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Negligible obstructions and Turán exponents

Tao Jiang∗ Zilin Jiang† Jie Ma‡

Abstract

We show that for every rational number r ∈ (1, 2) of the form 2 − a/b, where a, b ∈ N+

satisfy ⌊b/a⌋3 ≤ a ≤ b/(⌊b/a⌋ + 1) + 1, there exists a graph Fr such that the Turán number

ex(n, Fr) = Θ(nr). Our result in particular generates infinitely many new Turán exponents. As

a byproduct, we formulate a framework that is taking shape in recent work on the Bukh–Conlon

conjecture.
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1 Introduction

Given a family F of graphs, the Turán number ex(n,F) is defined to be the maximum number

of edges in a graph on n vertices that contains no graph from the family F as a subgraph. The

classical Erdős–Stone–Simonovits theorem shows that arguably the most interesting problems about

Turán numbers, known as the degenerate extremal graph problems, are to determine the order of

magnitude of ex(n,F) when F contains a bipartite graph. The following conjecture attributed to

Erdős and Simonovits is central to Degenerate Extremal Graph Theory (see [16, Conjecture 1.6]).

Conjecture 1 (Rational Exponents Conjecture). For every finite family F of graphs, if F contains

a bipartite graph, then there exists a rational r ∈ [1, 2) and a positive constant c such that ex(n,F) =

cnr + o(nr).
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Recently Bukh and Conlon made a breakthrough on the inverse problem [16, Conjecture 2.37].

Theorem 2 (Bukh and Conlon [3]). For every rational number r ∈ (1, 2), there exists a finite

family of graphs Fr such that ex(n,Fr) = Θ(nr).

Motivated by another outstanding problem of Erdős and Simonovits (see [10, Section III] and

[11, Problem 8]), subsequent work has been focused on the following conjecture, which aims to

narrow the family Fr in Theorem 2 down to a single graph.

Conjecture 3 (Realizability of Rational Exponents). For every rational number r ∈ (1, 2), there

exists a bipartite graph Fr such that ex(n, Fr) = Θ(nr).1

It is believed that the graph Fr in Conjecture 3 could be taken from a specific yet rich family

of graphs, for which we give the following definitions.

Definition 4. A rooted graph is a graph F equipped with a subset R(F ) of vertices, which we refer

to as roots. We define the pth power of F , denoted F p, by taking the disjoint union of p copies of

F , and then identifying each root in R(F ), reducing multiple edges (if any) between the roots.

Definition 5. Given a rooted graph F , we define the density ρF of F to be e(F )/(v(F )− |R(F )|),
where v(F ) and e(F ) denote the number of vertices and respectively edges of F . We say that a

rooted graph F is balanced if ρF > 1, and for every subset S of V (F ) \R(F ), the number of edges

in F with at least one endpoint in S is at least ρF |S| .

Indeed the next result on Turán numbers, which follows immediately from [3, Lemma 1.2],

establishes the lower bound in Conjecture 3 for some power of a balanced rooted tree.2

Lemma 6 (Bukh and Conlon [3]). For every balanced rooted tree F , there exists p ∈ N+ such that

ex(n, F p) = Ω(n2−1/ρF ).

It is conjectured in [3] that the lower bound in Lemma 6 can be matched up to a constant

factor.

Conjecture 7 (The Bukh–Conlon Conjecture). For every balanced rooted tree F and every p ∈ N+,

ex(n, F p) = O(n2−1/ρF ).

Given the fact that every rational number bigger than one indeed appears as the density of some

balanced rooted tree (see [3, Lemma 1.3]), Lemma 6 and Conjecture 7 would imply Conjecture 3.

Our main result establishes Conjecture 7 for certain balanced rooted trees Ts,t,s′ defined in Figure 1.

1Erdős and Simonovits asked a much stronger question: for every rational number r ∈ (1, 2), find a bipartite graph

Fr such that ex(n, Fr) = cnr + o(nr) for some positive constant c.
2A rooted tree is a rooted graph that is also a tree, not to be confused with a tree having a designated vertex.
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Figure 1: Ts,t,s′ with roots in black.

Theorem 8. For every s, t ∈ N+ and s′ ∈ N, when s− s′ ≥ 2 assume in addition that t ≥ s3 − 1.

If the rooted tree F := Ts,t,s′ is balanced, then for every p ∈ N+, ex(n, F p) = O(n2−1/ρF ), where

ρF = (st+ t+ s′)/(t+ 1).

It is not hard to characterize the parameters s, t, s′ for which Ts,t,s′ is balanced.

Proposition 9. For every s, t ∈ N+ and s′ ∈ N, the rooted tree F = Ts,t,s′ is balanced if and only

if ρF ≥ max(s, s′) and ρF > 1, or equivalently s′ − 1 ≤ s ≤ t+ s′ and (t, s′) 6= (1, 0).

Prior to our work, Conjecture 7 has been verified for the balanced rooted trees in Figure 2: the

K
(0)
s and Pt cases are classical results due to Kővári, Sós and Turán [23], and respectively Faudree

and Simonovits [13]; Qs,1 and S2,1,0 are due to Jiang, Ma and Yepremyan [18]; Qs,t and T4,7 are due

to Kang, Kim and Liu [22]; K
(1)
s and Ss,t,0 are due to Conlon, Janzer and Lee [6]; K

(2)
s and K

(3)
s

are due to Jiang and Qiu [20]; K
(t)
s is due to Janzer [17]; and Ss,t,t′ for all t′ ≤ t is very recently

settled by Jiang and Qiu [19].

These recent attacks on the Bukh–Conlon conjecture are full of interesting and promising tech-

niques. In this paper, inspired by these previous attempts, we formulate an underlying framework

that centers around a notion which we call negligible obstructions (Definitions 15 and 16). In

this context, we develop a lemma (Lemma 17), which we call the negligibility lemma, to connect

negligible obstructions with the Bukh–Conlon conjecture. To our best knowledge, ideas in our

formulation of the framework can be traced back to the work of Conlon and Lee [7], and can be

spotted throughout later work by various authors.

s

t

K
(t)
s

t

Pt

s

s s s s

t

Qs,t

s

t

t′

Ss,t,t′ T4,7

Figure 2: Balanced rooted trees, where s, t, t′ refer to vertices, except t in Qs,t.
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To establish an instance of the Bukh–Conlon conjecture, the negligibility lemma naturally leads

to a two-step strategy: the identification of obstructions and the certification of their negligibility.

By no means we claim that this strategy reduces the difficulty of Conjecture 7. Nevertheless we

propose this strategy in hopes that it will bring us one step closer to pinning down a handful of

essentially different techniques in this area, akin to the theory of flag algebras [24].

We illustrate the above two steps with the proof of Theorem 8. In contrast with all the previous

work which has the inductive flavor of certifying negligibility of larger obstructions by that of

the smaller, our implementation of the second step has a distinctive inductive pattern, which is

elaborated at the end of Section 2. We point out that although Theorem 8 can be seen as an

extension of [22, Section 3] which dealt with Qs,t, our approach is quite different.

Turning to realizability of rational exponents, our main result Theorem 8 gives realizability of

the following rational exponents.

Corollary 10. For every rational number r ∈ (1, 2) of the form 2− a/b, where a, b ∈ N+, if

⌊b/a⌋3 ≤ a ≤ b/(⌊b/a⌋ + 1) + 1, (1)

then there exists a bipartite graph Fr such that ex(n, Fr) = Θ(nr).

Proof. In case a = 1, (1) forces b = 1, which contradicts with the assumption that r > 1. Hereafter

we assume that a ≥ 2. Now take s = ⌊b/a⌋, t = a−1 and s′ = b− (a−1)(⌊b/a⌋+1). Set T = Ts,t,s′.

One can easily check that s, t ∈ N+, ρT = (st + t + s′)/(t + 1) = b/a and so ρT > 1, ρT ≥ s and

s′ ≤ b − (a − 1)b/a = ρT . Observe that (1) is equivalent to t ≥ s3 − 1 and s′ ≥ 0. In view of

Proposition 9, T is balanced. The corollary follows from Lemma 6 and Theorem 8 immediately.

As far as we know, all the rationals in (1, 2) for which Conjecture 3 has been verified can be

derived from Lemma 6 and the existing instances of Conjecture 7. For convenience, we say a

fraction b/a is a Bukh–Conlon density if there exists a balanced rooted tree F such that ρF = b/a

and ex(n, F p) = O(n2−1/ρF ) for every p ∈ N+. Kang, Kim and Liu observed in [22, Lemma 4.3]

that a graph densification operation due to Erdős and Simonovits [12] can be used to generate more

Bukh–Conlon densities: whenever b/a is a Bukh–Conlon density, so is m+ b/a for every m ∈ N.

It appears reasonable to restrict our attention to the fractions b/a of the form m + s/a where

m ∈ N+, for fixed s, a ∈ N with s < a. The results listed in Figure 2 yield Bukh–Conlon densities

m + s/a for every m ∈ N+ whenever s⌈(a − 1)/(s + 1)⌉ ≤ a − 1.3 For many choices of (s, a), for

example (4, 7), (5, 8) or (7, 10), it was not known whether m + s/a is a Bukh–Conlon density for

any m ∈ N+. For comparison, the family of fractions b/a given by (1) generates the Bukh–Conlon

densities m+ s/a for all m ≥ a− s− 1 whenever a− 1− 3
√
a ≤ s ≤ a− 1. In particular, our result

3Combining [22, Lemma 4.3] with the results listed in Figure 2 (essentially with the one on Ss,t,t′), we know that

m+ s/(st+ t′ + 1) is a Bukh–Conlon density for m, s ∈ N+ and t, t′ ∈ N with t′ ≤ t. For m+ s/a to be a fraction of

such form, one needs st+ 1 ≤ a ≤ st+ t+ 1 for some t ∈ N, or equivalently s⌈(a− 1)/(s+ 1)⌉ ≤ a− 1.
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gives new Bukh–Conlon densities of the form m+5/8 and m+7/10 as long as m ≥ 2. Unfortunately

our result does not give any Bukh–Conlon densities of the form m + 4/7. The above discussion

leads us to the following conjecture on Bukh–Conlon densities.

Conjecture 11. For every s, a ∈ N with s < a, there exists m ∈ N+ such that m + s/a is a

Bukh–Conlon density.

We point out that one would settle Conjecture 11 if one could remove the technical condition

t ≥ s3 − 1 from Theorem 8.

Remark. After this work is completed, Conlon and Janzer [5], partly building on our ideas, improved

Theorem 8 by removing the technical condition t ≥ s3 − 1, and they hence resolved Conjecture 11.

The rest of the paper is organized as follows. In Section 2 we flesh out the aforementioned

framework, and use it to prove Theorem 8. In Section 3 we prove the negligibility lemma. In

Sections 4 and 5 we certify the negligibility of two different obstructions needed for the proof of

Theorem 8.

2 Negligible obstruction family

Throughout the rest of the paper, when we view a tree F as a rooted tree, by default the root set

R(F ) of F consists exactly of the leaves of F . We use V (G) and E(G) to denote the vertex set and

the edge set of G respectively.

To motivate the relevant concepts, it is instructive to think about finding a copy of F p in an n-

vertex d-regular graph G, where F is a tree and d = ω(n1−1/ρF ). We mostly talk about embeddings

rather than subgraphs.

Definition 12 (Embedding). Given a tree F and a graph G, denote Inj(F,G) the set of embeddings

from F to G, that is, the set of injections η : V (F ) → V (G) such that η(e) ∈ E(G) for every

e ∈ E(F ). For a subset U of R(F ) and an injection σ : U → V (G), denote the set of embeddings

from F to G relativized to σ by

Inj(F,G;σ) = {η ∈ Inj(F,G) : η(u) = σ(u) for every u ∈ U}.

When we write these operators (and the ones coming later) in lowercase, we refer to their cardinal-

ities, for example, inj(F,G) = |Inj(F,G)| and inj(F,G;σ) = |Inj(F,G;σ)|.

Remark. We encourage the readers who are accustomed to counting subgraphs to think of the

embedding counting inj(F,G) as the corresponding subgraph counting of F in G, because they

merely differ by a multiplicative factor depending only on F . We choose embeddings over subgraphs

based on the pragmatic reason that it is more succinct to write in the language of embeddings when

counting relativized to some injection σ.
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U

Figure 3: After adding U to the root set of T3,4,2, the resulting rooted graph contains K1,4 as a

rooted subgraph.

Note that inj(F,G) ≥ Ω(nde(F )) as one can embed F into G one vertex at a time. Because

nde(F ) = ω(n1+e(F )(1−1/ρF )) = ω(n1+e(F )−v(F )+|R(F )|) = ω(n|R(F )|), by the pigeonhole principle,

there exists σ : R(F ) → V (G) such that inj(F,G;σ) = ω(1). Ideally the images of V (F ) \ R(F )

under some p embeddings in Inj(F,G;σ) are pairwise (vertex) disjoint, and thus such p embeddings

would give us a copy of F p in G. To that end, we define the following notion.

Definition 13 (Ample embedding). Given a tree F and a graph G, for η ∈ Inj(F,G), we say η is C-

ample if there exist η1, . . . , ηC ∈ Inj(F,G) such that ηi and η are identical on R(F ), and the images

of V (F ) \ R(F ) under η1, . . . , ηC are pairwise disjoint. Given C ∈ N, denote AmpC(F,G) the set

of C-ample embeddings from F to G. For a subset U of R(F ) and an injection σ : U → V (G), the

relativized version of AmpC(F,G), denoted by AmpC(F,G;σ), is just AmpC(F,G) ∩ Inj(F,G;σ).

However it could happen that many embeddings in Inj(F,G;σ) map a nonempty subset of

V (F )\R(F ) in the same way, thus preventing us from finding a p-ample embedding in Inj(F,G;σ).

These possible obstructions are encapsulated in the following definitions.

Definition 14 (Rooted subgraph). Given two rooted graphs F1 and F2, we say that F2 contains

F1 as a rooted subgraph if there exists an embedding η from F1 to F2 such that for every v ∈ V (F1),

η(v) ∈ R(F2) if and only if v ∈ R(F1).

Definition 15 (Obstruction family). Given a tree F , a family F0 of trees is an obstruction family

for F if every member of F0 is isomorphic to a subtree of F that is not a single edge, and moreover

for every nonempty proper subset U of V (F )\R(F ), after adding U to the root set of F , the resulting

rooted graph contains a member of F0 as a rooted subgraph. (See Figure 3 and Proposition 18 for

a concrete example of an obstruction family.)

The following definition quantifies the conditions on the obstruction family for F that ensure

the existence of a p-ample embedding from F to G.

Definition 16 (Negligible obstruction). Given two trees F0 and F , we say that F0 is negligible for

F if for every p ∈ N+ and ε > 0 there exist c0 > 0 and C0 ∈ N such that the following holds. For

every c > c0 and every n-vertex graph G with n ≥ n0(c), if every vertex in G has degree between

d and Kd, where d = cnα, K = 54/α and α = 1 − 1/ρF , and moreover ampp(F,G) = 0, then

ampC0
(F0, G) ≤ εnde(F0). An obstruction family for F is negligible if every member of the family

is negligible for F .
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Figure 4: Vertex partition of Ts,t,s′ .

Remark. As we shall see later in Sections 4 and 5, when certifying the negligibility of an obstruction

family, the concrete form of K is unimportant as long as it depends only on F . However, since

we only need that specific K for Lemma 17 to work, we state it explicitly to avoid introducing an

additional universal quantifier in Definition 16.

We wrap up the above discussion in the following lemma, and we postpone its proof to Section 3.

Lemma 17 (Negligibility lemma). Given a tree F , if there exists a negligible obstruction family

F0 for F , then ex(n, F p) = O(n2−1/ρF ) for every p ∈ N+.

The negligibility lemma provides us a two-step strategy to establish Conjecture 7 for a balanced

rooted tree F : first identifying an obstruction family F0 for F , and second certifying the negligibility

of F0. Although in the first step there might be multiple obstruction families for F , heuristically

speaking it makes more sense to choose F0 that is minimal under inclusion, because all the heavy

lifting happens in the second step that certifies the negligibility of each member of F0.

Coming back to the tree Ts,t,s′ defined in Figure 1, we choose the following obstruction family

which is indeed minimal under inclusion.

Proposition 18. For every s, t ∈ N+ and s′ ∈ N, if (t, s′) 6= (1, 0), then the family {K1,s+1} ∪
{Ts,t−i,s′+i : 1 ≤ i ≤ s− s′} is an obstruction family for Ts,t,s′.

Proof. Let F = Ts,t,s′, and let U be a nonempty proper subset of P ∪Q, where P and Q are vertex

subsets of V (F ) defined in Figure 4. Let F+ be the rooted graph after adding U to the root set

R(F ) of F . If U contains the vertex in P , then F+ contains K1,s+1 as a rooted subgraph. Otherwise

U ⊆ Q. In this case, F+ contains Ts,t−i,s′+i as a rooted subgraph, where i = |U |. Finally notice

that when s′ + i ≥ s + 1, Ts,t−i,s′+i contains K1,s+1 as a rooted subgraph, and so does F+ (see

Figure 3 for an example).

Theorem 8 follows immediately from the next theorem which certifies the negligibility of the

obstruction family defined in Proposition 18.

Theorem 19. For every s, t ∈ N+ and s′ ∈ N, when s− s′ ≥ 2, assume in addition that

t ≥
(
1− s′

s+1

)
k
(
k − 1

s

)
(s+ 2− k) + 1

s , for every 2 ≤ k ≤ s− s′. (2)

7



If T := Ts,t,s′ is balanced, then for every p ∈ N+ and ε > 0, there exists c0 > 0 such that the

following holds. For every c > c0 and every n-vertex graph G with n ≥ n0(c), if every vertex in

G has degree between d and Kd, where d = cnα, K = 54/α and α = 1 − 1/ρT , and moreover

ampp(T,G) = 0, then

(a) ampC∗
(K1,s+1, G) ≤ εnde(K1,s+1), where C∗ = v(T p

s,t,s+1); and

(b) ampCk
(Fk, G) ≤ εnde(Fk), where Ck = pv(T )k and Fk = Ts,t−k,s′+k, for every 1 ≤ k ≤ s− s′.

Proof of Theorem 8. Suppose that T := Ts,t,s′ is balanced. When s ≤ s′, the obstruction family

for T consists of a single K1,s+1, which by Theorem 19(a) is negligible for T . When s− s′ = 1, in

view of Theorem 19, the obstruction family F0 defined in Proposition 18 is also negligible. When

s − s′ ≥ 2, F0 is negligible provided (2). Observe that t ≥ s3 − 1 ensures (2). Indeed, the right

hand side of (2) is at most k2(s+2−k)+1/s, which, by the inequality of arithmetic and geometric

means, is at most (2(s+2)/3)3/2+1/s, which is at most s3−1 for s ≥ 3. One can check directly in

case s = 2 that the right hand side of (2) is less than 7. In any case, it then follows from Lemma 17

that ex(n, T p) = O(n2−1/ρF ) for all p ∈ N+.

Our proof of Theorem 19 is inductive in nature. In Section 4 we first establish the negligibility

of K1,s+1 in Theorem 19(a). In Section 5 we deduce the negligibility of Fk in Theorem 19(b) from

that of K1,s+1 and F1, . . . , Fk−1. The inductive pattern here is counterintuitive in the sense that

the negligibility of Fk, which is a subgraph of Fk−1, comes after that of Fk−1.

3 Proof of the negligibility lemma

In Section 2, we have analyzed the special case where the graph G is regular. In the context of

degenerate extremal graph theory, it is indeed standard to assume that G is almost regular. This

idea due to Erdős and Simonovits first appeared in [12]. We shall use the following variant (see

also [21, Proposition 2.7] for a similar result).

Lemma 20 (Theorem 12 of Bukh and Jiang [4], only in arXiv version). For every c > 0 and

α ∈ (0, 1], there exists ñ0 ∈ N such that the following holds. Every ñ-vertex graph with ñ ≥ ñ0 and

at least (6c/α)ñ1+α edges contains an n-vertex subgraph G with n ≥ (6c/α)ñα/2 such that every

vertex in G has degree between cnα and Kcnα, where K = 54/α.

We now formalize the discussion in Section 2 on finding a copy of F p in G.

Definition 21 (Extension). Given two trees F1, F2 and a graph G, for η1 ∈ Inj(F1, G) and η2 ∈
Inj(F2, G), we say η2 extends η1 if η1 = η2 ◦η12 for some embedding η12 ∈ Inj(F1, F2). Given C ∈ N,

denote

ExtC(F1, F2, G) = {η2 ∈ Inj(F2, G) : η2 extends some η1 ∈ AmpC(F1, G)}.

8



Proof of Lemma 17. Suppose that F is a tree, p ∈ N+ and F0 is a negligible obstruction family for F .

Let c > 0 be a constant to be determined later. We would like prove that ex(ñ, F p) < (6/α)cñ1+α

for all ñ ≥ ñ0(c), where α = 1− 1/ρF . By Lemma 20, it suffices to prove that every n-vertex graph

G with n ≥ n0(c), if every vertex in G has degree between cnα and Kcnα, where K = 54/α, then

G contains F p as a subgraph.

Suppose that G is an n-vertex graph with n ≥ n0(c) such that every vertex in G has degree

between d and Kd, where d = cnα. For the sake of contradiction, we assume that ampp(F,G) = 0.

With hindsight, take

ε =
K−e(F )

3
∑

F0∈F0
inj(F0, F )

.

Unwinding Definition 16, we obtain two constants cF0 > 0 and CF0 ∈ N for every F0 ∈ F0. If we

had chosen c ≥ max{cF0 : F0 ∈ F0}, then for every F0 ∈ F0, ampCF0
(F0, G) ≤ εnde(F0), and in

particular, ampC0
(F0, G) ≤ εnde(F0), where C0 = max({CF0 : F0 ∈ F0} ∪ {p}).

Consider the embeddings in

I := Inj(F,G) \
⋃

F0∈F0

ExtC0(F0, F,G). (3)

Clearly inj(F,G) ≥ (1− o(1))nde(F ), and moreover for every F0 ∈ F0,

extC0(F0, F,G) ≤ inj(F0, F ) ampC0
(F0, G)(Kd)e(F )−e(F0) ≤ ε inj(F0, F )Ke(F )nde(F ).

We can estimate the cardinality of I by

|I| ≥ (1− o(1)) nde(F ) − ε
∑

F0∈F0

inj(F0, F )Ke(F )nde(F ) = (2/3 − o(1))nde(F ),

and so |I| ≥ nde(F )/2 = ce(F )n1+e(F )(1−1/ρF )/2 = ce(F )n|R(F )|/2 if we had chosen n0(c) large enough.

By the pigeonhole principle, the cardinality of Iσ := I ∩ Inj(F,G;σ) is at least ce(F )/2 for some

σ : R(F ) → V (G). For every U ⊆ V (F ) \R(F ) and every injection τ : U → V (G), set

Iσ(τ) = {η ∈ Iσ : η(u) = τ(u) for every u ∈ U}.

Claim. For every U ⊆ V (F ) \R(F ) and τ : U → V (G),

|Iσ(τ)| ≤ (C0v(F )2)v(F )−|R(F )|−|U |.

Proof of Claim. We prove by backward induction on |U |. Clearly |Iσ(τ)| ≤ 1 when the domain U of

τ equals V (F )\R(F ). Suppose U is a proper subset of V (F )\R(F ). Recall from Definition 15 that

after adding U to the root set of F , the resulting rooted graph contains F0 as a rooted subgraph

that is isomorphic to a member of F0. Notice that U0 := V (F0) \R(F0) is nonempty because F0 is

not a single edge.

9



Let I ′σ(τ) be a maximal subset of Iσ(τ) such that the images of U0 under the embeddings in

I ′σ(τ) are pairwise disjoint, and let V0 be the union of these images. Since Iσ(τ) ⊆ I and I defined

by (3) contains no extension of any C0-ample embedding from F0 to G, we bound |I ′σ(τ)| < C0,

which implies that |V0| < C0|U0|. For each u ∈ U0 and v ∈ V0, by the inductive hypothesis

|Iσ(τuv)| < (C0v(F )2)v(F )−|R(F )|−|U |−1,

where τuv : U ∪ {u} → V (G) extends τ by mapping u to v additionally. The maximality of I ′σ(τ)

means that for every η ∈ Iσ(τ) there is u ∈ U0 such that η(u) ∈ V0, and so η ∈ Iσ(τuv) for some

v ∈ V0. Therefore

|Iσ(τ)| ≤
∑

u∈U0,v∈V0

|Iσ(τuv)| < |U0||V0|(C0v(F )2)v(F )−|R(F )|−|U |−1,

which implies the inductive step as |U0| < v(F ) and |V0| < C0|U0|.
The same argument works for the last inductive step where U = ∅ because there is no p-ample

embedding from F to G, and C0 ≥ p. ⊡

In particular, Iσ = Iσ(τ) when the domain of τ is an empty set, and so |Iσ| ≤ (C0v(F )2)v(F )−|R(F )|,

which would yield a contradiction if we had chosen c > (2(C0v(F )2)v(F )−|R(F )|)1/e(F ).

4 Ample embeddings of stars

The negligibility of K1,s+1 for Ts,t,s′ is established directly through the following technical lemma.

Lemma 22. For every s, t ∈ N+ and s′ ∈ N, set s0 = max(s′, 1), F0 = K1,s0, F1 = K1,s+1 and

T = Ts,t,s′. For every p ∈ N+ and ε > 0, there exists c0 > 0 such that for every n-vertex graph G,

if ampp(T,G) = 0 and inj(F0, G) ≥ c0n
s0, then ampC1

(F1, G) ≤ ε inj(F1, G), where C1 = v(T p
s,t,s0).

Our proof of Lemma 22 follows the outline of [6, Lemma 5.3]. Over there the conclusion, in

our language, is that for every ε > 0 there exists C1 ∈ N such that ampC1
(F1, G) ≤ ε inj(F1, G).

One can work out the quantitative dependency C1 = Ω(ε−1/(s−1)) from their argument. Although

this dependency alone is enough for the negligibility of K1,s+1, it becomes inadequate when we

iteratively apply this bound later in Section 5. To decouple C1 from ε in Lemma 22, we need the

following classical result in degenerate extremal hypergraph theory.

Theorem 23 (Erdős [9]). For every r-partite r-uniform hypergraph H there exists ε > 0 so that

ex(n,H) = O(nr−ε).4

4Given an r-uniform hypergraph H , the Turán number ex(n,H) is the maximum number of hyperedges in an

r-uniform hypergraph on n vertices that contains no H as a subhypergraph.
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Proof of Lemma 22. Suppose thatG is an n-vertex graph such that ampp(T,G) = 0 and inj(F0, G) ≥
c0n

s0 , where c0 is to be chosen. As we only deal with embeddings to G in the following proof, we

omit G in Inj(·, G),Amp·(·, G) and their relativized versions.

Recall s0 = max(s′, 1). Clearly G contains no F p as a subgraph, where F = Ts,t,s0 . Let U0

denote an arbitrary vertex subset of size s0 in G, and denote NG(U0) the common neighborhood

of U0 in G. Let H be the (s+ 1)-uniform hypergraph on V (G) given by

H = {η(R(F1)) : η ∈ AmpC1
(F1)},

where C1 = v(T p
s,t,s0), and denote H[NG(U0)] the subhypergraph of H induced on NG(U0).

The strategy is to use
∑

U0
e(H[NG(U0)]) and

∑
U0

(|NG(U0)|
s+1

)
as intermediaries to connect

ampC1
(F1) and inj(F1).

Claim 1. There exists n0 = n0(s, t, p, C1) ∈ N such that for every U0 with |NG(U0)| ≥ n0,

e(H[NG(U0)]) ≤
ε

4ss00

(|NG(U0)|
s+ 1

)
.

Proof of Claim 1. Recall the vertex partition V (F ) = P ∪Q∪S ∪S′ from Figure 4. This partition

induces the vertex partition V (F p) = P̃ ∪ Q̃ ∪ S ∪ S′, where P̃ denotes the union of the p disjoint

copies of P in F p, and Q̃ is defined similarly. Let H0 be the (s+ 1)-uniform hypergraph on P̃ ∪ S

with each hyperedge given by the s+ 1 neighbors of a vertex of Q̃ in F p.

Observe that H[NG(U0)] never contains H0 as a subhypergraph. Suppose on the contrary that

there exists an embedding η from H0 to H[NG(U0)],
5 then we can embed F p in G by mapping

S′(F ) to U0, mapping P (F p)∪ S(F ) according to η, and embedding the vertices in Q(F p) greedily.

The last step of the embedding is possible because for every hyperedge e ∈ H0, η(e) = η′(R(F1))

for some η′ ∈ AmpC1
(F1), and more importantly C1 ≥ v(F p).

Since H0 is an (s+1)-partite hypergraph, the claim follows from Theorem 23 immediately. ⊡

We choose such n0 ∈ N in Claim 1 and require in addition that n0 ≥ s+1. For convenience, set

U = {U0 ⊆ V (G) : |U0| = s0, |NG(U0)| ≥ n0}.

Claim 2. The number of C1-ample embeddings from F1 to G satisfies

ampC1
(F1) ≤

ss00 (s+ 1)!

Cs0−1
1

∑

U0

e(H[NG(U0)]).

Proof of Claim 2. Let σ denote an arbitrary injection from R(F1) to V (G), and denote for short

a(σ) = ampC1
(F1;σ). Note that a(σ) has the dichotomy that either a(σ) = 0 or a(σ) ≥ C1 ≥ s0,

which implies that
(a(σ)

s0

)
≥ (a(σ)/s0)

s0 ≥ Cs0−1
1 a(σ)/ss00 in either case. Through counting in two

5Given two hypergraphs H1 and H2 of the same uniformity, an embedding from H1 to H2 is just an injection

η : V (H1) → V (H2) such that η(e) ∈ H2 for every e ∈ H1.
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ways the disjoint union of the edge sets of H[NG(U0)] for all vertex subsets U0 of size s0 in G, one

can show that

(s+ 1)!
∑

U0

e(H[NG(U0)]) =
∑

σ

(
a(σ)

s0

)
≥ Cs0−1

1

ss00

∑

σ

a(σ) =
Cs0−1
1

ss00
ampC1

(F1),

which implies the desired inequality in the claim. ⊡

Claim 3. The number of embeddings from F1 to G satisfies

inj(F1) ≥
(s+ 1)!

2Cs0
1

∑

U0∈U

(|NG(U0)|
s+ 1

)
.

Proof of Claim 3. We count in two ways the disjoint union
⊔

U0∈U
I(U0), where

I(U0) := {η ∈ Inj(F1) \AmpC1
(F1) : η(R(F1)) ⊆ NG(U0)}.

On the one hand, for a fixed U0 with |NG(U0)| ≥ n0, every subset of NG(U0) of size s + 1 that is

not a hyperedge of H[NG(U0)] gives rise to at least s0(s+ 1)! many η ∈ I(U0), and it follows from

Claim 1 that e(H[NG(U0)]) ≤ 1
2

(|NG(U0)|
s+1

)
. Thus we get

|I(U0)| ≥
s0(s + 1)!

2

(|NG(U0)|
s+ 1

)
, for every U0 ∈ U .

On the other hand, for every η ∈ Inj(F1) \ AmpC1
(F1), there are at most

(
C1
s0

)
many U0 such that

η(R(F1)) ⊆ NG(U0). Hence

inj(F1) ≥ inj(F1)− ampC1
(F1) ≥

1(
C1
s0

)
∑

U0

|I(U0)| ≥
s0!

Cs0
1

∑

U0

|I(U0)|,

which implies the desired inequality in the claim. ⊡

A simple double counting argument shows that

inj(F0) = s0!
∑

U0

|NG(U0)|.

Recall the assumption that inj(F0) ≥ c0n
s0 . Thus the average N̄ of |NG(U0)| satisfies

N̄ =
inj(F0)

s0!
(n
s0

) ≥ c0.

We can choose c0 > 0 large enough so that
(

N̄
s+1

)
≥ (1 + 4ss00 C1/ε)

(
n0
s+1

)
. By Jensen’s inequality,

we have ∑

U0

(|NG(U0)|
s+ 1

)
≥

(
n

s0

)(
N̄

s+ 1

)
≥ (1 + 4ss00 C1/ε)

∑

U0 6∈U

(|NG(U0)|
s+ 1

)
,
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which implies that
∑

U0 6∈U

(|NG(U0)|
s+ 1

)
≤ ε

4ss00 C1

∑

U0∈U

(|NG(U0)|
s+ 1

)
.

Applying Claim 2 and then Claim 1, we get

Cs0−1
1

ss00 (s+ 1)!
ampC1

(F1) ≤
∑

U0

e(H[NG(U0)])

≤
∑

U0 6∈U

(|NG(U0)|
s+ 1

)
+

ε

4ss00 C1

∑

U0∈U

(|NG(U0)|
s+ 1

)
≤ ε

2ss00 C1

∑

U0∈U

(|NG(U0)|
s+ 1

)
,

which implies

ampC1
(F1) ≤

(s + 1)!ε

2Cs0
1

∑

U0∈U

(|NG(U0)|
s+ 1

)
.

Comparing it with Claim 3, we get the desired inequality in Lemma 22.

Proof of Theorem 19(a). For s, t ∈ N+ and s′ ∈ N, set s0 = max(s′, 1), and T = Ts,t,s′. Since T is

balanced, by Proposition 9, s0 ≤ s+ 1 and ρT ≥ s0, the latter of which implies that 1 + s0α ≥ s0,

where α = 1− 1/ρT .

Let p ∈ N+, C∗ = v(T p
s,t,s+1) ≥ v(T p

s,t,s0) and ε > 0, and let c0 > 0 be a constant to be

determined later. Suppose that c > c0 and G is an n-vertex graph with n ≥ n0(c) such that

every vertex in G has degree between d and Kd, where d = cnα and K = 54/α, and moreover

ampp(T,G) = 0. Clearly, inj(K1,s+1, G) ≤ n(Kd)s. We apply Lemma 22 and obtain c1 > 0 so that

if inj(K1,s0 , G) ≥ c1n
s0 then

ampC∗
(K1,s+1, G) ≤ ε inj(K1,s+1, G) ≤ εn(Kd)s+1 = εKs+1nde(K1,s+1).

Since 1 + s0α ≥ s0, we have

inj(K1,s0 , G) ≥ (1− o(1))nds0 = (1− o(1))cs0n1+s0α ≥ (1− o(1))cs0ns0 .

Thus the condition inj(K1,s0 , G) ≥ c1n
s0 can be met by choosing c0 = c

1/s0
1 and n0(c) sufficiently

large.

5 Ample embeddings of subtrees

5.1 Preliminary propositions

For the proof of Theorem 19(b), we need the following variation of the classical sunflower lemma

for sequences (see [2] for the recent breakthrough on the sunflower conjecture of Erdős and Rado [8]

and related background).
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Definition 24 (Sequential sunflower). Suppose that W ⊆ V k is a system of sequences. A sub-

set S of W is a sequential sunflower with kernel I ( [k] if for every pair of distinct sequences

(s1, . . . , sk), (s
′
1, . . . , s

′
k) ∈ S, the subsequences (si)i∈I and (s′i)i∈I are equal, but the sets {si : i 6∈ I}

and {s′i : i 6∈ I} are disjoint.

Proposition 25. Fix k,C ∈ N+. Suppose that W ⊆ V k is a system of sequences such that each

sequence in W consists of k distinct elements. If W contains no sequential sunflower of size C,

then |W | < (k!)2(k!C − 1)k.

Proof. Consider the system F of subsets of V defined by

F = {{s1, . . . , sk} : (s1, . . . , sk) ∈ W}.

Clearly |W | ≤ k!|F |. We claim that F contains no sunflower of size k!C. Recall that a sunflower

is a collection of sets whose pairwise intersection is constant. Assuming the claim, the classical

sunflower lemma precisely states that |F | < k!(k!C − 1)k, which implies the desired inequality.

Suppose on the contrary that E ⊆ F is a sunflower of size k!C with kernel K. Consider the

subsystem of sequences W0 = {(s1, . . . , sk) ∈ W : {s1, . . . , sk} ∈ E}. Clearly |W0| ≥ k!C. By the

pigeonhole principle, there exist a set W1 ⊆ W0 of size C and I ( [k] such that for every s ∈ W1,

{si : i ∈ I} = K and (si)i∈I is a constant subsequence. As E is a sunflower, one can check that W1

is a sequential sunflower of size C, which is a contradiction.

We also need the following classical theorem due to Kővári, Sós and Turán [23] on the Zarankiewicz

problem.

Proposition 26. Fix s, t ∈ N+. Suppose that H is a bipartite graph with two parts U and W such

that every vertex in W has degree at least s. If H contains no complete bipartite subgraph with s

vertices in U and t vertices in W , then e(H) ≤ K|U ||W |1−1/s, where K = s s
√
(t− 1)/s!.

The following result is a generalization of a result due to Füredi [15]. Our proof of the general-

ization follows the proof of Füredi’s result by Alon, Krivelevich, and Sudakov [1] using dependent

random choice (see [14] for a survey on dependent random choice). We denote dG(v) the degree of

a vertex v in G.

Proposition 27. Fix k, r ∈ N+ such that k < r. Suppose that F is a bipartite graph with two parts

U0 and W0 such that every vertex in W0 has degree at most r. For every bipartite graph G with

two parts U and W , if there is no embedding η from F to G such that η(U0) ⊆ U and η(W0) ⊆ W ,

then ∑

u∈U

dG(u)
k ≤

(
K1|U |k +K2|W |k

)
|U |1−k/r,

where K1 = |W0|k/(r!)k/r and K2 = (|U0| − 1)k/r.

14



v0

S2 S1

S′

v2 v1

S2

S′

v2 v1

v0

S′

v0

v2 v1

Figure 5: F0, F1 and F2.

Proof. Assume for the sake of contradiction that

∑

u∈U

d(u)k > (r!)−k/r|W0|k|U |k+1−k/r + (|U0| − 1)k/r|U |1−k/r|W |k.

Pick a subset W1 ⊆ W of size r uniformly at random with replacement. Set U(W1) ⊆ U to be

the common neighborhood of W1 in G, and let X denote the cardinality of U(W1). By linearity of

expectation and Hölder’s inequality,

E[X] =
∑

u∈U

(
d(u)

|W |

)r

≥
(∑

u∈U d(u)k
)r/k

|U |r/k−1|W |r

>
(r!)−1|W0|r|U |r+r/k−1 + (|U0| − 1)|U |r/k−1|W |r

|U |r/k−1|W |r ≥ |U |r
r!

( |W0|
|W |

)r

+ |U0| − 1.

Let Y denote the random variable counting the number of subsets S ⊆ U(W1) of size r with fewer

than |W0| common neighbors in G. For a given such S, the probability that it is a subset of U(W1)

is less than (|W0|/|W |)r. Since there are at most
(
|U |
r

)
subsets S of size r, it follows that

E[Y ] <

(|U |
r

)( |W0|
|W |

)r

≤ |U |r
r!

( |W0|
|W |

)r

.

By linearity of expectation,

E[X − Y ] >
|U |r
r!

( |W0|
|W |

)r

+ |U0| − 1− |U |r
r!

( |W0|
|W |

)r

= |U0| − 1.

Hence there exists a choice of W1 for which X − Y ≥ |U0|. Delete one vertex from each subset S

of U(W1) of size r with fewer than m common neighbors. We let U ′ be the remaining subset of

U(W1). The set U
′ ⊆ U has at least |U0| vertices, and every subset of U ′ of size r has at least |W0|

common neighbors. One can then greedily find an embedding η from F to G such that η(U0) ⊆ U ′

and η(W0) ⊆ W .

5.2 Proof of Theorem 19(b)

We inductively deduce the negligibility of Fk by that of F1, . . . , Fk−1, where Fk = Ts,t−k,s′+k. In

each inductive step, we also need to set aside the embeddings from Fk to G that extend the ample
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embeddings from K1,s+1 to G which were already dealt with in Lemma 22. Recall ExtC(F1, F2, G)

from Definition 21, and that extC(F1, F2, G) denotes its cardinality.

In the rest of the section, s, t, p are fixed parameters and n is a parameter that goes off to

infinity. For two quantities a, b with b > 0 that possibly depend on n, we write a . b if there exist

C = C(s, t, p) > 0 and n0 ∈ N such that a ≤ Cb for all n ≥ n0.

Lemma 28. Fix s, t, p, k ∈ N+ and s′ ∈ N such that s′ < s, k ≤ s and k < t. Set Fi = Ts,t−i,s′+i

and Ci = pv(F0)
i, for 0 ≤ i ≤ k, and set F−

k = Ts,t−k,s′, α = 1−1/ρF0 , and C∗ = v(T p
s,t,s+1). When

k = 1, assume that α ≥ 1− 1/s; and when k ≥ 2, assume that

t ≥
(
1− s′

s+1

)
k
(
k − 1

s

)
(s+ 2− k) + 1

s . (4)

For every c > 1 and n-vertex graph G, if every vertex in G has degree between d and Kd, where

d = cnα and K = 54/α, and moreover ampC0
(F0, G) = 0, then

ampCk
(Fk, G)− extC∗

(K1,s+1, Fk, G) . 1
c inj(F

−
k , G)dk + 1

cnd
e(Fk) +

k−1∑

i=1

ampCi
(Fi, G)ds(i−k).

Proof. As we mostly deal with embeddings to G, we omit G in Inj(·, G), Amp(·, G), Ext(·, ·, G) and

their relativized versions.

Let v0, v1, . . . , vk be defined for F0, . . . , Fk as in Figure 5, and let Si be the set of roots which

are adjacent to vi for i ∈ [k]. We view Fi as a subtree of Fi−1 induced on V (Fi−1) \ Si. Let σ

denote an arbitrary injection from R(Fk) \ {v1, . . . , vk} to V (G), and set

Ãσ = AmpCk
(Fk;σ) and Ĩ×σ = ExtC∗

(K1,s+1, Fk) ∩ Inj(Fk;σ).

For short, denote ~v := (v1, . . . , vk) and η(~v) := (η(v1), . . . , η(vk)) for every η ∈ Inj(Fk). Let H̃σ

be the bipartite graph with two parts

Ũσ = {η(v0) : η ∈ Ãσ} and W̃σ = {η(~v) : η ∈ Ãσ}

whose edge set is given by

H̃σ = {(η(v0), η(~v)) : η ∈ Ãσ}.

Claim 1. The size of Ãσ is bounded by that of H̃σ as follows:

|Ãσ| − |Ĩ×σ | . |H̃σ|.

Proof of Claim 1. In view of the definition of Ĩ×σ , Ãσ \ Ĩ×σ contains no extension of any C∗-ample

embedding from K1,s+1 to G. Therefore for every edge (u, ~w) in H̃σ, there are at most Ct−k
∗ many

η ∈ Ãσ \ Ĩ×σ with (η(v0), η(~v)) = (u, ~w). ⊡
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Sample a subset Uσ of Ũσ of size m0 chosen uniformly at random, where m0 will be chosen

later. We denote Hσ the bipartite subgraph Hσ of H̃σ induced on Uσ ∪ W̃σ, and we partition Hσ

into H−
σ and H+

σ , where H−
σ consists of edges (u, ~w) in Hσ such that ~w has degree at most sk in

Hσ, and H+
σ is the complement of H−

σ in Hσ. We estimate the number of edges in H−
σ and H+

σ in

the following two claims respectively.

Claim 2. For every σ, the number of edges in H−
σ satisfies

|H−
σ |dsk . nsk +

k−1∑

i=1

∣∣{η ∈ AmpCi
(Fi;σ) : η(v0) ∈ Uσ}

∣∣dsi.

Proof of Claim 2. We define a subst Bσ of Inj(F0;σ) as follows. For every edge (u, ~w) in H−
σ , we

choose some η ∈ Ãσ with (u, ~w) = (η(v0), η(~v)), and then this chosen η gives rise to (1 − o(1))dsk

many η′ ∈ Inj(F0;σ) such that η′ ⊇ η and (u, ~w) = (η′(v0), η
′(~v)). Finally, we collect these η′ in

Bσ.

Note that

(1− o(1))|H−
σ |dsk ≤ |Bσ|, (5)

and Bσ has the distinctness property in the sense that

no two distinct embeddings in Bσ are identical on {v0, v1, . . . , vk} ∪ S1 ∪ · · · ∪ Sk. (6)

Let σ′ denote an arbitrary injection from R(F0) to V (G) such that σ′ ⊇ σ, and define Bσ′ =

Bσ ∩ Inj(F0;σ
′). We claim that, for every I ( [k], the cardinality of

BI
σ′ := {η′ ∈ Bσ′ : there exist η′ = η′1, η

′
2, . . . , η

′
Ci

∈ Bσ′ such that

η′1(~v), . . . , η
′
Ci
(~v) form a sequential sunflower of size Ci whose kernel is I}.

satisfies ∑

σ′

|BI
σ′ | ≤ |{η ∈ AmpCi

(Fi;σ) : η(v0) ∈ Uσ}|(Kd)si, where i = |I|. (7)

Without loss of generality, we may assume that I = [k] \ [k − i] for some i ∈ {0, . . . , k − 1}.
Clearly

∑
σ′ |BI

σ′ | = |
⋃

σ′ BI
σ′ |. For every σ′ and η′ ∈ BI

σ′ ⊆ Inj(F0;σ), we claim that the restriction,

say η ∈ Inj(Fi;σ), of η
′ to V (Fi) is in AmpCi

(Fi;σ). Assuming the claim, as there are at most

(Kd)si ways to extend η ∈ AmpCi
(Fi;σ) to an embedding from F0 to G, (7) follows immediately.

To see that η is Ci-ample, by the definition of BI
σ′ , there exist η′ = η′1, η

′
2, . . . , η

′
Ci

∈ Bσ′

such that η′1(~v), . . . , η
′
Ci
(~v) form a sequential sunflower of size Ci with kernel I = [k] \ [k − i].

Unwinding the definition of a sequential sunflower, for two distinct j1, j2 ∈ [Ci], we know that η′j1
and η′j2 are identical on {vk−i+1, . . . , vk}, but {η′j1(v1), . . . , η′j1(vk−i)} and {η′j2(v1), . . . , η′j2(vk−i)}
are disjoint. For every j ∈ [C2], since η′j ∈ Bσ′ ⊆ Bσ, we know according to our choice of Bσ

that the restriction of ηj to V (Fk) is a Ck-ample embedding from Fk to G. Thus, using the

assumption that Ck ≥ Civ(Fi), we can greedily modify η′1, . . . , η
′
Ci

one at a time so that the
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images of V (Fk) \R(Fk) under η
′
1, . . . , η

′
Ci

are pairwise disjoint. One can now easily check that the

restrictions, say η = η1, . . . , ηCi
, of η′1, . . . , η

′
Ci

to V (Fi) satisfy that they are identical on R(Fi),

and the images of V (Fi) \R(Fi) under η1, . . . , ηCi
are pairwise disjoint.

Finally we estimate the cardinality of

B×
σ′ := Bσ′ \

⋃

I([k]

BI
σ′ .

Set W = {η′(~v) : η′ ∈ B×
σ′}. For every sequence ~w ∈ W , as the degree of ~w is at most sk in

Hσ, together with the distinctness property (6) of Bσ ⊇ Bσ′ , we know that |B×
σ′ | ≤ sk|W |. By

the definitions of B×
σ′ and BI

σ′ , one can check that W contains no sequential sunflower of size

max(C0, . . . , Ck−1) = pv(F0)
k−1. Thus Proposition 25 implies |B×

σ′ | ≤ sk|W | ≤ K0 for some

positive constant K0 = K0(s, t, p), and so

|Bσ′ | ≤ K0 +
∑

I([k]

|BI
σ′ |.

Because the total number of σ′ : R(F0) → V (G) such that σ′ ⊇ σ is at most nsk, summing the last

inequality over all σ′, together with (5), yields

(1− o(1))|H−
σ |dsk ≤ |Bσ| ≤ K0n

sk +
∑

σ′

∑

I([k]

|BI
σ′ |,

which implies the desired inequality in view of (7) and the assumption that ampC0
(F0) = 0. ⊡

Claim 3. For every σ, the number of edges in H+
σ satisfies

|H+
σ | .




m0n

1−1/s if k = 1;

m
(sk−1)(1− k−1

s+1 )+1

0 dk−1 +m
sk+ s(k−1)

s+1

0 otherwise.

Proof of Claim 3. Let U0 denote an arbitrary vertex subset of Uσ of size sk in Hσ, and denote

NH+
σ
(U0) ⊆ W̃σ the common neighborhood of U0 in H+

σ . Let W (U0) be the k-uniform hypergraph

defined by

W (U0) = {{w1, . . . , wk} : (w1, . . . , wk) ∈ NH+
σ
(U0)}.

Observe that W (U0) contains no matching of size C0 = p. Indeed, suppose on the contrary that

W (U0) contains a matching e1, . . . , ep of size p. We can find a p-ample embedding from F0 to G as

follows, which would contradict with the assumption ampC0
(F0) = 0. Since e1 ∈ W (U0), we know

that e1 is the image of {v1, . . . , vk} under some embedding in AmpCk
(Fk;σ). Because Ck > sk, we

can find some η1 ∈ AmpCk
(Fk;σ) with {η1(v1), . . . , η1(vk)} = e1 such that η1(V (Fk) \R(Fk)) does

not intersect U0. We then extend η1 to η′1 ∈ Inj(F0) by mapping S1 ∪ · · · ∪ Sk to U0 additionally.

To see that η′1 is in fact p-ample, we greedily build a sequence of embeddings η′1, . . . , η
′
p in Inj(F0)

such that they are identical on R(F0), and the images of V (F0)\R(F0) under η
′
1, . . . , η

′
p are pairwise
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disjoint. Suppose we have built η′1, . . . , η
′
j for some j < p. Similar to how we found η′1, because

Ck > sk + jv(F0), we can find some ηj+1 ∈ AmpCk
(Fk;σ) with {ηj+1(v1), . . . , ηj+1(vk)} = ej+1

such that η1(V (Fk)\R(Fk)) does not intersect U0∪
⋃

i≤j η
′
i(V (F0)). We extend ηj to η′j by mapping

S1 ∪ · · · ∪ Sk to U0 the same way as η′1.

Now we treat the k = 1 case and the k ≥ 2 case separately.

Case 1: k = 1. In this case, W (U0) is a 1-uniform hypergraph, and it contains less than p

vertices for every U0. Therefore H+
σ contains no complete bipartite subgraph with s vertices in Uσ

and p vertices in W̃σ. Proposition 26 shows that |H+
σ | . |Uσ||W̃σ |1−1/s, which implies the desired

inequality in view of the fact that |W̃σ| ≤ n.

Case 2: k ≥ 2. Using the assumption that dH+
σ
(~w) > sk for every ~w ∈ W̃σ, a simple double

counting argument shows that

|H+
σ | =

∑

~w∈W̃σ

dH+
σ
(~w) ≤

∑

~w∈W̃σ

(
dH+

σ
(~w)

sk

)
=

∑

U0

|NH+
σ
(U0)|,

which, together with the fact that |NH+
σ
(U0)| ≤ k!|W (U0)|, implies that

|H+
σ | .

∑

U0

|W (U0)|.

For convenience, denote N(U0) the vertex set of the k-uniform hypergraph W (U0). As W (U0)

contains no matching of size p, clearly we have |W (U0)| ≤ k(p− 1)|N(U0)|k−1, and so

|H+
σ | .

∑

U0

|N(U0)|k−1.

It suffices to estimate
∑

U0
|N(U0)|k−1. Clearly |N(U0)| ≤ Kd, and so

∑
U0
|N(U0)|k−1 ≤

msk
0 (Kd)k−1, which gives the following simple bound on |H+

σ |,

|H+
σ | . msk

0 dk−1. (8)

To get a better estimate on
∑

U0
|N(U0)|k−1, we squeeze a bit more out of the assumption that G

contains no F p
0 as a subgraph by iteratively applying Proposition 27.6

Let V (W̃σ) ⊆ V (G) be the set of vertices that ever appear in any sequence in W̃σ. For every

subset of U ⊆ Uσ, we denote N ′
G(U) the set of vertices in V (W̃σ) that are adjacent to every vertex

in U in the graph G. We prove inductively for 1 ≤ i ≤ sk that

∑

U⊆Uσ : |U |=i

|N ′
G(U)|k−1 . m

(i−1)(1− k−1
s+1 )+1

0 dk−1 +m
i+

s(k−1)
s+1

0 . (9)

6Had we used the simple bound (8) on |H+
σ |, we could have removed the rest proof of Claim 3 together with

Proposition 27. The tradeoff that comes with this simplification is a condition on t that is more restricted than (4).
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Notice that N(U0) ⊆ N ′
G(U0) for every U0. In particular, taking i = sk in (9) gives

∑

U0

|N(U0)|k−1 . m
(sk−1)(1− k−1

s+1 )+1

0 dk−1 +m
sk+

s(k−1)
s+1

0 ,

which implies the desired inequality in Claim 3.

The base case i = 1 is evident as the maximum degree of G is at most Kd. For the inductive

step, consider an arbitrary U ⊆ Uσ of size i− 1 and denote u an arbitrary vertex in Uσ \U . Clearly

|N ′
G(U ∪ {u})| = dG(U)(u), where G(U) is the bipartite subgraph of G induced on Uσ and N ′

G(U).

Observe that there is no embedding η ∈ Inj(Ts,t,0, G(U)) such that η(R(T p
s,t,0)) ⊆ Uσ, because

otherwise one can extend η ∈ Inj(Ts,t,0, G(U)) to η′ ∈ Inj(F p
0 ) such that η′ and σ are identical on

S′(F p
0 ) = S′(F0) (see Figure 4 for the definitions of S′(F0) and Q(F0)). As every vertex in Q(T p

s,t,0)

has degree s+ 1, and |Uσ| = m0, Proposition 27 shows that

∑

u∈Uσ\U

|N ′
G(U ∪ {u})|k−1 =

∑

u∈Uσ\U

dG(U)(u)
k−1 .

(
mk−1

0 + |N ′
G(U)|k−1

)
m

1− k−1
s+1

0 .

Let U ′ denote an arbitrary subset of Uσ of size i. Summing the above inequality over all U ⊆ Uσ

of size i− 1, we obtain from the inductive hypothesis that

∑

U ′

|N ′
G(U

′)|k−1 .
∑

U

(
m

1+ s(k−1)
s+1

0 +m
1− k−1

s+1

0 |N ′
G(U)|k−1

)

. m
i+ s(k−1)

s+1

0 +m
1− k−1

s+1

0

∑

U

|N ′
G(U)|k−1

. m
i+ s(k−1)

s+1

0 +m
(i−1)(1− k−1

s+1 )+1

0 dk−1 +m
i+ (s−1)(k−1)

s+1

0 ,

which becomes (9) after noticing that m
i+

s(k−1)
s+1

0 subsumes m
i+

(s−1)(k−1)
s+1

0 . ⊡

Before we assemble Claims 1 to 3 together, we observe that

|Ũσ| ≤ inj(F−
k ;σ). (10)

Indeed, since every u ∈ Ũσ corresponds to η ∈ Inj(F−
k ;σ) such that η(v0) = u, where F−

k is the

subgraph of Fk induced on V (Fk) \ {v1, . . . , vk}, clearly we have (10). Like in the proof of Claim 3,

we treat the k = 1 case and the k ≥ 2 case separately.

Case 1: k = 1. We simply take m0 = |Ũσ |, in other words, Uσ = Ũσ. Notice that every vertex

~w ∈ W̃σ has degree at least Ck in H̃σ because ~w = η(~v) for some Ck-ample η from Fk to G.

Therefore H̃σ = H+
σ . By Claims 1 and 3 and the assumption 1 − 1/s ≤ α, we obtain for every σ

that

|Ãσ | − |Ĩ×σ | . |H̃σ| = |H+
σ | . |Ũσ|n1−1/s.
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Using the assumption 1−1/s ≤ α, we estimate that n1−1/s ≤ nα = 1
cd

k. Therefore, in view of (10),

we have |Ãσ| − |Ĩ×σ | . 1
c inj(F

−
k ;σ)dk. Summing over all injections σ : R(Fk) \ {v1, . . . , vk} → V (G)

yields

ampCk
(Fk)− extC∗

(K1,s+1, Fk) .
1
c inj(F

−
k )dk.

Case 2: k ≥ 2. We take m0 = ⌊n(s−(s+1)α)k⌋. As s′ < s, one can check that ρF0 < s+ 1, and so

α < s/(s + 1), which implies s− (s + 1)α > 0. Hence m0 = ω(1). We claim that the condition (4)

on t implies that

m
(sk−1)(1− k−1

s+1 )
0 ≤ nα and m

sk+
s(k−1)
s+1

0 ≤ m0n
αdk−1. (11)

Indeed, using α = 1− 1/ρF0 = (st+ s′ − 1)/(st + t+ s′), one can check that (4) is equivalent to

(s− (s+ 1)α)k(sk − 1)
(
1− k−1

s+1

)
≤ α,

which implies the first inequality in (11). To see that the second inequality follows from the first

inequality in (11), in view of the fact that nαdk−1 ≥ nkα as d = cnα and c > 1, it suffices to

check that (sk − 1)(1 − (k − 1)/(s + 1)) ≥ (sk + s(k − 1)/(s + 1) − 1)/k, which is equivalent to

sk(k − 1)(s − k + 1) + (k − 1)2 ≥ 0, which clearly holds.

Using (11), we can simplify Claim 3 to |H+
σ | . m0n

αdk−1. Combining this with Claim 2, we

obtain for every σ that

|Hσ| = |H−
σ |+ |H+

σ | . nskd−sk +m0n
αdk−1 +

k−1∑

i=1

|{η ∈ AmpCi
(Fi;σ) : η(v0) ∈ Uσ}|ds(i−k).

Recall that Uσ is a subset of Ũσ of size m0 chosen uniformly at random, and Hσ is the bipartite

subgraph of H̃σ induced on Uσ ∪ W̃σ. Observe that the expectation of |Hσ| is m0|H̃σ|/|Ũσ |, and
the expectation of |{η ∈ AmpCi

(Fi;σ) : η(v0) ∈ Uσ}| is m0 ampCi
(Fi;σ)/|Ũσ |. Thus taking the

expectation of the above inequality, and then multiplying both sides by |Ũσ|/m0, gives

|H̃σ| . |Ũσ|
(
m−1

0 nskd−sk + nαdk−1
)
+

k−1∑

i=1

ampCi
(Fi;σ)d

s(i−k). (12)

In case |Ũσ| < m0, we could not take Uσ ⊆ Ũσ of size m0, and we instead simply bound

|H̃σ| ≤ m0(Kd)k . m0d
k. (13)

Using d = cnα, one can routinely check that m−1
0 nskd−sk and nαdk−1 in (12) are at most

(1 + o(1))dk/c, and m0d
k in (13) is at most n1−(|R(Fk)−k|)de(Fk)/c. Therefore Claim 1, (10), (12)

and (13) imply, regardless of whether |Ũσ | ≥ m0, that

|Ãσ | − |Ĩ×σ | . |H̃σ| . 1
c inj(F

−
k ;σ)dk + 1

cn
1−(|R(Fk)|−k)de(Fk) +

k−1∑

i=1

ampCi
(Fi;σ)d

s(i−k).
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Summing over all injections σ : R(Fk) \ {v1, . . . , vk} → V (G) yields that

ampCk
(Fk)− extC∗

(K1,s+1, Fk) .
1
c inj(F

−
k )dk + 1

cnd
e(Fk) +

k−1∑

i=1

ampCi
(Fi)d

s(i−k).

This completes the proof of Lemma 28.

Proof of Theorem 19(b). Assume that s − s′ ≥ 1. Denote Fk = Ts,t−k,s′+k for 0 ≤ k ≤ s − s′. In

particular, F0 = Ts,t,s′. Let p ∈ N+ and C∗ = v(T p
s,t,s+1). Set Ck = pv(F0)

i for k ≤ s − s′. Let

c0 ≥ 1/ε be the constant to be chosen. Suppose that c > c0 and G is an n-vertex graph with

n ≥ n0(c) such that every vertex in G has degree between d and Kd, where d = cnα and K = 54/α,

and moreover ampC0
(F0, G) = 0. We break the rest of the proof into two cases.

Case 1: k = 1. Let c0 be at least the constant already obtained from Theorem 19(a). By the

choice of c0, we know that ampC∗
(K1,s+1, G) ≤ εnde(K1,s+1). Since F0 is balanced, by Proposition 9,

ρF0 ≥ s, which implies that 1− 1/s ≤ α, where α = 1− 1/ρF0 . By Lemma 28 and the assumption

1/c < ε, we obtain

ampCk
(Fk, G) . ε inj(F−

k , G)dk + εnde(Fk) + extC∗
(K1,s+1, Fk, G).

Since inj(F−
k , G) ≤ n(Kd)e(F

−

k
) . nde(Fk)−k, and moreover

extC∗
(K1,s+1, Fk, G) ≤ inj(K1,s+1, Fk) ampC∗

(K1,s+1, G)(Kd)e(Fk)−e(K1,s+1) . εnde(Fk),

we estimate ampCk
(Fk, G) . εnde(Fk), which implies the desired inequality in Theorem 19(b).

Case 2: 2 ≤ k ≤ s−s′. By induction, there exists c0 ≥ 1/ε such that ampCi
(Fi, G) ≤ εnde(Fi) for

every 1 ≤ i < k. Note that the assumption (2) in Theorem 19 ensures the condition (4) in Lemma 28.

By Lemma 28 and the assumption 1/c < ε, we similarly obtain that ampCk
(Fk, G) . εnde(Fk).
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