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ABSTRACT CCS CONCEPTS

Communication switches have sometimes been augmented to pro-
cess collectives, e.g., in the IBM BlueGene and Mellanox SHArP
switches. In this work, we find that there is a great acceleration
opportunity through the further augmentation of switches to accel-
erate more complex functions that combine communication with
computation. We consider three types of such functions. The first
is fully-fused collectives built by fusing multiple existing collectives
like Allreduce with Alltoall. The second is semi-fused collectives
built by combining a collective with another computation. The
third are higher-order collectives built by combining multiple com-
putations and communications, such as to perform matrix-matrix
multiply (PGEMM).

In this work, we propose a framework called SmartFuse to accel-
erate fused collective functions. The core of SmartFuse is a recon-
figurable smart switch to support these operations. The semi/fully
fused collectives are implemented with a CGRA-like architecture,
while higher-order collectives are implemented with a more spe-
cialized computational unit that can also schedule communication.
Supporting our framework is software to evaluate and translate
relevant parts of the input program, compile them into a control
data flow graph, and then map this graph to the switch hardware.
The proposed framework, once deployed, has the strong potential
to accelerate existing HPC applications transparently by encapsu-
lation within an MPI implementation. Experimental results show
that this approach improves the performance of the PGEMM kernel,
MINIFE, and AMG by, on average, 94%, 15%, and 13%, respectively.
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1 INTRODUCTION

A growing trend in HPC is the increasing importance of the net-
work in application support. Offload of collective processing into
SmartNICs [4, 6, 18] is well established and has a number of bene-
fits: first, it enables the bypassing of layers in the communication
software stack; second, the hardware implementations are substan-
tially faster than the software; third, it frees up the host processor
for other tasks and, potentially, enables better communication-
computation overlap; and fourth, some network-host communi-
cation is removed as the NIC handles additional send/receive op-
erations. While SmartNICs are valuable, this scheme still forces
processing into the endpoints. Another approach is to offload collec-
tive processing into the switches [10, 15, 56]. This has two additional
benefits: first, latency is improved as computation is distributed
rather than performed in a single source (broadcast) or endpoint
(reduction); and, second, communication volume may be drasti-
cally reduced as messages are quickly merged (reduction) or slowly
replicated (broadcast).

Currently, however, switch hardware support for collectives
is limited to a small set of scalar operations and data types (e.g.,
[14, 15]). Moreover, beyond collectives there are additional acceler-
ation opportunities. We hypothesize that it would be beneficial to
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further augment switches to accelerate additional and more com-
plex functions that integrate communication with computation;
we refer to these as fused collective functions (FCFs). We propose
in-switch hardware support for three types of FCFs. The first is
fully-fused collectives, which are built by fusing multiple existing
collectives such as Allreduce with Alltoall. The second is semi-fused
collectives, which are built by combining a collective with a map
computation. The third is higher-order collectives, which are built
by combining multiple communications and computations. An ex-
ample of a higher-order collective is support for a parallel generic
matrix-matrix multiply (PGEMM): usually each node performs local
computation and then sends input matrices to its neighbors; with
appropriate hardware support for offloading higher-order collec-
tives to switches, much of the computation can occur in transit
[1, 20, 52]. Applications that benefit from the specification and accel-
eration of higher-order collectives include finite element methods
[37], iterative solvers [13, 19, 44], and graph algorithms [7, 41].

Adding switch support for FCFs confers additional advantages to
in-switch computing. First, additional processing can be removed
from the host as the switch manages fused function operations
autonomously. Second, performance can be improved through han-
dling hardware-accelerated irregular computation and data caching.
Third, multi-level communication-computation overlap is achieved:
host-network and communication-computation overlap within the
switch. Fourth, additional network-host communication is bypassed
as multiple communication phases are offloaded to the switch. Fi-
nally, the programmer’s model (that is supported efficiently) is
extended to reductions on user-defined data types, such as matrices
and sparse data.

In-switch support of FCFs has certain requirements. First, to
support line-rate communication, collective processing should be
done in hardware, rather than, say, a network processor (e.g., ARM
cores in SmartNICs). Second, since the processing is both non-
trivial and application dependent, this hardware should be (at least
partially) reconfigurable. Finally, communication and computation
must be tightly coupled. These requirements are currently met by
FPGA-augmented switches, e.g., from Arista [39]; by augmenting
existing switches with reconfigurable logic; or by using the FPGA
itself as a switch (e.g., New Wave [12]). Because of its accessibility,
we use the latter approach in this study and demonstrate its utility
in a direct network. We also evaluate our approach in an indirect
network testbed with FPGA-augmented switches. Other off-the-
shelf components may also be plausible, at least with enhancements;
e.g. GPUs have been used to offload non-blocking collectives [53].

Multiple challenges need to be addressed. First, while FCFs can
be programmed directly, more useful is that they be captured au-
tomatically from existing HPC applications. Second, the hardware
support for these operations must be transparent to the existing
communication middleware (e.g. MPI [16]). And third, FCF sup-
port in the switch must remain general-purpose while handling
high-bandwidth communication.

Our solution, which we call SmartFuse, has two major parts. The
first is a software framework that can evaluate and translate the
relevant parts of the input program, compile them into a control
data flow graph (CDFG), and then map this graph to SmartFuse
switch hardware. The second is the SmartFuse switch hardware
itself. This has multiple components for the different types of FCFs.
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To support semi/fully fused collectives SmartFuse uses a coarse-
grained reconfigurable array (CGRA) [54] overlay architecture for
packet processing. A second, more specialized unit (we refer to as
kernel logic) supports higher-order collectives. A feature of Smart-
Fuse is that the switch augmentation is transparent to the MPI layer;
legacy MPI application code is unchanged. The MPI communication
library is modified with APIs that provide communication between
hosts and SmartFuse switch hardware.

Fig. 1 compares SmartFuse and prior art (in-NIC and in-switch)
with respect to various benefits of offloading computation into the
network. The proposed in-switch approach has the potential to
obtain gains along multiple dimensions.

We summarize the contributions of this work:

e Demonstrate the advantages of accelerating FCFs with re-
configurable switches (Sec. 3).

o A systematic framework to accelerate FCFs with reconfig-
urable switches transparent to MPI (Sec. 4).

o A network-optimized CGRA with SIMD and asynchronous
execution features to fuse communications and computa-
tions (Sec. 5.2).

e A new compute-in-the-switch model to abstract communi-
cation and computation and to predict the performance of
in-switch computing approaches (Sec. 6).

e Experimental results showing that this approach improves
the performance of a variety of HPC applications. In a direct
network setting, SmartFuse improves the performance of
PGEMM, miniFE, and AMG by, on average, 94%, 15%, and
13%, and on an indirect network testbed it improves the
performance of finite element method by, on average, 98%
(Sec. 7).

The organization of this paper is as follows. Section 2 gives pre-
liminaries including the definition of FCFs and SmartFuse building
blocks. Section 3 provides the motivation. Section 4 presents the
software model and proposed framework. Section 5 describes the
smart switch hardware support. Section 6 introduces an in-switch
computing performance model. Section 7 evaluates SmartFuse. Re-
lated work is discussed in Sec. 8 while Sec. 9 provides a conclusion.

2 PRELIMINARIES
2.1 Communication-Computation Functions

FCFs provide substantial benefits by reducing communication vol-
ume, possibly making computation faster, and, at the same time,
enabling overlap between them; they can potentially improve the
performance (Sec. 3). That useful FCFs can be extracted and/or
constructed, however, is not at all obvious. After experimenting
with a variety of applications and kernels we have to identified a
number of such instances (Sec. 7). The current study examines the
following FCFs:

o Fully-fused collective: A collective followed by compu-
tation (we refer to as op) followed by another collective
(collective_op_collective). They are chained together; the
receive buffer from the first collective is used during the
computation and data generated during the computation is
used in the second collective.
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1: Software Layer Removal 2: Hardware Implementation Speed 3: Communication-Computation Overlap (a) between Host and Network
(b) in Network Devices 4: Network-Host Communication Bypassing 52 End-to-End Bandwidth 6: Composite Data Reduction

Figure 1: Characterizing SmartFuse and related work qualitatively with respect to the benefits of collective offload to network
devices; COPA [33], INCA [46], and SMI [9] are in-NIC approaches while iSwitch [36], SHArP [15], Flare [10], and SmartFuse are

in-switch methods. *Denotes a headless configuration in COPA.

o Semi-fused collective: A collective followed by computa-
tion (op) (collective_op), where the receive buffer from the
first collective is used during the computation.

e Higher-order collective: A kernel with multiple compu-
tations and communications following a well-defined and
repeatable communication pattern. A simple example is a dis-
tributed dot-product; more complex are distributed matrix-
multiply and FFT.

2.2 SmartFuse Basic Building Blocks

To support general-purpose computation in the switch in conjunc-
tion to collective offload, SmartFuse is built around three funda-
mental building blocks: (1) basic collective operation units, (2) a
network-optimized CGRA, and (3) kernel logic. The first block
realizes primitive collective operations (reduction, gather, and mul-
ticast) on incoming packets from different switch ports. The second
and the third support semi/fully fused collectives and higher-order
collectives, respectively. The second block is inspired by CGRAs
with the distinction that it processes packets (CDFGs are mapped
to this block). This block enables SmartFuse to support loops, which
may have conditions. The third block is a more specialized unit con-
sisted of a 2D dataflow-based architecture to support HPC kernels.

3 MOTIVATION

We now give an example to illustrate FCFs. Fig. 2 (a) shows an exam-
ple of a fully-fused collective for NAS parallel benchmark (IS) [40].
Communication (marked with red rectangles) and computation
(marked with blue rectangles, referred as op) are chained together;
the receive buffer in the MPI_Allreduce (stream_in array in the fig-
ure) is used during the computation and the array the computation
generates (stream_out) is used as the send buffer by MPI_Alltoall.
In SmartFuse, instead of sending the stream_in array back to the host
and performing the computation there, the switch performs this
computation (op), as well as the next communication, without host
involvement. Fig. 2 (b) shows another example of a fully-fused col-
lective used in finite element method (FEM) applications [5]. Again,
the receive buffer in the first collective routine (MPI_Allgather)
is used for the computation part (lines with blue rectangles) as
well as the next communication routine (MPI_Allgatherv). In this
example, the result of the computation part is used as a displace-
ment vector in the second collective during a prefix sum calculation.
SmartFuse combines the collective-operation-collective as a single

function and offloads it to the switch accelerator; this will save
intermediate communications among the nodes as the computation
part is handled by the accelerator. Fig. 2 (c) shows the C++ binding
for a higher-order collective, sparse matrix-vector multiplication
(SpMV), in which all of the communications and computations are
handled by the switch.

We now define the terminology necessary to characterize semi
and fully fused collectives. We refer to stream-in, inbound, stream-
out, and outbound as, respectively: the receive buffer (produced)
of the first collective; a collection of all the array(s) consumed in
the computation (but are not produced by the first collective); the
updated buffer during the computation and used in the second
collective; and a collection of all the array(s) produced in the com-
putation, but not consumed in the second collective. These four
arrays are identified by the SmartFuse compiler. In addition, com-
putation operations (op) are compiled into instructions (stored in
op buffer in the host, see Fig. 2 (a)), which are transferred to the
switch in order to program the CGRA at runtime (Sec. 5.2).

To justify this project, we conducted some preliminary experi-
ments where we compared emulated SmartFuse results on an FPGA
cluster with the original CPU implementation measured on a CPU
cluster with 128 nodes. Fig. 3 (a) summarizes SmartFuse improve-
ments over the original CPU implementation with respect to some
of the aforementioned in-switch computing benefits for the two
FCFs shown in Fig. 2. It is evident that SmartFuse provides substan-
tial improvements by fusing communications and offloading them
to the switch. In order to further show the potential efficacy of this
approach for a variety of semi/fully fused collectives, we evaluated
SmartFuse with respect to a set of proxy benchmarks. Although
these proxy benchmarks are not real HPC applications, they are
representative of many communication-computation patterns in
applications, including graph algorithms and iterative PDE solvers.
Table 1 shows the specifications of these proxy benchmarks. Fig. 3
(b) depicts the average latency (among all ranks) for these bench-
marks on a CPU cluster and SmartFuse (128 nodes). As is apparent,
SmartFuse provides considerable improvement. For the CPU cluster
specification and simulation setup used for FPGA cluster, refer to
Sec. 7.1. The SmartFuse results are based on emulation.

4 SMARTFUSE SOFTWARE SUPPORT
In this section, we first present an overview of the software model
used in this work, and then we describe the proposed framework
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Original MPI Program

Translated MPI Program
&= WPI_Allreduce(sendBufl, [stream_in, 1029,
MPI_INT, MPI_SUM, comm); t=op
in 5
= for(i=0; i<1024; i++) { ;‘;;‘(;::"::;mf"""tzi
== 1 += sti in[i]}; - b
b WPT Tal1reduce_op_alltosl1(
= if(accl >= (3+1) ini;ound\){ sendBufl, countl, MPI_INT,
S thea cat[j;\ = tah I* MPI_SUM, recvBuf2, count2,
. X = 5 :
(@) outbound1[j]| = outbound1[j-1] :Ei’hé:;"’)fmm’ o R
+ stream_out[j-1]; Fo WEit(;-
== outbound2[j]| = outbound3[j-1]+1; = 3
outbound3[j]| = i;
== JH+s
acc2 = 93}}

== Communication __Communication

Computation + Computation

== MPI_Alltoall(stream_out, 1, MPI_INT,
recvBuf2, 1, MPI_INT, comm);

o MPL_Allgather(&sendBufl, 1, MPI_INT,
stream_in[0], 1, MPI_INT,
mpi_communicator);

int* op;
int* countl, count2;
MPI_Comm comm;

fmmm MPI_Iallgather_op_allgatherv(
"* sendBufl, countl, MPI_INT,
sendBuf2, count2, MPI_DOUEBLE,
comm, op, inbound, outbound);
MPI_Wait();

=] stream_out[0] =
= i i

stream_in[i - 1];
(b)
MPI_Allgatherv(&sendBuf2[0],

n_my_elyments, MPI_DOUBLE, &recvBuf2[0],

mpi_com;unicator);

double* A_val, b, C;
int* A_colldx, A_rowPtr;
int* count;
MPI_Comm comm;
=== MPI_ISpMV(A_val, A_colldx,
L A_rowPtr, b, C, count, MPI_DOUBLE,
// Trilinos library (Tpetra) comm) ;
mmm A.apply(b, C); // C=A*b MPI_Wait();

RCP<crs_matrix_type> A (new
crs_matrix_type (map, maxEntriesPerRow))
vec_type b(A.getDomainMap());

(c) vec_type C(A.getRangeMap());

Figure 2: Examples of (a) a fully-fused collective
Allreduce_op_alltoall in the IS application from the
NAS parallel benchmark [40], (b) a fully-fused collective
Allgather_op_Allgatherv in an open source finite element
method library [5], and (c) a higher-order collective SPMV
from Trilinos Library (Tpetra) [30]. Some variables are
renamed from the original code for better readability.
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Figure 3: Evaluating SmartFuse vs. the original CPU imple-
mentation on 128 nodes with respect to (a) some in-switch
computing benefits for the two FCFs introduced in Fig. 2, and
(b) latency of the proxy benchmarks discussed in Table 1. *
LoGcN model is discussed in Sec. 6. The SmartFuse results
are based on emulation.
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Table 1: Specifications of the proxy benchmarks used.

Proxy o Sample Stream-In | Inbound
Benchmark P Application Size Size
MA? PAGERANK
Allgather_op (Multiply- Algorithm [41] 128 128
Accumulate)
Allreduce_op Accumulation Ang (:)rrtiltr}fns 512 0
Allreduce_op Dort-Propuct | Norm Computation 1 16K
_allreduce + SCALING in GMRES [57]
Master-Slave
Scatter_op_reduce | Accumulation (Workload 512 0
Distribution)

that can fuse communications and computations from the input
program and construct their offload to the reconfigurable switches.

4.1 Software Model

There are two ways to support reconfigurable network devices for
MPI specifications. The first is offline [9] where collectives and ops
are expressed in a high-level language (i.e. HLS, OpenCL). In this
method, the high-level language is compiled into a bitstream for
the hardware device for each MPI application (which is a lengthy
process). The other is online (runtime reconfigurable) [45] where the
reconfigurable network device (i.e. the FPGA) is transparent to MPI
calls. In this work, we focus on the latter as it avoids regenerating
the bitstream for each MPI program while addressing portability
across HPC applications [16] without requiring the user to modify
the application.

In order to make FPGAs transparent to MPI calls, we have written
a transport layer that enables the host to communicate with the
FPGA and load the configuration at runtime. As a proof-of-concept,
we have experimented with ExaMPI [47]. ExaMPI is a light-weight
MPI implementation, which focuses on key blocks of functionality
and is designed for modularity and extensibility.

Existing collectives are usually implemented by building on a
series of point-to-point operations. FCFs, however, bypass interme-
diate sends/receives; in this model, each rank has only up to one
non-blocking send and receive routine. Other MPI functionality,
including MPI rank management for the collective algorithms, is
handled by the switch. In our implementation, each rank is asso-
ciated with a distinct combination of two numbers: an IP address
(given to the nodes) and a port number given to each process. This
helps to calculate the rank IDs easier from incoming messages at
the switch accelerator hardware.

4.2 The Proposed Framework

4.2.1 Overview. The proposed framework translates an input MPI
program into a new one enhanced with FCF APIs and compiles the
relevant parts of the program to the reconfigurable switch. Fig. 4
shows the SmartFuse framework. An input MPI program is first
fed into a source-to-source translator. The translator begins by
parsing the code and inspecting the collectives and ops as well as
the higher-order collective APIs. If it is a higher-order collective,
then it is replaced with a new API (similar to Fig. 2 (c)). Otherwise, in
the case of a semi/fully fused collective, an evaluator first evaluates
whether fusing the collectives and operations is worth offloading
to the network. In case of passing that criterion, a control data flow
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graph is generated by SmartFuse compiler for the op extracted via
the parser. We used LLVM infrastructure [35] for this purpose.

The next step is CDFG mapping. There, CDFG operations are
mapped into CGRA processing elements (Sec. 5.2) with the aid of
a configuration file, which embeds architecture-specific informa-
tion (number of processing elements, etc). We use modulo routing
resource graphs (MRRG) [38] for this mapping (the initiation in-
terval is increased incrementally until a valid mapping is found).
Subsequently, instructions are constructed using an instruction
generator according to a dictionary of those supported instructions.
The collective(s) and ops are replaced with new (non-blocking)
FCF APIs with the correct arguments including inbound/outbound
arrays and a pointer to a data structure holding the instructions.
These new APIs are recognized by the MPI implementation. Note
that the instructions are loaded into the switch at runtime for each
semi/fully fused collective. In order to provide overlap between the
FCF itself and the rest of computation in the program, an MPI_Wait
is appropriately placed after it (considering the data dependency).
This translated program is now ready to be compiled and launched
with the usual MPI flow.

main(int arge,

argv){ Input RunTime
MPI_Init( Program | Source-to- MPL MPL Config,
; Sourc (=[]
arge, fargv); Source Compiler Launcher
e Translation
a MPI_Finalize();} /® FPGA
Semi/fully-fused Control Data et Configuration
ollectives Flow Graph a :‘z':: Z Pel File
W v > I |
| ] og|[Ess] " e
e Instructions
Parser SmartFuse  Mapping l(l,slruflliun s
Higher-Ordér Compiler renerator AN
Collectives Qrstsize:

Figure 4: SmartFuse Framework

Now, we disclose a number of considerations and details for
some of the framework parts.

4.2.2  Evaluator. There are two criteria to determine whether a FCF
is worth offloading to the network. First, there should be sufficient
reuse with at least one loop and sufficient parallelism, preferably
larger than SIMD degree of CGRA. Second, inbound/outbound
array size should be less than a threshold to lessen the overhead of
transferring data to/from switch. We use a threshold of 16 KBytes.

4.2.3 SmartFuse Compiler. There are some considerations need
to be addressed: (1) The compiler distinguishes the inbound and
stream-in data and represents this information in the generated
CDFG. (2) The proposed CGRA supports SIMD and reduction be-
tween SIMD lanes; this reduction is considered to be one of the oper-
ations for the CDFG. Also, index-based if/else statements (branches
that depend on the loop iteration) should be handled through pred-
ication [25] when SIMD is involved.

4.2.4 Mapping. The mapper asserts higher priority for inbound
data than for stream-in data. This is because stream-in data may
arrive at CGRA later than inbound data due to having a commu-
nication phase; processing on the latter could be started without
having to wait for the former.

ICS 24, June 4-7, 2024, Kyoto, Japan

5 SMARTFUSE HARDWARE SUPPORT

To support FCFs in a generic switch, SmartFuse is built around three
main components: (1) basic collective support, (2) the CGRA, and
(3) kernel logic. Fig. 5 shows the proposed smart switch design: it
is based on a virtual output queue (VOQ) design [32] and shown
with four input and output transceivers. We now describe each
SmartFuse building block. Finally, we discuss reliability and dead-
lock mechanisms of this work. For this section, we consider a direct
network where each node has an accelerator and these accelerators
are directly connected through a secondary network in a given
topology (e.g., 3D torus). Some of the discussions/details, however,
are applicable to indirect networks as well (e.g., fat-tree topology).

5.1 Basic Collective Support

The basic collectives that SmartFuse supports are achieved through
these four modules: (I) the collective control module handles com-
municator and MPI rank management; (II) the reduction unit sup-
ports reduce-type operations (MPI_Reduce and MPI_Allreduce);
(III) the gather unit supports gather-type operations (MPI_Gather,
MPI_Allgather,and MPI_Allgatherv); and, (IV) the multicast unit
supports MPI_Scatter and MPI_Bcast operations. For the first two
types of operations there is a collector module that synchronizes
packets from different input ports. The following is an overview of
each module.

5.1.1 Collective Control Module. To handle MPI rank connectivity
for collective algorithms, a communicator table stores the parent-
child MPI rank ID relationship. The currently supported collective
algorithms are binomial tree [50], recursive doubling [50], and a
tree-based algorithm optimized for a 3D-torus topology (used in
this work).

5.1.2  Reduction Unit. This unit is capable of performing addi-
tion, MAX/MIN, and bit-wise AND/OR/XOR operations. This is
done through aggregation logic units, each comprising parallel
double-precision floating-point/integer ALUs since the phit size
(data bitwidth of interface, 512 bits in this work) is wider than that
bitwidth.

5.1.3  Gather Unit. There is a gather table in which the packets are
first stored and then reordered and serialized based on the current
MPI rank ID [16] and the rank ID of the child processes in the
collective algorithm.

5.1.4 Multicast Unit. In order to support scatter-type operations,
there is a flag in the packet header that indicates whether the packet
is intended to be multicast. The crossbar logic is modified to support
multicast operation. At the output of the crossbar logic is a packet
re-assembler in which the destinations of the packets are appended
to the packet header.

Describing the other two modules briefly: the route-compute
unit determines the output port with the aid of communicator table
and the packet-parser decodes packets to find the type of transport,
operation, datatype, and packet size.

5.2 Network-Optimized CGRA

In order to support a variety of workloads for in-switch computing
we propose a network-optimized CGRA. CGRAs are typically used
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Figure 5: The proposed smart switch design with FCF support.

to accelerate computation-intensive loop kernels. In this work, we
consider a dataflow-based CGRA architecture to fuse communica-
tion and computation in a streaming fashion. We have modified a
traditional CGRA design with dynamic scheduling [54] through a
runtime state table (RST) and a finite state machine to efficiently
keep track of the loops and operations. To take advantage of the
wide phit size, the proposed CGRA benefits from SIMD features
with a reduction tree that performs the reduction among SIMD
lanes.

As shown in Fig. 6, the proposed CGRA consists of input inter-
faces (stream-in and inbound); output interfaces (stream-out and
outbound); an array of processing elements (PEs) grouped into dif-
ferent types, which are accompanied by register files (RFs); runtime
configuration tables (RCTs); and an RST. RCTs store instructions
(configurations) designated for PEs (generated by the instruction
generator, Sec. 4). These instructions specify the correct operation,
operands, RF address, and immediate data (IMM). RCTs are shared
among PEs in the same SIMD lane. The RST holds the state of
the configuration and determines the correct entry of the RCTs.
Inbound buffers (IBs) store inbound data and are addressable. Other
interfaces (stream-in, stream-out, and outbound) are streaming.

To maximize end-to-end network bandwidth we applied a num-
ber of optimizations. (1) Since stream-in data can arrive at the CGRA
later than inbound data (due to having a communication phase),
processing on the latter can begin without waiting for the former;
this enables asynchronous execution. (2) SIMD lanes are used to
boost network bandwidth and utilize data parallelism. (3) RFs are
utilized to reuse data between loops and to store partial results
between stream-in and inbound data.

There are several considerations for the CGRA design:

5.2.1 Data Streaming. As the CGRA emulates a network proces-
sor, it needs to be able to handle streaming data. At the interface
level, this means that off-chip memory is not involved. Instead,
on-chip FIFOs are used for the stream-in, stream-out, and outbound
interfaces. Similarly, memory accesses for other types of buffers

(inbound, RFs, RST, and RCT) require single clock cycle latency. To
achieve this, we have constrained the depth of these memories to
max_depth.

5.2.2  Supporting Conditionals. To facilitate conditionals, we sup-
port partial predication [25], in which both the if-path and else-path
are executed in parallel and the correct outcome is selected by eval-
uating the condition.

5.2.3 Supporting a variety of workloads. To support different types
of workloads, PEs inside the CGRA are assigned to be either (1)
integer-processing (type-A) comprising integer multiplication, addi-
tion, and logical operations, (2) integer to double-precision floating-
point conversion (type-B), (3) double-precision floating-point pro-
cessing (type-C) including multiplication and addition, or (4) post-
processing (type-D) such as division and square root. The wide
MUXes on the inputs of these PEs enable processing data from
different sources (stream-in, inbound buffers, RFs, and immediate
data) to chain operations with high throughput.

5.3 Kernel Logic

Kernel logic is responsible for handling kernel-level operations
(higher-order collectives). A condition that needs to be met to be
considered a kernel is that it should have a well-defined and re-
peatable communication pattern (e.g., matrix multiplication). One
of the challenges in designing such a unit for multiple nodes is to
tightly couple communication and computation. This is handled by
a scheduler unit (configured by the host) which drives the control
signals of the kernel unit logic. Fig. 7 shows the proposed archi-
tecture. It is divided into two concurrent parts: computation and
communication engines. To provide the asynchrony between these
two engines, each can write their results to the output buffers inde-
pendently. These two results will be summed up to provide the final
output to a packet assembler and the corresponding queue once
both have valid data. Overlap registers are responsible for tuning
communication-computation overlap. They control and schedule
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Figure 6: The proposed CGRA architecture; it is based on an array of SIMD-based processing elements.

the relative speed of the two engines. That is, if one engine is ahead
at the end of a given period it has to wait for the other. The de-
sign is based on a dataflow architecture (horizontal, vertical, and
diagonal connections) with double buffers (D-buffers) to achieve
high off-chip memory bandwidth. While D-buffers are used to store
the data elements of matrices, banked buffers are used to store the
elements of vectors (i.e., in a SpMV kernel). The bank resolver mod-
ule resolves the requests issued to banked buffers from PEs. One
important feature of the kernel logic is that the switch is capable of
issuing send/receive operations independent of the host. In other
words, the switch is the master device.

We illustrate this capability with SpMV and PGEMM, but it is ap-
plicable to similar operations such as matrix transpose, dot-product,
convolution, and many others.
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Figure 7: The kernel logic architecture is divided into two
concurrent parts: computation and communication engines.

5.3.1 SpMV. We consider a row-wise partitioning [42] for the in-
put matrix and input/output vectors across the accelerators and
then apply a 2D partitioning scheme among PEs for the local com-
putation. Diagonal (off-diagonal) matrix elements [42] are loaded

from off-chip memory into the D-buffers associated with the PEs
in the computation (communication) engine, while the vector ele-
ments are loaded into banked buffers (see Fig. 7). To illustrate the
process, PEs in the computation engine calculate the partial sums
which get written into output buffers (Fig. 7). Meanwhile, column
indices in the off-diagonal matrix provide the addresses for issuing
RDMA requests to remote nodes. After fetching data, partial sums
(for off-diagonal elements) are calculated in communication PEs,
get written to the output buffers, and are then summed up with
the corresponding computation result. To achieve good overlap of
communication and computation, data elements that are ready for
communication are not sent to remote nodes instantly; rather, they
are lumped together (according to a threshold given by overlap
tuner registers) and sent later.

5.3.2 PGEMM. We apply a pipelined version of the SUMMA algo-
rithm [52]. Since our target topology is 3D-torus, we decompose
the workload into 3D grids and assign each grid to an accelerator
(i.e., both input matrices are partitioned in a block fashion). For this
kernel, the computation engine is used as a systolic array for local
computation. Communication is sending/receiving input matrices
with neighbor nodes in a ring fashion as well as reductions in an-
other direction (computations and communications are overlapped).
It is possible to tune communication and computation by varying
the size of memory tiling between matrix dimensions.

5.4 Reliability and Deadlock

Reliability: For semi/fused collectives, reliability is ensured by
pausing and restarting flows to prevent buffers on the switch accel-
erators from overflowing and dropping frames, respectively. The
former happens if the buffer reaches a certain level of fullness and
the latter occurs if the buffer empties to below a certain threshold.
Ensuring reliability in higher-order collectives in the switch is more
challenging than semi/fully fused collectives. This is because the
messages received by the switch accelerator can be reused before
receiving the next messages in the former. For instance, a single
element fetched from remote nodes might be reused multiple times
in the SpMV function depending on the distribution of non-zeros
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in the matrix. This is in contrast with semi/fully fused collectives
where messages are processed in a streaming fashion. The fact that
messages are reused in higher-order collectives delays the task of
receiving the next message(s). This, in turn, increases the chance of
messages being dropped. However, it is possible to take advantage
of communication-computation overlap in higher-order collectives.
To ensure the reliability of messages while achieving higher per-
formance, we set a deadline in which each received message has
limited time to be processed before being able to listen to the next
message’s arrival. This deadline sets the threshold for overlapping
communication and computation, as well as buffer sizing. In the
case of buffer overflow, new incoming packets are dropped, the
downstream notifies the upstream, and the upstream retransmits
the message.

Deadlock: To avoid deadlock for semi/fused collectives, we
designed SmartFuse hardware such that receiving packets do not
block sending packets and vice-versa. At the software level, we
use nonblocking sends/receives. For higher-order collectives, if one
process is significantly ahead of the others (process-skew [21]), the
accelerators may attempt to send a message. However, if it has not
received any messages, it will pause and await synchronization
within the network. Also, we note that we allocate enough buffer
on the hardware for each rank separately.

6 MODEL FOR IN-SWITCH COMPUTING

To develop a fundamental understanding of compute-in-the-network,
and to better analyze its performance, a simple yet accurate model
is indispensable. The LogGP model [2] has primarily been used to
abstract communication based on point-to-point messages. In this
model, L, o, g, G, and P represent the latency, overhead, gap between
messages, gap per byte, and the number of processors, respectively.
Although collectives could be represented in this model as a se-
quence of point-to-point communications, it is not able to model
FCFs. Also, it is not possible to model computation in LogGP. We
have therefore created a new version of this model, called LoGc¢N,
to account for in-network computing on a collection of processes
while also considering communication-computation overlap.

One benefit of the in-switch approach is that it eliminates the g
term by pipelining the communication. For example, for MPI_Bcast,
the message is sent from the host to the switch only once. And for
MPI_Scatter, different messages are grouped into a single large
message. Consequently, in our model g=0 and we need only the G
term for both short and long messages. Another advantage is that
it effectively eliminates the overhead time (term o) for intermediate
ranks in a given collective algorithm (e.g., binomial tree) since the
switches are able to perform reduction, gather, and multicast on
the packets without the aid of the hosts.

We model the execution time of FCFs with overhead, latency
(which depends on the number of switches), gap per byte (band-
width), and an added term for computation (represented as c). Com-
putation itself comprises a latency term and another term for char-
acterizing the message bandwidth. By modeling computation with
latency and bandwidth terms we have abstracted the frequency
of the switch logic, number of PEs, and other design details. To
illustrate, we first consider the following equations:
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T= (2><o)+L(N)+g+c(N,G) 1)
c=(N><a)+—(Y_IG)><m (2)
G =B xBW ®)

where T, L, N, m, and BW are the time it takes to complete a FCF
on a collection of processes, the maximum latency of the network
from sending the first byte from a host to receiving the first byte by
another host, the number of switches involved, the message size,
and the maximum network bandwidth. The message size is the size
of stream-in (array size sent from each host to the switch) in the
case of fused collectives (higher-order collectives). a, f, and y rep-
resent the latency of the computational units (SmartFuse building
blocks), a bandwidth attenuating factor in case of gather-type or
MPI_Scatter communication (due to serialization), and data reuse
for computation, respectively.

Note that coefficient 2 in Eq. 1 is needed due to the fact that
the message is only transferred from (to) a sending (receiving)
process on the host. Also, that communication latency is merged
into term L instead of a series of point-to-point communications.
For computation term ¢, we have considered a data reuse term:
for kernel logic, this represents the amount of reused data; for the
CGRA it means initiation interval (II). To represent the overlap
of communication and computation, this term is reduced by one
and used as a factor in the bandwidth term of the computation. a,
B, and y depend on the workload (kernel) but L, o, BW, and n are
parameters that can be extracted. Our preliminary results show
that the LoGceN model is effective in predicting the performance of
semi/fully fused collectives (Sec. 3).

7 EXPERIMENTAL EVALUATION

In this section, we evaluate SmartFuse. We present the experimental
setup, the resource utilization of the smart switch, performance
and scalability of SmartFuse for HPC kernels and applications, and,
finally, we evaluate SmartFuse in an indirect network testbed.

7.1 Experimental Setup

SmartFuse Direct Network: For proof-of-concept, we have imple-
mented and tested SmartFuse on a two-node FPGA-based system
in both direct and indirect network settings using the Xilinx Vi-
tis unified software platform. In the direct network testbed, two
Alveo U280 boards are directly connected using QSFP28 network
interfaces (capable of 100 Gb/s). Each board is connected to an In-
tel Xeon E5-2620V2 server. To simulate a larger number of nodes
(where SmartFusion provides performance benefits), we conduct
an experiment to obtain some parameters used for the emulation
of a larger-scale proxy system. In this experiment, a sender process
sends 1408 bytes worth of data to a receiver process using TCP/IP
network logic [28] handled by FPGAs. ExaMPI implementation [47]
is used for this experiment. The parameters used in the emulation
and LoGceN model (derived from our system setup) are shown in
Table 2. MPI overhead is the average overhead of MPI_send and
MPI_Recv in ExaMPI. ExaMPI overhead is larger than other MPI im-
plementations due to the cost of creating progression threads. The
last three parameters are used to evaluate the term L in the LogcN
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Table 2: Parameters used in the emulation and LoG¢cN model.
* Denotes the Aurora IP latency.

MPI Overhead (o) 14.8 usec

Maximum Network Bandwidth (BW) | 95.9 Gbps
PCle Latency 0.9 usec
FPGA-to-FPGA Latency* 0.44 usec
Minimum Port-to-Port Latency 52 nsec

model. We note that the latency of the SmartFuse components is
not included in the reported port-to-port latency.

For the rest of this section, we evaluate the performance of
SmartFuse based on the emulator as well as the LoGeN model. The
emulation has the same requirements as [36]. That is, the emulation
should possess: (1) the same volume of traffic in the network links,
(2) an identical number of network hops, and (3) an accurate over-
head of the accelerator. For the SmartFuse accelerator overhead, we
use cycle-accurate RTL simulation through testbenches using the
Xilinx Vivado Tool. We emulate an FPGA cluster (Xilinx VCU128)
with up to 128 nodes with a direct network (3D-torus topology).

SmartFuse Indirect Network: We also evaluate our approach
for an indirect network. The testbed is a two-node system on Cloud-
Lab [26, 27] with a Xilinx Alveo U280 FPGA attached to a Dell
Z9100-ON switch (total of three nodes including host). We use
the Xilinx Vitis 2021.2 unified software platform to program the
FPGA. Our accelerator is coupled with a modified version of [55] to
send/receive packets from two leaf nodes. The operating frequency
is 250 MHz. At the leaf nodes, packets are sent and received using
socket APIs to communicate with the FPGA through the switch.

CPU Implementation: For the CPU reference, benchmarks
were run on the TACC Stampede2 [48] Skylake (SKX) compute clus-
ter with 48-cores per node (2 sockets) 2.1 GHz Intel Xeon Platinum
8160 CPUs, and a 100 Gb/s Intel Omni-Path (OPA) network. We
used Intel MPI 18.0.2 as an Intel-compatible MPI is recommended
for this cluster; we found it usually gives better performance than
other MPI implementations.

7.2 Workloads Tested

The workloads tested comprise a number of standard HPC bench-
mark kernels and a complete application. The baselines are the
unmodified codes run as described in the previous subsection.

First are two HPC kernels: SPMV from Trilinos Library (Tpe-
tra package) [30] and PGEMM from the state-of-the-art COSMA
algorithm [34]; they are the backbone of many scientific, graph
analytic, and machine learning applications. Second, are a set of
applications from the NAS parallel benchmark [40]: IS (Integer
Sort), LU (Lower-Upper Gauss-Seidel solver), MG (Multi-Grid on a
sequence of meshes), and SP (Scalar Penta-diagonal solver). Third,
from the Mantevo project [29] is miniFE [3], which is an unstruc-
tured implicit finite element code. Fourth, is deal.ll [5] from an
open-source finite element method (FEM) library for solving partial
differential equations. Finally, a complete application Algebraic
Multigrid (AMG), which is a widely used iterative solver with ir-
regular communication, is also studied. Table 3 shows FCF types of
each benchmark/application used in this work.
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Table 3: Fused collective types for benchmarks/applications

Benchmark/ Fully-Fused | Semi-Fused | Higher Order
Application Collectives | Collectives | Collectives
SpMV (S i
pPMV ( parﬁseAmaAtrlx X X v
vector multiplication)
PGEMM (D
SEMM (Dense X X v
matrix multiplication)
IS
(Integer sort) v X X
LU (Lower-upper
Gauss-Seidel solver) X v X
MG
(Multi-grid) v X X
SP (Scal t
; (Scalar penta X % X
diagonal solver)
miniFE
(unstructured grid) X v v
deal.ll (finite
element method) v X X
(AMG) Algebraic X X v
multigird

Collectively a variety of application types are represented, in-
cluding dense matrix-matrix multiplication, sparse matrix-vector
multiplication, structured grids, and unstructured grids.

7.3 Performance and Scalability
In this subsection, we evaluate the performance and scalability of
SmartFuse for two kernels and a variety of applications.

7.3.1  Higher-order collectives. We consider two higher-order col-
lectives with different sizes: SPMV and PGEMM. For SPMV, we
study two sparse matrices from SuiteSparse [51]: parabolic_fem
(for SPMV-1) and sme3Dc (for SPMV-2). The former (latter) has
525825 (42930) rows with an average of 7 (73) nonzero elements
per row. For comparison we use Trilinos [30] (Tpetra package) as
the CPU reference. For PGEMM, we consider a square (16Kx16K)
and a tall-skinny (1Kx128K) dense matrix and compare SmartFuse
with the state-of-the-art COSMA [34] CPU implementation. We
consider strong scaling for both PGEMM and SpPMV. Also, the for-
mer is based on single-precision floating-point while the latter is
double-precision.

Fig. 8 shows a performance comparison of SmartFuse and the
original MPI implementation on the SKX cluster for SPMV and
PGEMM kernels and also the performance estimated by the LoGeN
model. SKX-1, SKX-24, and SKX-48 denote having 1, 24, and 48
OpenMP threads, respectively. For the PGEMM kernel, SmartFuse
provides a considerable improvement as it is able to almost fully
overlap communication and computation in the switch: SmartFuse
provides 3.2x and 1.5X performance improvements compared with
an optimized CPU implementation [34] for square and tall-skinny
matrices, respectively. Similarly, for the SPMV kernel, SmartFuse
delivers significant improvement as the whole kernel (irregular
computation with series of MPI_Sendrecv realized by RDMA) is
handled by the reconfigurable switch. The problem is computation
bound with a small number of nodes, which gradually becomes
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communication bound for a larger number of nodes. Note that
SmartFuse is able to maintain the speedup with scale.

We also estimated the performance using the LogGP model.
However, it consistently provided smaller latencies than the actual
emulated performance model (red bars) for higher-order collectives.
This is because LogGP does not model the computation time in the
network, and so is not suitable for modeling higher-order collectives.
We note that another approach for the LoGeN modeling is to choose
the value of the parameters to give the best fit for a training set of
experimental results, rather than those shown in Table 2. While this
approach can provide better estimations, we avoid complications
in the performance modeling process in this work and resort to a
lightweight model with the same procedure as LogGP.

7.3.2  Applications. Fig. 9 shows the performance benefit of Smart-
Fuse over original MPI implementation on the SKX cluster (64 and
128 nodes) for the NPB and MINIFE proxy applications. The problem
size used for IS and MG is based on class C and for LU and SP is
class A [40]. SKX time and error bars represent the time it takes on
SKX cluster and std for five runs. BENCHMARK-X-TY represents the
benchmark with X nodes and Y OpenMP threads.

We find that the LoGcN model can effectively predict the perfor-
mance of NPB, but not MINIFE (Fig. 9). One reason is that this model
is not able to predict the performance of higher-order collectives
used in MINIFE; these kernels often have complex communication
and computation behavior, which may not be feasible to abstract
them using a single model. Another reason is that there is a semi-
fused collective with a large inbound array in MINIFE. But LoGcN
model does not currently take inbound arrays into account.

According to Fig. 9, among NPB applications, the performance
benefits for MG and IS are higher than for the others. For IS, one
reason is that the message size of collectives is relatively high and
SmartFuse can take advantage of communication-computation over-
lap and in-network data reduction. For MG, this is partly because
there are a larger number of FCF calls. In contrast, SP manifests the
smallest performance gain simply because the number of FCF calls
is the smallest. Also, note that it is possible to utilize non-blocking
FCFs, taking advantage of CPU idle time during the FCF offload.
This happens for one of the FCFs in LU benchmark.

For MINIFE, the performance improvement percentage is typ-
ically higher than that of NPB. One reason is that higher-order
collectives (SPMV), in addition to semi-fused collectives, are accel-
erated by the switch. Other reasons are the fact that semi-fused
collectives constitute a larger fraction of runtime and it is possible
to benefit from a non-blocking FCF.

Fig. 10 shows the performance and scalability of SmartFuse vs.
the optimized CPU implementation (Hypre [31]) and SHArP [15] for
AMG. We used the lap3d matrix [42] with size 1M rows. The num-
bers in front of SKX and SmartFuse denote the number of threads.
The red bar indicates time saved by overlapping communication
and computation in the reconfigurable switch for the SPMV kernel
in SmartFuse. Note that by scaling up (weak scaling) the execution
time increases gradually as more time is needed for the commu-
nication. However, there are some anomalies in which scaling up
improves the performance. This is because the solver sometimes
converges with fewer iterations. The improvement introduced by
SmartFuse depends on the ratio of the time spent in the SPMV kernel
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to that of total execution time. On average (among different num-
bers of nodes), SmartFuse improves the AMG execution time by 11%.
For comparison with SHArP, we have calculated the performance
improvement of MPI_Allreduce times (supported by SHArP) in
AMG. We superimposed their results published in [15] in the AMG
application. Our approach provides considerable improvement com-
pared with SHATP (see the lines for SmartFuse speedups that are
above the SHATP speedup line in the figure).

7.4 Indirect Network Study

To evaluate the efficacy of the approach in indirect network settings
we use CloudLab infrastructure [26] with three nodes (two leaf
nodes and one node to host the FPGA) capable of 100 Gbps. A 100
Gbps switch interconnects all three nodes. Each process, two in this
case, in addition to the FPGA itself, is assigned IP an address and
port number. This information is stored in the networking kernel
of the FPGA to forward the messages to the correct destination
according to the collective type and algorithm. Messages are sent
from the leaf nodes to the FPGA through the switch, processed
in the FPGA user kernel, and sent back to the corresponding leaf
node(s). We also provide a runtime that automates and manages
the execution of processes in basic/fused collectives. This includes
connecting to leaf nodes from the master process (through SSH),
creating processes there, assigning new port numbers for each
process, and waiting for the completion.

Since the runtime and MPI support are based on Python, we
compare this approach with a Python-based MPI, MPI4py [8]. We
demonstrate its performance compared to traditional MPI for an
instance of fused collectives used in FEM applications. Figure 11
shows the latency comparison of Allgather_op_allgather in both
MPI4py SmartFuse for different message sizes. Op here is a prefix
sum (see Fig. 2 (b)). The results are from taking the average of
five runs. It clearly shows that SmartFuse provided superior per-
formance, especially for larger message sizes with, on average, a
1.98x improvement. The performance benefit comes from the fact
that intermediate communications are bypassed and computations—
sandwiched between collectives—are directly processed in the ac-
celerator on FPGA.

8 RELATED WORK

Collective offload: Previous work has shown significant benefits
of optimizing collectives and offloading them to the NIC. The au-
thors in [4] present a framework for offloading MPI collectives to
programmable logic on the NIC. The work in [36] integrates lossy
compression into FPGA-based NICs to accelerate the distributed
training of deep neural networks. Also, COPA [33] provides a soft-
ware/hardware framework that makes the underlying FPGA hard-
ware (endpoint device) agnostic to middleware. There is another
line of work that targets offloading collectives to the switch. It is
worth mentioning that perhaps in-switch processing originated
from the NYU-Ultra [11] implemented in the distant past. Mellanox
SHATP [15] has offloaded MPI collectives to ASIC-based switches
using reduction trees. Their approach supports fixed functions
and data types with no extensibility; also, few design details are
provided. In contrast, the approach here provides support for user-
defined collectives and other complex functions (FCFs). The authors
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OpenMP threads were used for the CPU SKX cluster.
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in [36] propose an FPGA-based in-switch acceleration scheme for
distributed reinforcement learning to move gradient aggregation
from server nodes to the network switches. The authors in [22, 23]
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2000 4000 6000 8000 10000
Message Size (Bytes)

Figure 11: Latency comparison of Allgather_op_Allgatherv
in MPI4py and our approach. Op is prefix sum (see Fig. 2
(b)). The X-axis shows the message size in bytes used for
Allgathers and the Y-axis shows the latency in milliseconds.

designed a hardware accelerator to offload basic MPI collectives to
the reconfigurable switch with flexible communicator support.
General-purpose in-network processing: INCA [46] pro-
poses a compute assistance by building upon offload capabilities
of state-of-the-art NICs to support a general-purpose computa-
tion in the network. The work [17] proposes a general-purpose
data-centric computing framework for SmartNIC-based systems to
accelerate various types of neural network kernels. However, these
are in-NIC approaches (limitations discussed in Sec. 1). In [10], the
authors design a flexible programmable switch architecture for in-
network data reduction. Although it is possible to process custom
operations through packet handlers, their evaluation is only lim-
ited to dense/sparse MPI_Allreduce. The authors in [24] propose
a programmable look-aside-type accelerator that can be embedded
into, or attached to, existing communication switch pipelines and
that is capable of processing packets at line rate. However, they do
not support fused collectives. Also, supporting new applications in
their approach is not automated from the MPI code; the user has
to manually find out which parts of the application need to be of-
floaded and compile them separately. The work in [49] adds custom
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hardware based on a MapReduce pattern/abstraction (built upon a
CGRA) to P4 switches to enable per-packet inference of machine
learning. However, the fusion of collectives is not supported in this
work. Prabhakar et al. [43] proposed a general-purpose architecture
as a collection of compute and memory units to efficiently execute
applications composed of parallel patterns. However, this work is
based on a single-node acceleration (not distributed computing).

To the best of our knowledge, no prior work proposes a general-
purpose framework that could be able to fuse MPI collectives with-
out user involvement.

9 CONCLUSION

In this work, we propose a general-purpose, MPI-transparent, frame-
work for in-switch computing in reconfigurable devices to acceler-
ate three fused collective functions (FCFs). First, we propose that
currently supported collectives in switches are extendable not just
to communication phases but to series of communications and
computations by identifying them in HPC applications. Then, we
provide a framework to translate MPI programs and compile them
into reconfigurable devices without user effort. Finally, we have
designed various hardware building blocks to support FCFs. Our
experimental results show that our approach on an FPGA cluster
achieves on average 94%, 15%, and 13% improvement in execu-
tion time as compared to the original implementations running on
TACC Stampede?2 cluster for the PGEMM kernel, MINIFE, and AMG,
respectively.
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