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Abstract

Given a family F of bipartite graphs, the Zarankiewicz number z(m, n, F) is the maximum number of
edges in an m by n bipartite graph G that does not contain any member of F as a subgraph (such G is called
F-free). For 1 < B <« <2, a family F of bipartite graphs is («, B)-smooth if for some p > 0 and every
m <n, z(m, n, F) = pmn®~" + O(n*). Motivated by their work on a conjecture of Erdés and Simonovits
on compactness and a classic result of Andrasfai, Erdds and Sos, Allen, Keevash, Sudakov and Verstraéte
proved that for any (o, 8)-smooth family F, there exists k, such that for all odd k > k, and sufficiently
large n, any n-vertex F U {C,}-free graph with minimum degree at least p(2 + o(n))*~" is bipartite. In this
paper, we strengthen their result by showing that for every real § > 0, there exists k, such that for all odd
k > k, and sufficiently large n, any n-vertex F U {C,}-free graph with minimum degree at least §n*" is
bipartite. Furthermore, our result holds under a more relaxed notion of smoothness, which include the
families F consisting of the single graph K, when t >> s. We also prove an analogous result for C,,-free
graphs for every £ > 2, which complements a result of Keevash, Sudakov and Verstraéte.
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1. Introduction

Given a family F of graphs, a graph G is called F-free if G does not contain any member of F
as a subgraph. If F consists of a single graph F then we simply say that G is F-free. The Turdn
number of F, denoted by ex(n, F), is the maximum possible number of edges in an n-vertex
F-free graph. As is well known, this function is well understood when F consists only of non-
bipartite graphs due to the celebrated Erdds—Stone-Simonovits theorem [10,12] but is generally
open when F contains bipartite graphs. For a family of graphs F, a closely related notion is the so-
called Zarankiewicz number z(n, F), which is defined to be the maximum number of edges in an
n-vertex F-free bipartite graph. More generally, we denote by z(m, n, ) the maximum number of
edges in an m by n bipartite graph, that is, 7-free. In a seminal paper [11], Erdés and Simonovits
raised a number of intriguing conjectures on Turdn numbers for bipartite graphs. One of them
is the following (Conjecture 3 in [11]). Given a positive odd integer k, let Cx denote the family of
all odd cycles of length at most k. Throughout this paper, we write f(n) ~ g(n) for two functions
fg:N—Riflim,_, f(n)/g(n) =1.

© The Author(s), 2023. Published by Cambridge University Press.
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Conjecture 1.1. (Erdés-Simonovits [11]). Given any finite family F of graphs, there exists an odd
integer k such that as n — oo

ex(n, F UCk) ~ z(n, F).

Erd6és and Simonovits [11] verified the conjecture for F ={C4} by showing that

ex(n, {Cy, Cs}) ~ z(n, Cy4) ~ (g)%. Keevash, Sudakov and Verstraéte [20] further confirmed this
conjecture for Fy :={Cy, Cs, . . ., Co¢} where £ € {2, 3,5} in stronger forms and proved a related
result for the chromatic number of F; U {Ci}-free graphs of minimum degree Qn'/%). In a
subsequent paper [1], Allen, Keevash, Sudakov and Verstraéte provided a general approach to
Conjecture 1.1 (using Scott’s sparse regularity lemma [26]), which works for the following families
of bipartite graphs.

Definition 1.2. Let «, B be reals with 2 > o > B > 1. Let F be a family of bipartite graphs. If there
exists some p > 0 such that for every m <,

z(m, n, F) = pmn®~' + O(n?)

holds, then we say that F is («, B)-smooth with relative density p. We call a bipartite family F
smooth if it is («, B)-smooth for some o and B.

It is easy to see that for any (o, 8)-smooth family F, we have z(n, F) = p(n/2)* + onP).
Before we mention the results of [1], let us discuss some known examples of smooth families.
Improving results of Kovari-Sés-Turan [23], Fiiredi [14] showed that if m <#n and s, t € N then

z(m,n, Kgy) < (t —s+ DYsmn' =V + sm + sn>725. (1)

This together with the constructions of Brown [6] and Fiiredi [15] shows that K3, and K33 are
smooth families (see [1]). Allen, Keevash, Sudakov and Verstraéte [1] also showed that {K; , B}
is smooth, where B; consists of ¢ copies of C4 sharing an edge (and no other vertices). However,
it is not known if K is smooth for any s > 3 and ¢ > 4 and if Cy is smooth for any £ > 3, due
to a lack of constructions that asymptotically match upper bounds on Zarankiewicz numbers. We
would like to point out that not all families of bipartite graphs are smooth - in the concluding
remarks we provide an example of bipartite graphs which are not smooth.

The main result of Allen, Keevash, Sudakov and Verstraéte [1] is as follows. A family G of
graphs is near-bipartite if every graph G € G has a bipartite subgraph H such that e(G) ~ e(H) as
[V(G)| — oc.

Theorem 1.3. (Allen-Keevash-Sudakov-Verstraéte [1]). Let F be an («, B)-smooth family with
2>a > B > 1. There exists ko such that if k> ko € N is odd, then the family of all extremal F U
{Cy}-free graphs is near-bipartite and, in particular, ex(n, F U {Cy}) ~ z(n, F).

The authors [1] also raised a question whether the extremal n-vertex 7 U {Cy}-free graph in
Theorem 1.3 is exactly bipartite when n is sufficiently large. Motivated by the classic result of
Andrasfai, Erdds and Sos [4] stating that any n-vertex triangle-free graph with minimum degree
more than 2n/5 must be bipartite, Allen, Keevash, Sudakov and Verstraéte [1] proved the fol-
lowing theorem, which answers their own question for extremal graphs satisfying appropriate
minimum degree condition.

Theorem 1.4. (Allen-Keevash-Sudakov-Verstraéte [1]). Let F be an («, B)-smooth family with
relative density p and 2 > o > B > 1. Then there exists ko such that for any odd k > ko and suffi-
ciently large n, any n-vertex F U {Cy}-free graph with minimum degree at least p(%” +o(n))*Lis
bipartite.

In this paper, we strengthen Theorem 1.4 by showing that the minimum degree condition can
be lowered to §n%~! for any given real § > 0 and furthermore, the condition on smoothness can
be relaxed to the following notion.
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Definition 1.5. Let o, B be reals with 2 > o > 8 > 1. Let F be a family of bipartite graphs. We say
that F is («, B)-quasi-smooth with upper density p and lower density py, if there exist constants
P> po > 0 and C such that for all positive integers m < n,

z(m,n, F) < pmn®~' + Cn® and ex(n, F) > pon®.

Note that the nP term becomes relevant when m = o(n'*P=%). If F consists of a single graph F, then
we just say that F is (o, 8)-quasi-smooth.

Clearly every (a, B)-smooth graph is («, 8)-quasi-smooth. However, it is not known if every
(@0, B)-quasi-smooth graph is («, 8)-smooth. For instance, it is proved that ex(n, K;¢) = Qn21/5)
for t > (s —1)!' 4+ 1 in [2,21] and for t > C° in a very recent paper of Bukh [7] (where C is a con-
stant). Hence K is quasi-smooth under these conditions, but it is unknown whether K ; is always
smooth. The following is our main result in this paper.

Theorem 1.6. Let F be an («, B)-quasi-smooth family with2 > o > > 1. For anyreal § > 0, there
exists a positive integer ko such that for any odd integer k > ko and sufficiently large n, any n-vertex
F U {Cy)-free graph with minimum degree at least $n®~" is bipartite.

The proof of Theorem 1.6 uses expansion properties and a robust reachability lemma that is in
part inspired by a lemma in a recent paper by Letzter [24] on the Turdn number of tight cycles.

As a direct application of Theorem 1.6, we also obtain the following strengthening of
Theorem 1.3.

Theorem 1.7. Let F be an («, §)-smooth family with 2>« > > 1. Then there exists ko such
that for any odd k > ko and sufficiently large n, any n-vertex F U {Cy}-free extremal graph can be
made bipartite by deleting a set of O(n'TP=%) vertices, which together are incident to O(n?) edges.
Therefore, ex(n, F U {Cy}) = z(n, F) + O(nP).

Theorem 1.7 improves Theorem 1.3 in two ways. First, the error term is better. Second, the
proof is more concise and avoids the use of the sparse regularity lemma. The theorem gives further
evidence to an affirmative answer to the question of [1] that whether the extremal n-vertex F U
{Cx}-free graph G in Theorem 1.3 is bipartite (for sufficiently large n).

We also prove an analogous theorem as Theorem 1.6 for Cy,-free graphs, which complements
the following result in Keevash-Sudakov-Verstraéte [20]: For any integer £ > 2, odd integer k >
4¢ + 1 and any real § > 0, the chromatic number of any n-vertex {Cy, Cs, . . . , Ca¢, Cx}-free graph
with minimum degree at least § n'/t is less than (4k)¢*+1 /5.

Theorem 1.8. Let £ > 2 be an integer. For any real § > 0, let ko = 3£(8£/8) + 2 + 2. Then for any
odd integer k > ko and sufficiently large n, any n-vertex {Cyy, Cy}-free graph with minimum degree
at least 8n'/ is bipartite.

This proof follows the same line as that of Theorem 1.6, except that we will use a more efficient
robust reachability lemma for Cy¢-free graphs and as a result get better control on k.

We should point out that the existence of such graphs in Theorem 1.8 is known only for
£ €{2,3,5} (see [16]). Also note that this result is not covered by Theorem 1.6, since Cy, is not
known to be («, B8)-quasi-smooth for any £ > 3. In the concluding remarks, we will mention that
Theorems 1.6 and 1.8 can be extended to a slightly broader family of bipartite graphs that include
both (e, 8)-quasi-smooth graphs and Cy;’s.

The rest of the paper is organised as follows. In Section 2, we develop some useful lemmas.
In Section 3, we develop a lemma for Cy,-free graphs. In Section 4, we prove Theorem 1.6
and Theorem 1.8, respectively. In Section 5, we prove Theorem 1.7. In Section 6, we give some
concluding remarks. Throughout this paper, we denote [k] by the set {1,2,...,k} for positive
integers k.
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2. Some general lemmas
The main content of this section is to present key lemmas for our main result Theorem 1.6.

Definition 2.1. Let «, 8 be reals with2 > a > B > 1. Let £o(c, B) be defined as follows:

o LI 2-pe-1)

08 - J—l—Z, for>1 and {o=|1/(x—1)]+1, forf=1.

Lemma2.2. Leta, B bereals with2 > o > B> 1and £y = £y(a, B) be defined as in Definition 2.1.
Let F be an (a, B)-quasi-smooth family of bipartite graphs that satisfies z(m, n, F) < pmn®~! +
CnP for all m < n. For any § > 0, there exists a positive real = (o, B, p, 8) such that for all suf-
ficiently large n the following is true. Let G be an F-free bipartite graph with at most n vertices and
minimum degree at least Sn®~L. Let u € V(G). For each i € N, let N;(u) denote the set of vertices at
distance i from u. Then for some jo < £o we have min{|Nj,(u)], Njy+1(u)|} > pun.

Proof. For eachie N, let B; denote the set of vertices at distance at most i from u. Let
y =(/120)" and o = min{(1/2)(6/20) "/, (6/40)y> ™, y /2o . @

First, we show that |By,| > yn. Suppose for a contradiction that |By,| < yn. Leti € [y — 1]. Then
clearly |B;| < yn, and since G has minimum degree at least 3n?~1, we have

> dw)=n"""|By. (3)
veB;
On the other hand, ZveB,- d(v) = 2e(B;) 4 e(Bj, Bi+1 \ Bi). Since G is bipartite and F-free, e(B;) <
max(a,h){/oab"‘_1 + CbP} over all pairs of positive integers a < b with a 4+ b = |B;|. Hence, e(B;) <
p|Bil* + C|B;|? < 2p|B;|%, when nis sufficiently large. With some generosity, we can upper bound
e(Bi, Biy1 \ B;) by z(|Bil, |Bis1, F) to get e(Bi, Biy1 \ Bi) < p|Bil|Bi1/*~! + C|Biz1|”. Putting the
above estimations all together, we get

> d(v) <4p|Bi* + p|Bil|Biy1 1" + CIBi | (4)
vEB;
Combining (3) and (4), we get
§n*MBil <y d(v) <4p|Bil* + p|BillBi1|* " + ClBia |’ (5)

vEB;
If the first term on the right-hand side of (5) is the largest term, then we get §n%~!|B;| < 12p|B;|*,
from which we get |B;| > (6/12p)"/ @y > yp, contradicting our assumption. If the second
term on the right-hand side of (5) is the largest term, then we get §n%~!|B;| < 3p|B;||Biy1|*" L,
from which we get |Bi1| > (8/3p)"/ @Dy > ynand hence |Bey| = |Bit1] = y n, contradicting our
assumption. Hence we may assume that for each i € [£y — 1], we have

8n*~1|B;] <3C|Bi111P,
which yields that for each i € [£y — 1],
|Bit1] > (8/30)/Enl@= /B | 1/B, (6)

Let {b;} be a sequence recursively defined by letting b =« — 1 and b;41 = (1/8)bi + (¢ — 1)/B
for each i > 1. If 8 =1 then a closed form formula for b; is b; = (o« — 1)i. If 8 > 1 then a closed
form formula for b; is b; = "ﬂ‘%} + (%)i_l(a —1- %%1). Note that we may assume C > 1,s0 |B;| >
Sl > (8/3C)nb1. Then it follows by (6) and induction that |B;| > (8/3C)inbi for each i € [£].
However, using the definition of £( we get by, > 1, which yield |B,| > n as n is sufficiently large.
This is a contradiction and thus proves that |Bg,| > yn.
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Let j€ [£o] be the smallest index such that |Nj| > (y/€o)n. By the pigeonhole principle,
such j exists. By (2), [Nj| > un. Let U=N; and V =Nj_1 UNj;1. We show that |V|>2un,
from which it follows that either [Nj_1| > un or [Nji1| > un and thus the lemma holds with
jo=j or jo=j— 1. Since all the edges of G that are incident to U are between U and V, we
have e(G[U, V]) > én*~!|U|. On the other hand, G[U, V] is F-free. If |V|>|U|, then we
have e(G[U, V]) < p|U||V|*~1 4+ C|V|P <2p|U||V|*~!, where the last inequality holds as
|U| = |Nj| > un and n is sufficiently large. Combining the two inequalities and solving for |V,
we get |V|> (8/2p)"/ @Dy >2un, as desired. Otherwise, we have |V|<|U|. Then
sn®~NU| <e(G[U, V]) < p|V||U|*" 1 + C|UIP. Since C|U|P «én*"1U| for sufficiently
large n, we can derive from the above that §n*~!|U| <2p|V||U|*~1. Solving for |V|, we have
|V > (8/20)n* HU>™% > (8/20)n* Ly n)>=% = (8/2p)y*~%n > 2jun, where the last inequality
holds by (2), as desired. U

The following lemma, which we call robust reachability lemma is key to our proof of the main
results. It is inspired by a lemma used in a recent paper of Letzter [24] on the Turan number of
tight cycles in hypergraphs.

Lemma 2.3. Let o, 8 be reals with2 > o > B > 1 and £y = £o(«, B) be defined as in Definition 2.1.
Let F be an («, B)-quasi-smooth family of bipartite graphs that satisfies z(m, n, F) < pmn®~! +
CnP forallm <mn. Let u = (e, B, p, ) be defined as in Lemma 2.2. For any real § > 0, the following
holds for all sufficiently large n. Let G be an F-free bipartite graph with at most n verticers and
minimum degree at least 8n®~L. Let u € V(G). Then there exists a set S of at least (e, 8, p,6/2)n
vertices, and a family P = (P, :v € S}, where for each v € S, P, is a u, v-path of length at most £,

such that no vertex except u is used on more than logn of the paths in P.

Proof. Let S be a maximum set of vertices such that there is an associated family P = {P, : v € §},
where for each v € S, P, is a path of length at most £ such that no vertex is on more than @ of

the paths. Let W denote the set of vertices in G (other than u) that lie on exactly ; Og — of the paths

P, in P. Then |W|$ < |S|€o < ny and thus |W| < £y log n < (8/2)n®~! for sufficiently large n.
Hence, G — W has minimum degree at least (§/2)n* L. If |S| < u(a, B, p, §/2)n, then by Lemma
2.2, there exists a vertex z ¢ S and a u, z-path P, of length at most £( in G — W that we can add to
S to contradict our choice of S. Hence |S| > u(a, B, p,8/2)n. O

It is worth noting that the @ threshold could be improved to O(n?~%*+¢) for any real ¢ > 0,
but for simplicity of presentation, we choose to use —

logn

and such a choice suffices for the purpose

of our main arguments.

The next folklore lemma will be used a few times and we include a proof for completeness. We
would like to mention that it might be easy for one to overlook the connectedness of H statement
in the conclusion. But this condition will play important role in the main proofs.

Lemma 2.4. Let G be a connected graph. Let H be a maximum spanning bipartite subgraph of G.
Then H is connected and for each v € V(G), du(v) = (1/2)dg(v).

Proof. Let (X, Y) denote a bipartition of H. Suppose for contradiction that H is disconnected and
F is a component of H. Since G is connected, it contains an edge e joining V(F) to V(G) \ V(F).
But then H U e is still bipartite, since adding e does not create a new cycle. Furthermore, H U e has
more edges than H, contradicting our choice of H.

Next, let v be any vertex in H. Without loss of generality, suppose v € X. Suppose du(v) <
(1/2)dg(v). Then from H by deleting the edges incident to x and adding the edges in G from v
to X, we obtained a bipartite subgraph of G that has more edges than H, a contradiction. Hence
Vv € V(G), du(v) = (1/2)dg(v). O

We conclude this section with the following lemma about the diameter. The diameter of a graph
G is the least integer k such that there exists a path of length at most k between any two vertices
in G.
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Lemma 2.5. Let G be an n-vertex connected graph with minimum degree at least D. Then G has
diameter at most 3n/D.

Proof. Let x, y be two vertices at maximum distance in G. Let vov; - - - v be a shortest x, y-path
in G where vo = x and v, = y. Let ¢ = [£/3]. Note that N(vo), N(v3), N(v¢), - - - , N(v34) are pair-
wise disjoint (or else we can find a shorter x, y-path, a contradiction). Hence n > Z?:o IN(vs3i)| >
(g + 1)D. This implies that (g + 1) < n/D and hence £ <3(q+ 1) <3n/D. O

3. An efficient robust reachability lemma for C,;-free graphs

In this section, we develop a more efficient robust reachability lemma than Lemma 2.3 for Cy¢-free
graphs, which may be of independent interest. We need the following lemma from [27].

Lemma 3.1. (Verstraéte [27]). Let £ > 2 be an integer and H a bipartite graph of average degree at
least 4¢ and girth g. Then there exist cycles of at least (g/2 — 1) > £ consecutive even lengths in H.
Moreover, the shortest of these cycles has length at most twice the radius of H.

Our lemma is as follows.

Lemma 3.2. Let £ > 2 and d be positive integers. Let H be a bipartite Cyy-free graph with minimum
degree at least d. Let u be any vertex in H. Then the following items hold.

(1) The number of vertices that are at distance at most £ from u is at least (d/40)t.

(2) Suppose H has at most n vertices and d > 15 log n, where n is sufficiently large. Then there
is a set S of at least (1/2)(d/8¢)* vertices together with a family P = {P, : v € S}, where for
each v € S, P, is a u, v-path of exactly length £, such that no vertex of H except u lies on more
than d*~1 of these paths and each vertex v in S lies only on P,.

Proof. First we prove the first part (1) of the theorem. Let By = {u}. Consider any i € [£]. Let B;
denote the set of vertices at distance at most i from u in H and H; the subgraph of H induced by B,;.
If H[B;] has average degree at least 4¢, then by Lemma 3.1, G; contains cycles of £ consecutive even
lengths the shortest of which has length at most 2i < 2¢ and hence it contains Cy,, contradicting
G being Cy,-free. So for each i € [£], we have d(H;) < 4¢, which implies that e(H;) < 2¢|B;|. On
the other hand, H; contains all the edges of G that are incident to B;_;. So e(H;) > d|B;_1|/2.
Combining these two inequalities, we get 2¢|B;| > d|B;_1|/2. Hence, |B;| > (d/4¢)|B;_1| for each
i € [£]. Thus, |Be| > (d/4£)¢, as desired.

Next, we prove the second part (2). Let us randomly split the vertices of G into £ parts
Vi, ..., Vi. For each vertex x, and each i € [¢], the degree d;(x) of x in V; has a binomial dis-
tribution Bin(d(x), 1/¢). Hence, using Chernoff’s inequality (see [3] or [17] Corollary 2.3), we
have

Pldi(x) < (1/20)d(x)] < P[|di(x) — (1/£)d(x)| > (1/20)d(x)] < 2¢~ /126 — o(5~ 1),

since d(x) > 15¢ log n. Hence, for sufficiently large n, there exists a splitting of V(H) such that for
each x € V(H) and for each i € [¢], di(x) > (1/2¢)d(x) > d/2£. Now, we form a subgraph H' of
H as follows. First, we include exactly d/2¢ of the edges from u to V. Denote the set of reached
vertices in Vj by S;. Then for each vertex in S; including exactly d/2¢ edges from it to V. Denote
the set of reached vertices in V; by S,. We continue like this till we define S;. Let By = So = {u}. For
eachie [£],let B; = U}:o Si. and H; the subgraph of H' induced by B;. Note that H; has radius i. As
in the proof of the first part of the lemma, since H; is Cy¢-free, e(H;) < 2£|B;|. On the other hand,
H; contains all the edges of H’ that are incident to B;_. So e(H;) > (1/2)(d/2£)|B;—1|. Combining
these two inequalities, we get 2¢|B;| > (d/4¢€)|B;—1|. Hence, |B;| > (d/8¢2)|B;_1| for each i € [£].
Thus, |Be| > (d/8¢%)".
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It is easy to see that Zf:_ol 1Si] < Zf:_ol (d/20)" <2(d/2£)*~1, when n is sufficiently large.
Hence

IS¢l = Be\ UjZg Sil = (d/8€%)" — 2(d/20)" ™" > (1/2)(d/8¢%)",

where 7 (and thus d) is sufficiently large. By the definition of H', for each v € Sy, there is a path
of length ¢ from u to v that intersects each of Vi, V3,..., Vy. From the union of these paths
one can find a tree T of height ¢ rooted at u, in which all the vertices in S, are at distance ¢
from u. Furthermore, by the definition of H’, T has maximum degree at most (d/2¢) + 1. For
each v € Sy, let P, be the unique u, v-path in T. If x is any vertex in T other than u, then clearly
x lies on at most (d/2€)*~! of the paths P,. Furthermore, each v € Sy doesn’t lie on any P, for
we S\ {v}.

4. Proofs of Theorem 1.6 and Theorem 1.8

Even though the proofs of Theorem 1.6 and Theorem 1.8 are essentially the same, there are suffi-
ciently different choices of parameters that we will prove them separately. Before giving the formal
proof of Theorem 1.6, we give an overview. Let «, 8 be reals with 2 > o > > 1. Let F be an
(a0, B)-quasi-smooth family of bipartite graphs that satisfies z(m, n, F) < pmn®~! 4 CnP for all
m <n. Let § > 0 be given. We wish to show that there exists a positive integer ko such that for
any odd integer k > k¢ and sufficiently large n, any n-vertex F U {Cy}-free graph with minimum
degree at least 5n%~! is bipartite.

Let ko be sufficiently large as a function of «, B, p and §. Let k > ko be an odd integer. Let G
be a n-vertex F U {C}-free graph with minimum degree at least §n%~!. We take a maximum
spanning bipartite subgraph H of G. Let (X, Y) be a bipartition of H. We show that G is itself
bipartite by showing that X, Y must be independent sets in G. Suppose contradiction there exist
two vertices u, v, say in X, such that uv € E(G). We derive a contradiction by finding a Cy in G that
contains uv. To build such a Cy, we utilise expansion properties (as described in Lemma 2.2) and
robust reachability properties (as described in Lemma 2.3) of various carefully defined subgraphs
of G. First, via a random partitioning argument, we can find a partition of V(H) = V(G) into two
subsets A, B such that H[A] has high minimum degree and each vertex in A has high degree in
B (inside H). Assume u € A. We then apply Lemma 2.3 and some additional cleaning to find a
balanced family P’ of paths of bounded equal length inside H[A] that start at « and reach a linear-
sized subset S of A with the additional property that vertices in §” serve only as endpoints of
these paths and never as interior points. Since vertices in S have high degree in H into Band §" is
linear-sized, the subgraph of H consisting of edges from S’ to B is dense and contains a subgraph
H” of high minimum degree. We then take a shortest path Q in G from v to V(H") and denote
its unique vertex in V(H”') by y. The balanced-ness of P’ ensures that most of the paths in P’
reaching §” are vertex disjoint from Q. We then apply Lemma 2.2 inside H"' along with some
additional cleaning to find a path in H" of suitable length from y to an appropriate vertex w* in
§”. We build a Cy, by taking the union of this path with Q, the edge uv and the member of P’ from
u to w*.

Proof of Theorem 1.6. Let o, 8 be reals with 2 > o > 8 > 1. Let F be an («, 8)-quasi-smooth
family of bipartite graphs that satisfies z(m, n, F) < pmn®~! 4 Cn® for all m < .

Given any real § > 0, we first define k¢ as following. Let £y = £y(c, 8) as in Definition 2.1. Let
u(8) = u(a, B, p,8) as in the proof of Lemma 2.2. Define

3
L:= LM(S/Z)J -y and ko :=2€y + L+ 2. (7)

Let k > ko be odd. Let n be sufficiently large so that all subsequent inequalities involving n hold.
Let G be an n-vertex F U {Cy}-free graph with minimum degree at least §n%~!. We may assume
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that G is connected. Let H be a maximum bipartite spanning subgraph of G. By Lemma 2.4, H is
connected and has minimum degree at least (§/2)n* 1.

Since H is F-free, by Lemma 2.2, for each vertex x, the set of vertices that are at distance at
most £y from x is at least «(5/2)n. Hence by Lemma 2.5 (applied to the £p-th power HY of H),
H% has diameter at most Lﬁ;’z)nj = Lmj and hence H has diameter at most Lﬁmj Lo=1L,
as defined in (7).

Let (X, Y) be the unique bipartition of H. We show that G is also bipartite with (X, Y) being
a bipartition of it. Suppose otherwise. We may assume, without loss of generality, that there exist
two vertices u, v € X such that uv € E(G). We will derive a contradiction by finding a copy of Cy
in G that contains uv.

Let us randomly split V(H) into two subsets A, B. For each vertex x of degree d(x) in H, let
da(x) and dp(x) denote the degree of x in A and B, respectively. Then both d4 (x) and dp(x) satisfy
the binomial distribution Bin(d(x), 1/2). Hence, by Chernoff’s inequality, we have

P(da(x) < (1/4)d(x)) < P(|da(x) — d(x)/2| = d(x)/4) < 2¢” /> = o(n "),

since d(x) > (8/2)n*~! and n is sufficiently large. Hence with positive probability we can ensure
that for any x € V(H), min{ds(x), dp(x)} > (1/4)d(x) > (8/8)n%~L. Let us fix such a partition A, B
of V(H).

Without loss of generality, suppose that the vertex u is in A. Let H[A] denote the subgraph
of H induced by A. By our discussion above, H[A] has minimum degree at least (§/8)n%~!. By
Lemma 2.3, there exists a set U of at least j1(§/16)n vertices and a family P = {P, : z € U}, where
for each z € U, P; is a u, z-path in H[A] of length at most £y and no vertex in H lies on more than
n/ log n of these paths P,. By the pigeonhole principle, there exists a value p € [{y] and a subset
S C U of size

IS = [Ul/€o = (1(3/16)/€o)n

such that for each z € S, P, € P has length p. Now, let us randomly colour the vertices in H[A]
with colours 1 and 2. For each z € S, the path P; is good if z is coloured 2 and the other p vertices
on P, are coloured 1. The probability that P, is good is 1/2°*!. Hence, for some colouring, there
are at least |S|/2PT! good paths. Let S’ denote the subset of vertices z € S such that P, is good and
let P’ ={P,:z € §'}. By our discussion,

PI=181= (1(6/16)/2""€0) ) .

Note that by our definition of P’, no vertex in §' is used as an internal vertex of any path in P'.
By our earlier discussion, each vertex in ' has at least (§/8)n% ! neighbours in B. Let H' be the
subgraph of H whose edge set contains all the edges in H from S to B. Therefore, H' is bipartite
with partition §’ and B. Furthermore,

o(H') > |8'](5/8)n% ! > (M(a/m)a/(zfﬁ‘*eo)) n? =y,

where y := y(8) = u(8/16)8/(20+*¢y). So H' has average degree at least 2yn®~!. By a well-
known fact, H' contains a subgraph H”' of minimum degree at least yn®~1. Let S" = V(H") N S

Let Q be a shortest path in H from the vertex v to V(H"'). Let y be the endpoint of Q in V(H").
By our choice of Q, y is the only vertex in V(Q) N V(H") (note that it is possible that y = v). Let g
denote the length of Q. Since H has diameter at most L, we have g < L.

By Lemma 2.2, for some jo < £o, inside the graph H"" we have min{|Nj,(y)|, [Nj,+1(»)I} >
u(y)n. Note that one of Nj (y) and Nj,11(y) lies completely inside V(H") N A. Denote this set
by W. Let

Wo={we W:P, N V(Q) # 7}.
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Since Q contains at most L + 1 vertices, each of which lies on at most #n/ log n of the members of
P, we see |Wy| < (L + 1)(n/ log n). Since n is sufficiently large, we have

[W\ Wyl > u(y)n—(L+ 1)n/logn > (1/2)u(y)n.

Let H{W \ Wy, B] denote the subgraph of H consisting of edges that have one endpointin W\ Wy
and the other endpoint in B. Since each vertex in W \ Wy has at least (§/8)n% ! neighbours in B,

e(H[W \ Wo, B]) > |W \ Wo|(8/8)n* ! > (1/16)1(y)sn”.

Hence H[W \ Wy, B] contains a subgraph H* with minimum degree at least (1/16)u(y)én®"! >
k, for sufficiently large n. Let w be any vertex in V(H*) N (W \ Wj). By our definition of W, there
isa path R, in H” of length r <jo+1<4¢op+ 1 fromytow. Lett=k—1—¢g—r—p. Since g <
L,p<do,r<{€o+1and k> ko=2€p+ L+ 2, wegett>0. Since there is a path in H of length p
from w to u (by the definition of S’ € W). Since V(Q) N V(H") = {y}, R,, U Q is a path in H of
length g + r from w to v and u, v € X, p and q + r have the same parity. Since k is odd, we see that
t is even. Since H* has minimum (much) larger than k, greedily we can build a path T of length
tin H* from w to some vertex w* in V(H*) N (W \ W) such that T intersects QU R,, only in w.
Now, let

C:=uvUQUR,,UTU P,

By our definitions, QU R,, U T is a path. Also, since w* € W \ Wy, P, is vertex disjoint from Q.
Finally, by our definition of P/, V(P,+) \ {w*} is disjoint from S’ and hence from §”. It is certainly
also disjoint from B and hence is vertex disjoint from R,, U T. So, C is a cycle in G of length
1+ q+r—+t+p =k, acontradiction. This proves Theorem 1.6. U

Proof of Theorem 1.8. Let ¢ > 2 be an integer. Let § > 0 be a real. Define
L:=3¢(8¢/8)" and kg:=2¢ + L +2. (8)

Let k > ko be an odd integer. Let n be sufficiently large so that all subsequent inequalities involving
nhold. Let G be an n-vertex Cy¢-free graph with minimum degree at least §n'/*. We may assume
that G is connected. Let H be a maximum spanning subgraph of G. By Lemma 2.4, H is connected
with minimum degree at least (8/2)n!/*. Since H is Cy;-free, by Lemma 3.2, the £-th power H® of
H has minimum degree at least (8n1/t/80)t = (8/8¢)'n. Hence, by Lemma 2.5, HY has diameter
at most 3n/[(8/8¢)n] = 3(8¢/8)". Therefore, H has diameter at most 3£(8¢/8)¢ = L, as defined
in (8).

Let (X, Y) the unique bipartition of H. We show that G is also bipartite with (X, Y) being a
bipartition of it. Suppose otherwise. Then without loss of generality, we may assume that there
exist two vertices u, v € X such that uv € E(G). We will derive a contradiction by finding a copy of
Cy in G that contains uv. As in the proof of Theorem 1.6, we can split V(H) into two subsets A, B
such that for each vertex x € V(H), we have d4 (x), dp(x) > (1/4)d(x) > (§/8)n!/*.

Without loss of generality, suppose u € A. Let H[A] denote the subgraph of H induced by A.
By our discussion above, H[A] has minimum degree at least (5/ 8)nl/t, By Lemma 3.2 (with d =
(8/8)n1/t), there exists a set S of size at least (8/64¢2)¢(n/2) and a tamily P = {P, : z € S}, where
for each z € S, P; is a u, z-path in H[A] of length ¢, such that no vertex other than u in H lies on
more than (§n!/¢/8)¢~1 = (8/8)¢~1n'~1/¢ of these paths. Furthermore, for each z € S, z lies only
on P,.

Let H[S, B] denote the bipartite subgraph of H induced by the two parts S and B. By our earlier
discussion, each vertex in S has at least (8/ 8)n1/ ¢ neighbours in B. Hence,

e(H) > |S|(8/8)n1/€ > (8(+1/26(+4£2l)n1+1/€ — )/I’ller,

where y := §¢+1/26¢+4¢2¢ Then H[S, B] has average degree at least 2yn'/¢ and thus contains a
subgraph H' of minimum degree at least yn'/¢. Let §' = V(H') N Sand B' = V(H') N B.
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If £ is even, then §' C X and let Q be a shortest path in H from vto §'. If € is odd, then B’ C X and
let Q be a shortest path in H from v to B'. Let y denote the endpoint of Q opposing v (it is possible
that y = v). Let g denote the length of Q. So g is even and y € X. In either case, it is easy to see that
g <L+ 1 and that V(H’) contains y and at most one other vertex of Q. Hence H' — (V(Q) \ {y})
has minimum degree at least yn'/t — 1> (y/2)n/t. By Lemma 3.2 (with d = (y /2)n'/%), inside
the graph H' — (V(Q) \ {y}) there is a set W of size at least (1/2)(y /16£%)"n such that for each w €
W there is a path R,, of length £ from y to w in H' — (V(Q) \ {y}). Furthermore, by our definition
of Q, we can get W C §'. Recall the paths P, in P. Let

Wo = {we W:P, N V(Q) 7).

Since Q contains at most L+ 1 vertices each of which lies on at most (§/8)¢~1n'=1/¢ of the
members of P, we see |Wo| < (L + 1)(8/8)¢~1n'~1/¢. Since n is sufficiently large, we have

|W\ Wol = (1/2)(y/166%) n — (L+1)(8/8)" 'n' V¢ > (1/4)(v /166 n.
Since each vertex in W \ W has at least (§/8)n* neighbours in B,
e(H[W \ Wo, B]) = |[W\ Wol(8/8)n'/* = (8- y)/(2**> . 2 )n' /",

Hence H[W \ Wy, B] contains a subgraph H* with minimum degree at least (§ - y9/ @4+
2Hu1/t > |, for sufficiently large n. Let w be any vertex in V(H*) N (W \ Wy). By our defini-
tion of W, there is a path R,, in H' — (V(Q) \ {y}) of length ¢ from y to w. Let t =k — 1 — g — 2¢.
Sinceq<L+1landk>ky=2¢+ L+ 2,weseet > 0.Since k is odd and q is even, we also see that
t is even. Since H* has minimum degree (much) larger than k, greedily we can build a path T of
length ¢ in H* from w to some vertex w* in V(H*) N (W \ Wy) such that T intersects Q U R,, only
in w. Now, let

C:=uvUQUR,UTU P,

By our definition of T, QU Ry, U T is path. Also, since w* € W \ Wy, P+ is vertex disjoint from Q.
Finally P+ \ {w*} does not contain any vertex of ' U B and hence is vertex disjoint from R,, U T.
Hence, Cis a cycle in G of length 1 + g + 2¢ + t =k, a contradiction. O

5. Proof of Theorem 1.7

Proof of Theorem 1.7. Let 2 > a > 8 > 1 and F be an («, B8)-smooth family with relative density
p. Then by the remark after Definition 1.2, there exist constants C; < C; such that for sufficiently
large n,

o(n)2)% 4+ Cinf <z(n, F) < p(n/2)* + ConP.

Fix § := p/2%73. Let ko be from Theorem 1.6 such that for any odd k > ko and sufficiently large
m, any m-vertex F U {Cg}-free graph with minimum degree at least §m® ! is bipartite.

Now consider any odd k > kg and sufficiently large n. Let G be an n-vertex extremal F U {Cy}-
free graph. Then

e(G) = ex(n, F U {Cy)) > 2(n, F) > Z%n“ +Cinf. )

Let Go = G. If there exists some vertex x of degree less than 3n®~1in Gy, then we delete the vertex
x and rename the remaining subgraph as Go. We repeat the above process until there is no such
vertex in Gy. Let H denote the remaining induced subgraph of G and let t = n — |V(H)|. We note
that as o < 2 and n is sufficiently large, using (9) and § = za%,

7
e(H)>e(G) —t-sn*" ! > (2%71“ + Cmﬂ> —n-8n* = gzﬁan"‘ +Cinf. (10)
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Let m = |V(H)|. By definition, H is an m-vertex F U { Cy}-free graph with minimum degree at least
sn*~1 > §m*~1. By taking n sufficiently large, we can make m large enough to apply Theorem 1.6
to conclude that H is bipartite. Since H is also, F-free, we have

e(H) < z(m, F) = 2(n — t, F) < 2%(n—t)ourcznﬂ. (11)
Comparing (10) and (11), we see that n — ¢ > %n. By (9), (10) and (11), we have
0 P
(2—ana + Clnﬁ> —t-8n% < z—a(n — )% 4+ Gy
Recall that § = p/2%T3. Rearranging the above inequality, we get
P Y —1 B
z—ano‘ - 2—a(n — )% —t-8n"" <(Cy — CnP.
By the Mean Value Theorem, for some n — t < n’ < n, this is equivalent to
Z—:t(n/)“_l —t-8n%7 < (Cy — C)nP.
Since n — ¢ > nand 53 (3)*~' > 2 325, the above inequality yields
P
T3 tn® 1 <(C; — Cl)nﬁ.

So, t = O(n'T#~%) and in obtaining H from G at most ¢ - §n% ! = O(nP) edges are removed. [

6. Concluding remarks

1. As mentioned in the introduction, there are bipartite graphs that are not smooth. We give such
an example here. Given integers t, £ > 2, the theta graph 6, is the graph consisting of ¢ internally
disjoint paths of length £ between two vertices. In particular, we have 6, = Cy. Faudree and
Simonovits [13] showed that for all £, £ > 2, ex(n, 0;¢) = O(n*t1/) (the case t = 2 was first proved
by Bondy-Simonovits [5]). Conlon [9] showed that for each £ > 2, there exists a ¢y such that for all
t>ty, ex(n, 0 ¢) = Q(n't1/4), the leading coefficients of which were further improved by Bukh-
Tait [8]. Jiang, Ma and Yepremyan [19] showed that for all ¢, £, there exists a constant ¢ = c(t, £)
such thatforallm <n

c- [(mn)%1 +m+n] if £ is odd,
Z(ma n, Gt,f) S 1,1 1
c-[m2TTtnz + m+ n] if £ is even.

For the case t = 2, the above bound was first proved by Naor-Verstraéte [25], and a different
form of the upper bound on z(m, n, 6, ¢) was obtained by Jiang-Ma [18]. On the other hand, using
first moment deletion method it is not hard to show that

Proposition 6.1. Let ¢ > 0 be any real. Let £ > 2. There exists a ty such that for all t > to, if £ is odd
then
41

£+1
z(m, n, 0¢) = Q(m 20 ~n 2t =),
and if £ is even then

1 1 1
z(m, n,0,) > Q(m2t T en27%),

Proof. Consider the bipartite random graph G € G(m, n, p) with p to be chosen later. Let g =
[£/2]. Let X =e(G) and Y denote the number of copies of 0, in G. We have E(X) = mnp. If
€ is odd, then £ =2q + 1 and E[Y] < [m]g41 [n]tq+1pt(2‘1+l) < (1/2)m!' T pta+1pt2a+D) We now
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_—tq __—tq
choose p so that E[X] > 2E[Y]. It suffices to set p = m¥a+-1n2a+-1 Since E(X — Y) > (1/2)E[X],

tqg+t—1
there exists a (m, n)-bipartite graph G for which X — Y > (1/2)mnp = (1/2)(mn)2a+-1. By delet-
ing one edge from copy of ;¢ in G, we obtained a (m, n)-bipartite graph G’ that is 6 ;-free and
satisfies
tq+t—1 4+1-(2/0)

e(G') = (1/2)(mn) 2471 = (1/2)(mn) 2070 .

For sufficiently large ¢, we have e(G') > (1/ 2)(mn)7_8, as desired.
For even integers £ =2g, the analysis is similar, except that we use the bound E[Y] <
[m)ig1[n]ig—1)+1 + [Mlig-1)41[nlig+1)p* < (1/2)m" @~ DFH1yfa+1p219 'We omit the details. O

It is quite likely using the random algebraic method used in [9], one could show that for each
£ > 2, there exist a ty such that for all t> to if £ is odd then z(m, n, 0;¢) > Q(m 7 5 ) and if

¢ is even then z(m, n, 6;¢) > Q(mzﬂ n2 ). In any case, Proposition 6.1 already shows that 6;, is
not (&, B)-quasi-smooth and hence is also not («, 8)-smooth. (As far as we know, this is the first
example of a family of bipartite graphs which are not («, 8)-smooth.) However, 0 ¢-free graphs
have similar expansion properties as Cy¢-free graphs (see [19], Lemma 4.1). By using Lemma 4.1
in [19] instead of Lemma 3.1 in this paper, one can develop an analogous lemma as Lemma 3.2.
Then using essentially the same proof as that of Theorem 1.8, one can show the following.

Theorem 6.2. Let t, £ > 2. Let § > 0 be any real. Let ko = 3£(8£/8)" + 2¢ + 2. For all odd integers
k> ko and n sufficiently large the following is true. If G is an n-vertex {6y, Cy}-free graph with
minimum degree at least Sn'/*, then G is bipartite.

2. Our proof method works any family F of bipartite graphs satisfying the following
property.

(P1) For any 8 > 0, there are constants K and u such that for every n-vertex F-free graph G
with minimum degree §ex(n, F)/n and for each vertex u in G, there are at least un vertices
within distance K from u.

Analogous theorems as Theorems 1.6 and 1.8 hold for F-free graphs. Note that («, B)-quasi-
smooth families and theta graphs (which are not always quasi-smooth) both satisfy (P1).

3. The proof of Theorem 1.7 can be generalised a bit further to yield the following. Suppose F
is a family of bipartite graphs satisfying the property (P1) and the following property (P2).

(P2) There exists some constants A > 0 and 2 > « > 8 > 1 such that z(n, F) = An® + O(nP).

Then Conjecture 1.1 holds for F in the following form: for any odd k > k¢ and sufficiently large
n, any n-vertex J U {Cy}-free extremal graph can be made bipartite by deleting a set of O(n'+£~%)
vertices, which together are incident to O(n”) edges.

In particular, this also applies to F = {Cy, Cg, . . ., Cy¢} for £ € {2, 3, 5}.

4. One could also prove our main theorems using the sparse regularity lemma ([22], [26]).
However, the proofs would be more technical and would involve longer build-ups. We chose to
present a proof that avoids the use of sparse regularity. It seems, however, in order to make more
progress on the original conjecture of Erdés and Simonovits (Conjecture 1.1), for instance to
verify the conjecture for (o, 8)-quasi-smooth families, sparse regularity lemma may still be an
effective tool. This is because for («, 8)-quasi-smooth families F, like for (¢, 8)-smooth families
(see [1]), there is a transference of density from an F-free host graph to the corresponding cluster
graph.
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