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The Physics Inventory of Quantitative Literacy (PIQL) has been used to measure the development of students’
physics quantitative literacy in calculus-based introductory physics courses. Despite its effectiveness, issues
persist regarding time constraints and potential memorization of items. We propose to split the PIQL into
two shorter but statistically equivalent exams (PIQLets) in order to avoid these problems. Using a data set
collected with the full PIQL, we created 480 theoretical PIQLet pairs containing different combinations of
items. We provide evidence for the similarity of PIQLet pairs by calculating score differences, and comparing
the distribution of item parameters calculated using item response theory. Our results demonstrate the feasibility
of this approach for defining an equivalent pair of PIQLets using a limited data set from a single university.
Additional analyses using a broader and more diverse data set will be required for more broadly applicable
results.
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I. INTRODUCTION

Mathematical reasoning, particularly reasoning about
quantities, is ubiquitous throughout physics courses. A tacit
goal for many physics instructors is for their students to im-
prove their physics quantitative literacy (PQL), i.e., their abil-
ities to reason about novel physical situations using familiar
mathematical principles. The Physics Inventory of Quanti-
tative Literacy (PIQL) is a 20-item multiple-choice test for
measuring the impact of instruction on students’ mathemati-
cal reasoning in physics courses (a.k.a., PQL) [1]. The PIQL
was designed to include items that measure student reasoning
across three facets of PQL — ratios and proportions, negativ-
ity and signed quantities, and covariation — each of which is
pervasive in physics. Previous studies have provided strong
evidence for the validity and reliability of using the PIQL
to measure student reasoning in introductory physics courses
[1–8]; moreover, even though the PIQL was designed to in-
clude three facets, exploratory and confirmatory factor analy-
ses show that it is a unidimensional test. This finding supports
the interpretation of PQL as a measurable quantity [1, 5].

Some items on the PIQL require physics content knowl-
edge that is typically learned at the introductory level, but
many of the items do not require any physics knowledge:
rather, they involve the types of mathematical reasoning that
are typical in physics contexts. (See [9] for the current ver-
sion of the PIQL.) As such, the PIQL may be used in multi-
ple physics courses to see how students’ PQL changes over
time. Anecdotal evidence suggests that some students experi-
ence fatigue by this repeated testing, with instructors report-
ing that students express frustration when being asked to take
the PIQL for the third or fourth time. Instructors also report
that students mention that they remember certain PIQL items
from previously completing the test. Our evidence shows that
students taking the PIQL for the first time spend about 35-40
minutes on the 20-item test, but that this time decreases sub-
stantially for repeated assessments.

To address these concerns, we aim to create two shorter
versions of the PIQL that are different, yet statistically and
psychometrically equivalent. These testlets (or “PIQLets”)
would require less time for students to complete, and would
reduce the instances of repeated testing with the same items.
To measure the impact of instruction, one PIQLet could be
used at the beginning of a course, and the other at the end.
Our ultimate goal is to be able to compare students’ scores on
any one PIQLet to scores on the other PIQLet, and to scores
on the full PIQL. In this way, learning could be measured no
matter which test (or combination of tests) is used.

We are guided by previous efforts to create two equivalent
half-length versions of well-established concept inventories:
the Force Concept Inventory (FCI) [10, 11], and the Concep-
tual Survey of Electricity and Magnetism (CSEM) [12, 13].
In both cases, researchers used analyses of data sets col-
lected using the full-length tests to create theoretically equiv-
alent half-length versions. Additionally, both studies included
some “anchor” items on both half-length versions that may be

used as comparison points. Han, et al. calculated score dif-
ferences between the two proposed HFCIs (both for the test
as a whole and for each subtopic measured by the test), and
used small score differences as evidence for equivalent tests
[11]. They also demonstrated similarities between their two
identified HFCIs and the the full FCI by applying a three-
parameter logistic item response theory (IRT) analysis to their
data [11, 14]. Xiao, et al. used a more statistically rigorous
approach to establishing test equivalence when creating HC-
SEMs by using Rasch analysis (a one-parameter IRT model)
to compare item difficulty and student ability across their test
versions [13].

Our previous preliminary analyses followed the example of
Han, et al. [11] and focused on identifying equivalent PIQLets
based on average score differences [15]. In this project we
seek to establish the similarity between proposed PIQLets by
measuring score differences (both for the entire PIQLet and
for each of the three facets of PQL), and by comparing the
distributions of parameters obtained from three-parameter lo-
gistic (3PL) IRT analyses. We aim to create 12-item PIQLets
that each contain four common anchor items that can be used
to facilitate comparisons, and eight distinct items. Our work
is guided by the following research questions:

1. Which combination of items produces PIQLet pairs
with the smallest score differences between each other?

2. Which combination of items produces PIQLet pairs
with IRT parameter distributions that are most similar
to each other?

3. Do any combinations of items produce PIQLet pairs
that minimize both score differences and IRT parame-
ter differences?

We are measuring differences in student performance and
item performance between two PIQLets to identify the com-
bination of items that produces a PIQLet pair with the small-
est differences.

II. DATA & METHODS

Data for this study were collected over three years within
the calculus-based introductory physics sequence at a large
public university in the western US. Data were collected at
three different times in the sequence: before Introductory Me-
chanics (PreMech), after Introductory Mechanics but before
Introductory Electricity & Magnetism (PostMech), and after
Introductory Electricity & Magnetism (PostEM). In order to
test the usefulness of our methods, we have chosen to first
focus on the PostMech data set (N = 2580). We chose to fo-
cus on PostMech data because previous results have shown
that student scores on a few items increase substantially be-
tween PreMech and PostMech, but that similar increases do
not happen from PostMech to PostEM [1]. Also, students
in the PostMech data set are seeing the PIQL for the first or
second time, suggesting that they are more likely to engage
meaningfully than if they were seeing it for the third time, as
is likely in the PostEM data set.
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PR items NR items CR items
2, 6, 10, 11, 4, 14, 15*†, 1, 3, 5, 7, 8, 9,

12*, 13, 16*† 18†, 19†, 20† 12*, 15*†, 16*†, 17†

TABLE I. Categorization of PIQL items according to the three facets
of PQL: proportional reasoning (PR), negativity reasoning (NR), and
covariational reasoning (CR). Asterisks (*) denote items that assess
more than one facet. Daggers (†) indicate MCMR items.

We first established content validity for the PIQLets by cat-
egorizing each PIQL item according to the PQL facet(s) it
was designed to assess: proportional reasoning (PR), nega-
tivity reasoning (NR), or covariational reasoning (CR); see
Table I (note that some items align with multiple facets). We
require each PIQLet to have the same number of items as-
sessing each facet. One of the features of the PIQL is that
six items are multiple-choice-multiple-response (MCMR) in
which students may select as many responses as they want,
and there may be more than one correct response. We require
each PIQLet to have the same number of MCMR items.

We then identified potential anchor items by examining
previous psychometric analyses using classical test theory
(CTT). The PIQL was designed to have items with a broad
range of CTT difficulty values (fraction of students answering
correctly between 0.2–0.8), and CTT discrimination values
above 0.3 [1]. The CTT discrimination is a particularly useful
metric is evaluating the quality of an item because it provides
a measure of how well the item differentiates between high-
scoring and low-scoring students. For our anchor items, we
looked for items with high CTT discrimination (close to or
above 0.6), that spanned all three of our PQL content facets,
and that had a range of CTT difficulty values (not all easy or
all hard). Table II shows our potential anchor items. Each
PIQLet pair contains items 10, 15, and 20 as anchor items,
and either item 1 or item 7 as an achor item.

Based on the above criteria, we identified 480 possible item
combinations, with each combination producing a unique pair
of 12-item PIQLets. All PIQLets have four PR items, four NR
items, and six CR items; this includes one item that aligns
with both PR and CR, and one item that aligns with both
CR and NR. All combinations include four MCMR items and
eight single-response items. Items 12 and 16 are always on
different PIQLets because they are the only two that align
with both PR and CR; moreover, in order to have the same
number of CR items and MCMR items on each PIQLet, items
16 and 17 are always on different PIQLets, which means that
items 12 and 17 are always on the same PIQLet.

For each item combination, we separated our data set into
the items on PIQLet1 and the items on PIQLet2, and we de-
termined the differences between the two PIQLets by com-
paring students’ scores and by analyzing each PIQlet us-
ing item response theory (IRT). All students’ responses were
scored dichotomously as either completely correct or incor-
rect. For each item combination, we calculated students’ av-

Item Facet(s) CTT difficulty CTT discrimination
1 CR 0.60 0.60
7 CR 0.68 0.65

10 PR 0.73 0.63
15† CR/NR 0.38 0.66
20† NR 0.54 0.72

TABLE II. Potential anchor items and characteristics. In classical
test theory (CTT) “difficulty” is the fraction of students who answer
an item correctly, and “discrimination” is the difference in difficulty
between high- and low-performing students. †Items 15 and 20 are
MCMR items.

erage scores on PIQLet1 and PIQLet2, as well as the dif-
ference between these average scores (“Overall Score Dif-
ference” in Table III). We also calculated three PIQLet sub-
scores (and subscore differences) using the subset of items
in each PIQLet corresponding with each facet: difference in
proportional reasoning subscore (�spr), difference in nega-
tivity subscore (�snr), and difference in covariation subscore
(�scr). All scores and subscores were calculated as percent-
ages based on the number of items on each PIQLet or cor-
responding with each PQL facet. In order to quantify the
overall similarity between PIQLet versions, we calculated a
magnitude of the subscore difference,

|�s| =
q
�s2

pr + �s2
nr + �s2

cr. (1)

We performed IRT analyses on both PIQLets for each item
combination using a three-parameter logistic (3PL) model.
For the 3PL model, the probability that a student answers the
ith item correctly is given by,

Pi(✓) = ci +
1 – ci

1 + exp[–1.7ai(✓ – bi)]
, (2)

where ✓ is the student’s overall proficiency or level of under-
standing (representing their PQL). The ci parameter (a.k.a.
“guessing”) indicates the probability that a student with a
very low ✓ value will select the correct response option. The
bi parameter (“item difficulty”) represents the value of ✓ for
which the probability of a student selecting the correct re-
sponse is halfway between ci and 1. The ai parameter (“item
discrimination”) represents the rate of change of Pi(✓) in the
vicinity of ✓ = bi. For each item combination, we calculated
Cohen’s d for each parameter as a measure of the effect size of
the difference in the IRT parameter values between PIQLet1
and PIQLet2: effect size of ai (da), effect size of bi (db), and
effect size of ci (dc). We also calculated a magnitude of the
IRT parameter effect size for each combination,

|d| =
q

d2
a + d2

b + d2
c . (3)

All analyses were performed using the R computing environ-
ment [16–19].
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FIG. 1. Magnitude of the subscore differences |�s| (in %) and the
magnitude of the IRT parameter effect sizes |d| for all 480 combina-
tions of items. Red circles represent item combinations which had
item 7 as an anchor item; blue squares represent item combinations
which had item 1 as an anchor item.

III. RESULTS

Figure 1 shows the magnitude of the subscore differences
|�s| (in percentage) and the magnitude of the IRT parameter
effect sizes |d| for all 480 combinations of items. Red circles
represent item combinations (PIQLet pairs) that had item 7
as an anchor item, and blue squares represent PIQLet pairs
that had item 1 as an anchor item. There is a wide variety of
results, with score difference magnitudes ranging from under
3% to almost 25%, and effect size magnitudes ranging from
less than 0.1 (trivial) to almost 1.5 (very large).

Figure 2 shows the bottom left corner of Fig. 1. This por-
tion of the plot contains data points representing PIQLet pairs
with the smallest values of both subscore differences and IRT
parameter effect sizes. The two combinations with the low-
est parameter effect sizes are in this group (combinations la-
beled C1 and C5 in Fig. 2). There are two item combina-
tions with smaller score differences than those shown in Fig.
2 (|�s| = 2.67% compared to 2.71% for the combination la-
beled C12), but these are not included in the smaller plot be-
cause they had significantly higher effect sizes (|d| = 0.39 and
0.27, compared to 0.20 for combination C12). One interest-
ing feature of the 12 PIQLet pairs included in Fig. 2 is that
nine of them are red, indicating that item 7 was an anchor
item for those PIQLets. This suggests that using item 7 as an
anchor item may lead to more similar PIQLets than item 1.

The labels in Fig. 2 represent the combinations of items
included in each PIQLet. Table III provides more details for
these top 12 combination options, including the effect size

C1

C2
C3

C4

C5

C6

C7

C8

C9

C10
C11

C12

0.00

0.05

0.10

0.15

0.20

2.5 3.0 3.5 4.0 4.5
Magnitude of Content Score Differences (%)

M
ag

ni
tu

de
 o

f I
RT

 P
ar

am
et

er
 E

ffe
ct

 S
ize

s
FIG. 2. A zoomed in view of Fig. 1, showing the 12 item com-
binations with the lowest combined differences in scores and IRT
parameters.

of the difference in each of the IRT parameter values, the
magnitude of the IRT parameter effect size |d|, the difference
in each PQL facet subscore, the magnitude of the subscore
differences |�s|, and the average overall score difference be-
tween the PIQLets for each combination. The combination
labels are ordered according to how close each combination’s
data point appears to the bottom left corner of Fig. 2. All
of these combinations seem to provide PIQLets that are very
similar across all six measures: no effect sizes are above 0.2
(considered small according to Cohen’s definitions [20]), and
all subscores have differences smaller than 4%. Additionally,
11 out of the 12 have average overall score differences with
magnitudes that are less than 2%, and five of them are less
than 1%.

As seen in Table III, combination C1 has the lowest ef-
fect size magnitude (RQ2). Following the same naming con-
vention, combination C38 (not shown in Fig. 2 or Table III)
has the smallest subscore difference magnitude (RQ1); how-
ever, the difference in |�s| between C1 and C38 is only 0.1%
(RQ3). Additionally, C1 has an overall PIQLet score differ-
ence of less than 1%, making it a strong contender for the
combination of items that produces the most similar PIQLets.

IV. DISCUSSION

We can identify several consistencies when examining the
items included in each of the 12 combinations included in Fig.
2 and Table III. In all 12 combinations, the items designed to
assess proportional reasoning are arranged in the same way,
with item 2 always on the same PIQLet as item 11, and item
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IRT Parameter Effect Sizes Subscore Differences (%) Overall Score
Combination Plot Color Anchor Items da db dc |d| �spr �snr �scr |�s| Difference (%)

C1 red 7, 10, 15, 20 0.04 0.002 0.04 0.06 -1.1 -2.5 0.5 2.8 -0.9
C2 red 7, 10, 15, 20 0.11 0.04 -0.02 0.12 1.0 2.5 1.5 3.1 1.9
C3 blue 1, 10, 15, 20 0.12 -0.04 -0.03 0.13 -1.1 -2.5 -0.9 2.9 -1.6
C4 red 7, 10, 15, 20 0.03 -0.02 0.12 0.12 1.0 -2.5 2.0 3.4 0.5
C5 red 7, 10, 15, 20 0.05 -0.01 -0.05 0.07 -1.1 -3.7 2.0 4.4 -0.6
C6 red 7, 10, 15, 20 0.08 0.05 0.07 0.12 1.0 -2.5 3.1 4.1 1.1
C7 red 7, 10, 15, 20 0.12 0.11 0.10 0.19 -1.1 -2.5 1.5 3.1 -0.4
C8 blue 1, 10, 15, 20 -0.12 0.05 -0.03 0.13 -1.1 -2.5 3.4 4.4 0.5
C9 red 7, 10, 15, 20 -0.05 0.04 -0.14 0.16 1.0 3.7 1.5 4.1 2.3
C10 blue 1, 10, 15, 20 0.18 0.07 0.00 0.19 -1.1 -2.5 0.1 2.7 -1.1
C11 red 7, 10, 15, 20 0.17 -0.03 0.04 0.18 -1.1 -3.7 0.5 3.9 -1.3
C12 red 7, 10, 15, 20 0.06 -0.09 -0.17 0.20 1.0 2.5 0.5 2.7 1.4

TABLE III. Details of the 12 combinations shown in Fig. 2. The final column shows the difference in the overall scores for each PIQLet pair
(not included in Fig. 2). Positive values indicate that PIQLet2 was higher, and negative values indicate that PIQLet1 was higher.

6 always with item 13. This consistency suggests that these
pairings may yield the most similar PIQLet versions. In eight
of the 12 combinations, items 17 and 18 are included on dif-
ferent PIQLets; this is a desirable result because these are the
only MCMR PIQL items that have more than one correct re-
sponse. Also in eight of the 12 combinations, items 1, 7, and
17 are all included in the same PIQLet (sometimes with item
3, and sometimes with item 8). The similarities among the
items within each of these top 12 combinations provides evi-
dence that our analyses are revealing patterns within the data
that may be used to identify an optimal combination of items
that would produce an equivalent PIQLet pair.

In addition to these results based on class-averaged scores,
we can also calculate each student’s score on PIQLet1 and
PIQLet2. For combination C1, these scores are highly cor-
related, with a Pearson correlation between PIQLet1 scores
and PIQLet2 scores of r12 = 0.83. These results show that
the PIQL can be divided into two shorter versions that show
strong statistical and psychometric similarities, both for in-
dividuals and averaged across data sets. Using IRT analyses
along with statistical analyses of score distributions provides
additional evidence of similarities between PIQLet versions.

V. LIMITATIONS AND FUTURE WORK

While these results show great promise for creating equiv-
alent PIQLet versions, more work is needed to provide evi-
dence for the optimal combination of items. The current study
was conducted using data from a single institution, collected
in a narrow window of time (between the first two calculus-
based introductory physics courses). To be confident in these
results, they would need to be verified through analyzing data
from other courses and other institutions. We will also need

to administer the PIQLets in a controlled trial (similar to Han,
et al. [21]) to confirm their equivalence experimentally in ad-
dition to the evidence determined by analyzing data collected
using the full PIQL. These comparisons will rely heavily on
analyzing student performance on the anchor items to estab-
lish equivalence between data sets and test performance.

In addition to requiring more analysis to establish evidence
of PIQLet similarities, we will also need to establish the va-
lidity and reliability of each PIQLet individually, as was done
with the PIQL [1]. This will involve analyses of item diffi-
culty and discrimination, as well as factor analyses to ensure
that each PIQLet performs the same way as the full PIQL.

Additional work is also needed to be able to equate student
scores from one test to scores from the other. Our ultimate
goal is to be able to use a student’s score on one PIQLet as
a proxy for what their score would be if they had completed
the other PIQLet, as well as what their score would be if they
had completed the full PIQL. This would allow us to compare
student scores across any of the three tests. Other researchers
have used the Stocking-Lord method to calculate transforma-
tion coefficients, which can be used to relate scores from two
different tests [22, 23]. We plan to explore this and other
methods for relating and equating scores from different tests.
Rigorously validated score transformation relationships will
be necessary to appropriately measure learning and growth
when using different PIQLets before and after instruction.
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