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Negligible obstructions and Turan exponents
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Abstract

We show that for every rational number r € (1,2) of the form 2 — a/b, where a,b € N
satisfy |b/a]® < a < b/(|b/a| + 1) + 1, there exists a graph F,. such that the Turdn number
ex(n, F,) = ©(n"). Our result in particular generates infinitely many new Turdn exponents. As
a byproduct, we formulate a framework that is taking shape in recent work on the Bukh—Conlon

conjecture.
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1 Introduction

Given a family F of graphs, the Turdn number ex(n,F) is defined to be the maximum number
of edges in a graph on n vertices that contains no graph from the family F as a subgraph. The
classical Erdés—Stone—Simonovits theorem shows that arguably the most interesting problems about
Turdn numbers, known as the degenerate extremal graph problems, are to determine the order of
magnitude of ex(n, F) when F contains a bipartite graph. The following conjecture attributed to

Erdés and Simonovits is central to Degenerate Extremal Graph Theory (see [16, Conjecture 1.6]).

Conjecture 1 (Rational Exponents Conjecture). For every finite family F of graphs, if F contains
a bipartite graph, then there exists a rational r € [1,2) and a positive constant ¢ such that ex(n,F) =

en” +o(n').
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Recently Bukh and Conlon made a breakthrough on the inverse problem [16, Conjecture 2.37].

Theorem 2 (Bukh and Conlon [3]). For every rational number r € (1,2), there ezists a finite
family of graphs F, such that ex(n,F,) = O(n").

Motivated by another outstanding problem of Erdés and Simonovits (see [10, Section III] and
[11, Problem 8]), subsequent work has been focused on the following conjecture, which aims to

narrow the family F, in Theorem 2 down to a single graph.

Conjecture 3 (Realizability of Rational Exponents). For every rational number r € (1,2), there

exists a bipartite graph F, such that ex(n, F,) = ©(n").!

It is believed that the graph F, in Conjecture 3 could be taken from a specific yet rich family

of graphs, for which we give the following definitions.

Definition 4. A rooted graph is a graph F equipped with a subset R(F') of vertices, which we refer
to as roots. We define the pth power of F, denoted FP, by taking the disjoint union of p copies of
F, and then identifying each root in R(F'), reducing multiple edges (if any) between the roots.

Definition 5. Given a rooted graph F', we define the density pr of F to be e(F)/(v(F) — |R(F)|),
where v(F) and e(F) denote the number of vertices and respectively edges of F. We say that a
rooted graph F'is balanced if pp > 1, and for every subset S of V(F') \ R(F'), the number of edges
in F' with at least one endpoint in S is at least pp|S] .

Indeed the next result on Turdn numbers, which follows immediately from [3, Lemma 1.2],

establishes the lower bound in Conjecture 3 for some power of a balanced rooted tree.?

Lemma 6 (Bukh and Conlon [3]). For every balanced rooted tree F, there exists p € NT such that
ex(n, FP) = Q(n?>-1/rr),

It is conjectured in [3] that the lower bound in Lemma 6 can be matched up to a constant

factor.

Conjecture 7 (The Bukh—Conlon Conjecture). For every balanced rooted tree F' and every p € NT,
ex(n, FP) = O(n?~1/rr),

Given the fact that every rational number bigger than one indeed appears as the density of some
balanced rooted tree (see [3, Lemma 1.3]), Lemma 6 and Conjecture 7 would imply Conjecture 3.

Our main result establishes Conjecture 7 for certain balanced rooted trees T ; o defined in Figure 1.

'Erdés and Simonovits asked a much stronger question: for every rational number r € (1,2), find a bipartite graph
F. such that ex(n, F;.) = cn” + o(n") for some positive constant c.
2A rooted tree is a rooted graph that is also a tree, not to be confused with a tree having a designated vertex.
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Figure 1: T} ; o with roots in black.

Theorem 8. For every s,t € NT and s’ € N, when s — s’ > 2 assume in addition that t > 3 —1.
If the rooted tree F := Ty, ¢ is balanced, then for every p € N, ex(n, FP) = O(nz_l/pF), where
pr=(st+t+s)/(t+1).

It is not hard to characterize the parameters s,t, s’ for which T, o is balanced.

Proposition 9. For every s,t € NT and s’ € N, the rooted tree F = Ty s is balanced if and only
if prp > max(s,s’) and pp > 1, or equivalently s’ —1 < s <t+ s and (t,s') # (1,0). O

Prior to our work, Conjecture 7 has been verified for the balanced rooted trees in Figure 2: the
K S(O) and P, cases are classical results due to K6vari, Sés and Turédn [23], and respectively Faudree
and Simonovits [13]; Q5,1 and Sa1 0 are due to Jiang, Ma and Yepremyan [18]; Qs and Ty 7 are due
to Kang, Kim and Liu [22]; KV and Sst0 are due to Conlon, Janzer and Lee [6]; K and k¥
are due to Jiang and Qiu [20]; K is due to Janzer [17]; and S, for all ¢/ <t is very recently
settled by Jiang and Qiu [19].

These recent attacks on the Bukh—Conlon conjecture are full of interesting and promising tech-
niques. In this paper, inspired by these previous attempts, we formulate an underlying framework
that centers around a notion which we call negligible obstructions (Definitions 15 and 16). In
this context, we develop a lemma (Lemma 17), which we call the negligibility lemma, to connect
negligible obstructions with the Bukh—Conlon conjecture. To our best knowledge, ideas in our
formulation of the framework can be traced back to the work of Conlon and Lee [7], and can be

spotted throughout later work by various authors.
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Figure 2: Balanced rooted trees, where s,t¢,t’ refer to vertices, except ¢ in Qs ;.



To establish an instance of the Bukh—Conlon conjecture, the negligibility lemma naturally leads
to a two-step strategy: the identification of obstructions and the certification of their negligibility.
By no means we claim that this strategy reduces the difficulty of Conjecture 7. Nevertheless we
propose this strategy in hopes that it will bring us one step closer to pinning down a handful of
essentially different techniques in this area, akin to the theory of flag algebras [24].

We illustrate the above two steps with the proof of Theorem 8. In contrast with all the previous
work which has the inductive flavor of certifying negligibility of larger obstructions by that of
the smaller, our implementation of the second step has a distinctive inductive pattern, which is
elaborated at the end of Section 2. We point out that although Theorem 8 can be seen as an
extension of [22, Section 3] which dealt with @, our approach is quite different.

Turning to realizability of rational exponents, our main result Theorem 8 gives realizability of

the following rational exponents.

Corollary 10. For every rational number r € (1,2) of the form 2 — a/b, where a,b € Nt if
[b/a)® <a <b/([b/a) +1) +1, (1)
then there exists a bipartite graph F, such that ex(n, F,) = O(n").

Proof. In case a = 1, (1) forces b = 1, which contradicts with the assumption that > 1. Hereafter
we assume that ¢ > 2. Now take s = [b/a), t =a—1and &' =b—(a—1)([b/a]+1). Set T =Ty, ¢.
One can easily check that s,t € N, pp = (st +t+§')/(t +1) = b/a and so pr > 1,pr > s and
s <b—(a—1)b/a = pr. Observe that (1) is equivalent to ¢t > s* — 1 and s’ > 0. In view of

Proposition 9, T is balanced. The corollary follows from Lemma 6 and Theorem 8 immediately. [

As far as we know, all the rationals in (1,2) for which Conjecture 3 has been verified can be
derived from Lemma 6 and the existing instances of Conjecture 7. For convenience, we say a
fraction b/a is a Bukh—Conlon density if there exists a balanced rooted tree F' such that pr = b/a
and ex(n, FP) = O(n?*~1/rF) for every p € NT. Kang, Kim and Liu observed in [22, Lemma 4.3]
that a graph densification operation due to Erdds and Simonovits [12] can be used to generate more
Bukh—Conlon densities: whenever b/a is a Bukh—Conlon density, so is m + b/a for every m € N.

It appears reasonable to restrict our attention to the fractions b/a of the form m + s/a where
m € N7, for fixed s,a € N with s < a. The results listed in Figure 2 yield Bukh-Conlon densities
m + s/a for every m € Nt whenever s[(a —1)/(s 4+ 1)] < a — 1.2 For many choices of (s,a), for
example (4,7), (5,8) or (7,10), it was not known whether m + s/a is a Bukh—Conlon density for
any m € NT. For comparison, the family of fractions b/a given by (1) generates the Bukh—Conlon

densities m + s/a for all m > a — s — 1 whenever a — 1 — ¥/a < s < a — 1. In particular, our result

®Combining [22, Lemma 4.3] with the results listed in Figure 2 (essentially with the one on S, ; ), we know that
m+ s/(st+t + 1) is a Bukh-Conlon density for m,s € N* and ¢, € N with ¢ < t. For m + s/a to be a fraction of
such form, one needs st +1 < a < st +t + 1 for some ¢ € N, or equivalently s[(a —1)/(s+1)] <a—1.



gives new Bukh—Conlon densities of the form m+5/8 and m+7/10 as long as m > 2. Unfortunately
our result does not give any Bukh—Conlon densities of the form m + 4/7. The above discussion

leads us to the following conjecture on Bukh—Conlon densities.

Conjecture 11. For every s,a € N with s < a, there exists m € NT such that m + s/a is a
Bukh—Conlon density.

We point out that one would settle Conjecture 11 if one could remove the technical condition
t > s3 — 1 from Theorem 8.

Remark. After this work is completed, Conlon and Janzer [5], partly building on our ideas, improved

Theorem 8 by removing the technical condition ¢ > s3 — 1, and they hence resolved Conjecture 11.

The rest of the paper is organized as follows. In Section 2 we flesh out the aforementioned
framework, and use it to prove Theorem 8. In Section 3 we prove the negligibility lemma. In
Sections 4 and 5 we certify the negligibility of two different obstructions needed for the proof of
Theorem 8.

2 Negligible obstruction family

Throughout the rest of the paper, when we view a tree F' as a rooted tree, by default the root set
R(F) of F consists exactly of the leaves of F. We use V(G) and E(G) to denote the vertex set and
the edge set of GG respectively.

To motivate the relevant concepts, it is instructive to think about finding a copy of FP? in an n-
vertex d-regular graph G, where F' is a tree and d = w(nl_l/ Pr). We mostly talk about embeddings
rather than subgraphs.

Definition 12 (Embedding). Given a tree F' and a graph G, denote Inj(F, G) the set of embeddings
from F to G, that is, the set of injections n: V(F) — V(G) such that n(e) € E(G) for every
e € E(F). For a subset U of R(F) and an injection o: U — V(G), denote the set of embeddings
from F' to G relativized to o by

Inj(F,G;0) = {n € Inj(F,G): n(u) = o(u) for every u € U}.

When we write these operators (and the ones coming later) in lowercase, we refer to their cardinal-
ities, for example, inj(F, G) = |Inj(F, G)| and inj(F, G;0) = |Inj(F, G;0)].

Remark. We encourage the readers who are accustomed to counting subgraphs to think of the
embedding counting inj(F,G) as the corresponding subgraph counting of F' in G, because they
merely differ by a multiplicative factor depending only on F. We choose embeddings over subgraphs
based on the pragmatic reason that it is more succinct to write in the language of embeddings when

counting relativized to some injection o.
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Figure 3: After adding U to the root set of 7349, the resulting rooted graph contains Ki 4 as a
rooted subgraph.

Note that inj(F,G) > Q(nd*®)) as one can embed F into G one vertex at a time. Because
nd*F) = (e A=1/pr)y — (ptteE)=vE)HEEN) = ,(p!RE) by the pigeonhole principle,
there exists o: R(F) — V(G) such that inj(F,G;0) = w(1l). Ideally the images of V(F) \ R(F)
under some p embeddings in Inj(F, G; o) are pairwise (vertex) disjoint, and thus such p embeddings

would give us a copy of F? in G. To that end, we define the following notion.

Definition 13 (Ample embedding). Given a tree F' and a graph G, for n € Inj(F,G), we say n is C'-
ample if there exist n1,...,nc € Inj(F, G) such that n; and 7 are identical on R(F’), and the images
of V(F)\ R(F) under 71, ...,nc are pairwise disjoint. Given C € N, denote Amp.(F,G) the set
of C-ample embeddings from F' to G. For a subset U of R(F') and an injection o: U — V(G), the
relativized version of Ampq(F,G), denoted by Ampq(F,G;0), is just Ampq(F, G) N Inj(F, G;0).

However it could happen that many embeddings in Inj(F,G;0) map a nonempty subset of
V(F)\ R(F) in the same way, thus preventing us from finding a p-ample embedding in Inj(F, G; o).

These possible obstructions are encapsulated in the following definitions.

Definition 14 (Rooted subgraph). Given two rooted graphs F and Fs, we say that Fy contains
Fy as a rooted subgraph if there exists an embedding n from Fj to F, such that for every v € V(F}),
n(v) € R(Fy) if and only if v € R(F}).

Definition 15 (Obstruction family). Given a tree F, a family Fy of trees is an obstruction family
for F' if every member of Fq is isomorphic to a subtree of F' that is not a single edge, and moreover
for every nonempty proper subset U of V(F')\R(F), after adding U to the root set of F', the resulting
rooted graph contains a member of Fj as a rooted subgraph. (See Figure 3 and Proposition 18 for

a concrete example of an obstruction family.)

The following definition quantifies the conditions on the obstruction family for F' that ensure

the existence of a p-ample embedding from F' to G.

Definition 16 (Negligible obstruction). Given two trees Fj and F', we say that Fy is negligible for
F if for every p € NT and ¢ > 0 there exist ¢y > 0 and Cy € N such that the following holds. For
every ¢ > ¢y and every n-vertex graph G with n > ng(c), if every vertex in G has degree between
d and Kd, where d = en®, K = 5% and a = 1 — 1/pp, and moreover amp,(F,G) = 0, then
ampg, (Fo, G) < end®fo) An obstruction family for F is negligible if every member of the family
is negligible for F'.



Figure 4: Vertex partition of T ; .

Remark. As we shall see later in Sections 4 and 5, when certifying the negligibility of an obstruction
family, the concrete form of K is unimportant as long as it depends only on F. However, since
we only need that specific K for Lemma 17 to work, we state it explicitly to avoid introducing an

additional universal quantifier in Definition 16.

We wrap up the above discussion in the following lemma, and we postpone its proof to Section 3.

Lemma 17 (Negligibility lemma). Given a tree F, if there exists a negligible obstruction family
Fo for F, then ex(n, F?) = O(n?>~1/PF) for every p € NT.

The negligibility lemma provides us a two-step strategy to establish Conjecture 7 for a balanced
rooted tree F': first identifying an obstruction family Fy for F', and second certifying the negligibility
of Fy. Although in the first step there might be multiple obstruction families for F', heuristically
speaking it makes more sense to choose Fy that is minimal under inclusion, because all the heavy
lifting happens in the second step that certifies the negligibility of each member of Fj.

Coming back to the tree T ; o+ defined in Figure 1, we choose the following obstruction family

which is indeed minimal under inclusion.

Proposition 18. For every s,t € N* and s’ € N, if (¢t,s') # (1,0), then the family {K; 541} U
{Tsi—igri: 1 <i<s—s'} is an obstruction family for Ts; s .

Proof. Let F' =T, s, and let U be a nonempty proper subset of P U@, where P and @ are vertex
subsets of V(F') defined in Figure 4. Let F} be the rooted graph after adding U to the root set
R(F) of F. If U contains the vertex in P, then F}; contains K 541 as a rooted subgraph. Otherwise
U C Q. In this case, Fy contains T, ; #4; as a rooted subgraph, where i = |U|. Finally notice
that when s’ +4 > s + 1, Ty ;_; #4; contains Kj .11 as a rooted subgraph, and so does F, (see

Figure 3 for an example). O

Theorem 8 follows immediately from the next theorem which certifies the negligibility of the

obstruction family defined in Proposition 18.

Theorem 19. For every s,t € NT and s’ € N, when s — s’ > 2, assume in addition that

tZ(l—%l)k:(k‘—%)(s+2—k:)+%, for every2 <k <s—s. (2)



If T := T, o is balanced, then for every p € N* and € > 0, there ewists cg > 0 such that the
following holds. For every ¢ > ¢y and every n-vertex graph G with n > ng(c), if every vertex in
G has degree between d and Kd, where d = en®, K = 5% and o = 1 — 1/pr, and moreover
amp,(T,G) = 0, then

(a) ampg, (K1,641,G) < end®K1s11) where C, = U(Tﬁt’sﬂ); and
(b) ampc, (F,G) < end®F%) | where Cj, = pv(T)* and F), = Tst—k,s'+k, for every 1 <k <s—s'.

Proof of Theorem 8. Suppose that T' := T, + is balanced. When s < &', the obstruction family
for T consists of a single K 541, which by Theorem 19(a) is negligible for 7. When s — s’ = 1, in
view of Theorem 19, the obstruction family Fy defined in Proposition 18 is also negligible. When
s — s > 2, Fp is negligible provided (2). Observe that ¢t > s3> — 1 ensures (2). Indeed, the right
hand side of (2) is at most k?(s+42— k) + 1/s, which, by the inequality of arithmetic and geometric
means, is at most (2(s+2)/3)3/2+1/s, which is at most s3> —1 for s > 3. One can check directly in
case s = 2 that the right hand side of (2) is less than 7. In any case, it then follows from Lemma 17
that ex(n, T?) = O(n>~Y/r) for all p € N, O

Our proof of Theorem 19 is inductive in nature. In Section 4 we first establish the negligibility
of K s41 in Theorem 19(a). In Section 5 we deduce the negligibility of Fj in Theorem 19(b) from
that of K411 and Fi,...,Fi_;. The inductive pattern here is counterintuitive in the sense that

the negligibility of F}, which is a subgraph of Fj_q, comes after that of Fj_.

3 Proof of the negligibility lemma

In Section 2, we have analyzed the special case where the graph G is regular. In the context of
degenerate extremal graph theory, it is indeed standard to assume that G is almost regular. This
idea due to Erdés and Simonovits first appeared in [12]. We shall use the following variant (see

also [21, Proposition 2.7] for a similar result).

Lemma 20 (Theorem 12 of Bukh and Jiang [4], only in arXiv version). For every ¢ > 0 and
€ (0,1], there exists ng € N such that the following holds. Every n-vertex graph with n > ng and
at least (6¢/a)n'+® edges contains an n-vertex subgraph G with n > (6¢/a)n®/? such that every

vertez in G has degree between ecn® and Ken®, where K = 5%, U
We now formalize the discussion in Section 2 on finding a copy of F? in G.

Definition 21 (Extension). Given two trees Iy, Fy and a graph G, for 1 € Inj(F1,G) and 19 €
Inj(F3, G), we say no extends ny if n1 = 1y 0o for some embedding 712 € Inj(F, Fy). Given C € N,
denote

Extc(Fh, Fa, G) = {n2 € Inj(F», G): ny extends some 7; € Ampq(F1,G)}.



Proof of Lemma 17. Suppose that F'is a tree, p € NT and Fj is a negligible obstruction family for F'.
Let ¢ > 0 be a constant to be determined later. We would like prove that ex(7i, FP) < (6/a)citt®
for all 7 > ng(c), where o =1 —1/pp. By Lemma 20, it suffices to prove that every n-vertex graph
G with n > ng(c), if every vertex in G has degree between cn® and Kcn®, where K = 5%/ then
G contains FP as a subgraph.

Suppose that G is an n-vertex graph with n > ng(c) such that every vertex in G has degree
between d and Kd, where d = cn®. For the sake of contradiction, we assume that amp,(F,G) = 0.
With hindsight, take

K—eF)
©3Y per, Mj(Fo, F)
Unwinding Definition 16, we obtain two constants cg, > 0 and Cg, € N for every Fy € Fy. If we
had chosen ¢ > max{cp,: Fy € Fo}, then for every Fy € Fo, ampe,, (Fy,G) < end®F) | and in
particular, amp, (Fo, G) < end®*®) | where Cy = max({Cr,: Fo € Fo} U {p}).
Consider the embeddings in

€

I:=Tnj(F,G)\ ] Extg,(Fo,F,G). (3)
FoeFo

Clearly inj(F,G) > (1 — o(1))nd*¥), and moreover for every Fyy € Fo,
exte, (Fy, F, G) < inj(Fy, F) ampg, (Fy, G) (K d)*F) =) < ¢ inj(Fy, F)K*Fndt),
We can estimate the cardinality of I by

1] > (1= o(1)) nd® ™) —e Y~ inj(Fy, F)KFnd*") = (2/3 — o(1))nd*"),
FoeFo
and so |I| > nd®() /2 = ccF)pl+e(B)A=1/pr) 9 — c(F)p| R /2 if we had chosen ng(c) large enough.
By the pigeonhole principle, the cardinality of I, := I NInj(F, G;0) is at least ¢ /2 for some
o: R(F) — V(G). For every U C V(F) \ R(F) and every injection 7: U — V(G), set

I,(1) ={n € Iy: n(u) = 7(u) for every u € U}.
Claim. For every U C V(F)\ R(F) and 7: U — V(G),
1L, (7)| < (Cou(F)?)P - IRIEI-IU]

Proof of Claim. We prove by backward induction on |U|. Clearly |I,(7)| < 1 when the domain U of
7 equals V(F)\ R(F'). Suppose U is a proper subset of V(F')\ R(F). Recall from Definition 15 that
after adding U to the root set of F', the resulting rooted graph contains Fy as a rooted subgraph
that is isomorphic to a member of Fy. Notice that Uy := V(Fp) \ R(Fp) is nonempty because Fj is

not a single edge.



Let I (7) be a maximal subset of I,(7) such that the images of Uy under the embeddings in
I! (1) are pairwise disjoint, and let Vj be the union of these images. Since I,(7) C I and I defined
by (3) contains no extension of any Cp-ample embedding from Fyy to G, we bound |I](7)| < Cy,
which implies that |Vy| < Cy|Up|. For each u € Uy and v € Vjp, by the inductive hypothesis

’IO'(TUU)’ < (CQ’U(F)2)U(F)_‘R(F)‘_|U\—17

where 7,,: U U {u} — V(G) extends 7 by mapping u to v additionally. The maximality of I/ (7)
means that for every n € I,(7) there is u € Uy such that n(u) € Vp, and so n € I,(7yy) for some
v € V. Therefore

oM< D Halru)l < [Ul| Vol (Cov(F)?) = IRENEITIL,

u€eUp,veV)

which implies the inductive step as |Up| < v(F') and |Vy| < Co|Up].
The same argument works for the last inductive step where U = & because there is no p-ample
embedding from F' to G, and Cy > p. ]

In particular, I, = I,(7) when the domain of 7 is an empty set, and so |I,| < (Cov(F)?)?UF)-IRE)]
which would yield a contradiction if we had chosen ¢ > (2(Cov(F)?)(F)=IRUI))1/e(F), O

4 Ample embeddings of stars

The negligibility of K 541 for Ty + is established directly through the following technical lemma.

Lemma 22. For every s,t € NT and s’ € N, set s9 = max(s',1), Fy = K1,5,, F1 = K111 and
T =Tss. For every p e NT and € > 0, there exists co > 0 such that for every n-vertex graph G,
if amp, (T, G) = 0 and inj(Fy, G) > con®®, then ampc, (F1,G) < einj(F1, G), where Cy = v(TY, )

Our proof of Lemma 22 follows the outline of [6, Lemma 5.3]. Over there the conclusion, in
our language, is that for every ¢ > 0 there exists C; € N such that ampg, (F1,G) < einj(F1, G).
One can work out the quantitative dependency C7 = Q(e_l/ (5_1)) from their argument. Although
this dependency alone is enough for the negligibility of Ki sy, it becomes inadequate when we
iteratively apply this bound later in Section 5. To decouple C; from ¢ in Lemma 22, we need the

following classical result in degenerate extremal hypergraph theory.

Theorem 23 (Erdds [9]). For every r-partite r-uniform hypergraph H there exists € > 0 so that
ex(n, H) = O(n"~¢).4 O

4Given an r-uniform hypergraph H, the Turdn number ex(n, H) is the maximum number of hyperedges in an

r-uniform hypergraph on n vertices that contains no H as a subhypergraph.

10



Proof of Lemma 22. Suppose that G is an n-vertex graph such that amp,, (T, G) = 0 and inj(Fp, G) >
con®, where ¢g is to be chosen. As we only deal with embeddings to G in the following proof, we
omit G in Inj(-,G), Amp (-, G) and their relativized versions.

Recall sy = max(s’,1). Clearly G contains no F? as a subgraph, where F' = Ty, . Let U
denote an arbitrary vertex subset of size sp in G, and denote Ng(Up) the common neighborhood
of Up in G. Let H be the (s + 1)-uniform hypergraph on V(G) given by

H = {n(R(F1)): n € Ampg, (F1)},

where C1 = v(T7, ,,), and denote H[Ng(Up)] the subhypergraph of H induced on Ng(Up).

The strategy is to use > . e(H[Ng(Uo)]) and ) 1, ('N gﬁ(g‘))') as intermediaries to connect
ampg, (F1) and inj(Fy).

Claim 1. There exists ng = ng(s,t,p,C1) € N such that for every Uy with |Ng(Uy)| > no,

C(HING(U) < 1o (el

Proof of Claim 1. Recall the vertex partition V(F) = PUQUSUS’ from Figure 4. This partition
induces the vertex partition V (FP) = PU Cj USuS’, where P denotes the union of the p disjoint
copies of P in FP and @ is defined similarly. Let Hy be the (s + 1)-uniform hypergraph on PUS
with each hyperedge given by the s 4 1 neighbors of a vertex of @ in FP,

Observe that H[N¢g(Up)| never contains Hy as a subhypergraph. Suppose on the contrary that
there exists an embedding 7 from Hy to H[Ng(Up)],”> then we can embed F? in G by mapping
S’(F) to Uy, mapping P(FP)U S(F) according to n, and embedding the vertices in Q(FP) greedily.
The last step of the embedding is possible because for every hyperedge e € Hy, n(e) = n'(R(F}))
for some 7' € Ampg, (F1), and more importantly C; > v(FP).

Since Hy is an (s + 1)-partite hypergraph, the claim follows from Theorem 23 immediately. [J

We choose such ng € N in Claim 1 and require in addition that ng > s+ 1. For convenience, set
U = {Us € V(G): [Us| = 50, ING(Un)| > no}.

Claim 2. The number of Ci-ample embeddings from F} to G satisfies

500 (s + 1)!

oo 2 c(HING(Uo))).
1

Uo

ampe, (F1) <

Proof of Claim 2. Let o denote an arbitrary injection from R(F}) to V(G), and denote for short
a(0) = ampg, (F1;0). Note that a(o) has the dichotomy that either a(o) = 0 or a(o) > Cy > so,
which implies that (agg)) > (a(0)/50)* > O3 ta(0)/s5 in either case. Through counting in two

5Given two hypergraphs H; and H» of the same uniformity, an embedding from H; to H» is just an injection
n: V(H1) = V(H2) such that n(e) € H» for every e € H;.
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ways the disjoint union of the edge sets of H[N¢g(Up)] for all vertex subsets Uy of size sg in G, one

can show that

so—1 so—1
s+ 0 et = X () = S S ato) = S (1),

Uo o 50 50 o 0
which implies the desired inequality in the claim. ]
Claim 3. The number of embeddings from Fj to G satisfies
.. (s +1)! |Ne(Uo)]
Fy) > ——~ .
inj(F1) = 2070 2 s+1
UpeU

Proof of Claim 3. We count in two ways the disjoint union |_|U0 cu I(Uo), where
I(Uo) :={n € Inj(F1) \ Ampc, (F1): n(R(F1)) € Na(Uo)}-

On the one hand, for a fixed Uy with |[Ng(Up)| > no, every subset of Ng(Uyp) of size s + 1 that is
not a hyperedge of H[Ng(Up)| gives rise to at least so(s + 1)! many n € I(Uy), and it follows from
Claim 1 that e(H[Ng(Up)]) < ("o, Thus we get

> L2110l

> 5 o1 ), for every Uy € U.

On the other hand, for every n € Inj(F1) \ Ampg, (F1), there are at most (gol) many Up such that
n(R(F1)) € Ng(Uy). Hence

inj(F1) > inj(F1) — ampg, (F1) C1 Z!I Uo)| > C’SO Z!I Uo)l,
80

which implies the desired inequality in the claim. ]

A simple double counting argument shows that

inj(Fb) = so! > _|Ne(Up)|-
Uo

Recall the assumption that inj(Fp) > con®. Thus the average N of |[Ng(Up)| satisfies

inj(Fo)

80!(2))

We can choose ¢y > 0 large enough so that (514\:1) > (1+4s°Cy/e) (!jfl). By Jensen’s inequality,

S () 2 (0)(1) 2o vsrena 3 (T,

Uo UogU

N =

> CQ.

we have



which implies that
Z <|NG(Ulo)|> <3 SiC Z <|NG(U10)|>'
Uogld S+ Sp C1 ot s+

Applying Claim 2 and then Claim 1, we get

(780 1

Wampc1 (Fy) < Z H[N¢g(Up)])

[N (Uo)| 3 [Na(Uo) £ [Na(Uo)
<
_Z< s+1 +430°Clz s+1 _238‘)(5’1; s+1 )’

UogU €U

which implies

(s+ 1)k |Na(Uo)|
ampcl(Fl)SWz sl .
UpeU

Comparing it with Claim 3, we get the desired inequality in Lemma 22. O

Proof of Theorem 19(a). For s,t € N* and s’ € N, set sp = max(s’,1), and T = T, . Since T is
balanced, by Proposition 9, sg < s+ 1 and pr > sg, the latter of which implies that 1 4+ sga > sg,
where a =1 —1/pr.

Let p € NT,C = o(T7, ;1) > o(T%

s,t,80

) and € > 0, and let ¢9 > 0 be a constant to be
determined later. Suppose that ¢ > ¢y and G is an n-vertex graph with n > ng(c) such that
every vertex in G has degree between d and Kd, where d = en® and K = 5%¢, and moreover
amp, (T, G) = 0. Clearly, inj(K1,s11,G) < n(Kd)°. We apply Lemma 22 and obtain ¢; > 0 so that
if inj(K1 59, G) > c1n® then

ampc, (K1,541,G) < einj(Kq641,G) < <€n(Kd)SJrl = e K5 tingeBrst1),
Since 1 + spa > s, we have

inj(K 1. G) > (1~ 0(1))nd* = (1 - 0o(1))cn' 0% > (1~ o(1))*n'™.

1/s0

Thus the condition inj(Kj 5., G) > ¢1n® can be met by choosing ¢y = ¢;’™" and ng(c) sufficiently

large. U

5 Ample embeddings of subtrees

5.1 Preliminary propositions

For the proof of Theorem 19(b), we need the following variation of the classical sunflower lemma
for sequences (see [2] for the recent breakthrough on the sunflower conjecture of Erdés and Rado [8]

and related background).
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Definition 24 (Sequential sunflower). Suppose that W C V* is a system of sequences. A sub-
set S of W is a sequential sunflower with kernel I C [k] if for every pair of distinct sequences
(s1,---,5K), (5),...,5,) €5, the subsequences (s;);er and (s});er are equal, but the sets {s;: ¢ ¢ I'}
and {s,: ¢ ¢ I} are disjoint.

Proposition 25. Fiz k,C € Nt. Suppose that W C V¥ is a system of sequences such that each

sequence in W consists of k distinct elements. If W contains no sequential sunflower of size C,
then [W| < (k)2(k!C — 1)F.

Proof. Consider the system F of subsets of V' defined by

F={{s1,...,8c}: (s1,...,8,) € W}

Clearly |W| < Ek!|F|. We claim that F' contains no sunflower of size k!C. Recall that a sunflower
is a collection of sets whose pairwise intersection is constant. Assuming the claim, the classical
sunflower lemma precisely states that |F| < k!(k!C' — 1)*, which implies the desired inequality.
Suppose on the contrary that £ C F is a sunflower of size k!C' with kernel K. Consider the
subsystem of sequences Wy = {(s1,...,sx) € W: {s1,...,s,} € E}. Clearly |Wy| > k!C. By the
pigeonhole principle, there exist a set Wi C Wy of size C and I C [k] such that for every s € Wy,
{s;:1 € I} = K and (s;);cs is a constant subsequence. As F is a sunflower, one can check that W,

is a sequential sunflower of size C', which is a contradiction. O

We also need the following classical theorem due to Kévari, Sés and Turan [23] on the Zarankiewicz

problem.

Proposition 26. Fiz s,t € NT. Suppose that H is a bipartite graph with two parts U and W such
that every vertex in W has degree at least s. If H contains no complete bipartite subgraph with s
vertices in U and t vertices in W, then e(H) < K|U||W|*~1/5, where K = s3/(t —1)/s!. O

The following result is a generalization of a result due to Fiiredi [15]. Our proof of the general-
ization follows the proof of Fiiredi’s result by Alon, Krivelevich, and Sudakov [1] using dependent
random choice (see [14] for a survey on dependent random choice). We denote dg(v) the degree of

a vertex v in G.

Proposition 27. Fiz k,r € N* such that k < r. Suppose that F is a bipartite graph with two parts
Uy and Wy such that every vertex in Wy has degree at most r. For every bipartite graph G with
two parts U and W, if there is no embedding n from F to G such that n(Uy) C U and n(Wy) C W,
then

> da(w)* < (KUl + Kol *) U]+,

uelU

where K1 = |Wol®/(r)*/" and Ky = (|Ug| — 1)*/7.
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Vo Vo Vo
V2 V1 V2 V1 V2 U1
s’ s’ s’
Sz Sl S2

Figure 5: Fy, F1 and Fs.

Proof. Assume for the sake of contradiction that
D d(w)t > () H W MO R 4 (10| = DM TU R,
uelU

Pick a subset W7 C W of size r uniformly at random with replacement. Set U(W7) C U to be
the common neighborhood of W7 in G, and let X denote the cardinality of U(W7). By linearity of

expectation and Holder’s inequality,

r r/k
d(u) (X uer dw)*)
— — >
ElX] Z(\W\) Z U
uwelU
o (AWl U+ + (Uol = DIOPTW UL (WOl
TRGEE = W v

Let Y denote the random variable counting the number of subsets S C U(W7) of size r with fewer
than || common neighbors in G. For a given such S, the probability that it is a subset of U (W)
is less than (|Wp|/|W])". Since there are at most (‘g') subsets S of size r, it follows that

U (Wl \" _ [UI" (1Wol\"
E|lY < .
m< () (W) <% (W
By linearity of expectation,

U™ (Wol\" U™ (Wol\"
EX -Y — Upl —1— — | =|Up| — 1.
[ ] > rl ‘”r‘ +‘ 0’ rl ’”r’ ‘ 0’

Hence there exists a choice of Wj for which X —Y > |Uy|. Delete one vertex from each subset S
of U(W7) of size r with fewer than m common neighbors. We let U’ be the remaining subset of
U(W7). The set U’ C U has at least |Uy| vertices, and every subset of U’ of size r has at least ||
common neighbors. One can then greedily find an embedding 7 from F' to G such that n(Uy) C U’
and n(Wy) C W. O

5.2 Proof of Theorem 19(b)

We inductively deduce the negligibility of Fj, by that of Fi,..., Fy_i, where Fj, = Ty, j g4p. In

each inductive step, we also need to set aside the embeddings from Fj to G that extend the ample
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embeddings from Kj sy1 to G which were already dealt with in Lemma 22. Recall Extc(F, F, G)
from Definition 21, and that extc(F1, Fo, G) denotes its cardinality.

In the rest of the section, s,t,p are fixed parameters and n is a parameter that goes off to
infinity. For two quantities a,b with b > 0 that possibly depend on n, we write a < b if there exist
C =C(s,t,p) >0 and ng € N such that a < Cb for all n > ny.

Lemma 28. Fiz s,t,p,k € NT and s’ € N such that s’ < s, k < s and k <t. Set F; = Ts4_; g4i

and C; = pv(Fy)', for 0 <i <k, and set F;, =Tsy_ g, a=1-1/pp,, and C, = U(Tﬁt’SJrl). When
k=1, assume that o« > 1 —1/s; and when k > 2, assume that

t> (1= ) k(= 1) (s+2— k) + L. (4)

For every ¢ > 1 and n-vertex graph G, if every vertex in G has degree between d and Kd, where

d=cn® and K = 5%%, and moreover ampg, (Fo, G) =0, then

k-1
ampg, (Fy, G) — exte, (K141, Fy, G) < Linj(Fy, G)d¥ + Lnd®0r) + Z ampg, (F;, G)d*0 0.

i=1

Proof. As we mostly deal with embeddings to G, we omit G in Inj(-, G), Amp(-, G), Ext(-,-,G) and
their relativized versions.

Let vg,v1,...,v; be defined for Fy,..., F) as in Figure 5, and let .S; be the set of roots which
are adjacent to v; for i € [k]. We view F; as a subtree of F;_; induced on V(F;_1)\ S;. Let o
denote an arbitrary injection from R(Fy) \ {v1,..., v} to V(G), and set

A, = Ampg, (Fj;0) and f; = Extc, (K1 541, Fi) N Inj(Fy; 0).

For short, denote 7 := (vy, . ..,vg) and 7(7) := (n(vy), . ..,n(vg)) for every n € Inj(Fy). Let H,
be the bipartite graph with two parts

Uy ={n(vg): n € g{,} and WG ={n@):ne gg}

whose edge set is given by
Hy = {(n(vo),n(v)): n € As}.
Claim 1. The size of g{, is bounded by that of I:TJ as follows:
|Ag| = || < | Hol.

Proof of Claim 1. In view of the definition of I ol A, \ I ~ contains no extension of any C,-ample
embedding from K 541 to G. Therefore for every edge (u,w) in I:fg, there are at most Ct~* many
n € Ay \ I} with (n(vo),n(?v)) = (u, ). O
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Sample a subset U, of [70 of size mg chosen uniformly at random, where mg will be chosen
later. We denote H, the bipartite subgraph H, of ﬁa induced on U, U Wg, and we partition H,
into H; and H, where H; consists of edges (u,w) in H, such that @ has degree at most sk in
H,, and H} is the complement of H, in H,. We estimate the number of edges in H, and H} in

the following two claims respectively.
Claim 2. For every o, the number of edges in H satisfies

k—1
[y |d* < 0% + 37|y € Ampe, (Fi0): n(wo) € Up}|d”.
=1

Proof of Claim 2. We define a subst B, of Inj(Fy; o) as follows. For every edge (u,w) in H,, we
choose some 7 € A, with (u, @) = (7(vo),n(7)), and then this chosen 7 gives rise to (1 — o(1))d**
many 7' € Inj(Fp;o) such that n O n and (u, W) = (' (vo),n’(¥)). Finally, we collect these 7" in
B,.

Note that

(1= o(1))|H |d** < |Bs], (5)

and B, has the distinctness property in the sense that
no two distinct embeddings in B, are identical on {vg,v1,..., v} US; U U S. (6)

Let o/ denote an arbitrary injection from R(Fp) to V(G) such that ¢/ O o, and define B,s =
B, NInj(Fp;0’). We claim that, for every I C [k], the cardinality of

Bil := {n' € B, there exist ' =n},n5, ... ﬂ?lci € B, such that

n(¥), ..., ng, () form a sequential sunflower of size C; whose kernel is I}.

satisfies
> IBL| < [{n € Ampg, (Fi;0): n(vo) € Up}|(Kd)™,  where i = [1]. (7)
p”

Without loss of generality, we may assume that I = [k] \ [k — i] for some ¢ € {0,...,k — 1}.
Clearly > ,|BL| = |U,, BL|. For every ¢’ and 1 € BI, C Inj(Fy; o), we claim that the restriction,
say n € Inj(F;0), of ' to V(F;) is in Ampg, (F;0). Assuming the claim, as there are at most
(Kd)* ways to extend n € Amp¢, (F;;0) to an embedding from Fy to G, (7) follows immediately.

To see that n is Cj-ample, by the definition of BI, there exist n = MMy Mo, € Bor
such that 1) (?),...,ng, (¥) form a sequential sunflower of size C; with kernel I = [k] \ [k — .
Unwinding the definition of a sequential sunflower, for two distinct ji, jo € [C;], we know that 773- .
and 7, are identical on {vk—it1,..., vk}, but {nj (v1),..., 7} (vk—i)} and {n}, (v1),... 7, (vk—i)}
are disjoint. For every j € [Cs], since 77;- € B, C B,, we know according to our choice of B,
that the restriction of n; to V(Fj) is a Cp-ample embedding from Fj, to G. Thus, using the

assumption that Cy > Cjv(F;), we can greedily modify 77/17”’777/@ one at a time so that the
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images of V' (F},) \ R(Fy) under 1y, ..., ng, are pairwise disjoint. One can now easily check that the
restrictions, say 7 = n1,...,n¢;, of ny,... ,n’ci to V(F;) satisfy that they are identical on R(F;),
and the images of V(F;) \ R(F;) under 71, ...,n¢c, are pairwise disjoint.

Finally we estimate the cardinality of

BY =B, \ |J BL.
IC[k)

Set W = {n/(v): ¥ € BJ}. For every sequence & € W, as the degree of « is at most sk in
H,, together with the distinctness property (6) of B, 2 By, we know that |B),| < sk|W|. By
the definitions of B}, and Bg,, one can check that W contains no sequential sunflower of size
max(Co, . ..,Ck_1) = pv(Fp)*~!. Thus Proposition 25 implies |B)| < sk|W| < K for some
positive constant Ky = Ky(s,t,p), and so

Byl < Ko+ 3B,
IC[k]

Because the total number of o’: R(Fy) — V(G) such that ¢’ D ¢ is at most n°*, summing the last
inequality over all ¢/, together with (5), yields

(1 —o())|H, |d** < |B,| < Kon** +> > " |BL|,
o’ ICK]

which implies the desired inequality in view of (7) and the assumption that amp¢, (Fo) = 0. O

Claim 3. For every o, the number of edges in H} satisfies

|HY| < mon! =1/ if k=1
HO— k—1 s(k—1)
~ (sk—1)(1=2=1)+1 sk+ i
. (1-%51) dk=1 4 my "' otherwise.

Proof of Claim 3. Let Uy denote an arbitrary vertex subset of U, of size sk in H,, and denote
Ny+(Uo) C W,, the common neighborhood of Uy in H. Let W(Up) be the k-uniform hypergraph
defined by

W(U()) = {{wl, . ,wk}: (wl, e ,wk) S NH;(U())}

Observe that W (Uy) contains no matching of size Cy = p. Indeed, suppose on the contrary that
W (Uy) contains a matching ey, ..., e, of size p. We can find a p-ample embedding from Fj to G as
follows, which would contradict with the assumption amp¢, (Fp) = 0. Since e; € W(Up), we know
that e; is the image of {v1,..., vt} under some embedding in Amp, (Fy;0). Because Cj, > sk, we
can find some 71 € Ampg, (Fi;0) with {n1(v1),...,m(vr)} = er such that 1 (V (Fy) \ R(Fy)) does
not intersect Uy. We then extend 7 to 1] € Inj(Fy) by mapping S; U --- U Sk to Uy additionally.

To see that 7] is in fact p-ample, we greedily build a sequence of embeddings 7, . .. ,77;, in Inj(Fp)
such that they are identical on R(Fp), and the images of V/(Fp)\ R(Fp) under 73, ..., 7, are pairwise
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disjoint. Suppose we have built 7], ... ,77;- for some j < p. Similar to how we found 7}, because
Cr > sk + ju(Fp), we can find some 7,41 € Ampg, (Fi;0) with {n;11(v1),...,nj+1(vr)} = ejm1
such that 1 (V(Fy)\ R(F})) does not intersect UgUU,;<; i (V (Fo)). We extend 7; to n; by mapping
S1U---USg to Uy the same way as 7.

Now we treat the kK = 1 case and the k > 2 case separately.

Case 1: k = 1. In this case, W(Up) is a l-uniform hypergraph, and it contains less than p
vertices for every Uy. Therefore H contains no complete bipartite subgraph with s vertices in U,
and p vertices in W,. Proposition 26 shows that |H| < |Uy||[W,|*~1/¢, which implies the desired
inequality in view of the fact that [W,| < n.

Case 2: k > 2. Using the assumption that dj;+ (W) > sk for every w € Wo, a simple double

counting argument shows that

= Y @ < X () = S o
Uo

BEW, BEW,

which, together with the fact that [N+ (Up)| < k[W (Up)|, implies that

[HS| S Y W (Uo)l.
Ug
For convenience, denote N (Up) the vertex set of the k-uniform hypergraph W (Uy). As W (Uy)
contains no matching of size p, clearly we have |W (Up)| < k(p — 1)|N(Up)|*~1, and so

[HS| S Y INWo) [
Ug
It suffices to estimate EUO]N(UO)]k_l. Clearly |N(Up)| < Kd, and so EUO]N(UO)]k_l <
mk(Kd)*~1, which gives the following simple bound on |H} |,

(| < mitdt . (8)

To get a better estimate on ), |V (Uo)|*~1, we squeeze a bit more out of the assumption that G
contains no F}) as a subgraph by iteratively applying Proposition 27.6
Let V(W,) C V(G) be the set of vertices that ever appear in any sequence in W,. For every

subset of U C U,, we denote N (U) the set of vertices in V(W) that are adjacent to every vertex
in U in the graph G. We prove inductively for 1 < i < sk that

_ (i—1)(1-2=)+1 H_s(fﬂ)
S NGO gl T e e ©)

UCUy: |U|=1

®Had we used the simple bound (8) on |HZ|, we could have removed the rest proof of Claim 3 together with

Proposition 27. The tradeoff that comes with this simplification is a condition on ¢ that is more restricted than (4).
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Notice that N (Up) € N (Up) for every Up. In particular, taking i = sk in (9) gives

s(k—1)

k—1 1 k+
Z‘N ‘k 1 < (5 )( s+1) dk_l—i—mg s+1

)

which implies the desired inequality in Claim 3.

The base case i = 1 is evident as the maximum degree of GG is at most Kd. For the inductive
step, consider an arbitrary U C U, of size i — 1 and denote u an arbitrary vertex in U, \ U. Clearly
ING(U U{u})| = dgy(u), where G(U) is the bipartite subgraph of G' induced on U, and N, (U).
Observe that there is no embedding 7 € nj(T 0, G(U)) such that n(R(T%,,)) € Us, because
otherwise one can extend 7 € Inj(Ts 0, G(U)) to 1/ € Inj(F}) such that 1’ and o are identical on
S'(Fy) = S'(Fy) (see Figure 4 for the definitions of S'(Fp) and Q(Fp)). As every vertex in Q(T7, )
has degree s+ 1, and |U,| = mg, Proposition 27 shows that

- - -
> INGU UL = Y dgan @S (mb T+ ING@)F ) my

Let U’ denote an arbitrary subset of U, of size i. Summing the above inequality over all U C U,

of size 1 — 1, we obtain from the inductive hypothesis that

.s(k 1) 1—
ZW’\“<Z( ”*mwﬁW(Wﬂ

s(k— 1)

i+
+1 +1 / k 1
S my ° e E |N U)l
. s(k—1) k (s—1)(k—1)
i+ (i-1)(1— ; _ R
S mg 1 _|_m0 ( +1) dk 1 +m mg 1 ,

. . iy s(e=1) i =D (k=1)
which becomes (9) after noticing that m, °*' subsumesm, °**' . O

Before we assemble Claims 1 to 3 together, we observe that
U, | < inj(Fy; 5 0). (10)

Indeed, since every u € U, corresponds to 7 € Inj(F} ;o) such that n(vg) = u, where F~ is the
subgraph of F}, induced on V(Fy) \ {v1,..., v}, clearly we have (10). Like in the proof of Claim 3,
we treat the k = 1 case and the k > 2 case separately.

Case 1: k£ =1. We simply take mg = ][7 |, in other words, U, = U,. Notice that every vertex
7 € W, has degree at least Cy in H, because @ = = n(¥) for some Cg-ample n from Fj to G.
Therefore H, = H, F. By Claims 1 and 3 and the assumption 1 — 1/s < «, we obtain for every o
that
Ao = 1I5| S |Hol = [HS| S |Us|n' =
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Using the assumption 1 —1/s < a, we estimate that pl=ls < po = %dk . Therefore, in view of (10),
we have |A,| — |IX] < Linj(F;0)d". Summing over all injections o: R(Fy) \ {v1,..., v} = V(G)
yields

ampe, (Fy) — exte, (K1s11, F) S Linj(Fy;)d".

Case 2: k>2. We take mg = [ns~(+D0k| Ag ' < 5 one can check that pp, < s+ 1, and so
a < s/(s+ 1), which implies s — (s + 1)a > 0. Hence my = w(1). We claim that the condition (4)

on t implies that
s(k—1)

k—1
(sk—1)(1~ sT1 sk+=7

m )§ n® and my

< mon®d*~1. (11)

Indeed, using a« =1 —1/pp, = (st +s" —1)/(st +t + '), one can check that (4) is equivalent to

(s —(s+1)a)k(sk — 1) (1 s+1) < aq,

which implies the first inequality in (11). To see that the second inequality follows from the first
inequality in (11), in view of the fact that n®d*~! > n*® as d = ¢n® and ¢ > 1, it suffices to
check that (sk —1)(1 — (k—1)/(s+ 1)) > (sk+s(k—1)/(s + 1) — 1)/k, which is equivalent to

sk(k —1)(s —k+ 1) + (k — 1)? > 0, which clearly holds.

Using (11), we can simplify Claim 3 to |H}| < mon®d*!.

Combining this with Claim 2, we
obtain for every o that
k—1 '
|Ho| = [Hy |+ [H}| S nFd™F + mon®d* ™"+ "|{n € Ampg, (F;;0): 1(vo) € Uy }|d*0 M
i=1

Recall that U, is a subset of (70 of size mg chosen uniformly at random, and H, is the bipartite
subgraph of H, induced on U, U W,. Observe that the expectation of |H,| is mo|H,|/|U,|, and
the expectation of [{n € Ampg, (Fi;0): n(ve) € Us}| is moampg, (Fy;0)/|Uy|. Thus taking the
expectation of the above inequality, and then multiplying both sides by ][7(,] /myg, gives

k—1
\H,| < |U,| (malnSkd_Sk + nadk_1> + Zampci(Fi; o)d*(=R), (12)
i=1

In case \(70\ < my, we could not take U, C (70 of size mg, and we instead simply bound
|H,| < mo(Kd)* < mod". (13)

Using d = c¢n®, one can routinely check that mg Inskd=s% and n®d*~! in (12) are at most
(1+ o(1))d*/c, and mod® in (13) is at most n'~(EFR)=kDge(Fs) /e Therefore Claim 1, (10), (12)
and (13) imply, regardless of whether |l~]0| > myg, that

~ -~ - k—1 '
Aol = 11| S |Ho| S $inj(Fy 5 0)d" + gn!IRENIER ) 15 Tampe, (Fi; 0)d™H.
i=1
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Summing over all injections o: R(Fy) \ {v1,...,vt} — V(G) yields that

k—1
ampck(Fk) —exte, (K541, Fi) S %inj(Fk_)dk + %nde(F’“) + Z ampg, (Fi)ds(i_k).
i=1

This completes the proof of Lemma 28. O

Proof of Theorem 19(b). Assume that s — s’ > 1. Denote Fj, = Ts g4k for 0 <k <s—s. In
particular, Fy = Ts;y. Let p € NT and C, = U(Tf’t’sﬂ). Set Cy = pv(Fp)' for k < s — s'. Let
¢o > 1/e be the constant to be chosen. Suppose that ¢ > ¢y and G is an n-vertex graph with
n > ng(c) such that every vertex in G has degree between d and Kd, where d = cn® and K = 5%,

and moreover amp¢, (Fp, G) = 0. We break the rest of the proof into two cases.

Case 1: k = 1. Let ¢y be at least the constant already obtained from Theorem 19(a). By the
choice of ¢y, we know that ampg, (K s41,G) < end*®1s+1)  Since Fy is balanced, by Proposition 9,
pF, > 8, which implies that 1 —1/s < «, where « =1 — 1/pp,. By Lemma 28 and the assumption
1/c < €, we obtain

ampc, (Fi, G) S einj(Fy;, G)dk + end?Fr) 1 extc, (K1 541, Fi, G).
Since inj(F,,G) < n(Kd)*Fx) < nd*Fx)=* and moreover
exte, (K1 511, Fi, G) < inj(Ky sy1, Fi) ampe (Ky 41, G)(Kd)eE)—eEsm1) < opygelFi)

we estimate ampg, (Fi, G) < end®Fx) | which implies the desired inequality in Theorem 19(b).

Case 2: 2 <k < s—s'. By induction, there exists ¢g > 1/ such that ampg, (F;, G) < end ") for
every 1 < i < k. Note that the assumption (2) in Theorem 19 ensures the condition (4) in Lemma 28.
By Lemma 28 and the assumption 1/c < ¢, we similarly obtain that ampg, (F¢,G) S end*Fx), O
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