings from the in 
silico population simulations. For the relationship between body size 

ITV and latitude, we found low rates of Type I error (<5%) regardless 
of the sample size or sample size-environment correlation. However, 
at higher sample size-environment correlations, we noticed a slight 
increase in the Type I error rate, although not as large as the increase 
seen in the in silico populations. The decrease in Type I error rate for 
P. maniculatus with sample size in Scenario two differs from the flat 
line observed for the in silico populations. This is likely due to the 
natural complexity of the empirical data: although the underlying re-
lationship between true population-level ITV and the environmental 
gradient was not significant in both cases, the in silico populations 
had the same abundance, mean and variance while these parameters 
varied for P. maniculatus populations (but not in relation to latitude). 
We conclude that the sampling designs represented in empirical sce-
narios one and two, where we tested the relationship between P. 
maniculatus population-level body size ITV and latitude, are robust 
to Type I errors even under sample sizes as low as 5 individuals.

However, such small sample sizes are not enough to avoid Type 
II error when assessing the relationship between P. maniculatus 
population-level ITV for body size and temperature. In fact, Type 
II error never dropped below 50% for any sample size or sample 
size-environment correlation for the range of sampling designs in 
Scenarios three and four. In other words, the negative relationship 
between P. maniculatus population-level body size ITV and tempera-
ture was detected less than 50% of the time. This study was under-
powered and would require a larger number of populations to detect 
the ITV-gradient relationship of r = 0.68 which is consistent with the 
results from our in silico population simulations for Scenarios three 
and four.

The best practices that emerge from this study are as follows: 
(1) While it may seem self-evident, having large sample sizes of indi-
viduals and populations is important for increasing the power to de-
tect ITV-environmental gradients. (2) Avoid sampling designs where 
sample size is correlated with the environmental gradient. In cases 
where data have already been collected and sample sizes are ran-
dom across populations, we recommend examining the correlation 
between sample size and environment. If this correlation is found 
to be strong, its effects can be minimized by rarefying down to the 
sample size of the population with the fewest individuals. If the re-
sults from the rarefied data are similar to those found using the full 
dataset, researchers can be more confident that the results are not 
biased by differences in sample sizes across populations.

While we address sample size and design for population-
level ITV, ITV studies often address questions about trait varia-
tion at the scale of a species' range (e.g., Guralnick et  al., 2020; 
Riemer et al., 2018), between closely related species (e.g., Read, 
Grady, et  al.,  2018) and, at the community scale (Mungee & 
Athreya, 2021; Siefert et al., 2015; Violle et al., 2012). Expanding 
the scope of future studies to include multiple species and mul-
tivariate environmental gradients in empirical or simulation con-
texts would provide insights into broader ecological patterns and 
evolutionary dynamics. However, determining how many individ-
uals are necessary to quantify ITV in a range-wide or community 
context likely consists of a different set of challenges and sampling 
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design considerations. Applying what we have learned in our study 
to other taxa or multiple species in communities arrayed along a 
gradient may work in some instances, but in others, species may 
have vastly different abundances (e.g., common or rare), capture 
probabilities and different underlying ITV-environmental gradient 
relationships. Furthermore, ITV-environmental gradient relation-
ships may also depend on the trait or number of traits selected for 
analysis. For example, traits associated with movement may have 
different environmental responses than traits associated with for-
aging strategy (Dalmolin et al., 2020). Thus, considering multiple 
traits and their covariation may provide a more detailed under-
standing of how sample size and sampling design influence Type 
I and Type II errors. Further simulations are likely needed to gain 
insight into sampling design for range-wide and community-level 
ITV as well as ITV derived from multiple traits.

Our study advances our understanding of “How many individu-
als do you need to quantify ITV?”. Unfortunately, there is no golden 
number. For single populations, our simulations concur with those 
of Yang et  al.  (2020) that ~20 individuals can reduce error in the 
estimate ITV as measured by CV. We show that when estimating 
ITV-environmental gradient relationships for multiple populations, 
the relationship between sample size and the environmental gra-
dient, and the nature of the relationship between underlying true 
population-level ITV and the environment must be considered in the 
sampling design to avoid Type I and II errors.
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