
SmartFuse: Reconfigurable Smart Switches to Accelerate Fused
Collectives in HPC Applications

Pouya Haghi
phaghi@ur.rochester.edu
University of Rochester

USA

Cheng Tan
chengtan@microsoft.com

Microsoft
USA

Anqi Guo
anqiguo@bu.edu
Boston University

USA

Chunshu Wu
cwu88@ur.rochester.edu
University of Rochester

USA

Dongfang Liu
dxleec@rit.edu

Rochester Institute of Technology
USA

Ang Li
ang.li@pnnl.gov

Paci�c Northwest National
Laboratory

USA

Anthony Skjellum
askjellum@tntech.edu

Tennessee Tech University
USA

Tong Geng
tgeng@ur.rochester.edu
University of Rochester

USA

Martin Herbordt
herbordt@bu.edu
Boston University

USA

ABSTRACT

Communication switches have sometimes been augmented to pro-

cess collectives, e.g., in the IBM BlueGene and Mellanox SHArP

switches. In this work, we �nd that there is a great acceleration

opportunity through the further augmentation of switches to accel-

erate more complex functions that combine communication with

computation. We consider three types of such functions. The �rst

is fully-fused collectives built by fusing multiple existing collectives

like Allreduce with Alltoall. The second is semi-fused collectives

built by combining a collective with another computation. The

third are higher-order collectives built by combining multiple com-

putations and communications, such as to perform matrix-matrix

multiply (PGEMM).

In this work, we propose a framework called SmartFuse to accel-

erate fused collective functions. The core of SmartFuse is a recon-

�gurable smart switch to support these operations. The semi/fully

fused collectives are implemented with a CGRA-like architecture,

while higher-order collectives are implemented with a more spe-

cialized computational unit that can also schedule communication.

Supporting our framework is software to evaluate and translate

relevant parts of the input program, compile them into a control

data �ow graph, and then map this graph to the switch hardware.

The proposed framework, once deployed, has the strong potential

to accelerate existing HPC applications transparently by encapsu-

lation within an MPI implementation. Experimental results show

that this approach improves the performance of the PGEMM kernel,

miniFE, and AMG by, on average, 94%, 15%, and 13%, respectively.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICS ’24, June 4–7, 2024, Kyoto, Japan

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0610-3/24/06
https://doi.org/10.1145/3650200.3656616

CCS CONCEPTS

• Computer systems organization → Interconnection architec-

tures; Recon�gurable computing.

KEYWORDS

In-Switch Computing, High Performance Computing, FPGAs

ACM Reference Format:

Pouya Haghi, Cheng Tan, Anqi Guo, Chunshu Wu, Dongfang Liu, Ang

Li, Anthony Skjellum, Tong Geng, and Martin Herbordt. 2024. SmartFuse:

Recon�gurable Smart Switches to Accelerate Fused Collectives in HPC

Applications. In Proceedings of the 38th ACM International Conference on

Supercomputing (ICS ’24), June 4–7, 2024, Kyoto, Japan. ACM, Kyoto, Japan,

13 pages. https://doi.org/10.1145/3650200.3656616

1 INTRODUCTION

A growing trend in HPC is the increasing importance of the net-

work in application support. O�oad of collective processing into

SmartNICs [4, 6, 18] is well established and has a number of bene-

�ts: �rst, it enables the bypassing of layers in the communication

software stack; second, the hardware implementations are substan-

tially faster than the software; third, it frees up the host processor

for other tasks and, potentially, enables better communication-

computation overlap; and fourth, some network-host communi-

cation is removed as the NIC handles additional send/receive op-

erations. While SmartNICs are valuable, this scheme still forces

processing into the endpoints. Another approach is to o�oad collec-

tive processing into the switches [10, 15, 56]. This has two additional

bene�ts: �rst, latency is improved as computation is distributed

rather than performed in a single source (broadcast) or endpoint

(reduction); and, second, communication volume may be drasti-

cally reduced as messages are quickly merged (reduction) or slowly

replicated (broadcast).

Currently, however, switch hardware support for collectives

is limited to a small set of scalar operations and data types (e.g.,

[14, 15]). Moreover, beyond collectives there are additional acceler-

ation opportunities. We hypothesize that it would be bene�cial to

https://doi.org/10.1145/3650200.3656616
https://doi.org/10.1145/3650200.3656616

ICS ’24, June 4–7, 2024, Kyoto, Japan Haghi et al.

further augment switches to accelerate additional and more com-

plex functions that integrate communication with computation;

we refer to these as fused collective functions (FCFs). We propose

in-switch hardware support for three types of FCFs. The �rst is

fully-fused collectives, which are built by fusing multiple existing

collectives such as Allreduce with Alltoall. The second is semi-fused

collectives, which are built by combining a collective with a map

computation. The third is higher-order collectives, which are built

by combining multiple communications and computations. An ex-

ample of a higher-order collective is support for a parallel generic

matrix-matrix multiply (PGEMM): usually each node performs local

computation and then sends input matrices to its neighbors; with

appropriate hardware support for o�oading higher-order collec-

tives to switches, much of the computation can occur in transit

[1, 20, 52]. Applications that bene�t from the speci�cation and accel-

eration of higher-order collectives include �nite element methods

[37], iterative solvers [13, 19, 44], and graph algorithms [7, 41].

Adding switch support for FCFs confers additional advantages to

in-switch computing. First, additional processing can be removed

from the host as the switch manages fused function operations

autonomously. Second, performance can be improved through han-

dling hardware-accelerated irregular computation and data caching.

Third, multi-level communication-computation overlap is achieved:

host-network and communication-computation overlap within the

switch. Fourth, additional network-host communication is bypassed

as multiple communication phases are o�oaded to the switch. Fi-

nally, the programmer’s model (that is supported e�ciently) is

extended to reductions on user-de�ned data types, such as matrices

and sparse data.

In-switch support of FCFs has certain requirements. First, to

support line-rate communication, collective processing should be

done in hardware, rather than, say, a network processor (e.g., ARM

cores in SmartNICs). Second, since the processing is both non-

trivial and application dependent, this hardware should be (at least

partially) recon�gurable. Finally, communication and computation

must be tightly coupled. These requirements are currently met by

FPGA-augmented switches, e.g., from Arista [39]; by augmenting

existing switches with recon�gurable logic; or by using the FPGA

itself as a switch (e.g., New Wave [12]). Because of its accessibility,

we use the latter approach in this study and demonstrate its utility

in a direct network. We also evaluate our approach in an indirect

network testbed with FPGA-augmented switches. Other o�-the-

shelf components may also be plausible, at least with enhancements;

e.g. GPUs have been used to o�oad non-blocking collectives [53].

Multiple challenges need to be addressed. First, while FCFs can

be programmed directly, more useful is that they be captured au-

tomatically from existing HPC applications. Second, the hardware

support for these operations must be transparent to the existing

communication middleware (e.g. MPI [16]). And third, FCF sup-

port in the switch must remain general-purpose while handling

high-bandwidth communication.

Our solution, which we call SmartFuse, has two major parts. The

�rst is a software framework that can evaluate and translate the

relevant parts of the input program, compile them into a control

data �ow graph (CDFG), and then map this graph to SmartFuse

switch hardware. The second is the SmartFuse switch hardware

itself. This has multiple components for the di�erent types of FCFs.

To support semi/fully fused collectives SmartFuse uses a coarse-

grained recon�gurable array (CGRA) [54] overlay architecture for

packet processing. A second, more specialized unit (we refer to as

kernel logic) supports higher-order collectives. A feature of Smart-

Fuse is that the switch augmentation is transparent to the MPI layer;

legacy MPI application code is unchanged. The MPI communication

library is modi�ed with APIs that provide communication between

hosts and SmartFuse switch hardware.

Fig. 1 compares SmartFuse and prior art (in-NIC and in-switch)

with respect to various bene�ts of o�oading computation into the

network. The proposed in-switch approach has the potential to

obtain gains along multiple dimensions.

We summarize the contributions of this work:

• Demonstrate the advantages of accelerating FCFs with re-

con�gurable switches (Sec. 3).

• A systematic framework to accelerate FCFs with recon�g-

urable switches transparent to MPI (Sec. 4).

• A network-optimized CGRA with SIMD and asynchronous

execution features to fuse communications and computa-

tions (Sec. 5.2).

• A new compute-in-the-switch model to abstract communi-

cation and computation and to predict the performance of

in-switch computing approaches (Sec. 6).

• Experimental results showing that this approach improves

the performance of a variety of HPC applications. In a direct

network setting, SmartFuse improves the performance of

PGEMM, miniFE, and AMG by, on average, 94%, 15%, and

13%, and on an indirect network testbed it improves the

performance of �nite element method by, on average, 98%

(Sec. 7).

The organization of this paper is as follows. Section 2 gives pre-

liminaries including the de�nition of FCFs and SmartFuse building

blocks. Section 3 provides the motivation. Section 4 presents the

software model and proposed framework. Section 5 describes the

smart switch hardware support. Section 6 introduces an in-switch

computing performance model. Section 7 evaluates SmartFuse. Re-

lated work is discussed in Sec. 8 while Sec. 9 provides a conclusion.

2 PRELIMINARIES
2.1 Communication-Computation Functions

FCFs provide substantial bene�ts by reducing communication vol-

ume, possibly making computation faster, and, at the same time,

enabling overlap between them; they can potentially improve the

performance (Sec. 3). That useful FCFs can be extracted and/or

constructed, however, is not at all obvious. After experimenting

with a variety of applications and kernels we have to identi�ed a

number of such instances (Sec. 7). The current study examines the

following FCFs:

• Fully-fused collective: A collective followed by compu-

tation (we refer to as op) followed by another collective

(collective_op_collective). They are chained together; the

receive bu�er from the �rst collective is used during the

computation and data generated during the computation is

used in the second collective.

SmartFuse: Reconfigurable Smart Switches to Accelerate Fused Collectives in HPC Applications ICS ’24, June 4–7, 2024, Kyoto, Japan

6

5

4 3.b

3.a

2

1

INCA

6

5

4 3.b

3.a

2

1*

COPA

6

5

4 3.b

3.a

2

1

iSwitch

6

5

4 3.b

3.a

2

1

SHArP

6

5

4 3.b

3.a

2

1

SMI

6

5

4 3.b

3.a

2

1

SmartFuse

6

5

4 3.b

3.a

2

1

Flare

1: Software Layer Removal 2: Hardware Implementation Speed 3: Communication-Computation Overlap (a) between Host and Network

(b) in Network Devices 4: Network-Host Communication Bypassing 5: End-to-End Bandwidth 6: Composite Data Reduction

Figure 1: Characterizing SmartFuse and related work qualitatively with respect to the bene�ts of collective o�load to network

devices; COPA [33], INCA [46], and SMI [9] are in-NIC approaches while iSwitch [36], SHArP [15], Flare [10], and SmartFuse are

in-switch methods. *Denotes a headless con�guration in COPA.

• Semi-fused collective: A collective followed by computa-

tion (op) (collective_op), where the receive bu�er from the

�rst collective is used during the computation.

• Higher-order collective: A kernel with multiple compu-

tations and communications following a well-de�ned and

repeatable communication pattern. A simple example is a dis-

tributed dot-product; more complex are distributed matrix-

multiply and FFT.

2.2 SmartFuse Basic Building Blocks
To support general-purpose computation in the switch in conjunc-

tion to collective o�oad, SmartFuse is built around three funda-

mental building blocks: (1) basic collective operation units, (2) a

network-optimized CGRA, and (3) kernel logic. The �rst block

realizes primitive collective operations (reduction, gather, and mul-

ticast) on incoming packets from di�erent switch ports. The second

and the third support semi/fully fused collectives and higher-order

collectives, respectively. The second block is inspired by CGRAs

with the distinction that it processes packets (CDFGs are mapped

to this block). This block enables SmartFuse to support loops, which

may have conditions. The third block is a more specialized unit con-

sisted of a 2D data�ow-based architecture to support HPC kernels.

3 MOTIVATION
We now give an example to illustrate FCFs. Fig. 2 (a) shows an exam-

ple of a fully-fused collective for NAS parallel benchmark (IS) [40].

Communication (marked with red rectangles) and computation

(marked with blue rectangles, referred as op) are chained together;

the receive bu�er in the MPI_Allreduce (stream_in array in the �g-

ure) is used during the computation and the array the computation

generates (stream_out) is used as the send bu�er by MPI_Alltoall.

In SmartFuse, instead of sending the stream_in array back to the host

and performing the computation there, the switch performs this

computation (op), as well as the next communication, without host

involvement. Fig. 2 (b) shows another example of a fully-fused col-

lective used in �nite element method (FEM) applications [5]. Again,

the receive bu�er in the �rst collective routine (MPI_Allgather)

is used for the computation part (lines with blue rectangles) as

well as the next communication routine (MPI_Allgatherv). In this

example, the result of the computation part is used as a displace-

ment vector in the second collective during a pre�x sum calculation.

SmartFuse combines the collective-operation-collective as a single

function and o�oads it to the switch accelerator; this will save

intermediate communications among the nodes as the computation

part is handled by the accelerator. Fig. 2 (c) shows the C++ binding

for a higher-order collective, sparse matrix-vector multiplication

(SpMV), in which all of the communications and computations are

handled by the switch.

We now de�ne the terminology necessary to characterize semi

and fully fused collectives. We refer to stream-in, inbound, stream-

out, and outbound as, respectively: the receive bu�er (produced)

of the �rst collective; a collection of all the array(s) consumed in

the computation (but are not produced by the �rst collective); the

updated bu�er during the computation and used in the second

collective; and a collection of all the array(s) produced in the com-

putation, but not consumed in the second collective. These four

arrays are identi�ed by the SmartFuse compiler. In addition, com-

putation operations (op) are compiled into instructions (stored in

op bu�er in the host, see Fig. 2 (a)), which are transferred to the

switch in order to program the CGRA at runtime (Sec. 5.2).

To justify this project, we conducted some preliminary experi-

ments where we compared emulated SmartFuse results on an FPGA

cluster with the original CPU implementation measured on a CPU

cluster with 128 nodes. Fig. 3 (a) summarizes SmartFuse improve-

ments over the original CPU implementation with respect to some

of the aforementioned in-switch computing bene�ts for the two

FCFs shown in Fig. 2. It is evident that SmartFuse provides substan-

tial improvements by fusing communications and o�oading them

to the switch. In order to further show the potential e�cacy of this

approach for a variety of semi/fully fused collectives, we evaluated

SmartFuse with respect to a set of proxy benchmarks. Although

these proxy benchmarks are not real HPC applications, they are

representative of many communication-computation patterns in

applications, including graph algorithms and iterative PDE solvers.

Table 1 shows the speci�cations of these proxy benchmarks. Fig. 3

(b) depicts the average latency (among all ranks) for these bench-

marks on a CPU cluster and SmartFuse (128 nodes). As is apparent,

SmartFuse provides considerable improvement. For the CPU cluster

speci�cation and simulation setup used for FPGA cluster, refer to

Sec. 7.1. The SmartFuse results are based on emulation.

4 SMARTFUSE SOFTWARE SUPPORT
In this section, we �rst present an overview of the software model

used in this work, and then we describe the proposed framework

ICS ’24, June 4–7, 2024, Kyoto, Japan Haghi et al.

Original MPI Program Translated MPI Program

int* op;

int* count1, count2;

MPI_Comm comm;

MPI_Iallreduce_op_alltoall(

sendBuf1, count1, MPI_INT,

MPI_SUM, recvBuf2, count2,

MPI_INT, comm, op, inbound,

outbound);

MPI_Wait();

MPI_Allreduce(sendBuf1, stream_in, 1029,

MPI_INT, MPI_SUM, comm);

...

for(i=0; i<1024; i++) {

 acc1 += stream_in[i];

 acc2 += sendBuf1[i];

 if(acc1 >= (j+1)*inbound){

 stream_out[j] = acc2;

 outbound1[j] = outbound1[j-1]

 + stream_out[j-1];

 outbound2[j] = outbound3[j-1]+1;

 outbound3[j] = i;

 j++;

 acc2 = 0;}}

...

MPI_Alltoall(stream_out, 1, MPI_INT,

recvBuf2, 1, MPI_INT, comm);

Communication

Computation

Communication

+ Computation

(a)

(c)

RCP<crs_matrix_type> A (new

crs_matrix_type (map, maxEntriesPerRow));

vec_type b(A.getDomainMap());

vec_type C(A.getRangeMap());

...

// Trilinos library (Tpetra)

A.apply(b, C); // C=A*b

double* A_val, b, C;

int* A_colIdx, A_rowPtr;

int* count;

MPI_Comm comm;

MPI_ISpMV(A_val, A_colIdx,

A_rowPtr, b, C, count, MPI_DOUBLE,

comm);

MPI_Wait();

int* op;

int* count1, count2;

MPI_Comm comm;

MPI_Iallgather_op_allgatherv(

sendBuf1, count1, MPI_INT,

sendBuf2, count2, MPI_DOUBLE,

comm, op, inbound, outbound);

MPI_Wait();

MPI_Allgather(&sendBuf1, 1, MPI_INT,

&stream_in[0], 1, MPI_INT,

mpi_communicator);

stream_out[0] = 0;

for (i = 1; i <= n_processes; ++i)

 stream_out[i] = stream_out[i - 1] +

 stream_in[i - 1];

MPI_Allgatherv(&sendBuf2[0],

n_my_elements, MPI_DOUBLE, &recvBuf2[0],

&stream_in[0],

&stream_out[0], MPI_DOUBLE,

mpi_communicator);

(b)

Figure 2: Examples of (a) a fully-fused collective

Allreduce_op_alltoall in the IS application from the

NAS parallel benchmark [40], (b) a fully-fused collective

Allgather_op_Allgatherv in an open source �nite element

method library [5], and (c) a higher-order collective SpMV

from Trilinos Library (Tpetra) [30]. Some variables are

renamed from the original code for better readability.

1

10

100

1000

10000

100000

1000000

In-Network Data

Reduction

of Network-Host

Bypassing

Computation

Communication

Overlap

End-to-End

Bandwidth

S
m

a
rt

F
u

se
 I

m
p

ro
v
em

en
t

O
v
er

 B
a
se

li
n

e
C

P
U

 C
lu

st
er

Allreduce_op_alltoall

(Fused Collective)

Distributed SpMV

(Higher Order Collective)

518 KB
704X

8X

203 MB

7X

1183X

5.2X 5.1X

(a)

1

10

100

1000

10000

Allgather_op Allreduce_op Allreduce_op

_allreduce

Scatter_op

_reduce

)
S

u(
yc

n
et

a
L

CPU Cluster SmartFuse LoGcN Model*

(b)

Figure 3: Evaluating SmartFuse vs. the original CPU imple-

mentation on 128 nodes with respect to (a) some in-switch

computing bene�ts for the two FCFs introduced in Fig. 2, and

(b) latency of the proxy benchmarks discussed in Table 1. *

LoGcN model is discussed in Sec. 6. The SmartFuse results

are based on emulation.

Table 1: Speci�cations of the proxy benchmarks used.

Proxy

Benchmark
Op

Sample

Application

Stream-In

Size

Inbound

Size

Allgather_op

MAC

(Multiply-

Accumulate)

PageRank

Algorithm [41]
128 128

Allreduce_op Accumulation
Sorting

Algorithms
512 0

Allreduce_op

_allreduce

Dot-Product

+ Scaling

Norm Computation

in GMRES [57]
1 16K

Scatter_op_reduce Accumulation

Master-Slave

(Workload

Distribution)
512 0

that can fuse communications and computations from the input

program and construct their o�oad to the recon�gurable switches.

4.1 Software Model

There are two ways to support recon�gurable network devices for

MPI speci�cations. The �rst is o�ine [9] where collectives and ops

are expressed in a high-level language (i.e. HLS, OpenCL). In this

method, the high-level language is compiled into a bitstream for

the hardware device for each MPI application (which is a lengthy

process). The other is online (runtime recon�gurable) [45] where the

recon�gurable network device (i.e. the FPGA) is transparent to MPI

calls. In this work, we focus on the latter as it avoids regenerating

the bitstream for each MPI program while addressing portability

across HPC applications [16] without requiring the user to modify

the application.

In order tomake FPGAs transparent toMPI calls, we havewritten

a transport layer that enables the host to communicate with the

FPGA and load the con�guration at runtime. As a proof-of-concept,

we have experimented with ExaMPI [47]. ExaMPI is a light-weight

MPI implementation, which focuses on key blocks of functionality

and is designed for modularity and extensibility.

Existing collectives are usually implemented by building on a

series of point-to-point operations. FCFs, however, bypass interme-

diate sends/receives; in this model, each rank has only up to one

non-blocking send and receive routine. Other MPI functionality,

including MPI rank management for the collective algorithms, is

handled by the switch. In our implementation, each rank is asso-

ciated with a distinct combination of two numbers: an IP address

(given to the nodes) and a port number given to each process. This

helps to calculate the rank IDs easier from incoming messages at

the switch accelerator hardware.

4.2 The Proposed Framework

4.2.1 Overview. The proposed framework translates an input MPI

program into a new one enhanced with FCF APIs and compiles the

relevant parts of the program to the recon�gurable switch. Fig. 4

shows the SmartFuse framework. An input MPI program is �rst

fed into a source-to-source translator. The translator begins by

parsing the code and inspecting the collectives and ops as well as

the higher-order collective APIs. If it is a higher-order collective,

then it is replaced with a newAPI (similar to Fig. 2 (c)). Otherwise, in

the case of a semi/fully fused collective, an evaluator �rst evaluates

whether fusing the collectives and operations is worth o�oading

to the network. In case of passing that criterion, a control data �ow

SmartFuse: Reconfigurable Smart Switches to Accelerate Fused Collectives in HPC Applications ICS ’24, June 4–7, 2024, Kyoto, Japan

graph is generated by SmartFuse compiler for the op extracted via

the parser. We used LLVM infrastructure [35] for this purpose.

The next step is CDFG mapping. There, CDFG operations are

mapped into CGRA processing elements (Sec. 5.2) with the aid of

a con�guration �le, which embeds architecture-speci�c informa-

tion (number of processing elements, etc). We use modulo routing

resource graphs (MRRG) [38] for this mapping (the initiation in-

terval is increased incrementally until a valid mapping is found).

Subsequently, instructions are constructed using an instruction

generator according to a dictionary of those supported instructions.

The collective(s) and ops are replaced with new (non-blocking)

FCF APIs with the correct arguments including inbound/outbound

arrays and a pointer to a data structure holding the instructions.

These new APIs are recognized by the MPI implementation. Note

that the instructions are loaded into the switch at runtime for each

semi/fully fused collective. In order to provide overlap between the

FCF itself and the rest of computation in the program, an MPI_Wait

is appropriately placed after it (considering the data dependency).

This translated program is now ready to be compiled and launched

with the usual MPI �ow.

Source-to-

Source

Translation

Input

Program

Instruction

Generator
SmartFuse

Compiler

+

Instructions

MPI

Compiler

MPI

Launcher

int main(int argc,

char** argv){

MPI_Init(

&argc, &argv);

...

MPI_Finalize();}

numRow: 8

numCol: 6

Ni: 3

Nf: 2

RFSize: 128

RSTSize: 128

Configuration

File

RunTime

Config.

FPGA

Parser Mapping

Translate

to new API

Higher-Order

Collectives

Semi/fully-fused

Collectives

Control Data

Flow Graph

Evaluator

Figure 4: SmartFuse Framework

Now, we disclose a number of considerations and details for

some of the framework parts.

4.2.2 Evaluator. There are two criteria to determine whether a FCF

is worth o�oading to the network. First, there should be su�cient

reuse with at least one loop and su�cient parallelism, preferably

larger than SIMD degree of CGRA. Second, inbound/outbound

array size should be less than a threshold to lessen the overhead of

transferring data to/from switch. We use a threshold of 16 KBytes.

4.2.3 SmartFuse Compiler. There are some considerations need

to be addressed: (1) The compiler distinguishes the inbound and

stream-in data and represents this information in the generated

CDFG. (2) The proposed CGRA supports SIMD and reduction be-

tween SIMD lanes; this reduction is considered to be one of the oper-

ations for the CDFG. Also, index-based if/else statements (branches

that depend on the loop iteration) should be handled through pred-

ication [25] when SIMD is involved.

4.2.4 Mapping. The mapper asserts higher priority for inbound

data than for stream-in data. This is because stream-in data may

arrive at CGRA later than inbound data due to having a commu-

nication phase; processing on the latter could be started without

having to wait for the former.

5 SMARTFUSE HARDWARE SUPPORT

To support FCFs in a generic switch, SmartFuse is built around three

main components: (1) basic collective support, (2) the CGRA, and

(3) kernel logic. Fig. 5 shows the proposed smart switch design: it

is based on a virtual output queue (VOQ) design [32] and shown

with four input and output transceivers. We now describe each

SmartFuse building block. Finally, we discuss reliability and dead-

lock mechanisms of this work. For this section, we consider a direct

network where each node has an accelerator and these accelerators

are directly connected through a secondary network in a given

topology (e.g., 3D torus). Some of the discussions/details, however,

are applicable to indirect networks as well (e.g., fat-tree topology).

5.1 Basic Collective Support

The basic collectives that SmartFuse supports are achieved through

these four modules: (I) the collective control module handles com-

municator and MPI rank management; (II) the reduction unit sup-

ports reduce-type operations (MPI_Reduce and MPI_Allreduce);

(III) the gather unit supports gather-type operations (MPI_Gather,

MPI_Allgather, and MPI_Allgatherv); and, (IV) themulticast unit

supports MPI_Scatter and MPI_Bcast operations. For the �rst two

types of operations there is a collector module that synchronizes

packets from di�erent input ports. The following is an overview of

each module.

5.1.1 Collective Control Module. To handle MPI rank connectivity

for collective algorithms, a communicator table stores the parent-

child MPI rank ID relationship. The currently supported collective

algorithms are binomial tree [50], recursive doubling [50], and a

tree-based algorithm optimized for a 3D-torus topology (used in

this work).

5.1.2 Reduction Unit. This unit is capable of performing addi-

tion, MAX/MIN, and bit-wise AND/OR/XOR operations. This is

done through aggregation logic units, each comprising parallel

double-precision �oating-point/integer ALUs since the phit size

(data bitwidth of interface, 512 bits in this work) is wider than that

bitwidth.

5.1.3 Gather Unit. There is a gather table in which the packets are

�rst stored and then reordered and serialized based on the current

MPI rank ID [16] and the rank ID of the child processes in the

collective algorithm.

5.1.4 Multicast Unit. In order to support scatter-type operations,

there is a �ag in the packet header that indicates whether the packet

is intended to be multicast. The crossbar logic is modi�ed to support

multicast operation. At the output of the crossbar logic is a packet

re-assembler in which the destinations of the packets are appended

to the packet header.

Describing the other two modules brie�y: the route-compute

unit determines the output port with the aid of communicator table

and the packet-parser decodes packets to �nd the type of transport,

operation, datatype, and packet size.

5.2 Network-Optimized CGRA
In order to support a variety of workloads for in-switch computing

we propose a network-optimized CGRA. CGRAs are typically used

ICS ’24, June 4–7, 2024, Kyoto, Japan Haghi et al.

DRAM/

HBM

Switch

P
a

ck
et

P
a

rser

Host-to-FPGA

Ingress Y+
VC

VC

VC

VC

Kernel

Logic

Collective

Control

Module

Ingress Y-
VC

VC

VC

VC

Collective

Control

Module

Ingress X+
VC

VC

VC

VC

Collective

Control

Module

Ingress X-
VC

VC

VC

VC

Collective

Control

Module

Collective

Control

Module

DMA

Engine
Reduction/

Gather

Unit

FPGA

-to-host

FIFO Egress X-

Egress X+

Egress Y-

Egress Y+

DMA

Engine

Transceiver

Transceiver

Outbound

Arbiter

P
a

ck
et

P
a
rser

P
a
ck

et

P
a

rser

P
a
ck

et

P
a

rser
P

a
ck

et

P
a
rser

Inbound

Scheduler

Collector

CGRA
VC

De/Allocator

M

U

L

T

I

C

A

S

T

R
o
u
te

C
o

m
p

R
o

u
te

C
o
m

p

R
o
u

te

C
o
m

p

R
o
u

te

C
o
m

p

R
o

u
te

C
o
m

p

Transceiver

Transceiver

Transceiver

Transceiver

Transceiver

Transceiver

FIFO

FIFO

FIFO

FIFO

FIFO

FIFO

FIFO

FIFO

FIFO

Figure 5: The proposed smart switch design with FCF support.

to accelerate computation-intensive loop kernels. In this work, we

consider a data�ow-based CGRA architecture to fuse communica-

tion and computation in a streaming fashion. We have modi�ed a

traditional CGRA design with dynamic scheduling [54] through a

runtime state table (RST) and a �nite state machine to e�ciently

keep track of the loops and operations. To take advantage of the

wide phit size, the proposed CGRA bene�ts from SIMD features

with a reduction tree that performs the reduction among SIMD

lanes.

As shown in Fig. 6, the proposed CGRA consists of input inter-

faces (stream-in and inbound); output interfaces (stream-out and

outbound); an array of processing elements (PEs) grouped into dif-

ferent types, which are accompanied by register �les (RFs); runtime

con�guration tables (RCTs); and an RST. RCTs store instructions

(con�gurations) designated for PEs (generated by the instruction

generator, Sec. 4). These instructions specify the correct operation,

operands, RF address, and immediate data (IMM). RCTs are shared

among PEs in the same SIMD lane. The RST holds the state of

the con�guration and determines the correct entry of the RCTs.

Inbound bu�ers (IBs) store inbound data and are addressable. Other

interfaces (stream-in, stream-out, and outbound) are streaming.

To maximize end-to-end network bandwidth we applied a num-

ber of optimizations. (1) Since stream-in data can arrive at the CGRA

later than inbound data (due to having a communication phase),

processing on the latter can begin without waiting for the former;

this enables asynchronous execution. (2) SIMD lanes are used to

boost network bandwidth and utilize data parallelism. (3) RFs are

utilized to reuse data between loops and to store partial results

between stream-in and inbound data.

There are several considerations for the CGRA design:

5.2.1 Data Streaming. As the CGRA emulates a network proces-

sor, it needs to be able to handle streaming data. At the interface

level, this means that o�-chip memory is not involved. Instead,

on-chip FIFOs are used for the stream-in, stream-out, and outbound

interfaces. Similarly, memory accesses for other types of bu�ers

(inbound, RFs, RST, and RCT) require single clock cycle latency. To

achieve this, we have constrained the depth of these memories to

max_depth.

5.2.2 Supporting Conditionals. To facilitate conditionals, we sup-

port partial predication [25], in which both the if -path and else-path

are executed in parallel and the correct outcome is selected by eval-

uating the condition.

5.2.3 Supporting a variety of workloads. To support di�erent types

of workloads, PEs inside the CGRA are assigned to be either (1)

integer-processing (type-A) comprising integer multiplication, addi-

tion, and logical operations, (2) integer to double-precision �oating-

point conversion (type-B), (3) double-precision �oating-point pro-

cessing (type-C) including multiplication and addition, or (4) post-

processing (type-D) such as division and square root. The wide

MUXes on the inputs of these PEs enable processing data from

di�erent sources (stream-in, inbound bu�ers, RFs, and immediate

data) to chain operations with high throughput.

5.3 Kernel Logic
Kernel logic is responsible for handling kernel-level operations

(higher-order collectives). A condition that needs to be met to be

considered a kernel is that it should have a well-de�ned and re-

peatable communication pattern (e.g., matrix multiplication). One

of the challenges in designing such a unit for multiple nodes is to

tightly couple communication and computation. This is handled by

a scheduler unit (con�gured by the host) which drives the control

signals of the kernel unit logic. Fig. 7 shows the proposed archi-

tecture. It is divided into two concurrent parts: computation and

communication engines. To provide the asynchrony between these

two engines, each can write their results to the output bu�ers inde-

pendently. These two results will be summed up to provide the �nal

output to a packet assembler and the corresponding queue once

both have valid data. Overlap registers are responsible for tuning

communication-computation overlap. They control and schedule

SmartFuse: Reconfigurable Smart Switches to Accelerate Fused Collectives in HPC Applications ICS ’24, June 4–7, 2024, Kyoto, Japan

R

E

D

U

C

.

T

R

E

E

PE
INT2

Double

Type-BType-A

S

T

R

E

A

M

-

O

U

T

S

T

R

E

A

M

-

I

N

PE

RF

ITR

IMM

INT2

Double

PE
INT2

Double

Ni

SIMD

Degree

PE

Type-A

PE

RF

ITR

IMM

PE

PE

Type-C

PE

RF

IMM

PE

PE

Type-D

PE

RF

IMM

PE

Nf

R

E

D

U

C

.

T

R

E

E

Inbound

IB

IB

IB

O

U

T

B

O

U

N

D

Iter_i

Iter_j

Iter_k

Address

Runtime Configuration Tables (RCTs)Runtime State Table (RST)

...

RCT RCT RCT RCT

Iteration Immediate

Data

Figure 6: The proposed CGRA architecture; it is based on an array of SIMD-based processing elements.

the relative speed of the two engines. That is, if one engine is ahead

at the end of a given period it has to wait for the other. The de-

sign is based on a data�ow architecture (horizontal, vertical, and

diagonal connections) with double bu�ers (D-bu�ers) to achieve

high o�-chip memory bandwidth. While D-bu�ers are used to store

the data elements of matrices, banked bu�ers are used to store the

elements of vectors (i.e., in a SpMV kernel). The bank resolver mod-

ule resolves the requests issued to banked bu�ers from PEs. One

important feature of the kernel logic is that the switch is capable of

issuing send/receive operations independent of the host. In other

words, the switch is the master device.

We illustrate this capability with SpMV and PGEMM, but it is ap-

plicable to similar operations such as matrix transpose, dot-product,

convolution, and many others.

Output Buffer

PE PE PE

D-Buffer

Bank

Resolver

PE PE PE

PE PE PE

Bank

Resolver
Bank

Resolver

Banked

Buffer

Banked

Buffer
Banked

Buffer

Computation

Engine

Comm

PE

Comm

PE

Comm

PE

Bank

Resolver

Banked

Cache

RDMA

Receive

Queue

+
+

+

D-Buffer

Packet

Assembler

D-Buffer

D-Buffer

D-Buffer

D-Buffer

D-Buffer

D-Buffer D-Buffer

D-Buffer

D-Buffer

D-Buffer

D-Buffer D-Buffer

D-Buffer

D-Buffer

D-Buffer

Output Buffer

Output Buffer

RDMA Request Queue

 Input_B Send Queue

 Input_A Send Queue

 Output_C Send Queue

RDMA Send Queue

From Off-chip

Memory

To Off-chip

Memory

From

Switch

Overlap Tuner

Memory

Controller

Communication

Engine

.

.

.

Figure 7: The kernel logic architecture is divided into two

concurrent parts: computation and communication engines.

5.3.1 SpMV. We consider a row-wise partitioning [42] for the in-

put matrix and input/output vectors across the accelerators and

then apply a 2D partitioning scheme among PEs for the local com-

putation. Diagonal (o�-diagonal) matrix elements [42] are loaded

from o�-chip memory into the D-bu�ers associated with the PEs

in the computation (communication) engine, while the vector ele-

ments are loaded into banked bu�ers (see Fig. 7). To illustrate the

process, PEs in the computation engine calculate the partial sums

which get written into output bu�ers (Fig. 7). Meanwhile, column

indices in the o�-diagonal matrix provide the addresses for issuing

RDMA requests to remote nodes. After fetching data, partial sums

(for o�-diagonal elements) are calculated in communication PEs,

get written to the output bu�ers, and are then summed up with

the corresponding computation result. To achieve good overlap of

communication and computation, data elements that are ready for

communication are not sent to remote nodes instantly; rather, they

are lumped together (according to a threshold given by overlap

tuner registers) and sent later.

5.3.2 PGEMM. We apply a pipelined version of the SUMMA algo-

rithm [52]. Since our target topology is 3D-torus, we decompose

the workload into 3D grids and assign each grid to an accelerator

(i.e., both input matrices are partitioned in a block fashion). For this

kernel, the computation engine is used as a systolic array for local

computation. Communication is sending/receiving input matrices

with neighbor nodes in a ring fashion as well as reductions in an-

other direction (computations and communications are overlapped).

It is possible to tune communication and computation by varying

the size of memory tiling between matrix dimensions.

5.4 Reliability and Deadlock

Reliability: For semi/fused collectives, reliability is ensured by

pausing and restarting �ows to prevent bu�ers on the switch accel-

erators from over�owing and dropping frames, respectively. The

former happens if the bu�er reaches a certain level of fullness and

the latter occurs if the bu�er empties to below a certain threshold.

Ensuring reliability in higher-order collectives in the switch is more

challenging than semi/fully fused collectives. This is because the

messages received by the switch accelerator can be reused before

receiving the next messages in the former. For instance, a single

element fetched from remote nodes might be reused multiple times

in the SpMV function depending on the distribution of non-zeros

ICS ’24, June 4–7, 2024, Kyoto, Japan Haghi et al.

in the matrix. This is in contrast with semi/fully fused collectives

where messages are processed in a streaming fashion. The fact that

messages are reused in higher-order collectives delays the task of

receiving the next message(s). This, in turn, increases the chance of

messages being dropped. However, it is possible to take advantage

of communication-computation overlap in higher-order collectives.

To ensure the reliability of messages while achieving higher per-

formance, we set a deadline in which each received message has

limited time to be processed before being able to listen to the next

message’s arrival. This deadline sets the threshold for overlapping

communication and computation, as well as bu�er sizing. In the

case of bu�er over�ow, new incoming packets are dropped, the

downstream noti�es the upstream, and the upstream retransmits

the message.

Deadlock: To avoid deadlock for semi/fused collectives, we

designed SmartFuse hardware such that receiving packets do not

block sending packets and vice-versa. At the software level, we

use nonblocking sends/receives. For higher-order collectives, if one

process is signi�cantly ahead of the others (process-skew [21]), the

accelerators may attempt to send a message. However, if it has not

received any messages, it will pause and await synchronization

within the network. Also, we note that we allocate enough bu�er

on the hardware for each rank separately.

6 MODEL FOR IN-SWITCH COMPUTING

To develop a fundamental understanding of compute-in-the-network,

and to better analyze its performance, a simple yet accurate model

is indispensable. The LogGP model [2] has primarily been used to

abstract communication based on point-to-point messages. In this

model, L, o, g,G, and P represent the latency, overhead, gap between

messages, gap per byte, and the number of processors, respectively.

Although collectives could be represented in this model as a se-

quence of point-to-point communications, it is not able to model

FCFs. Also, it is not possible to model computation in LogGP. We

have therefore created a new version of this model, called LoGcN,

to account for in-network computing on a collection of processes

while also considering communication-computation overlap.

One bene�t of the in-switch approach is that it eliminates the g

term by pipelining the communication. For example, for MPI_Bcast,

the message is sent from the host to the switch only once. And for

MPI_Scatter, di�erent messages are grouped into a single large

message. Consequently, in our model g=0 and we need only the G

term for both short and long messages. Another advantage is that

it e�ectively eliminates the overhead time (term >) for intermediate

ranks in a given collective algorithm (e.g., binomial tree) since the

switches are able to perform reduction, gather, and multicast on

the packets without the aid of the hosts.

We model the execution time of FCFs with overhead, latency

(which depends on the number of switches), gap per byte (band-

width), and an added term for computation (represented as c). Com-

putation itself comprises a latency term and another term for char-

acterizing the message bandwidth. By modeling computation with

latency and bandwidth terms we have abstracted the frequency

of the switch logic, number of PEs, and other design details. To

illustrate, we �rst consider the following equations:

) = (2 × >) + !(#) +
<

�
+ 2 (#,�) (1)

2 = (# × U) +
(W − 1) ×<

�
(2)

� = V × �, (3)

where) , !, # ,<, and �, are the time it takes to complete a FCF

on a collection of processes, the maximum latency of the network

from sending the �rst byte from a host to receiving the �rst byte by

another host, the number of switches involved, the message size,

and the maximum network bandwidth. The message size is the size

of stream-in (array size sent from each host to the switch) in the

case of fused collectives (higher-order collectives). U , V , and W rep-

resent the latency of the computational units (SmartFuse building

blocks), a bandwidth attenuating factor in case of gather-type or

MPI_Scatter communication (due to serialization), and data reuse

for computation, respectively.

Note that coe�cient 2 in Eq. 1 is needed due to the fact that

the message is only transferred from (to) a sending (receiving)

process on the host. Also, that communication latency is merged

into term L instead of a series of point-to-point communications.

For computation term c, we have considered a data reuse term:

for kernel logic, this represents the amount of reused data; for the

CGRA it means initiation interval (II). To represent the overlap

of communication and computation, this term is reduced by one

and used as a factor in the bandwidth term of the computation. U ,

V , and W depend on the workload (kernel) but L, o, BW, and n are

parameters that can be extracted. Our preliminary results show

that the LoGcN model is e�ective in predicting the performance of

semi/fully fused collectives (Sec. 3).

7 EXPERIMENTAL EVALUATION

In this section, we evaluate SmartFuse. We present the experimental

setup, the resource utilization of the smart switch, performance

and scalability of SmartFuse for HPC kernels and applications, and,

�nally, we evaluate SmartFuse in an indirect network testbed.

7.1 Experimental Setup

SmartFuse Direct Network: For proof-of-concept, we have imple-

mented and tested SmartFuse on a two-node FPGA-based system

in both direct and indirect network settings using the Xilinx Vi-

tis uni�ed software platform. In the direct network testbed, two

Alveo U280 boards are directly connected using QSFP28 network

interfaces (capable of 100 Gb/s). Each board is connected to an In-

tel Xeon E5-2620V2 server. To simulate a larger number of nodes

(where SmartFusion provides performance bene�ts), we conduct

an experiment to obtain some parameters used for the emulation

of a larger-scale proxy system. In this experiment, a sender process

sends 1408 bytes worth of data to a receiver process using TCP/IP

network logic [28] handled by FPGAs. ExaMPI implementation [47]

is used for this experiment. The parameters used in the emulation

and LoGcN model (derived from our system setup) are shown in

Table 2. MPI overhead is the average overhead of MPI_send and

MPI_Recv in ExaMPI. ExaMPI overhead is larger than other MPI im-

plementations due to the cost of creating progression threads. The

last three parameters are used to evaluate the term L in the LogcN

SmartFuse: Reconfigurable Smart Switches to Accelerate Fused Collectives in HPC Applications ICS ’24, June 4–7, 2024, Kyoto, Japan

Table 2: Parameters used in the emulation and LoGcNmodel.

* Denotes the Aurora IP latency.

MPI Overhead (o) 14.8 usec

Maximum Network Bandwidth (BW) 95.9 Gbps

PCIe Latency 0.9 usec

FPGA-to-FPGA Latency* 0.44 usec

Minimum Port-to-Port Latency 52 nsec

model. We note that the latency of the SmartFuse components is

not included in the reported port-to-port latency.

For the rest of this section, we evaluate the performance of

SmartFuse based on the emulator as well as the LoGcN model. The

emulation has the same requirements as [36]. That is, the emulation

should possess: (1) the same volume of tra�c in the network links,

(2) an identical number of network hops, and (3) an accurate over-

head of the accelerator. For the SmartFuse accelerator overhead, we

use cycle-accurate RTL simulation through testbenches using the

Xilinx Vivado Tool. We emulate an FPGA cluster (Xilinx VCU128)

with up to 128 nodes with a direct network (3D-torus topology).

SmartFuse Indirect Network: We also evaluate our approach

for an indirect network. The testbed is a two-node system on Cloud-

Lab [26, 27] with a Xilinx Alveo U280 FPGA attached to a Dell

Z9100-ON switch (total of three nodes including host). We use

the Xilinx Vitis 2021.2 uni�ed software platform to program the

FPGA. Our accelerator is coupled with a modi�ed version of [55] to

send/receive packets from two leaf nodes. The operating frequency

is 250 MHz. At the leaf nodes, packets are sent and received using

socket APIs to communicate with the FPGA through the switch.

CPU Implementation: For the CPU reference, benchmarks

were run on the TACC Stampede2 [48] Skylake (SKX) compute clus-

ter with 48-cores per node (2 sockets) 2.1��I Intel Xeon Platinum

8160 CPUs, and a 100 Gb/s Intel Omni-Path (OPA) network. We

used Intel MPI 18.0.2 as an Intel-compatible MPI is recommended

for this cluster; we found it usually gives better performance than

other MPI implementations.

7.2 Workloads Tested

The workloads tested comprise a number of standard HPC bench-

mark kernels and a complete application. The baselines are the

unmodi�ed codes run as described in the previous subsection.

First are two HPC kernels: SpMV from Trilinos Library (Tpe-

tra package) [30] and PGEMM from the state-of-the-art COSMA

algorithm [34]; they are the backbone of many scienti�c, graph

analytic, and machine learning applications. Second, are a set of

applications from the NAS parallel benchmark [40]: IS (Integer

Sort), LU (Lower-Upper Gauss-Seidel solver), MG (Multi-Grid on a

sequence of meshes), and SP (Scalar Penta-diagonal solver). Third,

from the Mantevo project [29] is miniFE [3], which is an unstruc-

tured implicit �nite element code. Fourth, is deal.ll [5] from an

open-source �nite element method (FEM) library for solving partial

di�erential equations. Finally, a complete application Algebraic

Multigrid (AMG), which is a widely used iterative solver with ir-

regular communication, is also studied. Table 3 shows FCF types of

each benchmark/application used in this work.

Table 3: Fused collective types for benchmarks/applications

Benchmark/

Application

Fully-Fused

Collectives

Semi-Fused

Collectives

Higher Order

Collectives

SpMV (Sparse matrix

vector multiplication)
✗ ✗ ✓

PGEMM (Dense

matrix multiplication)
✗ ✗ ✓

IS

(Integer sort)
✓ ✗ ✗

LU (Lower-upper

Gauss-Seidel solver)
✗ ✓ ✗

MG

(Multi-grid)
✓ ✗ ✗

SP (Scalar penta

diagonal solver)
✗ ✓ ✗

miniFE

(unstructured grid)
✗ ✓ ✓

deal.ll (�nite

element method)
✓ ✗ ✗

(AMG) Algebraic

multigird
✗ ✗ ✓

Collectively a variety of application types are represented, in-

cluding dense matrix-matrix multiplication, sparse matrix-vector

multiplication, structured grids, and unstructured grids.

7.3 Performance and Scalability
In this subsection, we evaluate the performance and scalability of

SmartFuse for two kernels and a variety of applications.

7.3.1 Higher-order collectives. We consider two higher-order col-

lectives with di�erent sizes: SpMV and PGEMM. For SpMV, we

study two sparse matrices from SuiteSparse [51]: parabolic_fem

(for SpMV-1) and sme3Dc (for SpMV-2). The former (latter) has

525825 (42930) rows with an average of 7 (73) nonzero elements

per row. For comparison we use Trilinos [30] (Tpetra package) as

the CPU reference. For PGEMM, we consider a square (16K×16K)

and a tall-skinny (1K×128K) dense matrix and compare SmartFuse

with the state-of-the-art COSMA [34] CPU implementation. We

consider strong scaling for both PGEMM and SpMV. Also, the for-

mer is based on single-precision �oating-point while the latter is

double-precision.

Fig. 8 shows a performance comparison of SmartFuse and the

original MPI implementation on the SKX cluster for SpMV and

PGEMM kernels and also the performance estimated by the LoGcN

model. SKX-1, SKX-24, and SKX-48 denote having 1, 24, and 48

OpenMP threads, respectively. For the PGEMM kernel, SmartFuse

provides a considerable improvement as it is able to almost fully

overlap communication and computation in the switch: SmartFuse

provides 3.2× and 1.5× performance improvements compared with

an optimized CPU implementation [34] for square and tall-skinny

matrices, respectively. Similarly, for the SpMV kernel, SmartFuse

delivers signi�cant improvement as the whole kernel (irregular

computation with series of MPI_Sendrecv realized by RDMA) is

handled by the recon�gurable switch. The problem is computation

bound with a small number of nodes, which gradually becomes

ICS ’24, June 4–7, 2024, Kyoto, Japan Haghi et al.

communication bound for a larger number of nodes. Note that

SmartFuse is able to maintain the speedup with scale.

We also estimated the performance using the LogGP model.

However, it consistently provided smaller latencies than the actual

emulated performance model (red bars) for higher-order collectives.

This is because LogGP does not model the computation time in the

network, and so is not suitable formodeling higher-order collectives.

We note that another approach for the LoGcNmodeling is to choose

the value of the parameters to give the best �t for a training set of

experimental results, rather than those shown in Table 2. While this

approach can provide better estimations, we avoid complications

in the performance modeling process in this work and resort to a

lightweight model with the same procedure as LogGP.

7.3.2 Applications. Fig. 9 shows the performance bene�t of Smart-

Fuse over original MPI implementation on the SKX cluster (64 and

128 nodes) for theNPB and miniFE proxy applications. The problem

size used for IS and MG is based on class C and for LU and SP is

class A [40]. SKX time and error bars represent the time it takes on

SKX cluster and std for �ve runs. Benchmark-X-tY represents the

benchmark with X nodes and Y OpenMP threads.

We �nd that the LoGcN model can e�ectively predict the perfor-

mance of NPB, but not miniFE (Fig. 9). One reason is that this model

is not able to predict the performance of higher-order collectives

used in miniFE; these kernels often have complex communication

and computation behavior, which may not be feasible to abstract

them using a single model. Another reason is that there is a semi-

fused collective with a large inbound array in miniFE. But LoGcN

model does not currently take inbound arrays into account.

According to Fig. 9, among NPB applications, the performance

bene�ts forMG and IS are higher than for the others. For IS, one

reason is that the message size of collectives is relatively high and

SmartFuse can take advantage of communication-computation over-

lap and in-network data reduction. ForMG, this is partly because

there are a larger number of FCF calls. In contrast, SPmanifests the

smallest performance gain simply because the number of FCF calls

is the smallest. Also, note that it is possible to utilize non-blocking

FCFs, taking advantage of CPU idle time during the FCF o�oad.

This happens for one of the FCFs in LU benchmark.

For miniFE, the performance improvement percentage is typ-

ically higher than that of NPB. One reason is that higher-order

collectives (SpMV), in addition to semi-fused collectives, are accel-

erated by the switch. Other reasons are the fact that semi-fused

collectives constitute a larger fraction of runtime and it is possible

to bene�t from a non-blocking FCF.

Fig. 10 shows the performance and scalability of SmartFuse vs.

the optimized CPU implementation (Hypre [31]) and SHArP [15] for

AMG. We used the lap3d matrix [42] with size 1M rows. The num-

bers in front of SKX and SmartFuse denote the number of threads.

The red bar indicates time saved by overlapping communication

and computation in the recon�gurable switch for the SpMV kernel

in SmartFuse. Note that by scaling up (weak scaling) the execution

time increases gradually as more time is needed for the commu-

nication. However, there are some anomalies in which scaling up

improves the performance. This is because the solver sometimes

converges with fewer iterations. The improvement introduced by

SmartFuse depends on the ratio of the time spent in the SpMV kernel

to that of total execution time. On average (among di�erent num-

bers of nodes), SmartFuse improves the AMG execution time by 11%.

For comparison with SHArP, we have calculated the performance

improvement of MPI_Allreduce times (supported by SHArP) in

AMG. We superimposed their results published in [15] in the AMG

application. Our approach provides considerable improvement com-

pared with SHArP (see the lines for SmartFuse speedups that are

above the SHArP speedup line in the �gure).

7.4 Indirect Network Study

To evaluate the e�cacy of the approach in indirect network settings

we use CloudLab infrastructure [26] with three nodes (two leaf

nodes and one node to host the FPGA) capable of 100 Gbps. A 100

Gbps switch interconnects all three nodes. Each process, two in this

case, in addition to the FPGA itself, is assigned IP an address and

port number. This information is stored in the networking kernel

of the FPGA to forward the messages to the correct destination

according to the collective type and algorithm. Messages are sent

from the leaf nodes to the FPGA through the switch, processed

in the FPGA user kernel, and sent back to the corresponding leaf

node(s). We also provide a runtime that automates and manages

the execution of processes in basic/fused collectives. This includes

connecting to leaf nodes from the master process (through SSH),

creating processes there, assigning new port numbers for each

process, and waiting for the completion.

Since the runtime and MPI support are based on Python, we

compare this approach with a Python-based MPI, MPI4py [8]. We

demonstrate its performance compared to traditional MPI for an

instance of fused collectives used in FEM applications. Figure 11

shows the latency comparison of Allgather_op_allgather in both

MPI4py SmartFuse for di�erent message sizes. Op here is a pre�x

sum (see Fig. 2 (b)). The results are from taking the average of

�ve runs. It clearly shows that SmartFuse provided superior per-

formance, especially for larger message sizes with, on average, a

1.98× improvement. The performance bene�t comes from the fact

that intermediate communications are bypassed and computations–

sandwiched between collectives–are directly processed in the ac-

celerator on FPGA.

8 RELATED WORK

Collective o�load: Previous work has shown signi�cant bene�ts

of optimizing collectives and o�oading them to the NIC. The au-

thors in [4] present a framework for o�oading MPI collectives to

programmable logic on the NIC. The work in [36] integrates lossy

compression into FPGA-based NICs to accelerate the distributed

training of deep neural networks. Also, COPA [33] provides a soft-

ware/hardware framework that makes the underlying FPGA hard-

ware (endpoint device) agnostic to middleware. There is another

line of work that targets o�oading collectives to the switch. It is

worth mentioning that perhaps in-switch processing originated

from the NYU-Ultra [11] implemented in the distant past. Mellanox

SHArP [15] has o�oaded MPI collectives to ASIC-based switches

using reduction trees. Their approach supports �xed functions

and data types with no extensibility; also, few design details are

provided. In contrast, the approach here provides support for user-

de�ned collectives and other complex functions (FCFs). The authors

SmartFuse: Reconfigurable Smart Switches to Accelerate Fused Collectives in HPC Applications ICS ’24, June 4–7, 2024, Kyoto, Japan

1E+2

1E+1

1E+3

1E+4

L
at

en
cy

 (
u

s)

1E+5

1E+2

1E+1

Number of Nodes

1E+3

1E+4

1E+5

1E+5

1E+4

1E+6

1E+7

1E+8

2 4 8 16 32 64 128 2 4 8 16 32 64 128 21 4 8 16 32 64 128 21 4 8 16 32 64 128

SpMV-1 SpMV-2 PGEMM-square PGEMM-tall

1E+4

1E+3

1E+5

1E+6

1E+7

SmartFuse LoGcN ModelSKX-1 SKX-24 SKX-48

Figure 8: Scaling comparison of higher-order collectives on SKX vs. SmartFuse. The two left-most plots are the SpMV kernel

(parabolic_fem and sme3Dc matrices) and the two right-most are the PGEMM kernel (square and tall matrices). 1, 24, and 48

OpenMP threads were used for the CPU SKX cluster.

0

10

20

30

40

50

60

70

80

90

100

0

200

400

600

800

1000

1200

1400

Im
p

ro
v

em
en

t
(%

)

T
im

e
(m

s)

SKX Time (ms) Improvement (%) LoGcN Model

IS
-6

4
-t

1

L
U

-1
2

8
-t

1

M
G

-1
2

8
-t

1

S
P

-6
4

-t
1

m
in

iF
E

-6
4

-t
2

4

m
in

iF
E

-1
2

8
-t

2
4

m
in

iF
E

-6
4

-t
4

8

IS
-1

2
8

-t
1

L
U

-6
4
-t

1

M
G

-6
4

-t
1

S
P

-1
2
1

-t
1

m
in

iF
E

-6
4
-t

1

m
in

iF
E

-1
2
8

-t
1

m
in

iF
E

-1
2
8

-t
4
8

Figure 9: Performance improvement of SmartFuse over orig-

inal MPI implementation on SKX cluster (64 and 128 nodes)

for the NAS parallel benchmarks and miniFE. SKX time and

error bars represent the time it takes on SKX cluster and std

for �ve runs, respectively.

0

5

10

15

20

25

0.1

1

10

100

2 4 8 16 32 64 128

S
p

ee
d

u
p

 (
%

)

)s
d

n
oce

S(e
mi

T

Nodes
SKX-1 SKX-24 SKX-48

Overlap SmartFuse-1_Speedup SmartFuse-24_Speedup

SmartFuse-48_Speedup SHArP_Speedup

Figure 10: AMG performance and scalability comparison

between SmartFuse, the optimized CPU implementation, and

SHArP (with data adopted from [15]) for 2 up to 128 nodes

with di�erent number of threads (1, 24, and 48). “SmartFuse-

1_Speedup” is the speedup of our approach compared to SKX-

1. Similarly, “SmartFuse-24_Speedup” is the speedup of our

approach compared to SKX-24.

in [36] propose an FPGA-based in-switch acceleration scheme for

distributed reinforcement learning to move gradient aggregation

from server nodes to the network switches. The authors in [22, 23]

2000 4000 6000 8000 10000
Message Size (Bytes)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

La
te

nc
y

(m
s)

MPI4py
Our Approach

Figure 11: Latency comparison of Allgather_op_Allgatherv

in MPI4py and our approach. Op is pre�x sum (see Fig. 2

(b)). The X-axis shows the message size in bytes used for

Allgathers and the Y-axis shows the latency in milliseconds.

designed a hardware accelerator to o�oad basic MPI collectives to

the recon�gurable switch with �exible communicator support.

General-purpose in-network processing: INCA [46] pro-

poses a compute assistance by building upon o�oad capabilities

of state-of-the-art NICs to support a general-purpose computa-

tion in the network. The work [17] proposes a general-purpose

data-centric computing framework for SmartNIC-based systems to

accelerate various types of neural network kernels. However, these

are in-NIC approaches (limitations discussed in Sec. 1). In [10], the

authors design a �exible programmable switch architecture for in-

network data reduction. Although it is possible to process custom

operations through packet handlers, their evaluation is only lim-

ited to dense/sparse MPI_Allreduce. The authors in [24] propose

a programmable look-aside-type accelerator that can be embedded

into, or attached to, existing communication switch pipelines and

that is capable of processing packets at line rate. However, they do

not support fused collectives. Also, supporting new applications in

their approach is not automated from the MPI code; the user has

to manually �nd out which parts of the application need to be of-

�oaded and compile them separately. The work in [49] adds custom

ICS ’24, June 4–7, 2024, Kyoto, Japan Haghi et al.

hardware based on a MapReduce pattern/abstraction (built upon a

CGRA) to P4 switches to enable per-packet inference of machine

learning. However, the fusion of collectives is not supported in this

work. Prabhakar et al. [43] proposed a general-purpose architecture

as a collection of compute and memory units to e�ciently execute

applications composed of parallel patterns. However, this work is

based on a single-node acceleration (not distributed computing).

To the best of our knowledge, no prior work proposes a general-

purpose framework that could be able to fuse MPI collectives with-

out user involvement.

9 CONCLUSION

In this work, we propose a general-purpose,MPI-transparent, frame-

work for in-switch computing in recon�gurable devices to acceler-

ate three fused collective functions (FCFs). First, we propose that

currently supported collectives in switches are extendable not just

to communication phases but to series of communications and

computations by identifying them in HPC applications. Then, we

provide a framework to translate MPI programs and compile them

into recon�gurable devices without user e�ort. Finally, we have

designed various hardware building blocks to support FCFs. Our

experimental results show that our approach on an FPGA cluster

achieves on average 94%, 15%, and 13% improvement in execu-

tion time as compared to the original implementations running on

TACC Stampede2 cluster for the PGEMM kernel, miniFE, and AMG,

respectively.

ACKNOWLEDGMENTS

This work was supported, in part, by the NSF through awards

CCF-1919130, CCF-2151021, and CCF-2326494; and by AMD and

Intel both through donated FPGAs, tools, and IP. This research

was also partially supported by the U.S. DOE O�ce of Science,

O�ce of Advanced Scienti�c Computing Research, under award

No.66150: “CENATE - Center for AdvancedArchitecture Evaluation”

and No.78284: “ComPort: Rigorous Testing Methods to Safeguard

Software Porting”.

REFERENCES
[1] R. C. Agarwal, S. M. Balle, F. G. Gustavson, M. Joshi, and P. Palkar. 1995. A three-

dimensional approach to parallel matrix multiplication. IBM Journal of Research
and Development 39, 5 (1995), 575–582. https://doi.org/10.1147/rd.395.0575

[2] Albert Alexandrov, Mihai F. Ionescu, Klaus E. Schauser, and Chris Scheiman.
1997. LogGP: Incorporating Long Messages into the LogP Model for Parallel
Computation. J. Parallel and Distrib. Comput. 44, 1 (1997), 71–79. https://doi.
org/10.1006/jpdc.1997.1346

[3] ECP Proxy Applications. 2023. miniFE. https://proxyapps.exascaleproject.org/
app/minife/.

[4] Omer Arap and Martin Swany. 2016. O�oading Collective Operations to Pro-
grammable Logic on a Zynq Cluster. In 2016 IEEE 24th Annual Symposium on High-
Performance Interconnects (HOTI). 76–83. https://doi.org/10.1109/HOTI.2016.024

[5] Daniel Arndt, Wolfgang Bangerth, Maximilian Bergbauer, Marco Feder, Marc
Fehling, Johannes Heinz, Timo Heister, Luca Heltai, Martin Kronbichler, Matthias
Maier, Peter Munch, Jean-Paul Pelteret, Bruno Turcksin, David Wells, and Ste-
fano Zampini. 2023. The deal.II Library, Version 9.5. Journal of Numerical
Mathematics 31, 3 (2023), 231–246. https://doi.org/10.1515/jnma-2023-0089

[6] M. Bayatpour, N. Sarkauskas, H. Subramoni, J. Maqbool Hashmi, and D. K. Panda.
2021. BluesMPI: E�cient MPI Non-blocking Alltoall O�oading Designs on Mod-
ern BlueField Smart NICs. In High Performance Computing. Springer International
Publishing, 18–37.

[7] Scott Beamer, Krste Asanovic, and David Patterson. 2012. Direction-optimizing
Breadth-First Search. In SC ’12: Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis. 1–10. https:
//doi.org/10.1109/SC.2012.50

[8] Lisandro Dalcin and Yao-Lung L. Fang. 2021. mpi4py: Status Update After 12
Years of Development. Computing in Science & Engineering 23, 4 (2021), 47–54.
https://doi.org/10.1109/MCSE.2021.3083216

[9] Tiziano De Matteis, Johannes de Fine Licht, Jakub Beránek, and Torsten Hoe-
�er. 2019. Streaming message interface: high-performance distributed memory
programming on recon�gurable hardware. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis
(Denver, Colorado) (SC ’19). Association for Computing Machinery, New York,
NY, USA, Article 82, 33 pages. https://doi.org/10.1145/3295500.3356201

[10] Daniele De Sensi, Salvatore Di Girolamo, Saleh Ashkboos, Shigang Li, and Torsten
Hoe�er. 2021. Flare: Flexible in-Network Allreduce. In Proceedings of the Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis (St. Louis, Missouri) (SC ’21). Association for ComputingMachinery, New
York, NY, USA, Article 35, 16 pages. https://doi.org/10.1145/3458817.3476178

[11] Susan Dickey and R. Kenner. 1992. Combining switches for the NYU Ultracom-
puter. 521 – 523. https://doi.org/10.1109/FMPC.1992.234864

[12] New Wave DV. 2024. 32-Port Programmable Switch. https://newwavedv.com/
products/appliances/32-port-programmable-switch/.

[13] Robert D. Falgout. 2006. An Introduction to Algebraic Multigrid. Computing in
Science and Engg. 8, 6 (Nov. 2006), 24–33. https://doi.org/10.1109/MCSE.2006.105

[14] Ahmad Faraj, Sameer Kumar, Brian Smith, Amith Mamidala, and John Gunnels.
2009. MPI Collective Communications on The Blue Gene/P Supercomputer:
Algorithms and Optimizations. In 2009 17th IEEE Symposium on High Performance
Interconnects. 63–72. https://doi.org/10.1109/HOTI.2009.12

[15] Richard L. Graham, Devendar Bureddy, Pak Lui, Hal Rosenstock, Gilad Shainer,
Gil Bloch, Dror Goldenerg, Mike Dubman, Sasha Kotchubievsky, Vladimir Koush-
nir, Lion Levi, Alex Margolin, Tamir Ronen, Alexander Shpiner, Oded Wertheim,
and Eitan Zahavi. 2016. Scalable Hierarchical Aggregation Protocol (SHArP):
A Hardware Architecture for E�cient Data Reduction. In 2016 First Interna-
tional Workshop on Communication Optimizations in HPC (COMHPC). 1–10.
https://doi.org/10.1109/COMHPC.2016.006

[16] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. 1996. A high-performance, portable
implementation of the MPI message passing interface standard. Parallel Comput.
22 (1996), 789 – 828.

[17] Anqi Guo, Tong Geng, Yongan Zhang, Pouya Haghi, Chunshu Wu, Cheng
Tan, Yingyan Lin, Ang Li, and Martin Herbordt. 2022. A Framework for
Neural Network Inference on FPGA-Centric SmartNICs. In 2022 32nd Interna-
tional Conference on Field-Programmable Logic and Applications (FPL). 01–08.
https://doi.org/10.1109/FPL57034.2022.00071

[18] Anqi Guo, Yuchen Hao, Chunshu Wu, Pouya Haghi, Zhenyu Pan, Min Si, Ding-
wen Tao, Ang Li, Martin Herbordt, and Tong Geng. 2023. Software-Hardware
Co-design of Heterogeneous SmartNIC System for Recommendation Models
Inference and Training. In Proceedings of the 37th International Conference on Su-
percomputing (Orlando, FL, USA) (ICS ’23). Association for Computing Machinery,
New York, NY, USA, 336–347. https://doi.org/10.1145/3577193.3593724

[19] Pouya Haghi, Tong Geng, Anqi Guo, Tianqi Wang, and Martin Herbordt. 2020.
FP-AMG: FPGA-Based Acceleration Framework for Algebraic Multigrid Solvers.
In 2020 IEEE 28th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM). 148–156. https://doi.org/10.1109/FCCM48280.2020.
00028

[20] Pouya Haghi, Anqi Guo, Tong Geng, Justin Broaddus, Derek Schafer, Anthony
Skjellum, and Martin Herbordt. 2020. A Recon�gurable Compute-in-the-Network
FPGA Assistant for High-Level Collective Support with Distributed Matrix Multi-
ply Case Study. In 2020 International Conference on Field-Programmable Technology
(ICFPT). 159–164. https://doi.org/10.1109/ICFPT51103.2020.00030

[21] Pouya Haghi, Anqi Guo, Tong Geng, Anthony Skjellum, and Martin C. Her-
bordt. 2021. Workload Imbalance in HPC Applications: E�ect on Performance
of In-Network Processing. In 2021 IEEE High Performance Extreme Computing
Conference (HPEC). 1–8. https://doi.org/10.1109/HPEC49654.2021.9622847

[22] Pouya Haghi, Anqi Guo, Qingqing Xiong, Rushi Patel, Chen Yang, Tong Geng,
Justin T. Broaddus, Ryan Marshall, Anthony Skjellum, and Martin C. Herbordt.
2020. FPGAs in the Network and Novel Communicator Support Accelerate MPI
Collectives. In 2020 IEEE High Performance Extreme Computing Conference (HPEC).
1–10. https://doi.org/10.1109/HPEC43674.2020.9286200

[23] Pouya Haghi, Anqi Guo, Qingqing Xiong, Chen Yang, Tong Geng, Justin T.
Broaddus, Ryan Marshall, Derek Schafer, Anthony Skjellum, and Mar-
tin C. Herbordt. 2022. Recon�gurable switches for high performance
and �exible MPI collectives. Concurrency and Computation: Practice
and Experience 34, 6 (2022), e6769. https://doi.org/10.1002/cpe.6769
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.6769

[24] Pouya Haghi, William Krska, Cheng Tan, Tong Geng, Po Hao Chen, Connor
Greenwood, Anqi Guo, Thomas Hines, Chunshu Wu, Ang Li, Anthony Skjellum,
and Martin Herbordt. 2023. FLASH: FPGA-Accelerated Smart Switches with GCN
Case Study. In Proceedings of the 37th International Conference on Supercomputing
(Orlando, FL, USA) (ICS ’23). Association for Computing Machinery, New York,
NY, USA, 450–462. https://doi.org/10.1145/3577193.3593739

https://doi.org/10.1147/rd.395.0575
https://doi.org/10.1006/jpdc.1997.1346
https://doi.org/10.1006/jpdc.1997.1346
https: //proxyapps.exascaleproject.org/app/minife/
https: //proxyapps.exascaleproject.org/app/minife/
https://doi.org/10.1109/HOTI.2016.024
https://doi.org/10.1515/jnma-2023-0089
https://doi.org/10.1109/SC.2012.50
https://doi.org/10.1109/SC.2012.50
https://doi.org/10.1109/MCSE.2021.3083216
https://doi.org/10.1145/3295500.3356201
https://doi.org/10.1145/3458817.3476178
https://doi.org/10.1109/FMPC.1992.234864
https://newwavedv.com/ products/appliances/ 32-port-programmable-switch/
https://newwavedv.com/ products/appliances/ 32-port-programmable-switch/
https://doi.org/10.1109/MCSE.2006.105
https://doi.org/10.1109/HOTI.2009.12
https://doi.org/10.1109/COMHPC.2016.006
https://doi.org/10.1109/FPL57034.2022.00071
https://doi.org/10.1145/3577193.3593724
https://doi.org/10.1109/FCCM48280.2020.00028
https://doi.org/10.1109/FCCM48280.2020.00028
https://doi.org/10.1109/ICFPT51103.2020.00030
https://doi.org/10.1109/HPEC49654.2021.9622847
https://doi.org/10.1109/HPEC43674.2020.9286200
https://doi.org/10.1002/cpe.6769
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.6769
https://doi.org/10.1145/3577193.3593739

SmartFuse: Reconfigurable Smart Switches to Accelerate Fused Collectives in HPC Applications ICS ’24, June 4–7, 2024, Kyoto, Japan

[25] Mahdi Hamzeh, Aviral Shrivastava, and Sarma Vrudhula. 2014. Branch-aware
loop mapping on CGRAs. In 2014 51st ACM/EDAC/IEEE Design Automation Con-
ference (DAC). 1–6.

[26] S. Handagala, M.C. Herbordt, and M. Leeser. 2021. OCT: The Open Cloud FPGA
Testbed. In 31st International Conference on Field Programmable Logic and Appli-
cations (FPL).

[27] S. Handagala, M. Leeser, K. Patle, and M. Zink. 2022. Network Attached FPGAs
in the Open Cloud Testbed (OCT). In IEEE INFOCOM 2022 - IEEE Conference on
Computer Communications Workshops (INFOCOM WKSHPS). 1–6.

[28] Z. He, D. Korolija, and G. Alonso. 2021. EasyNet: 100 Gbps Network for HLS. In
2021 31st International Conference on Field-Programmable Logic and Applications
(FPL). IEEE Computer Society, Los Alamitos, CA, USA, 197–203. https://doi.org/
10.1109/FPL53798.2021.00040

[29] Michael A Heroux, Douglas W Doer�er, Paul S Crozier, James M Willenbring,
H Carter Edwards, Alan Williams, Mahesh Rajan, Eric R Keiter, Heidi K Thorn-
quist, and Robert W Numrich. 2009. Improving Performance via Mini-applications.
Technical Report SAND2009-5574. Sandia National Laboratories.

[30] M. A. Heroux and et al. 2005. An Overview of the Trilinos Project. ACM Trans.
Math. Softw. 31, 3 (2005), 397–423. https://doi.org/10.1145/1089014.1089021

[31] HYPRE. 2024. Scalable Linear Solvers and Multigrid Methods. https://computing.
llnl.gov/projects/hypre-scalable-linear-solvers-multigrid-methods.

[32] J. Kim, W.J. Dally, B. Towles, and A.K. Gupta. 2005. Microarchitecture of a high
radix router. In 32nd International Symposium on Computer Architecture (ISCA’05).
420–431. https://doi.org/10.1109/ISCA.2005.35

[33] Venkata Krishnan, Olivier Serres, and Michael Blocksome. 2020. COn�gurable
Network Protocol Accelerator (COPA): An Integrated Networking/Accelerator
Hardware/Software Framework. In 2020 IEEE Symposium on High-Performance
Interconnects (HOTI). 17–24. https://doi.org/10.1109/HOTI51249.2020.00018

[34] Grzegorz Kwasniewski, Marko Kabić, Maciej Besta, Joost VandeVondele, Raf-
faele Solcà, and Torsten Hoe�er. 2019. Red-blue pebbling revisited: near optimal
parallel matrix-matrix multiplication. In Proceedings of the International Confer-
ence for High Performance Computing, Networking, Storage and Analysis (Denver,
Colorado) (SC ’19). Association for Computing Machinery, New York, NY, USA,
Article 24, 22 pages. https://doi.org/10.1145/3295500.3356181

[35] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In Proceedings of the International
Symposium on Code Generation and Optimization: Feedback-Directed and Runtime
Optimization (Palo Alto, California) (CGO ’04). IEEE Computer Society, USA, 75.

[36] Youjie Li, Iou-Jen Liu, Yifan Yuan, Deming Chen, Alexander Schwing, and Jian
Huang. 2019. Accelerating Distributed Reinforcement learning with In-Switch
Computing. In 2019 ACM/IEEE 46th Annual International Symposium on Computer
Architecture (ISCA). 279–291.

[37] Andre Massing, Mats Larson, and Anders Logg. 2013. E�cient implementation
of �nite element methods on non-matching and overlapping meshes in 3D. SIAM
Journal on Scienti�c Computing 35 (01 2013), C23–C47.

[38] Bingfeng Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwereins. 2003. Ex-
ploiting loop-level parallelism on coarse-grained recon�gurable architectures
using modulo scheduling. In 2003 Design, Automation and Test in Europe Confer-
ence and Exhibition. 296–301. https://doi.org/10.1109/DATE.2003.1253623

[39] Arista Networks. 2024. 7130 FPGA-enabled Network Switches - Quick Look. www.
arista.com/en/products/7130-fpga-enabled-network-switches-quick-look.

[40] NPB. 2023. NAS Parallel Benchmarks. https://www.nas.nasa.gov/software/npb.
html.

[41] L. Page, S. Brin, R. Motwani, and T. Winograd. 1999. The PageRank Citation
Ranking: Bringing Order to the Web. TR 1999-66. Stanford InfoLab. http://ilpubs.
stanford.edu:8090/422/

[42] Jongsoo Park, Mikhail Smelyanskiy, Ulrike Meier Yang, Dheevatsa Mudigere, and
Pradeep Dubey. 2015. High-performance algebraic multigrid solver optimized
for multi-core based distributed parallel systems. In SC ’15: Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis. 1–12. https://doi.org/10.1145/2807591.2807603

[43] Raghu Prabhakar, Yaqi Zhang, David Koeplinger, Matt Feldman, Tian Zhao,
Stefan Hadjis, Ardavan Pedram, Christos Kozyrakis, and Kunle Olukotun. 2017.
Plasticine: A recon�gurable architecture for parallel patterns. In 2017 ACM/IEEE
44th Annual International Symposium on Computer Architecture (ISCA). 389–402.
https://doi.org/10.1145/3079856.3080256

[44] Y. Saad and M. H. Schultz. 1986. GMRES: A Generalized Minimal Resid-
ual Algorithm for Solving Nonsymmetric Linear Systems. SIAM J. Sci.
Statist. Comput. 7, 3 (1986), 856–869. https://doi.org/10.1137/0907058
arXiv:https://doi.org/10.1137/0907058

[45] Manuel Saldaña, Arun Patel, Christopher Madill, Daniel Nunes, Danyao Wang,
Paul Chow, Ralph Wittig, Henry Styles, and Andrew Putnam. 2010. MPI as a
Programming Model for High-Performance Recon�gurable Computers. ACM
Trans. Recon�gurable Technol. Syst. 3, 4, Article 22 (nov 2010), 29 pages. https:
//doi.org/10.1145/1862648.1862652

[46] Whit Schonbein, Ryan E. Grant, Matthew G. F. Dosanjh, and Dorian Arnold.
2019. INCA: in-network compute assistance. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis

(Denver, Colorado) (SC ’19). Association for Computing Machinery, New York,
NY, USA, Article 54, 13 pages. https://doi.org/10.1145/3295500.3356153

[47] A. Skjellum and et al. 2020. ExaMPI: A Modern Design and Implementation to
Accelerate Message Passing Interface Innovation. Communications in Computer
and Information Science 1087 CCIS (2020), 153–169. https://doi.org/10.1007/978-
3-030-41005-6_11

[48] Dan Stanzione, Bill Barth, Niall Ga�ney, Kelly Gaither, Chris Hempel, Tommy
Minyard, S. Mehringer, Eric Wernert, H. Tufo, D. Panda, and P. Teller. 2017.
Stampede 2: The Evolution of an XSEDE Supercomputer. In Proceedings of
the Practice and Experience in Advanced Research Computing 2017 on Sustain-
ability, Success and Impact (New Orleans, LA, USA) (PEARC ’17). Association
for Computing Machinery, New York, NY, USA, Article 15, 8 pages. https:
//doi.org/10.1145/3093338.3093385

[49] Tushar Swamy, Alexander Rucker, Muhammad Shahbaz, Ishan Gaur, and Kunle
Olukotun. 2022. Taurus: a data plane architecture for per-packet ML. In Pro-
ceedings of the 27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (Lausanne, Switzerland) (ASP-
LOS ’22). Association for Computing Machinery, New York, NY, USA, 1099–1114.
https://doi.org/10.1145/3503222.3507726

[50] Rajeev Thakur, Rolf Rabenseifner, and William Gropp. 2005. Optimization of
Collective Communication Operations in MPICH. Int. J. High Perform. Comput.
Appl. 19, 1 (Feb. 2005), 49–66. https://doi.org/10.1177/1094342005051521

[51] Texas A&M University. 2024. SuiteSparse Matrix Collection. https://sparse.tamu.
edu/.

[52] R. A. Van De Geijn and J. Watts. 1997. SUMMA: scalable universal matrix
multiplication algorithm. Concurrency: Practice and Experience 9, 4 (1997), 255–
274. https://doi.org/10.1002/(SICI)1096-9128(199704)9:4<255::AID-CPE250>3.0.
CO;2-2

[53] A. Venkatesh, K. Hamidouche, H. Subramoni, and Dhabaleswar K. Panda. 2015.
O�oaded GPU Collectives Using CORE-Direct and CUDA Capabilities on In�ni-
Band Clusters. In 2015 IEEE 22nd International Conference on High Performance
Computing (HiPC). 234–243. https://doi.org/10.1109/HiPC.2015.50

[54] Jian Weng, Sihao Liu, Zhengrong Wang, Vidushi Dadu, and Tony Nowatzki.
2020. A hybrid systolic-data�ow architecture for inductive matrix algorithms. In
2020 IEEE International Symposium on High Performance Computer Architecture
(HPCA). 703–716.

[55] Xilinx. 2023. XUP Vitis Network Example (VNx). https://github.com/Xilinx/xup_
vitis_network_example.

[56] Qingqing Xiong, Chen Yang, Pouya Haghi, Anthony Skjellum, and Martin Her-
bordt. 2020. Accelerating MPI Collectives with FPGAs in the Network and
Novel Communicator Support. In 2020 IEEE 28th Annual International Sym-
posium on Field-Programmable Custom Computing Machines (FCCM). 215–215.
https://doi.org/10.1109/FCCM48280.2020.00046

[57] Ichitaro Yamazaki, Mark Hoemmen, Piotr Luszczek, and Jack Dongarra. 2017.
Improving Performance of GMRES by Reducing Communication and Pipelining
Global Collectives. In 2017 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW). 1118–1127. https://doi.org/10.1109/IPDPSW.
2017.65

https://doi.org/10.1109/FPL53798.2021.00040
https://doi.org/10.1109/FPL53798.2021.00040
https://doi.org/10.1145/1089014.1089021
https://computing.llnl.gov/projects/hypre-scalable-linear-solvers-multigrid-methods
https://computing.llnl.gov/projects/hypre-scalable-linear-solvers-multigrid-methods
https://doi.org/10.1109/ISCA.2005.35
https://doi.org/10.1109/HOTI51249.2020.00018
https://doi.org/10.1145/3295500.3356181
https://doi.org/10.1109/DATE.2003.1253623
www.arista.com/ en/products/ 7130-fpga-enabled-network-switches-quick-look
www.arista.com/ en/products/ 7130-fpga-enabled-network-switches-quick-look
https://www.nas.nasa.gov/software/npb.html
https://www.nas.nasa.gov/software/npb.html
http://ilpubs.stanford.edu:8090/422/
http://ilpubs.stanford.edu:8090/422/
https://doi.org/10.1145/2807591.2807603
https://doi.org/10.1145/3079856.3080256
https://doi.org/10.1137/0907058
https://arxiv.org/abs/https://doi.org/10.1137/0907058
https://doi.org/10.1145/1862648.1862652
https://doi.org/10.1145/1862648.1862652
https://doi.org/10.1145/3295500.3356153
https://doi.org/10.1007/978-3-030-41005-6_11
https://doi.org/10.1007/978-3-030-41005-6_11
https://doi.org/10.1145/3093338.3093385
https://doi.org/10.1145/3093338.3093385
https://doi.org/10.1145/3503222.3507726
https://doi.org/10.1177/1094342005051521
https://sparse.tamu.edu/
https://sparse.tamu.edu/
https://doi.org/10.1002/(SICI)1096-9128(199704)9:4<255::AID-CPE250>3.0.CO;2-2
https://doi.org/10.1002/(SICI)1096-9128(199704)9:4<255::AID-CPE250>3.0.CO;2-2
https://doi.org/10.1109/HiPC.2015.50
https://github.com/Xilinx/xup_vitis_network_example
https://github.com/Xilinx/xup_vitis_network_example
https://doi.org/10.1109/FCCM48280.2020.00046
https://doi.org/10.1109/IPDPSW.2017.65
https://doi.org/10.1109/IPDPSW.2017.65

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Communication-Computation Functions
	2.2 SmartFuse Basic Building Blocks

	3 Motivation
	4 SmartFuse Software Support
	4.1 Software Model
	4.2 The Proposed Framework

	5 SmartFuse Hardware Support
	5.1 Basic Collective Support
	5.2 Network-Optimized CGRA
	5.3 Kernel Logic
	5.4 Reliability and Deadlock

	6 Model for In-Switch Computing
	7 Experimental Evaluation
	7.1 Experimental Setup
	7.2 Workloads Tested
	7.3 Performance and Scalability
	7.4 Indirect Network Study

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

