
Combinatorics, Probability and Computing (2023), 32, pp. 546–558

doi:10.1017/S0963548323000019

ARTICLE

Bipartite-ness under smooth conditions

Tao Jiang1, Sean Longbrake1,2 and Jie Ma3∗

1Department of Mathematics, Miami University, Oxford, OH 45056, USA. Research supported by National Science

Foundation grant DMS-1855542, 2Department of Mathematics, Emory University, Atlanta, GA 30322, USA. Research

supported by National Science Foundation grant DMS-1855542, and 3School of Mathematical Sciences, University of

Science and Technology of China, Hefei, Anhui 230026, China. Research supported by the National Key R and D Program

of China 2020YFA0713100, National Natural Science Foundation of China grant 12125106, and Anhui Initiative IN

Quantum Information Technologies grant AHY150200
∗Corresponding author. Email: jiema@ustc.edu.cn

(Received 23 February 2022; revised 25 December 2022; accepted 7 January 2023; first published online 3 February 2023)

Abstract

Given a family F of bipartite graphs, the Zarankiewicz number z(m, n,F) is the maximum number of

edges in anm by n bipartite graphG that does not contain anymember ofF as a subgraph (suchG is called

F-free). For 1≤ β < α < 2, a family F of bipartite graphs is (α, β)-smooth if for some ρ > 0 and every

m≤ n, z(m, n,F)= ρmnα−1 +O(nβ). Motivated by their work on a conjecture of Erdős and Simonovits

on compactness and a classic result of Andrásfai, Erdős and Sós, Allen, Keevash, Sudakov and Verstraëte

proved that for any (α, β)-smooth family F , there exists k0 such that for all odd k≥ k0 and sufficiently

large n, any n-vertexF ∪ {Ck}-free graph with minimum degree at least ρ( 2n

5
+ o(n))α−1 is bipartite. In this

paper, we strengthen their result by showing that for every real δ > 0, there exists k0 such that for all odd

k≥ k0 and sufficiently large n, any n-vertex F ∪ {Ck}-free graph with minimum degree at least δnα−1 is

bipartite. Furthermore, our result holds under a more relaxed notion of smoothness, which include the

families F consisting of the single graph Ks,t when t � s. We also prove an analogous result for C2�-free

graphs for every � ≥ 2, which complements a result of Keevash, Sudakov and Verstraëte.
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1. Introduction

Given a family F of graphs, a graph G is called F-free if G does not contain any member of F
as a subgraph. If F consists of a single graph F then we simply say that G is F-free. The Turán
number of F , denoted by ex(n,F), is the maximum possible number of edges in an n-vertex
F-free graph. As is well known, this function is well understood when F consists only of non-
bipartite graphs due to the celebrated Erdős–Stone–Simonovits theorem [10,12] but is generally
open whenF contains bipartite graphs. For a family of graphsF , a closely related notion is the so-
called Zarankiewicz number z(n,F), which is defined to be the maximum number of edges in an
n-vertexF-free bipartite graph.More generally, we denote by z(m, n,F) themaximum number of
edges in anm by n bipartite graph, that is, F-free. In a seminal paper [11], Erdős and Simonovits
raised a number of intriguing conjectures on Turán numbers for bipartite graphs. One of them
is the following (Conjecture 3 in [11]). Given a positive odd integer k, let Ck denote the family of
all odd cycles of length at most k. Throughout this paper, we write f (n)∼ g(n) for two functions
f , g :N→R if limn→∞ f (n)/g(n)= 1.

C© The Author(s), 2023. Published by Cambridge University Press.
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Conjecture 1.1. (Erdős-Simonovits [11]). Given any finite family F of graphs, there exists an odd
integer k such that as n→ ∞

ex(n,F ∪ Ck)∼ z(n,F).

Erdős and Simonovits [11] verified the conjecture for F = {C4} by showing that

ex(n, {C4, C5})∼ z(n, C4)∼ (n2 )
3
2 . Keevash, Sudakov and Verstraëte [20] further confirmed this

conjecture for F� := {C4, C6, . . . , C2�} where � ∈ {2, 3, 5} in stronger forms and proved a related
result for the chromatic number of F� ∪ {Ck}-free graphs of minimum degree �(n1/�). In a
subsequent paper [1], Allen, Keevash, Sudakov and Verstraëte provided a general approach to
Conjecture 1.1 (using Scott’s sparse regularity lemma [26]), which works for the following families
of bipartite graphs.

Definition 1.2. Let α, β be reals with 2> α > β ≥ 1. Let F be a family of bipartite graphs. If there
exists some ρ > 0 such that for every m≤ n,

z(m, n,F)= ρmnα−1 +O(nβ)

holds, then we say that F is (α, β)-smooth with relative density ρ. We call a bipartite family F

smooth if it is (α, β)-smooth for some α and β .

It is easy to see that for any (α, β)-smooth family F , we have z(n,F)= ρ(n/2)α +O(nβ).
Before we mention the results of [1], let us discuss some known examples of smooth families.

Improving results of Kövári-Sós-Turán [23], Füredi [14] showed that ifm≤ n and s, t ∈N then

z(m, n,Ks,t)≤ (t − s+ 1)1/smn1−1/s + sm+ sn2−2/s. (1)

This together with the constructions of Brown [6] and Füredi [15] shows that K2,t and K3,3 are
smooth families (see [1]). Allen, Keevash, Sudakov and Verstraëte [1] also showed that {K2,t , Bt}
is smooth, where Bt consists of t copies of C4 sharing an edge (and no other vertices). However,
it is not known if Ks,t is smooth for any s≥ 3 and t ≥ 4 and if C2� is smooth for any � ≥ 3, due
to a lack of constructions that asymptotically match upper bounds on Zarankiewicz numbers. We
would like to point out that not all families of bipartite graphs are smooth – in the concluding
remarks we provide an example of bipartite graphs which are not smooth.

The main result of Allen, Keevash, Sudakov and Verstraëte [1] is as follows. A family G of
graphs is near-bipartite if every graph G ∈ G has a bipartite subgraph H such that e(G)∼ e(H) as
|V(G)| → ∞.

Theorem 1.3. (Allen-Keevash-Sudakov-Verstraëte [1]). Let F be an (α, β)-smooth family with
2> α > β ≥ 1. There exists k0 such that if k≥ k0 ∈N is odd, then the family of all extremal F ∪

{Ck}-free graphs is near-bipartite and, in particular, ex(n,F ∪ {Ck})∼ z(n,F).

The authors [1] also raised a question whether the extremal n-vertex F ∪ {Ck}-free graph in
Theorem 1.3 is exactly bipartite when n is sufficiently large. Motivated by the classic result of
Andrásfai, Erdős and Sós [4] stating that any n-vertex triangle-free graph with minimum degree
more than 2n/5 must be bipartite, Allen, Keevash, Sudakov and Verstraëte [1] proved the fol-
lowing theorem, which answers their own question for extremal graphs satisfying appropriate
minimum degree condition.

Theorem 1.4. (Allen-Keevash-Sudakov-Verstraëte [1]). Let F be an (α, β)-smooth family with
relative density ρ and 2> α > β ≥ 1. Then there exists k0 such that for any odd k≥ k0 and suffi-

ciently large n, any n-vertex F ∪ {Ck}-free graph with minimum degree at least ρ( 2n5 + o(n))α−1 is
bipartite.

In this paper, we strengthen Theorem 1.4 by showing that the minimum degree condition can
be lowered to δnα−1 for any given real δ > 0 and furthermore, the condition on smoothness can
be relaxed to the following notion.
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Definition 1.5. Let α, β be reals with 2> α > β ≥ 1. Let F be a family of bipartite graphs. We say
that F is (α, β)-quasi-smooth with upper density ρ and lower density ρ0, if there exist constants
ρ, ρ0 > 0 and C such that for all positive integers m≤ n,

z(m, n,F)≤ ρmnα−1 + Cnβ and ex(n,F)≥ ρ0n
α .

Note that the nβ term becomes relevant when m= o(n1+β−α). If F consists of a single graph F, then
we just say that F is (α, β)-quasi-smooth.

Clearly every (α, β)-smooth graph is (α, β)-quasi-smooth. However, it is not known if every
(α, β)-quasi-smooth graph is (α, β)-smooth. For instance, it is proved that ex(n,Ks,t)= �(n2−1/s)
for t ≥ (s− 1)! + 1 in [2,21] and for t ≥ Cs in a very recent paper of Bukh [7] (where C is a con-
stant). HenceKs,t is quasi-smooth under these conditions, but it is unknown whetherKs,t is always
smooth. The following is our main result in this paper.

Theorem1.6. LetF be an (α, β)-quasi-smooth family with 2> α > β ≥ 1. For any real δ > 0, there
exists a positive integer k0 such that for any odd integer k≥ k0 and sufficiently large n, any n-vertex
F ∪ {Ck}-free graph with minimum degree at least δnα−1 is bipartite.

The proof of Theorem 1.6 uses expansion properties and a robust reachability lemma that is in
part inspired by a lemma in a recent paper by Letzter [24] on the Turán number of tight cycles.

As a direct application of Theorem 1.6, we also obtain the following strengthening of
Theorem 1.3.

Theorem 1.7. Let F be an (α, β)-smooth family with 2> α > β ≥ 1. Then there exists k0 such
that for any odd k≥ k0 and sufficiently large n, any n-vertex F ∪ {Ck}-free extremal graph can be
made bipartite by deleting a set of O(n1+β−α) vertices, which together are incident to O(nβ) edges.
Therefore, ex(n,F ∪ {Ck})= z(n,F)+O(nβ).

Theorem 1.7 improves Theorem 1.3 in two ways. First, the error term is better. Second, the
proof is more concise and avoids the use of the sparse regularity lemma. The theorem gives further
evidence to an affirmative answer to the question of [1] that whether the extremal n-vertex F ∪

{Ck}-free graph G in Theorem 1.3 is bipartite (for sufficiently large n).
We also prove an analogous theorem as Theorem 1.6 for C2�-free graphs, which complements

the following result in Keevash-Sudakov-Verstraëte [20]: For any integer � ≥ 2, odd integer k≥

4� + 1 and any real δ > 0, the chromatic number of any n-vertex {C4, C6, . . . , C2�, Ck}-free graph
with minimum degree at least δn1/� is less than (4k)�+1/δ�.

Theorem 1.8. Let � ≥ 2 be an integer. For any real δ > 0, let k0 = 3�(8�/δ)� + 2� + 2. Then for any
odd integer k≥ k0 and sufficiently large n, any n-vertex {C2�, Ck}-free graph with minimum degree
at least δn1/� is bipartite.

This proof follows the same line as that of Theorem 1.6, except that we will use a more efficient
robust reachability lemma for C2�-free graphs and as a result get better control on k0.

We should point out that the existence of such graphs in Theorem 1.8 is known only for
� ∈ {2, 3, 5} (see [16]). Also note that this result is not covered by Theorem 1.6, since C2� is not
known to be (α, β)-quasi-smooth for any � ≥ 3. In the concluding remarks, we will mention that
Theorems 1.6 and 1.8 can be extended to a slightly broader family of bipartite graphs that include
both (α, β)-quasi-smooth graphs and C2�’s.

The rest of the paper is organised as follows. In Section 2, we develop some useful lemmas.
In Section 3, we develop a lemma for C2�-free graphs. In Section 4, we prove Theorem 1.6
and Theorem 1.8, respectively. In Section 5, we prove Theorem 1.7. In Section 6, we give some
concluding remarks. Throughout this paper, we denote [k] by the set {1, 2, . . . , k} for positive
integers k.
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2. Some general lemmas

The main content of this section is to present key lemmas for our main result Theorem 1.6.

Definition 2.1. Let α, β be reals with 2> α > β ≥ 1. Let �0(α, β) be defined as follows:

�0 =

⌊

logβ

(2− β)(α − 1)

α − β

⌋

+ 2, for β > 1 and �0 = �1/(α − 1)
 + 1, for β = 1.

Lemma 2.2. Let α, β be reals with 2> α > β ≥ 1 and �0 = �0(α, β) be defined as in Definition 2.1.
Let F be an (α, β)-quasi-smooth family of bipartite graphs that satisfies z(m, n,F)≤ ρmnα−1 +

Cnβ for all m≤ n. For any δ > 0, there exists a positive real µ = µ(α, β , ρ, δ) such that for all suf-
ficiently large n the following is true. Let G be an F-free bipartite graph with at most n vertices and
minimum degree at least δnα−1. Let u ∈V(G). For each i ∈N, let Ni(u) denote the set of vertices at
distance i from u. Then for some j0 ≤ �0 we havemin{|Nj0(u)|, |Nj0+1(u)|} ≥ µn.

Proof. For each i ∈N, let Bi denote the set of vertices at distance at most i from u. Let

γ = (δ/12ρ)1/(α−1) and µ =min
{

(1/2)(δ/2ρ)1/(α−1), (δ/4ρ)γ 2−α , γ /�0

}

. (2)

First, we show that |B�0 | ≥ γ n. Suppose for a contradiction that |B�0 | < γ n. Let i ∈ [�0 − 1]. Then
clearly |Bi| < γ n, and since G has minimum degree at least δnα−1, we have

∑

v∈Bi

d(v)≥ δnα−1|Bi|. (3)

On the other hand,
∑

v∈Bi
d(v)= 2e(Bi)+ e(Bi, Bi+1 \ Bi). Since G is bipartite and F-free, e(Bi)≤

max(a,b){ρab
α−1 + Cbβ} over all pairs of positive integers a≤ b with a+ b= |Bi|. Hence, e(Bi)≤

ρ|Bi|
α + C|Bi|

β ≤ 2ρ|Bi|
α , when n is sufficiently large.With some generosity, we can upper bound

e(Bi, Bi+1 \ Bi) by z(|Bi|, |Bi+1|,F) to get e(Bi, Bi+1 \ Bi)≤ ρ|Bi||Bi+1|
α−1 + C|Bi+1|

β . Putting the
above estimations all together, we get

∑

v∈Bi

d(v)≤ 4ρ|Bi|
α + ρ|Bi||Bi+1|

α−1 + C|Bi+1|
β . (4)

Combining (3) and (4), we get

δnα−1|Bi| ≤
∑

v∈Bi

d(v)≤ 4ρ|Bi|
α + ρ|Bi||Bi+1|

α−1 + C|Bi+1|
β . (5)

If the first term on the right-hand side of (5) is the largest term, then we get δnα−1|Bi| ≤ 12ρ|Bi|
α ,

from which we get |Bi| ≥ (δ/12ρ)1/(α−1)n≥ γ n, contradicting our assumption. If the second
term on the right-hand side of (5) is the largest term, then we get δnα−1|Bi| ≤ 3ρ|Bi||Bi+1|

α−1,

fromwhich we get |Bi+1| ≥ (δ/3ρ)1/(α−1)n≥ γ n and hence |B�0 | ≥ |Bi+1| ≥ γ n, contradicting our
assumption. Hence we may assume that for each i ∈ [�0 − 1], we have

δnα−1|Bi| ≤ 3C|Bi+1|
β ,

which yields that for each i ∈ [�0 − 1],

|Bi+1| ≥ (δ/3C)1/βn(α−1)/β |Bi|
1/β . (6)

Let {bi} be a sequence recursively defined by letting b1 = α − 1 and bi+1 = (1/β)bi + (α − 1)/β
for each i≥ 1. If β = 1 then a closed form formula for bi is bi = (α − 1)i. If β > 1 then a closed
form formula for bi is bi =

α−1
β−1 + ( 1

β
)i−1(α − 1− α−1

β−1 ). Note that wemay assumeC ≥ 1, so |B1| ≥

δnα−1 ≥ (δ/3C)nb1 . Then it follows by (6) and induction that |Bi| ≥ (δ/3C)inbi for each i ∈ [�0].
However, using the definition of �0 we get b�0 > 1, which yield |B�0 | > n as n is sufficiently large.
This is a contradiction and thus proves that |B�0 | ≥ γ n.
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Let j ∈ [�0] be the smallest index such that |Nj| ≥ (γ /�0)n. By the pigeonhole principle,
such j exists. By (2), |Nj| ≥ µn. Let U =Nj and V =Nj−1 ∪Nj+1. We show that |V| ≥ 2µn,
from which it follows that either |Nj−1| ≥ µn or |Nj+1| ≥ µn and thus the lemma holds with
j0 = j or j0 = j− 1. Since all the edges of G that are incident to U are between U and V , we
have e(G[U,V])≥ δnα−1|U|. On the other hand, G[U,V] is F-free. If |V| ≥ |U|, then we
have e(G[U,V])≤ ρ|U||V|α−1 + C|V|β ≤ 2ρ|U||V|α−1, where the last inequality holds as
|U| = |Nj| ≥ µn and n is sufficiently large. Combining the two inequalities and solving for |V|,

we get |V| ≥ (δ/2ρ)1/(α−1)n≥ 2µn, as desired. Otherwise, we have |V| ≤ |U|. Then
δnα−1|U| ≤ e(G[U,V])≤ ρ|V||U|α−1 + C|U|β . Since C|U|β � δnα−1|U| for sufficiently
large n, we can derive from the above that δnα−1|U| ≤ 2ρ|V||U|α−1. Solving for |V|, we have
|V| ≥ (δ/2ρ)nα−1|U|2−α ≥ (δ/2ρ)nα−1(γ n)2−α = (δ/2ρ)γ 2−αn≥ 2µn, where the last inequality
holds by (2), as desired. �

The following lemma, which we call robust reachability lemma is key to our proof of the main
results. It is inspired by a lemma used in a recent paper of Letzter [24] on the Turán number of
tight cycles in hypergraphs.

Lemma 2.3. Let α, β be reals with 2> α > β ≥ 1 and �0 = �0(α, β) be defined as in Definition 2.1.
Let F be an (α, β)-quasi-smooth family of bipartite graphs that satisfies z(m, n,F)≤ ρmnα−1 +

Cnβ for all m≤ n. Letµ = µ(α, β , ρ, δ) be defined as in Lemma 2.2. For any real δ > 0, the following
holds for all sufficiently large n. Let G be an F-free bipartite graph with at most n verticers and
minimum degree at least δnα−1. Let u ∈V(G). Then there exists a set S of at least µ(α, β , ρ, δ/2)n
vertices, and a family P = {Pv : v ∈ S}, where for each v ∈ S, Pv is a u, v-path of length at most �0,
such that no vertex except u is used on more than n

log n of the paths in P .

Proof. Let S be a maximum set of vertices such that there is an associated family P = {Pv : v ∈ S},
where for each v ∈ S, Pv is a path of length at most �0 such that no vertex is on more than n

log n of

the paths. LetW denote the set of vertices in G (other than u) that lie on exactly n
log n of the paths

Pv in P . Then |W| n
log n ≤ |S|�0 ≤ n�0 and thus |W| ≤ �0 log n< (δ/2)nα−1 for sufficiently large n.

Hence, G−W has minimum degree at least (δ/2)nα−1. If |S| < µ(α, β , ρ, δ/2)n, then by Lemma
2.2, there exists a vertex z /∈ S and a u, z-path Pz of length at most �0 in G−W that we can add to
S to contradict our choice of S. Hence |S| ≥ µ(α, β , ρ, δ/2)n. �

It is worth noting that the n
log n threshold could be improved to O(n2−α+ε) for any real ε > 0,

but for simplicity of presentation, we choose to use n
log n and such a choice suffices for the purpose

of our main arguments.
The next folklore lemma will be used a few times and we include a proof for completeness. We

would like to mention that it might be easy for one to overlook the connectedness of H statement
in the conclusion. But this condition will play important role in the main proofs.

Lemma 2.4. Let G be a connected graph. Let H be a maximum spanning bipartite subgraph of G.
Then H is connected and for each v ∈V(G), dH(v)≥ (1/2)dG(v).

Proof. Let (X, Y) denote a bipartition ofH. Suppose for contradiction thatH is disconnected and
F is a component of H. Since G is connected, it contains an edge e joining V(F) to V(G) \V(F).
But thenH ∪ e is still bipartite, since adding e does not create a new cycle. Furthermore,H ∪ e has
more edges than H, contradicting our choice of H.

Next, let v be any vertex in H. Without loss of generality, suppose v ∈ X. Suppose dH(v)<
(1/2)dG(v). Then from H by deleting the edges incident to x and adding the edges in G from v
to X, we obtained a bipartite subgraph of G that has more edges than H, a contradiction. Hence
∀v ∈V(G), dH(v)≥ (1/2)dG(v). �

We conclude this section with the following lemma about the diameter. The diameter of a graph
G is the least integer k such that there exists a path of length at most k between any two vertices
in G.
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Lemma 2.5. Let G be an n-vertex connected graph with minimum degree at least D. Then G has
diameter at most 3n/D.

Proof. Let x, y be two vertices at maximum distance in G. Let v0v1 · · · v� be a shortest x, y-path
in G where v0 = x and v� = y. Let q= ��/3
. Note that N(v0),N(v3),N(v6), · · · ,N(v3q) are pair-

wise disjoint (or else we can find a shorter x, y-path, a contradiction). Hence n≥
∑q

i=0 |N(v3i)| ≥
(q+ 1)D. This implies that (q+ 1)≤ n/D and hence � ≤ 3(q+ 1)≤ 3n/D. �

3. An efficient robust reachability lemma for C2�-free graphs

In this section, we develop amore efficient robust reachability lemma than Lemma 2.3 forC2�-free
graphs, which may be of independent interest. We need the following lemma from [27].

Lemma 3.1. (Verstraëte [27]). Let � ≥ 2 be an integer and H a bipartite graph of average degree at
least 4� and girth g. Then there exist cycles of at least (g/2− 1)� ≥ � consecutive even lengths in H.
Moreover, the shortest of these cycles has length at most twice the radius of H.

Our lemma is as follows.

Lemma 3.2. Let � ≥ 2 and d be positive integers. Let H be a bipartite C2�-free graph with minimum
degree at least d. Let u be any vertex in H. Then the following items hold.

(1) The number of vertices that are at distance at most � from u is at least (d/4�)�.

(2) Suppose H has at most n vertices and d ≥ 15� log n, where n is sufficiently large. Then there
is a set S of at least (1/2)(d/8�2)� vertices together with a family P = {Pv : v ∈ S}, where for
each v ∈ S, Pv is a u, v-path of exactly length �, such that no vertex of H except u lies on more
than d�−1 of these paths and each vertex v in S lies only on Pv.

Proof. First we prove the first part (1) of the theorem. Let B0 = {u}. Consider any i ∈ [�]. Let Bi
denote the set of vertices at distance at most i from u inH andHi the subgraph ofH induced by Bi.
IfH[Bi] has average degree at least 4�, then by Lemma 3.1,Gi contains cycles of � consecutive even
lengths the shortest of which has length at most 2i≤ 2� and hence it contains C2�, contradicting
G being C2�-free. So for each i ∈ [�], we have d(Hi)< 4�, which implies that e(Hi)< 2�|Bi|. On
the other hand, Hi contains all the edges of G that are incident to Bi−1. So e(Hi)≥ d|Bi−1|/2.
Combining these two inequalities, we get 2�|Bi| > d|Bi−1|/2. Hence, |Bi| > (d/4�)|Bi−1| for each
i ∈ [�]. Thus, |B�| ≥ (d/4�)�, as desired.

Next, we prove the second part (2). Let us randomly split the vertices of G into � parts
V1, . . . ,V�. For each vertex x, and each i ∈ [�], the degree di(x) of x in Vi has a binomial dis-
tribution Bin(d(x), 1/�). Hence, using Chernoff’s inequality (see [3] or [17] Corollary 2.3), we
have

P[di(x)< (1/2�)d(x)]≤ P[|di(x)− (1/�)d(x)| > (1/2�)d(x)]≤ 2e−d(x)/12� = o(n−1),

since d(x)≥ 15� log n. Hence, for sufficiently large n, there exists a splitting of V(H) such that for
each x ∈V(H) and for each i ∈ [�], di(x)≥ (1/2�)d(x)≥ d/2�. Now, we form a subgraph H′ of
H as follows. First, we include exactly d/2� of the edges from u to V1. Denote the set of reached
vertices in V1 by S1. Then for each vertex in S1 including exactly d/2� edges from it to V2. Denote
the set of reached vertices inV2 by S2. We continue like this till we define S�. Let B0 = S0 = {u}. For

each i ∈ [�], let Bi =
⋃i

j=0 Si. andHi the subgraph ofH
′ induced by Bi. Note thatHi has radius i. As

in the proof of the first part of the lemma, since Hi is C2�-free, e(Hi)< 2�|Bi|. On the other hand,
Hi contains all the edges ofH

′ that are incident to Bi−1. So e(Hi)≥ (1/2)(d/2�)|Bi−1|. Combining
these two inequalities, we get 2�|Bi| > (d/4�)|Bi−1|. Hence, |Bi| > (d/8�2)|Bi−1| for each i ∈ [�].
Thus, |B�| ≥ (d/8�2)�.
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It is easy to see that
∑�−1

i=0 |Si| ≤
∑�−1

i=0 (d/2�)i ≤ 2(d/2�)�−1, when n is sufficiently large.
Hence

|S�| = |B�\ ∪�−1
i=0 Si| ≥ (d/8�2)� − 2(d/2�)�−1 > (1/2)(d/8�2)�,

where n (and thus d) is sufficiently large. By the definition of H′, for each v ∈ S�, there is a path
of length � from u to v that intersects each of V1,V2, . . . ,V�. From the union of these paths
one can find a tree T of height � rooted at u, in which all the vertices in S� are at distance �

from u. Furthermore, by the definition of H′, T has maximum degree at most (d/2�)+ 1. For
each v ∈ S�, let Pv be the unique u, v-path in T. If x is any vertex in T other than u, then clearly
x lies on at most (d/2�)�−1 of the paths Pv. Furthermore, each v ∈ S� doesn’t lie on any Pw for
w ∈ S� \ {v}. �

4. Proofs of Theorem 1.6 and Theorem 1.8

Even though the proofs of Theorem 1.6 and Theorem 1.8 are essentially the same, there are suffi-
ciently different choices of parameters that we will prove them separately. Before giving the formal
proof of Theorem 1.6, we give an overview. Let α, β be reals with 2> α > β ≥ 1. Let F be an
(α, β)-quasi-smooth family of bipartite graphs that satisfies z(m, n,F)≤ ρmnα−1 + Cnβ for all
m≤ n. Let δ > 0 be given. We wish to show that there exists a positive integer k0 such that for
any odd integer k≥ k0 and sufficiently large n, any n-vertex F ∪ {Ck}-free graph with minimum
degree at least δnα−1 is bipartite.

Let k0 be sufficiently large as a function of α, β , ρ and δ. Let k≥ k0 be an odd integer. Let G
be a n-vertex F ∪ {Ck}-free graph with minimum degree at least δnα−1. We take a maximum
spanning bipartite subgraph H of G. Let (X, Y) be a bipartition of H. We show that G is itself
bipartite by showing that X, Y must be independent sets in G. Suppose contradiction there exist
two vertices u, v, say in X, such that uv ∈ E(G). We derive a contradiction by finding a Ck in G that
contains uv. To build such a Ck, we utilise expansion properties (as described in Lemma 2.2) and
robust reachability properties (as described in Lemma 2.3) of various carefully defined subgraphs
of G. First, via a random partitioning argument, we can find a partition of V(H)=V(G) into two
subsets A, B such that H[A] has high minimum degree and each vertex in A has high degree in
B (inside H). Assume u ∈A. We then apply Lemma 2.3 and some additional cleaning to find a
balanced family P ′ of paths of bounded equal length insideH[A] that start at u and reach a linear-
sized subset S′′ of A with the additional property that vertices in S′′ serve only as endpoints of
these paths and never as interior points. Since vertices in S′′ have high degree inH into B and S′′ is
linear-sized, the subgraph of H consisting of edges from S′′ to B is dense and contains a subgraph
H′′ of high minimum degree. We then take a shortest path Q in G from v to V(H′′) and denote
its unique vertex in V(H′′) by y. The balanced-ness of P ′ ensures that most of the paths in P ′

reaching S′′ are vertex disjoint from Q. We then apply Lemma 2.2 inside H′′ along with some
additional cleaning to find a path in H′′ of suitable length from y to an appropriate vertex w∗ in
S′′. We build a Ck by taking the union of this path withQ, the edge uv and the member of P ′ from
u to w∗.

Proof of Theorem 1.6. Let α, β be reals with 2> α > β ≥ 1. Let F be an (α, β)-quasi-smooth
family of bipartite graphs that satisfies z(m, n,F)≤ ρmnα−1 + Cnβ for allm≤ n.

Given any real δ > 0, we first define k0 as following. Let �0 = �0(α, β) as in Definition 2.1. Let
µ(δ)= µ(α, β , ρ, δ) as in the proof of Lemma 2.2. Define

L :=

⌊

3

µ(δ/2)

⌋

· �0 and k0 := 2�0 + L+ 2. (7)

Let k≥ k0 be odd. Let n be sufficiently large so that all subsequent inequalities involving n hold.
Let G be an n-vertex F ∪ {Ck}-free graph with minimum degree at least δnα−1. We may assume
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that G is connected. Let H be a maximum bipartite spanning subgraph of G. By Lemma 2.4, H is
connected and has minimum degree at least (δ/2)nα−1.

Since H is F-free, by Lemma 2.2, for each vertex x, the set of vertices that are at distance at
most �0 from x is at least µ(δ/2)n. Hence by Lemma 2.5 (applied to the �0-th power H�0 of H),

H�0 has diameter at most � 3n
µ(δ/2)n
 = � 3

µ(δ/2)
 and henceH has diameter at most � 3
µ(δ/2)
 · �0 = L,

as defined in (7).
Let (X, Y) be the unique bipartition of H. We show that G is also bipartite with (X, Y) being

a bipartition of it. Suppose otherwise. We may assume, without loss of generality, that there exist
two vertices u, v ∈ X such that uv ∈ E(G). We will derive a contradiction by finding a copy of Ck

in G that contains uv.
Let us randomly split V(H) into two subsets A, B. For each vertex x of degree d(x) in H, let

dA(x) and dB(x) denote the degree of x in A and B, respectively. Then both dA(x) and dB(x) satisfy
the binomial distribution Bin(d(x), 1/2). Hence, by Chernoff’s inequality, we have

P(dA(x)< (1/4)d(x))≤ P(|dA(x)− d(x)/2| ≥ d(x)/4)≤ 2e−d(x)/24 = o(n−1),

since d(x)≥ (δ/2)nα−1 and n is sufficiently large. Hence with positive probability we can ensure
that for any x ∈V(H), min{dA(x), dB(x)} ≥ (1/4)d(x)≥ (δ/8)nα−1. Let us fix such a partition A, B
of V(H).

Without loss of generality, suppose that the vertex u is in A. Let H[A] denote the subgraph
of H induced by A. By our discussion above, H[A] has minimum degree at least (δ/8)nα−1. By
Lemma 2.3, there exists a set U of at least µ(δ/16)n vertices and a family P = {Pz : z ∈U}, where
for each z ∈U, Pz is a u, z-path in H[A] of length at most �0 and no vertex in H lies on more than
n/ log n of these paths Pz. By the pigeonhole principle, there exists a value p ∈ [�0] and a subset
S⊆U of size

|S| ≥ |U|/�0 ≥ (µ(δ/16)/�0)n

such that for each z ∈ S, Pz ∈P has length p. Now, let us randomly colour the vertices in H[A]
with colours 1 and 2. For each z ∈ S, the path Pz is good if z is coloured 2 and the other p vertices
on Pz are coloured 1. The probability that Pz is good is 1/2p+1. Hence, for some colouring, there
are at least |S|/2p+1 good paths. Let S′ denote the subset of vertices z ∈ S such that Pz is good and
let P ′ = {Pz : z ∈ S′}. By our discussion,

|P ′| = |S′| ≥
(

µ(δ/16)/(2�0+1�0)
)

n.

Note that by our definition of P ′, no vertex in S′ is used as an internal vertex of any path in P ′.
By our earlier discussion, each vertex in S′ has at least (δ/8)nα−1 neighbours in B. Let H′ be the
subgraph of H whose edge set contains all the edges in H from S′ to B. Therefore, H′ is bipartite
with partition S′ and B. Furthermore,

e(H′)≥ |S′|(δ/8)nα−1 ≥
(

µ(δ/16)δ/(2�0+4�0)
)

nα = γ nα ,

where γ := γ (δ)= µ(δ/16)δ/(2�0+4�0). So H′ has average degree at least 2γ nα−1. By a well-
known fact, H′ contains a subgraph H′′ of minimum degree at least γ nα−1. Let S′′ =V(H′′)∩ S′.

Let Q be a shortest path in H from the vertex v to V(H′′). Let y be the endpoint of Q in V(H′′).
By our choice of Q, y is the only vertex in V(Q)∩V(H′′) (note that it is possible that y= v). Let q
denote the length of Q. Since H has diameter at most L, we have q≤ L.

By Lemma 2.2, for some j0 ≤ �0, inside the graph H′′ we have min{|Nj0(y)|, |Nj0+1(y)|} ≥

µ(γ )n. Note that one of Nj0(y) and Nj0+1(y) lies completely inside V(H′′)∩A. Denote this set
byW. Let

W0 = {w ∈W : Pw ∩V(Q) �= ∅}.
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Since Q contains at most L+ 1 vertices, each of which lies on at most n/ log n of the members of
P , we see |W0| ≤ (L+ 1)(n/ log n). Since n is sufficiently large, we have

|W \W0| ≥ µ(γ )n− (L+ 1)n/ log n≥ (1/2)µ(γ )n.

LetH[W \W0, B] denote the subgraph ofH consisting of edges that have one endpoint inW \W0

and the other endpoint in B. Since each vertex inW \W0 has at least (δ/8)n
α−1 neighbours in B,

e(H[W \W0, B])≥ |W \W0|(δ/8)n
α−1 ≥ (1/16)µ(γ )δnα .

Hence H[W \W0, B] contains a subgraph H∗ with minimum degree at least (1/16)µ(γ )δnα−1 ≥

k, for sufficiently large n. Let w be any vertex in V(H∗)∩ (W \W0). By our definition ofW, there
is a path Rw in H′′ of length r ≤ j0 + 1≤ �0 + 1 from y to w. Let t = k− 1− q− r − p. Since q≤

L, p≤ �0, r ≤ �0 + 1 and k≥ k0 = 2�0 + L+ 2, we get t ≥ 0. Since there is a path in H of length p
from w to u (by the definition of S′′ ⊆W). Since V(Q)∩V(H′′)= {y}, Rw ∪Q is a path in H of
length q+ r from w to v and u, v ∈ X, p and q+ r have the same parity. Since k is odd, we see that
t is even. Since H∗ has minimum (much) larger than k, greedily we can build a path T of length
t in H∗ from w to some vertex w∗ in V(H∗)∩ (W \W0) such that T intersects Q∪ Rw only in w.
Now, let

C := uv∪Q∪ Rw ∪ T ∪ Pw∗

By our definitions, Q∪ Rw ∪ T is a path. Also, since w∗ ∈W \W0, Pw∗ is vertex disjoint from Q.
Finally, by our definition of P ′, V(Pw∗) \ {w∗} is disjoint from S′ and hence from S′′. It is certainly
also disjoint from B and hence is vertex disjoint from Rw ∪ T. So, C is a cycle in G of length
1+ q+ r + t + p= k, a contradiction. This proves Theorem 1.6. �

Proof of Theorem 1.8. Let � ≥ 2 be an integer. Let δ > 0 be a real. Define

L := 3�(8�/δ)� and k0 := 2� + L+ 2. (8)

Let k≥ k0 be an odd integer. Let n be sufficiently large so that all subsequent inequalities involving
n hold. Let G be an n-vertex C2�-free graph with minimum degree at least δn1/�. We may assume
that G is connected. LetH be a maximum spanning subgraph of G. By Lemma 2.4,H is connected
with minimum degree at least (δ/2)n1/�. Since H is C2�-free, by Lemma 3.2, the �-th power H� of
H has minimum degree at least (δn1/�/8�)� = (δ/8�)�n. Hence, by Lemma 2.5, H� has diameter
at most 3n/[(δ/8�)�n]= 3(8�/δ)�. Therefore, H has diameter at most 3�(8�/δ)� = L, as defined
in (8).

Let (X, Y) the unique bipartition of H. We show that G is also bipartite with (X, Y) being a
bipartition of it. Suppose otherwise. Then without loss of generality, we may assume that there
exist two vertices u, v ∈ X such that uv ∈ E(G). We will derive a contradiction by finding a copy of
Ck in G that contains uv. As in the proof of Theorem 1.6, we can split V(H) into two subsets A, B
such that for each vertex x ∈V(H), we have dA(x), dB(x)≥ (1/4)d(x)≥ (δ/8)n1/�.

Without loss of generality, suppose u ∈A. Let H[A] denote the subgraph of H induced by A.
By our discussion above, H[A] has minimum degree at least (δ/8)n1/�. By Lemma 3.2 (with d =

(δ/8)n1/�), there exists a set S of size at least (δ/64�2)�(n/2) and a family P = {Pz : z ∈ S}, where
for each z ∈ S, Pz is a u, z-path in H[A] of length �, such that no vertex other than u in H lies on
more than (δn1/�/8)�−1 = (δ/8)�−1n1−1/� of these paths. Furthermore, for each z ∈ S, z lies only
on Pz.

LetH[S, B] denote the bipartite subgraph ofH induced by the two parts S and B. By our earlier
discussion, each vertex in S has at least (δ/8)n1/� neighbours in B. Hence,

e(H)≥ |S|(δ/8)n1/� ≥ (δ�+1/26�+4�2�)n1+1/� = γ n1+1�,

where γ := δ�+1/26�+4�2�. Then H[S, B] has average degree at least 2γ n1/� and thus contains a
subgraph H′ of minimum degree at least γ n1/�. Let S′ =V(H′)∩ S and B′ =V(H′)∩ B.
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If � is even, then S′ ⊆ X and letQ be a shortest path inH from v to S′. If � is odd, then B′ ⊆ X and
let Q be a shortest path inH from v to B′. Let y denote the endpoint of Q opposing v (it is possible
that y= v). Let q denote the length of Q. So q is even and y ∈ X. In either case, it is easy to see that
q≤ L+ 1 and that V(H′) contains y and at most one other vertex of Q. Hence H′ − (V(Q) \ {y})
has minimum degree at least γ n1/� − 1≥ (γ /2)n1/�. By Lemma 3.2 (with d = (γ /2)n1/�), inside
the graphH′ − (V(Q) \ {y}) there is a setW of size at least (1/2)(γ /16�2)�n such that for eachw ∈

W there is a path Rw of length � from y to w in H′ − (V(Q) \ {y}). Furthermore, by our definition
of Q, we can getW ⊆ S′. Recall the paths Pw in P . Let

W0 = {w ∈W : Pw ∩V(Q) �= ∅}.

Since Q contains at most L+ 1 vertices each of which lies on at most (δ/8)�−1n1−1/� of the
members of P , we see |W0| ≤ (L+ 1)(δ/8)�−1n1−1/�. Since n is sufficiently large, we have

|W \W0| ≥ (1/2)(γ /16�2)�n− (L+ 1)(δ/8)�−1n1−1/� ≥ (1/4)(γ /16�2)�n.

Since each vertex inW \W0 has at least (δ/8)n
� neighbours in B,

e(H[W \W0, B])≥ |W \W0|(δ/8)n
1/� ≥ (δ · γ �)/(24�+5 · �2�)n1+1/�.

Hence H[W \W0, B] contains a subgraph H∗ with minimum degree at least (δ · γ �)/(24�+5 ·

�2�)n1/� ≥ k, for sufficiently large n. Let w be any vertex in V(H∗)∩ (W \W0). By our defini-
tion ofW, there is a path Rw in H′ − (V(Q) \ {y}) of length � from y to w. Let t = k− 1− q− 2�.
Since q≤ L+ 1 and k≥ k0 = 2� + L+ 2, we see t ≥ 0. Since k is odd and q is even, we also see that
t is even. Since H∗ has minimum degree (much) larger than k, greedily we can build a path T of
length t inH∗ from w to some vertex w∗ in V(H∗)∩ (W \W0) such that T intersects Q∪ Rw only
in w. Now, let

C := uv∪Q∪ Rw ∪ T ∪ Pw∗

By our definition of T,Q∪ Rw ∪ T is path. Also, sincew∗ ∈W \W0, Pw∗ is vertex disjoint fromQ.
Finally Pw∗ \ {w∗} does not contain any vertex of S′ ∪ B and hence is vertex disjoint from Rw ∪ T.
Hence, C is a cycle in G of length 1+ q+ 2� + t = k, a contradiction. �

5. Proof of Theorem 1.7

Proof of Theorem 1.7. Let 2> α > β ≥ 1 and F be an (α, β)-smooth family with relative density
ρ. Then by the remark after Definition 1.2, there exist constants C1 < C2 such that for sufficiently
large n,

ρ(n/2)α + C1n
β ≤ z(n,F)≤ ρ(n/2)α + C2n

β .

Fix δ := ρ/2α+3. Let k0 be from Theorem 1.6 such that for any odd k≥ k0 and sufficiently large
m, anym-vertex F ∪ {Ck}-free graph with minimum degree at least δmα−1 is bipartite.

Now consider any odd k≥ k0 and sufficiently large n. Let G be an n-vertex extremal F ∪ {Ck}-
free graph. Then

e(G)= ex(n,F ∪ {Ck})≥ z(n,F)≥
ρ

2α
nα + C1n

β . (9)

Let G0 =G. If there exists some vertex x of degree less than δnα−1 in G0, then we delete the vertex
x and rename the remaining subgraph as G0. We repeat the above process until there is no such
vertex in G0. Let H denote the remaining induced subgraph of G and let t = n− |V(H)|. We note
that as α < 2 and n is sufficiently large, using (9) and δ =

ρ

2α+3 ,

e(H)≥ e(G)− t · δnα−1 ≥
( ρ

2α
nα + C1n

β
)

− n · δnα−1 =
7

8

ρ

2α
nα + C1n

β . (10)
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Letm= |V(H)|. By definition,H is anm-vertexF ∪ {Ck}-free graphwithminimumdegree at least
δnα−1 ≥ δmα−1. By taking n sufficiently large, we can makem large enough to apply Theorem 1.6
to conclude that H is bipartite. Since H is also, F-free, we have

e(H)≤ z(m,F)= z(n− t,F)≤
ρ

2α
(n− t)α + C2n

β . (11)

Comparing (10) and (11), we see that n− t ≥ 3
4n. By (9), (10) and (11), we have

( ρ

2α
nα + C1n

β
)

− t · δnα−1 ≤
ρ

2α
(n− t)α + C2n

β

Recall that δ = ρ/2α+3. Rearranging the above inequality, we get

ρ

2α
nα −

ρ

2α
(n− t)α − t · δnα−1 ≤ (C2 − C1)n

β .

By the Mean Value Theorem, for some n− t ≤ n′ ≤ n, this is equivalent to

ρα

2α
t(n′)α−1 − t · δnα−1 ≤ (C2 − C1)n

β .

Since n− t ≥ 3
4n and ρα

2α (
3
4 )

α−1 > 2 ·
ρ

2α+3 , the above inequality yields

ρ

2α+3
tnα−1 ≤ (C2 − C1)n

β .

So, t =O(n1+β−α) and in obtaining H from G at most t · δnα−1 =O(nβ) edges are removed. �

6. Concluding remarks

1. As mentioned in the introduction, there are bipartite graphs that are not smooth. We give such
an example here. Given integers t, � ≥ 2, the theta graph θt,� is the graph consisting of t internally
disjoint paths of length � between two vertices. In particular, we have θ2,� = C2�. Faudree and
Simonovits [13] showed that for all t, � ≥ 2, ex(n, θt,�)=O(n1+1/�) (the case t = 2 was first proved
by Bondy-Simonovits [5]). Conlon [9] showed that for each � ≥ 2, there exists a t0 such that for all
t ≥ t0, ex(n, θt,�)= �(n1+1/�), the leading coefficients of which were further improved by Bukh-
Tait [8]. Jiang, Ma and Yepremyan [19] showed that for all t, �, there exists a constant c= c(t, �)
such that for allm≤ n

z(m, n, θt,�)≤

⎧

⎨

⎩

c · [(mn)
�+1
2� +m+ n] if � is odd,

c · [m
1
2+ 1

� n
1
2 +m+ n] if � is even.

For the case t = 2, the above bound was first proved by Naor-Verstraëte [25], and a different
form of the upper bound on z(m, n, θ2,�) was obtained by Jiang-Ma [18]. On the other hand, using
first moment deletion method it is not hard to show that

Proposition 6.1. Let ε > 0 be any real. Let � ≥ 2. There exists a t0 such that for all t ≥ t0, if � is odd
then

z(m, n, θt,�)≥ �(m
�+1
2� −εn

�+1
2� −ε),

and if � is even then

z(m, n, θt,�)≥ �(m
1
2+ 1

�
−εn

1
2−ε).

Proof. Consider the bipartite random graph G ∈G(m, n, p) with p to be chosen later. Let q=

��/2
. Let X = e(G) and Y denote the number of copies of θt,k in G. We have E(X)=mnp. If

� is odd, then � = 2q+ 1 and E[Y]≤ [m]tq+1[n]tq+1p
t(2q+1) < (1/2)mtq+1ntq+1pt(2q+1). We now
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choose p so thatE[X]≥ 2E[Y]. It suffices to set p=m
−tq

2tq+t−1 n
−tq

2tq+t−1 . SinceE(X − Y)≥ (1/2)E[X],

there exists a (m, n)-bipartite graph G for which X − Y ≥ (1/2)mnp= (1/2)(mn)
tq+t−1
2tq+t−1 . By delet-

ing one edge from copy of θt,� in G, we obtained a (m, n)-bipartite graph G′ that is θt,�-free and
satisfies

e(G′)≥ (1/2)(mn)
tq+t−1
2tq+t−1 = (1/2)(mn)

�+1−(2/t)
2�−(2/t) .

For sufficiently large t, we have e(G′)≥ (1/2)(mn)
�+1
2� −ε , as desired.

For even integers � = 2q, the analysis is similar, except that we use the bound E[Y]≤

[m]tq+1[n]t(q−1)+1 + [m]t(q−1)+1[n]tq+1)p
2tq < (1/2)mt(q−1)+1ntq+1p2tq. We omit the details. �

It is quite likely using the random algebraic method used in [9], one could show that for each

� ≥ 2, there exist a t0 such that for all t ≥ t0 if � is odd then z(m, n, θt,�)≥ �(m
�+1
2� n

�+1
2� ) and if

� is even then z(m, n, θt,�)≥ �(m
1
2+ 1

� n
1
2 ). In any case, Proposition 6.1 already shows that θt,� is

not (α, β)-quasi-smooth and hence is also not (α, β)-smooth. (As far as we know, this is the first
example of a family of bipartite graphs which are not (α, β)-smooth.) However, θt,�-free graphs
have similar expansion properties as C2�-free graphs (see [19], Lemma 4.1). By using Lemma 4.1
in [19] instead of Lemma 3.1 in this paper, one can develop an analogous lemma as Lemma 3.2.
Then using essentially the same proof as that of Theorem 1.8, one can show the following.

Theorem 6.2. Let t, � ≥ 2. Let δ > 0 be any real. Let k0 = 3�(8�/δ)� + 2� + 2. For all odd integers
k≥ k0 and n sufficiently large the following is true. If G is an n-vertex {θt,�, Ck}-free graph with
minimum degree at least δn1/�, then G is bipartite.

2. Our proof method works any family F of bipartite graphs satisfying the following
property.

(P1) For any δ > 0, there are constants K and µ such that for every n-vertex F-free graph G
with minimum degree δex(n,F)/n and for each vertex u in G, there are at least µn vertices
within distance K from u.

Analogous theorems as Theorems 1.6 and 1.8 hold for F-free graphs. Note that (α, β)-quasi-
smooth families and theta graphs (which are not always quasi-smooth) both satisfy (P1).

3. The proof of Theorem 1.7 can be generalised a bit further to yield the following. Suppose F
is a family of bipartite graphs satisfying the property (P1) and the following property (P2).

(P2) There exists some constants λ > 0 and 2> α > β ≥ 1 such that z(n,F)= λnα +O(nβ).

Then Conjecture 1.1 holds forF in the following form: for any odd k≥ k0 and sufficiently large
n, any n-vertexF ∪ {Ck}-free extremal graph can be made bipartite by deleting a set ofO(n1+β−α)
vertices, which together are incident to O(nβ) edges.

In particular, this also applies to F = {C4, C6, . . . , C2�} for � ∈ {2, 3, 5}.
4. One could also prove our main theorems using the sparse regularity lemma ([22], [26]).

However, the proofs would be more technical and would involve longer build-ups. We chose to
present a proof that avoids the use of sparse regularity. It seems, however, in order to make more
progress on the original conjecture of Erdős and Simonovits (Conjecture 1.1), for instance to
verify the conjecture for (α, β)-quasi-smooth families, sparse regularity lemma may still be an
effective tool. This is because for (α, β)-quasi-smooth families F , like for (α, β)-smooth families
(see [1]), there is a transference of density from an F-free host graph to the corresponding cluster
graph.
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