
1

DALTON - Deep Local Learning in SNNs via local
Weights and Surrogate-Derivative Transfer

Ramashish Gaurav†⇤, Duy Anh Do†, Thinh Doan†, Yang Yi†

† Department of Electrical and Computer Engineering, Virginia Tech, USA
⇤ Corresponding Author: rgaurav@vt.edu

Abstract—Direct training of Spiking Neural Networks (SNNs)
is a challenging task because of their inherent temporality.
Added to it, the vanilla Back-propagation based methods are
not applicable either, due to the non-differentiability of the
spikes in SNNs. Surrogate-Derivative based methods with Back-
propagation Through Time (BPTT) address these direct train-
ing challenges quite well; however, such methods are not
neuromorphic-hardware friendly for the On-chip training of
SNNs. Recently formalized Three-Factor based Rules (TFR)
for direct local-training of SNNs are neuromorphic-hardware
friendly; however, they do not effectively leverage the depth
of the SNN architectures (we show it empirically here), thus,
are limited. In this work, we present an improved version of a
conventional three-factor rule, for local learning in SNNs which
effectively leverages depth – in the context of learning features
hierarchically. Taking inspiration from the Back-propagation al-
gorithm, we theoretically derive our improved, local, three-factor
based learning method, named DALTON (Deep LocAl Learning
via local WeighTs and SurrOgate-Derivative TraNsfer), which
employs weights and surrogate-derivative transfer from the local
layers. Along the lines of TFR, our proposed method DALTON
is also amenable to the neuromorphic-hardware implementation.
Through extensive experiments on static (MNIST, FMNIST, &
CIFAR10) and event-based (N-MNIST, DVS128-Gesture, & DVS-
CIFAR10) datasets, we show that our proposed local-learning
method DALTON makes effective use of the depth in Convolu-
tional SNNs, compared to the vanilla TFR implementation.

Index Terms—Spiking Neural Networks, local learning, surro-
gate derivatives, three factor rule, neuromorphic hardware.

I. INTRODUCTION

Spiking Neural Networks (SNNs) are gradually gaining
attention from the AI community for a variety of applications
[1]–[4], with a significant corpus of work on Spiking-CNNs
(or Convolutional-SNNs) in computer vision [5]–[9]. This is
primarily because of their promising energy efficiency on
the neuromorphic computing hardware [5], [10]–[14], as well
as due to their closeness to biological plausibility [15]–[17].
Unlike Artificial Neural Networks (ANNs), where the outputs
of the neurons are continuous real values, the neurons in the
SNNs transmit spikes in time. Building SNNs is not a trivial
task, only a limited number of methods exist. One such popular
method is ANN-2-SNN conversion [5], [18]–[20], where a
trained Deep Neural Network (DNN) is converted to a deep
SNN by replacing the conventional non-spiking neurons (e.g.,
ReLU neurons) with spiking neurons (e.g., Integrate &

Fire (IF) neurons), along with other necessary network-
parameters modifications [19], [20]. Note that deep SNNs
have been well capitalized to achieve SoTA results on com-

plex datasets [8], [9], [19], hence, deep SNNs are desired.
Although the ANN-2-SNN conversion methods achieve high
accuracy results, the SNNs built with them suffer from high
firing rates [20], [21] due to the rate approximations of
the non-spiking neurons; and subsequently do not offer the
best of the energy efficiency on the neuromorphic hardware.
Also, the ANN-to-SNN method does not make use of the
temporality of spikes in the SNNs, and results in increased
latency, thereby increasing the Energy-Delay-Product [5], [19],
[21]. Another popular approach is to directly train the SNNs
(instead of conversion), which requires researchers to address
the non-differentiability of the discrete spikes (often mod-
eled as the Dirac’s delta function) in the SNNs. This non-
differentiability of the spikes renders the native application of
the workhorse Back-propagation algorithm unfeasible. How-
ever, significant strides have been made in recent years to
alleviate the non-differentiability problem via the application
of the surrogate-derivatives/gradients as approximations to the
ill-defined derivative of the spike function; [17], [22], [23] use
the derivative of modified sigmoid functions (more types of
surrogate-derivatives in [24]). These growing number of works
[14], [17], [22], [23], [25] based on surrogate-derivatives fall
into the category of Surrogate Gradient Descent (SurrGD)
method, where Back-propagation Through Time (BPTT) in
conjunction with surrogate-derivatives is used to directly train
the SNNs. By virtue of direct-training, SurrGD makes effective
use of temporality in spikes and results in low-latency SNNs.

However, on one hand, where SurrGD addresses the direct
training challenges in SNNs, it isn’t neuromorphic hardware
friendly due to the global error back-propagation and non-
biological plausibility (where local learning is preferred). Note
that the ANN-to-SNN method too - by definition, forgoes the
direct training of SNNs, and is not applicable for the On-chip
implementation. Three-Factor Rule (TFR) based local learning
to directly train SNNs is gradually gaining traction due to its
neuromorphic hardware amenability (e.g., DECOLLE [17]). In
TFR-based training, the two pre- and post- synaptic factors are
complemented by a third supervisory/error factor; DECOLLE
uses layer-wise local random Readout matrices and global
ground-truths to locally generate the third error-signal factor
– we present more details on vanilla-TFR/DECOLLE in Sec.
II. However, as we demonstrate later, vanilla-TFR/DECOLLE
do not effectively leverage depth. To this end, we present our
novel three-factor based local-learning method: “DALTON”
– Deep LocAl Learning via local WeighTs and SurrOgate-

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TETC.2024.3440932

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on September 26,2024 at 14:29:35 UTC from IEEE Xplore.  Restrictions apply. 

mailto:rgaurav@vt.edu


2

Derivative TraNsfer in this work, which better leverages depth
than DECOLLE. Following are our major contributions:

• We theoretically derive our DALTON method, and it
improves the vanilla-TFR/DECOLLE -based learning by:

– Making use of the local layers’ weights, instead of
the random values as the Readout layers’ weights

– Computing the local truth-values - instead of using
the global ground-truth for each Readout layer

• DALTON method retains the locality and online learning
in time characteristics of the TFR-based learning method

• Through exhaustive experiments on three static-images
datasets – MNIST, FMNIST, and CIFAR10, and three
event-based images datasets – N-MNIST, DVS128-
Gesture, and DVS-CIFAR10, we show that our DALTON
method effectively uses the depth of Conv-SNNs to im-
prove the performance over vanilla-TFR/DECOLLE

II. RELATED WORK
We start with a brief paragraph on the existing neuromorphic

hardware to support the motivations behind developing local-
learning rules to train SNNs On-chip. Neuromorphic hardware
is built on the principles of parallel information processing in
brain where the memory and compute are local to each other;
this prevents the memory-bottleneck problem that the conven-
tional vonNeumann based systems suffer from. A few popular
neuromorphic chips used for deploying SNNs are SpiNNaker2
[11] and Loihi [12], [26]. SpiNNaker2 is composed of multiple
Processing Elements (PEs), where each PE comprises an ARM
Cortex-M4F core and SRAM memory, apart from MAC array,
buses, etc.; the processor core and memory are interconnected
via buses and crossbars, thus, being local to each other [11].
Similarly, Loihi is composed of neuro-cores, where each
neuro-core has 1, 024 spiking neural/computational units and
2Mb SRAM [26] – the authors strongly advocate for locality
in learning on Loihi. Note that, with respect to SNNs, locality
in learning can be defined as the local (to synapse/learning
engine) availability of all the information needed to update
the weights, for which, Loihi offers a variety of support [26].
Thus, the architectural locality of memory and compute in
neuromorphic hardware underlies our motivation to develop
improved versions of local learning rules to train SNNs. This
architectural locality is also the reason why global error back-
propagation based SurrGD is not neuromorphic h/w friendly,
and rather, local learning is preferred for On-chip training of
SNNs. We next discuss the existing local learning works.

Local learning in spiking networks / SNNs makes use of the
brain-inspired rules, e.g., Synaptic Time Dependent Plasticity
(STDP) [27], Bienenstock-Cooper-Munro (BCM) [28], and
Oja [29] rules; these are conventionally unsupervised [30],
[31], however, they can be modified and used for supervised
learning tasks [16], [32], [33]. Local learning rules make use
of the locally available information from the pre- and post-
synaptic neurons to update the synaptic weights. However,
such local learning methods are still in nascent stage for appli-
cations in training deep SNNs effectively. Of late, a few works
[34]–[36] have explored the reward/neuro-modulated STDP
to train spiking networks, wherein, the reward or the neuro-
modulatory signal is considered as the third supervisory factor

(apart from the pre- and post-synaptic spikes’ times as the two

factors); this not only improves upon the STDP but also falls
in line with biologically-plausible local learning. Frémaux et
al. [34] present an excellent review of the neuro-modulated
STDP and the Three-Factor Rule (TFR) based learning in
their work. Along the similar lines, Kaiser et al. [17] recently
presented their TFR-based DECOLLE method to train SNNs
with locally available information and surrogate-derivatives.
The authors [17] define a local loss function for each trainable
layer and compute the local errors on the predicted logits from
the associated non-trainable random Readout layers, where
the local targets (for each Readout layer) was set equal to the
global ground-truth values. This local error (for each trainable
layer) is the third crucial factor in their TFR formulation,
and is back-propagated to the respective (one) trainable layer
to update the network weights locally. A latest work on the
lines of TFR is the Event-based Three-factor Local Plasticity
(ETLP) rule by Quintana et al. [37], where the first two
factors originate from the pre- and post-synaptic neurons, and
the third factor is a teaching signal (which involves no local
error calculation). Note that the teaching signal is generated
as spikes fired at a certain frequency (e.g., 100Hz) from the
one-hot encoded targets as teaching neurons. Quintana et al.
[37] evaluated ETLP on simple Dense-SNNs consisting of an
input layer, one hidden layer, and an output layer. Since ETLP
was not evaluated on the Convolutional-SNNs, their efficacy
for more complex deep-SNN architectures is vague.

Note that DECOLLE (based on TFR) was evaluated on
the Convolutional-SNNs; however, by design it is limited
compared to the SurrGD approach. In the SurrGD method, the
global error (from the final output layer) is back-propagated
to the deeper layers (scaled by the intermediate weights and
derivatives) which enables the SNNs to make better/explicit
use of the depth to learn rich hierarchical features. DECOLLE
on the other hand limits the flow of error-gradients to one
trainable layer each, to achieve locality in accordance with
TFR, and does not effectively leverage the depth in SNNs (we
demonstrate this drawback with our experiments). DECOLLE
is inspired from the Feedback Alignment (FA) approach [38]
and the local-errors method [39] to avoid the weight transport
problem. Bartunov et al. [40] showed that multi-layer networks
trained with FA perform inferior to the Back-propagation
ones. Mostafa et al. [39] too, found that training DNNs with
local errors is less effective compared to Back-propagation.
Therefore, in light of these limitations of DECOLLE (by the
virtue of local TFR) why even consider such an approach?
This is because TFR-based learning is particularly attractive
for energy-efficient On-chip training of SNNs due to their ease
of implementation on the neuromorphic hardware, note that
Loihi-2 [12] supports a reward-modulated form of TFR.

We next begin with a short description of SNNs and of the
vanilla-TFR/DECOLLE in Sec. III, followed by Sec. IV where
we lay down the theoretical and implementation details of
our proposed DALTON. We then describe our experiments in
Sec. V, followed by a discussion on the results, the DALTON
method, and its difference with Back-propagation and vanilla-
TFR/DECOLLE in Sec. VI. We then conclude our work in
Sec. VII with future directions to improve DALTON.

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TETC.2024.3440932

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on September 26,2024 at 14:29:35 UTC from IEEE Xplore.  Restrictions apply. 



3

III. PRELIMINARIES

In this section, we present the preliminaries of our DALTON
method. We start with the basics of our SNNs, followed by the
essentials of the vanilla-TFR/DECOLLE implementation [17]
(we explain DECOLLE because it is similar to DALTON).

A. Spiking Neural Networks
Spiking Neural Networks (SNNs), as mentioned above,

are composed of spiking neurons (instead of the rate-based
artificial neurons), with network architectures largely similar
to that of the conventional ANNs/DNNs. The spiking neurons
upon sufficient excitation, generate and transmit spikes through
time; spikes can be binary valued or graded, depending upon
the choice of implementation. In our SNNs, we use the binary-
valued Integrate & Fire (IF) spiking neurons and de-
fine the spiking function as S(t) = ⇥(U(t)� Uthr), where ⇥
is the Heaviside Step-function, U(t) and Uthr are the neuron’s
voltage and threshold value (Uthr is kept the same for all the
neurons in our SNNs). The IF neuron’s continuous-time state
equations (current I(t) and voltage U(t)) are described below.

dI(t)

dt
=
�I(t)
⌧cur

+
X

j

WjSj(t) (1a)

dU(t)

dt
=

⌦I(t)

⌧vol
when U(t) < Uthr (1b)

where Wj is the weight assigned to the corresponding incom-
ing spike Sj(t), ⌦ is the resistance of the neuron model, and
⌧cur & ⌧vol are the neuron’s current and voltage time-constants.
The voltage U(t) is reset to 0 once the neuron spikes, i.e.,
U(t)  0 when U(t) � Uthr. We define the discrete-time
state equations: I[t] and U [t] later in the Section V-B. Note
that we use the term Conv-SNNs to denote the SNNs com-
posed of Convolutional and fully-connected Dense layers
(with/without the Pooling layers). Also, the Conv-SNNs’
architectures in this work have a spiking layer following each
Convolutional/Dense layer (Pooling if present, is applied
prior to the spiking layer, i.e., after the Conv layer).

B. Vanilla-TFR / DECOLLE [17]
Kaiser et al. [17] model their DECOLLE method on TFR,

where the weight update �W i,j

l
depends on three locally

available data: a pre-synaptic jth term, a post-synaptic ith

term, and a supervisory signal. Here we present the essentials
of their equations which are useful in the context of our
DALTON method (we stay true to their notations, except for
the sub/super-scripts). For readers unfamiliar with DECOLLE,
we highly recommend visiting Section 2.3 and Figs. 1 and 4
of [17] (or Fig. 2 of this work). In [17], the authors attach
a random Readout layer Gl 2 Ra⇥b to each spiking layer
(indexed by l), such that the predicted logits Y i

l
=
P

j
Gij

l
Sj

l
,

where Sj

l
is the spike output. The MSE local loss Ll =

1
2

P
i
(Y i

l
�Ŷ i

l
)2 is computed for each spiking layer l (Ŷ i

l
is the

one-hot encoded local target). Note that in conventional Back-
propagation, a gobal loss L is computed, which is a function
of all the weight matrices Wl; thus, the weight update @L

@Wl
is

defined for every layer l. Since in DECOLLE, a local loss Ll is
computed for each layer l, they [17] ensure that Ll is a function

of Wl only, and no other Wm 8 m 6= l, this translates that
the gradient of Ll exists only with respect to Wl. Therefore,
8 the layers m 6= l, the authors [17] set @Ll

@W
ij
m

= 0 to enforce
locality of weight updates. Thus, the weight updates of layer
l, i.e., �W ij

l
= �⌘ @Ll

@W
ij
l

= �⌘ @Ll

@Si
l

@S
i
l

@W
ij
l

(by application of
chain rule, ⌘ = learning rate). By again applying chain rule on
@S

i
l

@W
ij
l

, we get @S
i
l

@W
ij
l

=@⇥(Ui
l )

@Ui
l

@U
i
l

@W
ij
l

(since Si

l
= ⇥(U i

l
), where

U i

l
is the neuron’s voltage). Due to the non-differentiability of

the spikes Si

l
, the term @⇥(Ui

l )
@Ui

l
is approximated by ⇥(U i

l
)’s

surrogate derivative, i.e., �
0
(U i

l
), where � is a chosen surrogate

function. Note that U i

l
is a function of a term P j

l
in [17], thus,

@U
i
l

@W
ij
l

=P j

l
(P j

l
in turn is a function of spikes Sj

l�1). Therefore,
@S

i
l

@W
ij
l

=�
0
(U i

l
)P j

l
, which implies �W ij

l
= �⌘ @Ll

@Si
l
�

0
(U i

l
)P j

l

(Eq. (7) in [17]); where P j

l
and �

0
(U i

l
) are the two pre-

and post-synaptic factors, and @Ll

@Si
l
=
P

k
Gki

l
(Y k

l
� Ŷ k

l
) is the

third error/supervisory factor; thus, DECOLLE effectively
culminates to a TFR – it depends upon three factors local
to the synapse W ij

l
, i.e., @Ll

@Si
l
, �

0
(U i

l
), and P j

l
. Note that, for

their experiments with DVS128-Gesture & N-MNIST datasets,
Kaiser et al. [17] set Gl 2 Rnl⇥c where nl is the number of
neurons in the layer l, and c is the number of classes.

IV. METHODS

In this section, we first revisit the Back-propagation theory
in DNNs/CNNs which lays down the theoretical foundations
of the derivation of our proposed DALTON method. We then
describe the implementation details of DALTON to train SNNs
in BPTT and Real Time Recurrent Learning (RTRL) settings.

A. Revisiting Back-propagation in DNNs/CNNs
Our primary motivation from the Back-propagation theory

is to uncover the relationship between the weight gradients
@L
@Wl

of the consecutive blocks/layers l (L is the global loss
function), and use that to improve the vanilla-TFR method.
Fig. 1 shows the architecture of a typical deep CNN (non-
spiking); consider it to have N blocks, of which, there are
NC Conv layers and N � NC = ND Dense layers. The
operations in a block l composed of a Conv/Dense layer
followed by an activation layer (✓ function) is given by:

Xl = Wl ⇥Ol�1 and Ol = ✓(Xl), (2)

where Ol�1 is the input to the block l from the previous layer
l�1, ⇥ is a generic operator applying the connection weights
Wl to the Ol�1 such that, Xl = Dw

l
Ol�1 for the Dense layers

(i.e., Wl = Dw

l
), and Xl = Cw

l
⇤ Ol�1 for the Conv layers

(i.e., Wl = Cw

l
, and ⇤ is the convolution operator). Here, ✓

is the activation function (e.g., ReLU), and Xl and Ol are its
inputs and outputs. Note that for l = 1, Ol�1 = Input to the
network. The Output of the network is Y p = XN , and given
the ground truth Y t, the global loss L can be computed as L =
1
2 (Y

p�Y t)2 for the MSE loss function. After computing @L
@Wl

8 l 2 [1, N � 1], we derive the weight-gradients relation for
the consecutive layers (i.e., @L

@Wl
and @L

@Wl+1
); below, we show

these relations for the Dense and Conv layers (no Pooling
after) in the Eqs. (3) and (4) respectively.

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TETC.2024.3440932

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on September 26,2024 at 14:29:35 UTC from IEEE Xplore.  Restrictions apply. 



4

In
pu

t

C
nv

1

A
ct

1

C
nv

2

A
ct

2

C
nv

3

A
ct

3

D
ns

N
�
2

A
ct

N
�
2

D
ns

N
�
1

A
ct

N
�
1

D
ns

N

O
ut

pu
t

Fig. 1: A Typical CNN’s Architecture. “Input” is the real-valued image input, “Cnvl” is the lth Convolutional layer weights,
“Dnsl” is the lth layer of Dense weights, “Actl” is the lth layer of activation units (e.g., ReLU neurons) following the lth

Convolutional/Dense layer, and “Output” is the layer of no activation output units. Arrows indicate the forward propagation /
flow of the activation outputs. At the Output layer, global loss L is computed, and propagated backwards via weight-gradients.

• For Dense Wl layers:
@L
@Wl

=

⇢
WT

l+1

✓
@L

@Wl+1
(OT

l
)�1

◆�
�r✓(Xl)

�
OT

l�1 (3)

• For Conv Wl layers:
@L
@Wl

=

⇢
Wl+1 ⌦

✓
@L

@Wl+1
⌦O�1

l

◆�
�r✓(Xl)

�
⌦Ol�1

(4)
where, �, ⌦, and r are the Hadamard product, Tensordot,
and Gradient operations respectively. For easy access in the
later sections, we also mention all these symbols with their
meanings in the Table I. Note that O. and O. in the Eqs. (3)
and (4) are matrices and tensors respectively. We provide a
concise proof of the Eq. (3) below; a more complete proof for
both the Eqs. (3) and (4) is in the Suppl. doc - Appx. B.

1) Proof of Eq. (3): We begin by noting the equation below
that concisely represents the expression for the gradient @L

@Wl
:

@L
@Wl

=

2

4
NY

i=l+1

WT

i
· (Y p � Y t) ·

lK

j=N�1

r✓(Xj)·

3

5OT

l�1

(5)
where

Q
and

J
represent chained matrix multiplication and

Hadamard product respectively; more on Eq. (5) in Suppl. doc
- Appx. B.1. Next, Eq. (5) implies that the gradient @L

@Wl+1
is:

@L
@Wl+1

=

2

4
NY

i=l+2

WT

i
· (Y p � Y t) ·

l+1K

j=N�1

r✓(Xj)

3

5OT

l

(6)
Multiplying Eq. (6) on both sides by the right inverse of OT

l
,

i.e., (OT

l
)�1 (s.t., OT

l
(OT

l
)�1 = I), we have the following:

@L
@Wl+1

(OT

l
)�1 =

2

4
NY

i=l+2

WT

i
· (Y p � Y t) ·

l+1K

j=N�1

r✓(Xj)

3

5

(7)
Now that we have separated the expression in square brackets
(i.e., [.]), we come back to the Eq. (5) and expand it as follows:

@L
@Wl

=

2

4
NY

i=l+1

WT

i
· (Y p � Y t) ·

lK

j=N�1

r✓(Xj)

3

5OT

l�1

= [{WT

l+10

@
NY

i=l+2

WT

i
· (Y p � Y t) ·

l+1K

j=N�1

r✓(Xj)

1

A

}�r✓(Xl)]O
T

l�1 (by expanding brackets in order)
(8)

TABLE I: Mathematical symbols used and their meanings

Symbol Meaning Symbol Meaning
⇥ Generic Operator r Gradient Operator
⇤ Convolution Operator � Hadamard Product
⇥ Spike Function ⌦ Tensordot (Einsum)
⇧ Matrix Product ⌘ Equivalence

Note: The generic operator ⇥ can either mean matrix multiplication or ⇤

Thus, by substituting the underlined expression in Eq. (8) with
@L

@Wl+1
(OT

l
)�1 (see Eq. (7)), we arrive the following Eq. (9):

@L
@Wl

=

⇢
WT

l+1

✓
@L

@Wl+1
(OT

l
)�1

◆�
�r✓(Xl)

�
OT

l�1 (9)

thereby proving the Eq. (3). The consecutive layers’ weight-
gradients relation for the Conv layers followed by Pooling
layer, and its derivation are in the Suppl. doc - Appx. C.

B. Derivation of the DALTON method to train SNNs
The two main aspects of vanilla-TFR / DECOLLE (we use

both the terms interchangeably) that we want to improve upon,
is (1) the choice of the random Readout matrices Gl, and
(2) the usage of the global ground-truths as the local truth-
value Ŷl. Henceforth, we use the notations Y t

l
to denote the

local truth-values (i.e., Y t

l
= Ŷl in DECOLLE), and Y p

l
as the

local predicted values (i.e., Y p

l
= Yl in DECOLLE). Similar to

the DECOLLE’s setup, in each block l, our Conv-SNNs have
a non-trainable Readout layer associated with each spiking
layer following the trainable Conv/Dense layer (see Fig. 2).
Also note that, the series of contiguous Conv layers/blocks is
followed by a series of contiguous Dense layers/blocks.

We begin by defining the neuronal dynamics of our Conv-
SNNs (isomorphic to the considered deep-CNN operations in
the Sec. IV-A), considering one time-step’s operation:

Ul = Wl ⇥ Sl�1 and Sl = ⇥(Ul) (10)

where Ul is the voltage of the spiking layer l’s neurons, ⇥ is
the operator applying the weights Wl to the incoming spikes
Sl�1, and ⇥ is the Heaviside Step-function. Similar to the
Section IV-A, Wl = Dw

l
weights for the Dense layers, and

Wl = Cw

l
weights for the Conv layers. Note that, for a current

time-step, since Ul is a function of Il, and Il is a function of
the current time-step’s Sl�1 , we collapse Ul = Wl⇥Sl�1 (Eq.
(1)). Moreover, in our case, the output of each Readout layer
(in Fig. 2) is Y p

l
= Gl ⇥ Sl (where Gl is the lth Readout

weights). We choose MSE as the local loss function, i.e., Ll =
1
2 (Y

p

l
�Y t

l
)2. Note that similar to DECOLLE, we set @Ll

@W
ij
m

=

0, 8 m 6= l. We then calculate @Ll
@Wl

for each trainable layer l:

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TETC.2024.3440932

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on September 26,2024 at 14:29:35 UTC from IEEE Xplore.  Restrictions apply. 



5

@Ll

@Wl

=
1

2

@(Y p

l
� Y t

l
)2

@Wl

= (Y p

l
� Y t

l
)
@Y p

l

@Wl

note: Y p
l = Gl ⇥ Sl, Sl = ⇥(Ul)

= (Y p

l
� Y t

l
)

✓
@Y p

l

@Sl

@Sl

@Ul

@Ul

@Wl

◆

=

⇢
(Y p

l
� Y t

l
)
@Y p

l

@Sl

�
@Sl

@Ul

�
@Ul

@Wl

note: Ul = Wl ⇥ Sl�1

=

⇢
@Gl ⇥ Sl

@Sl

(Y p

l
� Y t

l
)

�
�r⇥(Ul)

�
@Wl ⇥ Sl�1

@Wl

(11)
such that, following two cases hold depending on Wl’s type:
• Case 1 - DenseWl, which implies Wl⇥Sl�1 = WlSl�1:

That is, from Eq. (11):

@Ll

@Wl

=

⇢
@Gl ⇥ Sl

@Sl

(Y p

l
� Y t

l
)

�
�r⇥(Ul)

�
@WlSl�1

@Wl

=

⇢
@Gl ⇥ Sl

@Sl

(Y p

l
� Y t

l
)

�
�r⇥(Ul)

�
ST

l�1 (12)

• Case 2 - ConvWl, which implies Wl⇥Sl�1 = Wl⇤Sl�1:
That is, from Eq. (11):

@Ll

@Wl

=

⇢
@Gl ⇥ Sl

@Sl

(Y p

l
� Y t

l
)

�
�r⇥(Ul)

�
@Wl ⇤ Sl�1

@Wl

=

⇢
@Gl ⇥ Sl

@Sl

(Y p

l
� Y t

l
)

�
�r⇥(Ul)

�
⌦ Sl�1 (13)

Note that in Eq. (12), ST

l�1 (= @WlSl�1

@Wl
) is a matrix, whereas

in Eq. (13), Sl�1 (= @Wl⇤Sl�1

@Wl
) is a tensor. Also note that, we

have not specified the nature of the ⇥ op. for the Readout

layer in Gl ⇥ Sl in the Eqs. (12) and (13); we obtain that
later. Since the Eqs. (3) and (4), i.e., the related global loss
L’s weight-gradients of the consecutive layers in a deep-CNN
(obtained via Back-propagation) enable effective learning via
leveraging depth, we approximate the weight-gradients of our
Conv-SNN’s local loss Ll, i.e., the Eqs. (12) and (13) equal
to the Eqs. (3) and (4) respectively, depending upon Wl; thus:

@Ll

@Wl

⇡ @L
@Wl

(14)

Note that, there are a few works [38], [39], [41] that align
well with our approach of setting the gradients approximately
equal in Eq. (14). In FA [38], the angle between the FA-based
gradient and Back-propagation-based gradient converge below
45� in fully-connected networks during training; although
[38] did not use local errors, this convergence implies that
the loss gradients with respect to the “symmetric” and (lo-
cally associated) “random” weights eventually become similar.
Next, the authors in [39] explicitly mention that training with
local errors “retain the hierarchical composition of features”
– this conceptually conveys that the local gradients @Ll

@Wl
bear

similar characteristics as of the global gradients @L
@Wl

(since
the weights are trained via error-gradients). Finally, the closest
basis to our work is [41], where the authors introduce the
concept of Decoupled Neural Interfaces (DNI) to train the
network weights in a layer-wise local manner; they do so by

generating synthetic gradients
@Li
@hi

local to each layer i. We
note that the key equation in [41]: @L

@✓i
' f̂Bprop(hi)

@hi
@✓i

is quite
similar to our Eq. (14), where f̂Bprop is @Li

@hi
, and hi and ✓i are

activations and weights respectively. Thus, from Eq. (14):
• For Dense Wl layers, setting Eq. (12) ⇡ Eq. (3):
⇢

@Gl ⇥ Sl

@Sl

(Y p

l
� Y t

l
)

�
�r⇥(Ul)

�
ST

l�1 ⇡
⇢

WT

l+1

✓
@L

@Wl+1
(OT

l
)�1

◆�
�r✓(Xl)

�
OT

l�1 (15)

• For Conv Wl layers, setting Eq. (13) ⇡ Eq. (4):
⇢

@Gl ⇥ Sl

@Sl

(Y p

l
� Y t

l
)

�
�r⇥(Ul)

�
⌦ Sl�1 ⇡

⇢
Wl+1 ⌦

✓
@L

@Wl+1
⌦O�1

l

◆�
�r✓(Xl)

�
⌦Ol�1 (16)

Note the color matching in the Eqs. (15) and (16), which holds
because the Eq. (10) and Eq. (2) are similar (i.e., Sl ⌘ Ol and
Ul ⌘ Xl, where ⌘ implies equivalence). Next, Eq. (15) implies
@Gl⇥Sl

@Sl
= WT

l+1, where WT

l+1  
@Wl+1Ol

@Ol
; and Eq. (16)

implies @Gl⇥Sl
@Sl

= Wl+1, where Wl+1  @Wl+1⇤Ol

@Ol
. Thus,

we deduce two important observations in DALTON method:
• The value of the Readout layers Gl:

Gl = Wl+1 (17)

• Depending upon the type of Gl weights, ⇥ in Y p

l
=

Gl⇥Sl is either a Dense operation or a Conv operation.
Also, from the Eqs. (15) and (16), we get (Y p

l
� Y t

l
) equal

to either @L
@Wl+1

(OT

l
)�1 or @L

@Wl+1
⌦ O�1

l
respectively. We

therefore, next obtain the local truth values Y t

l
(for Dense

and Conv cases) in our DALTON method. We start by noting
that, since we had set @Ll

@Wl
⇡ @L

@Wl
(i.e., Eq. (14)), it implies

@L
@Wl+1

⇡ @Ll+1

@Wl+1
in DALTON; Therefore,

• Case 1 - Dense Wl layers (from Eq. (15)):

Y p

l
� Y t

l
=

@Ll+1

@Wl+1
(OT

l
)�1

⌘ @Ll+1

@Wl+1
(ST

l
)�1 * Sl ⌘ Ol from Eq. (2) & (10)

=
⇥�

GT

l+1(Y
p

l+1 � Y t

l+1)
 
�r⇥(Ul+1)

⇤
ST

l
(ST

l
)�1

(18)

Eq. (18) is obtained by substituting @Ll+1

@Wl+1
with the expres-

sion in Eq. (12) for l+1, where ⇥ in Gl+1⇥Sl+1 is a Dense
operation, i.e., @Gl+1Sl+1

@Sl+1
= GT

l+1 Thus, from Eq. (18):

Y t

l
= Y p

l
�
⇥�
GT

l+1(Y
p

l+1 � Y t

l+1)
 
�r⇥(Ul+1)

⇤
(19)

• Case 2 - Conv Wl layers (from Eq. (16)):

Y p

l
� Y t

l
=

@Ll+1

@Wl+1
⌦O�1

l

⌘ @Ll+1

@Wl+1
⌦ S�1

l
* Sl ⌘ Ol from Eq. (2) & (10)

=
⇥�
Gl+1 ⌦ (Y p

l+1 � Y t

l+1)
 
�r⇥(Ul+1)

⇤
⌦ Sl ⌦ S�1

l

(20)

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TETC.2024.3440932

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on September 26,2024 at 14:29:35 UTC from IEEE Xplore.  Restrictions apply. 



6

In
pu

t

C
nv

1

Sp
k 1

R
dt

1

Y p

1

L1

Y t
1

C
nv

2

Sp
k 2

R
dt

2

Y p

2

L2

Y t
2

C
nv

3

Sp
k 3

R
dt

3

Y p

3

L3

Y t
3

D
ns

N
�
2

Sp
k N

�
2

R
dt

N
�
2

Y p

N�2

LN�2

Y t

N�2

D
ns

N
�
1

Sp
k N

�
1

R
dt

N
�
1

Y p

N�1

LN�1

Y t

N�1

Fig. 2: Spiking CNN’s Architecture for Local Learning. This architecture is synonymous with that of DECOLLE [17] and
DALTON. “Input” is the binary-valued spike input, “Cnvl” and “Dnsl” are the lth trainable Convolutional and Dense

layers, “Spkl” is the lth layer of spiking units (e.g., IF neurons), and “Rdtl” is the lth non-trainable Readout layer. Solid
black arrows indicate the flow of spike outputs and dashed arrows indicate the flow of computations to update the trainable
layers. Y p

l
is the output from “Rdtl”, and Y t

l
is the truth value. Ll is the local loss computed from Y p

l
and Y t

l
, and used to

update the “Cnvl” / “Dnsl” layers’ weights. Two differences in this architecture which set DALTON apart from DECOLLE is
that in DALTON, the “Rdtl” is not random and the Y t

l
is computed; more details later in the Discussion Section VI.

Eq. (20) is obtained by substituting @Ll+1

@Wl+1
with the expression

in Eq. (13) for l + 1, where ⇥ in Gl+1 ⇥ Sl+1 is a Conv

operation, i.e., @Gl+1⇤Sl+1

@Sl+1
= Gl+1. Thus, from Eq. (20):

Y t

l
= Y p

l
�
⇥�
Gl+1 ⌦ (Y p

l+1 � Y t

l+1)
 
�r⇥(Ul+1)

⇤
(21)

Both the Eqs. (19) and (21) are obtained under the assumption
that the right inverse of ST

l
and Sl exist, and the inverse

operation holds the Identity relation; more details about this
assumption can be found in our Suppl. doc - Appx. B. An
important catch to consider while computing the local ground-
truths Y t

l
for the Conv Wl layers using the Eq. (21) is for the

last (N th
C

) and the penultimate ((NC�1)th) Conv layers. Note
that in the Eq. (21), one needs to use the (l+ 1)th

Readout

layer weights, i.e., Gl+1; thus for the N th
C

and (NC � 1)th

layers, one has to consider GNC+1 and GNC Readout layer
weights respectively. Recollect that Gl = Wl+1 (Eq. (17)),
thus, GNC+1 = WNC+2 and GNC = WNC+1, where the
weights WNC+2 and WNC+1 are Dense layer weights. Thus,
to compute the Y t

l
values for the last two Conv layers, one

should use the Eq. (19) instead of Eq. (21). Table II provides
the summary on setting Gl and the choice of the equations to
compute Y t

l
for different layers. Note that for the last (N�1)th

Readout layer, Y t

N�1 = Y t, where Y t is the global ground-
truth. A key observation from the above derivations is that the
Eq. (17) uses the local (l+1)th weights, and Eqs. (19) and (21)
use the local (l+1)th

Readout layer weights and surrogate-
derivatives (as well as the local predicted & truth values); thus
DALTON is local in space, as well as online-in-time.

1) Relation of DALTON with vanilla-TFR based learning
: As stated above, we wanted to find alternatives to using
random Readout matrices Gl and the global ground-truths
Y t as the local truth-values in DECOLLE. In our derivations,

TABLE II: Rules to obtain Gl and Y t

l
in DALTON method.

Case Gl Y t
l values

l > NC Dw
l+1 Eq. (19)

l = NC Dw
l+1 Eq. (19)

Case Gl Y t
l values

l = NC � 1 Cw
l+1 Eq. (19)

l  NC � 2 Cw
l+1 Eq. (21)

we have determined the values of Gl and Y t

l
for each layer.

We next juxtapose the vanilla-TFR/DECOLLE [17] equation
and ours, i.e., Eqs. (12) and (13) of DALTON. In relation to
the Eq. (7) in [17], i.e., �W ij

l
= �⌘ @Ll

@Si
l
�

0
(U i

l
)P j

l
, which is

in the form of TFR, the pre-synaptic factor P j

l
in our case

is Sl�1 – Eqs. (12) and (13) (note that P j

l
is a function of

Sj

l�1 in Eq. (4) of [17]), and the post-synaptic factor �
0
(U i

l
)

remains unchanged (we too use surrogate-derivatives in place
of r⇥(Ul) – Eqs. (12) and (13)). However, in relation to
the third factor @Ll

@Si
l
=
P

k
Gki

l
(Y k

l
� Ŷ k

l
) -Eq. (8) in [17],

although the form in our case is similar, we use different values
of Gl and Ŷl (-Y t

l
in our case). With the usage of the Eq. (17)

and Eqs. (19)/(21) for Gl and Y t

l
respectively, we transfer the

information in depth via the non-trainable Readout layers to
the trainable Conv & Dense layers in our DALTON method.
Note: In addition to the relation of DALTON with vanilla-TFR,
we also present DALTON’s contrast with Back-propagation
and DECOLLE in the Sections VI-B and VI-C respectively.
C. Implementation of DALTON method to train SNNs

We now lay down the implementation details of training our
Conv-SNNs with the DALTON method. We have considered
two common training settings in our experiments – Back-
propagation Through Time (BPTT) and Real Time Recurrent
Learning (RTRL); both BPTT and RTRL to train SNNs
make use of the surrogate derivatives to overcome the non-
differentiability of spikes. Note that, we use �

0
(x) = (1 +

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TETC.2024.3440932

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on September 26,2024 at 14:29:35 UTC from IEEE Xplore.  Restrictions apply. 



7

TABLE III: Our considered Conv-SNN Architectures. Strings separated by “-” are called blocks here. Block – “XcY” ) X
Conv kernels each of dimension (Y⇥Y) with stride (1 ⇥ 1), “XcYsZ” ) X Conv kernels each of dimension (Y⇥Y) with
stride (Z⇥Z), “XcYpZ” ) X Conv kernels each of dimension (Y⇥Y) with AveragePool size (Z⇥Z), and “fX” ) fully
connected Dense layer with X output neurons. Each Conv layer in the Average-Pooling based architectures has a stride size
of (1⇥ 1). At the end of each blue, red, and teal colored blocks, a dropout with probability 0.1, 0.2, and 0.3 is applied. The
spiking non-linearity is applied at the end of each block, prior to the application of dropout (if present). Note that there are
no biases in all the architectures, and the A4 and A5 archs have the same depth, but different width. Best viewed in color.

Archs. Strided-Convolution Average-Pooling
A1 16c3s2-f128-f64 16c3p2-f128-f64
A2 32c7s2-32c5s2-f512-f128 32c7p2-32c5p2-f512-f128
A3 48c5s2-64c3s2-128c3s2-f512-f256 48c5p2-64c3p2-128c3p2-f512-f256
A4 24c3-24c3s2-48c3s2-48c3s2-f256-f128 24c3-24c3p2-48c3p2-48c3p2-f256-f128
A5 64c3-64c3s2-128c3s2-128c3s2-f1024-f1024 64c3-64c3p2-128c3p2-128c3p2-f1024-f1024

|x|)�2 as the surrogate derivative [22] in our experiments,
where x = U(t) � Uthr. In BPTT, the network weights are
updated at the end of all the simulation time steps; thus, a
computational graph of all the time-steps has to be maintained
which is memory-intensive. A simple way to do memory-
efficient training is via RTRL, i.e., updating the network
weights each time-step, thereby, forgoing the need to maintain
the computational graph of all the simulation time-steps. Since
the DALTON method is derived by considering one time-step
operation, this makes it inherently online-in-time and suitable
for RTRL-based training, and by extension, applicable for
BPTT-based training too. Note that, for both BPTT and RTRL,
we compute Y t

l
and update Gl at the end of every batch.

An important observation in Eq. (21) for Y t

l
is that the

Jacobian of the Conv operation i.e., @Gl+1⇤Sl+1

@Sl+1
= Gl+1

is composed of Gl+1 filter weights alone. Therefore, for a
batch of input samples (during one iteration), we calculate the
Jacobian of the Conv operation with respect to one sample,
and copy it for the entire batch; such optimization greatly
improves the computational efficiency of training Conv-SNNs
with DALTON. For the Conv-SNNs with a Pooling layer
immediately following the Conv layer, one needs to take the
Jacobian of the Pooling operation too (derivations are in
the Suppl. doc - Appx. C). In the case of AveragePooling
operation, a similar optimization (as for the Jacobian of Conv
with respect to spikes) can be applied; this holds because
the AveragePooling weights remain the same for all the
samples in a batch. However, such an optimization does not
hold in case of the MaxPooling operation, because the
Jacobian of the MaxPooling output varies for each input.

V. EXPERIMENTS

To evaluate the efficacy of DALTON, we compare our
results with that of the vanilla-TFR and SurrGD (for SurrGD,
Conv-SNNs do not have local Readout layers). Note that
vanilla-TFR, by design is limited compared to SurrGD, and we
expect our results with DALTON to be an improvement over
the vanilla-TFR. Also, note that our goal is not to beat the
State-of-The-Art (SoTA) results on the experimented datasets,
rather to show the effectiveness of DALTON in leveraging
depth over vanilla-TFR. Although recent works in the SNN
domain [8], [23] have established new SoTA results on our

experimented datasets, our experimental-settings differ widely
from theirs; also, [8], [23] are not in local-learning domain.
Therefore, we conclude that it is fair to compare our local-
learning method DALTON in a controlled experimental-setting
with our own developed architectures and implementations of
vanilla-TFR and SurrGD. Note that we acknowledge works –
[16], [17], [37] which fall in the local-learning domain.

A. On the choice of Datasets and Architectures
We experiment with 5 architectures of varying depths under

two training-settings – BPTT and RTRL. For BPTT and RTRL
each, we employ two variations of each of our architectures
– one with Strided-Convolutions and another with Average-
Pooling; all the architectures have been well described in the
Table III. We refer to the individual architectures as AxSC and
AxAP (8 x 2 [1, 5]), respectively denoting the Architecture x
under the Strided-Convolution and Average-Pooling columns
in the Table III. We experiment on three static-images datasets
– MNIST, FMNIST, and CIFAR10, and on three event-based
images datasets – N-MNIST, DVS128-Gesture, and DVS-
CIFAR10 (datasets’ description in Suppl. doc - Appx. E.1).

B. Model details
The encoding neurons in the Input layer (in Fig. 2) follow

the discrete-time dynamics: Ii
l
[t] = ↵⇥xi

l
[t] + � and U i

l
[t] =

U i

l
[t� 1]+ Ii

l
[t] to encode the input values xi

l
[t] to the binary

spikes, where ↵ and � are the neuron’s gain and bias values
respectively; and x[t] are either scaled pixel values or event-
based input spikes. The IF neurons in the spiking layers, i.e.,
Spkl corresponding to the Conv/Dense layers in Fig. 2 follow
the neuron dynamics: Ii

l
[t] = �Ii

l
[t� 1]+

P
j
W ij

l
Sj

l�1[t] and
U i

l
[t] = U i

l
[t � 1] + Ii

l
[t], where � is the neuron’s current

decay constant (� = exp(��t/⌧cur), �t = 0.001). Values of
the hyper-parameters ↵,�, and ⌧cur are in the Table IVa.

C. Experiment Procedure
Table IVb presents the comprehensive set of all our experi-

ments for the BPTT and RTRL training-settings, with the two
variations of A1–A5 architectures, i.e., Strided-Convolution
and Average-Pooling. Each cell in the Table IVb denotes one
experiment-setting, where for each setting, all the combina-

tions of ⌧cur, ↵, and � are considered for experiments with
the applicable datasets; each combination is repeated for three

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TETC.2024.3440932

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on September 26,2024 at 14:29:35 UTC from IEEE Xplore.  Restrictions apply. 



8

TABLE IV: All Experiment Settings.
(a) Hyper-Parameters (HPs) 8 Archs.
x 2 [1, · · · , 4] in 2nd column, ⌧cur =
0.001 and ↵ = 1 for DVS-CIFAR10.

HPs
AxSC

&
AxAP

A5SC

&
A5AP

⌧cur

⇢
0.001,
0.005

� ⇢
0.001,
0.005

�

↵ [1, 2] [1]
� [0] [0]

(b) Set of our experiments. For each cell (or experiment-setting), the 3) experiments conducted
with at least one dataset, and 7) no experiments conducted. Also, for each cell, all the
combinations of ⌧cur,↵, and � in Table IVa are considered -each combination repeated three times.

Strided-Convolution Average-Pooling
A1 A2 A3 A4 A5 A1 A2 A3 A4 A5

BPTT
SurrGD 3 3 3 3 3 3 3 3 3 3

vanilla-TFR 3 3 3 3 3 3 3 3 3 3
DALTON 3 3 3 3 3 3 3 3 3 3

RTRL vanilla-TFR 3 3 7 7 3 3 3 3 7 3
DALTON 3 3 7 7 3 3 3 3 7 3

TABLE V: Accuracy Results from the BPTT experiments with Strided-Conv (SC) Architectures.

SC
Arch

MNIST FMNIST CIFAR10
SurrGD vanilla-TFR DALTON SurrGD vanilla-TFR DALTON SurrGD vanilla-TFR DALTON

A1 98.78, 0.07 98.00, 0.15 98.23, 0.12 90.73, 0.06 89.17, 0.13 89.57, 0.45 58.57, 0.62 48.25, 0.88 57.37, 0.20
A2 99.39, 0.04 98.99, 0.01 99.14, 0.05 90.69, 0.27 89.31, 0.13 90.54, 0.07 66.85, 0.21 54.46, 0.6 65.48, 0.14
A3 99.43, 0.01 99.00, 0.04 98.37, 0.05 90.50, 0.04 89.47, 0.11 88.78, 0.19 66.58, 0.31 53.77, 0.71 63.40, 0.18
A4 99.40, 0.04 98.32, 0.10 98.68, 0.12 90.35, 0.04 86.71, 0.29 88.57, 0.31 65.60, 0.60 42.98, 1.16 59.43, 0.21
A5 - - - - - - 72.99, 0.05 49.31, 0.2 62.83, 1.06

TABLE VI: Accuracy Results from the BPTT experiments with Average-Pooling (AP) Architectures.

AP
Arch

MNIST FMNIST CIFAR10
SurrGD vanilla-TFR DALTON SurrGD vanilla-TFR DALTON SurrGD vanilla-TFR DALTON

A1 98.84, 0.07 98.17, 0.06 98.29, 0.15 91.24, 0.11 89.75, 0.08 90.08, 0.24 59.28, 0.42 49.31, 1.98 57.84, 0.09
A2 99.42, 0.03 98.83, 0.05 98.48, 0.03 89.99, 0.03 88.58, 0.10 88.17, 0.28 63.92, 0.41 51.74, 0.46 62.99, 0.31
A3 99.28, 0.04 98.95, 0.04 98.01, 0.20 89.20, 0.16 87.82 , 0.11 87.09, 0.08 72.82, 0.04 58.69, 0.32 67.21, 0.24
A4 99.33, 0.06 98.44, 0.07 98.72, 0.06 89.19, 0.15 85.75, 0.28 87.35, 0.21 71.99, 0.11 48.18, 1.12 62.82, 0.53
A5 - - - - - - 78.25, 0.05 55.15, 0.30 66.46, 0.46

SEEDs 2 {0, 3, 100}. The learning rate ⌘ is set to 0.001 for
all the experiments, and is multiplied by 0.5 every 30 epochs.
The MSE loss function is chosen for all the experiments; note
that for the SurrGD experiments, global MSE loss is calculated
only at the final Readout layer, which is set to trainable; and
for the vanilla-TFR and DALTON experiments, local MSE
loss is calculated for each Readout layer l (set untrainable).

1) BPTT training-setting: Under the BPTT training-setting,
we compare DALTON with vanilla-TFR and SurrGD (results
in Tables V and VI). All the BPTT experiments are conducted
with MNIST, FMNIST, and CIFAR10 datasets, except for the
A5SC and A5AP architectures where only CIFAR10 dataset
is considered; the number of training epochs for MNIST,
FMNIST, and CIFAR10 are 50, 100, and 150 respectively,
with batch size = 250 for all. For the SurrGD (and vanilla-
TFR) experiments, the Output layer’s (and each Readout

layer’s) loss is calculated over the mean of the predicted
logits across all the simulation time-steps. However, for the
DALTON experiments, while the output layer’s (i.e., the final
Readout layer’s) loss is calculated over the mean of the
predicted logits, the intermediate Readout layers’ loss is
calculated over all the simulation time-steps.

2) RTRL training-setting: Under the RTRL training-setting,
we compare DALTON with vanilla-TFR alone (conventionally,
SurrGD was developed for the BPTT setting, results in Table
VII). All the RTRL experiments are conducted with N-MNIST,
DVS128-Gesture, & DVS-CIFAR10 datasets, except for A5SC

and A5AP archs where only CIFAR10 is considered. The

number of training epochs for N-MNIST, DVS128-Gesture,
DVS-CIFAR10, and CIFAR10 are 50, 150, 200, and 100 resp.,
with batch-size: 250, 25, 500, and 5000 resp. For both, DAL-
TON & vanilla-TFR experiments, all the Readout layers’
loss is calculated over the predicted logits each time-step.

VI. RESULT ANALYSIS & DISCUSSION

We now discuss the results, and summarize the differences
between DALTON and Back-propagation & vanilla-TFR. For
all the experiments, we calculate test accuracy over the entire
test set every epoch. We then take the mean (and std.) of
the maximum test accuracy (over all the epochs) for a single
combination of ⌧cur, ↵, and �, over three SEEDs. We then
finally select the maximum mean accuracy (and related std.)
over all the combinations of ⌧cur, ↵, and � for the experiments
conducted with one dataset, one architecture, and with one
training method, and report the same in each cell of the Tables
V, VI, VIIa, and VIIb; (x, y) in a cell implies (mean accuracy
± std.). Note that, for determining the efficacy of DALTON,
we compare its results here with that of vanilla-TFR only, and
not with SurrGD (a comparison with recent STDP-based meth-
ods is in the Suppl. doc - Appx. D); this is because vanilla-TFR
and DALTON are local learning methods; whereas, SurrGD
is not, and is expected to perform better than vanilla-TFR
and DALTON both, by the virtue of global back-propagation.
Also, although DALTON’s results do not establish a new SoTA
on the datasets, they show the performance improvement over
vanilla-TFR/DECOLLE, which is exactly what we aimed for.

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TETC.2024.3440932

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on September 26,2024 at 14:29:35 UTC from IEEE Xplore.  Restrictions apply. 



9

TABLE VII: Accuracy Results from the RTRL experiments with Strided-Conv (SC) and Average-Pool (AP) Architectures.
(a) Architectures 1 and 2 Results on event-based image datasets.

Strided-Conv Average-Pool
N-MNIST DVS128-Gesture N-MNIST DVS128-Gesture DVS-CIFAR10

v-TFR DALTON v-TFR DALTON v-TFR DALTON v-TFR DALTON v-TFR DALTON
A1 94.77, 0.31 95.96, 0.04 84.67, 0.38 87.73, 0.75 95.51, 0.42 96.78, 0.13 86.27, 0.82 88.4, 0.98 42.00, 0.00 43.20, 0.02
A2 98.12, 0.07 97.68, 0.12 88.93, 0.50 90.13, 0.82 98.21, 0.10 97.96, 0.17 88.13, 2.32 91.07, 0.75 45.93, 0.02 52.17, 0.01

(b) Architecture 5 Results.
A5 CIFAR10
SC v-TFR 42.25, 0.46

DALTON 62.30, 0.19
AP v-TFR 48.98, 0.42

DALTON 66.60, 0.11
With A3 on DVS-CIFAR10 and Average-Pool variation, we obtained 50.13, 0.01 and 56.47,0.02 with vanilla-TFR (v-TFR) and DALTON respectively.

A. Analysis of the accuracy results in Tables V, VI, and VII

As can be seen in the Tables V and VI, for the experiments
(under BPTT setting) with simple datasets – MNIST and FM-
NIST, DALTON performs slightly better than vanilla-TFR for
the most part. On the other hand, DALTON clearly performs
much better than vanilla-TFR on the more complex CIFAR10.
As expected, in case of the experiments with CIFAR10, Sur-
rGD leverages the depth and width of the individual networks
(A1–A5 ) well, while vanilla-TFR fails to do so and performs
poorly. We note that in some cases of A1–A3, the performance
of DALTON is very close to that of the SurrGD, and much
better than vanilla-TFR for A4 and A5. Also note that, our
experiments’ emphasis is on showing that given a network of
any specific depth and width, DALTON leverages them better
than vanilla-TFR (more details in the Suppl. doc - Appx. E.2).
An important observation (in the Tables V and VI) with respect
to MNIST and FMNIST is that, SurrGD performs nearly same
for A1–A4, which implies that depth and width have little role
to play in case of simple datasets – MNIST and FMNIST; this
explains why vanilla-TFR and DALTON performed similar.

Coming to the Table VIIa, for the RTRL-setting experiments
with N-MNIST, DVS128-Gesture, and DVS-CIFAR10, we
see that for N-MNIST, a clear winner between vanilla-TFR
and DALTON does not emerge (for both Strided-Conv and
Average-Pool). However, for the complex DVS128-Gesture
and DVS-CIFAR10 datasets, we see that DALTON performs
better than vanilla-TFR for both A1 and A2. The Table VIIb
with A5 ’s accuracies on CIFAR10 under the RTRL setting,
further gives the compelling empirical proof of DALTON’s
efficacy to leverage depth better than vanilla-TFR for local
learning in SNNs. Note that Kaiser et al. [17] also exper-
imented with the N-MNIST and DVS128-Gesture datasets
under the RTRL setting, and their DECOLLE method achieved
approximately 96% and 95.5% accuracies respectively (they
used a small subset of the N-MNIST dataset). In our exper-
iments with N-MNIST and DVS128-Gesture, we have tried
to stay true to their (i.e., [17]’s) experimental settings, except
that we have used the entirety of the N-MNIST dataset for
training and evaluation (Kaiser et al. [17] used only a part of
it). We also note that Kaiser et al. [17] found that increasing the
depth of their network did not help improve the DECOLLE’s
performance, which echoes our experimental findings with the
vanilla-TFR. Also, in a related work on local learning in SNNs
[16], we note that the authors achieved approximately 97% and
86% accuracy on MNIST and FMNIST respectively, ours with
DALTON (and vanilla-TFR) is unarguably better, as seen in
the Tables V and VI. With respect to the latest work on TFR,
i.e., the ETLP rule [37], the authors achieved 94.30% on the
N-MNIST dataset (although, they used a simple Dense SNN).

B. Contrast – DALTON vs. Back-propagation

Despite DALTON’s theoretical foundations in the Back-
propagation theory, there are certain obvious differences be-
tween them; we highlight those below. First off, in Back-
propagation, a global loss L at the final Output layer is
computed, such that @L

@Wl
is valid (and computed) 8 l 2 [1, N ].

However, in case of DALTON, a local loss Ll is computed for
every l 2 [1, N � 1], and @Ll

@Wl
is not valid for every l, rather

@Ll
@Wm

= 0, 8 m 6= l; i.e., only @L1
@W1

, @L2
@W2

· · · , @LN�1

@WN�1
are

valid. Next, while computing @L
@Wl

in Back-propagation, all the
terms (weights, derivatives) of the next deeper layers [l+1, N ]
are considered (see Fig. 3), whereas, while computing @Ll

@Wl
in

DALTON, only local (l�1)th, lth, (l+1)th terms are required –
due to the approximation @Ll

@Wl
⇡ @L

@Wl
in Eq. (14). Note that in

DALTON, the third “error” term comprises of the local targets
Y t

l
, which is also computed with locally available terms (as

can be seen in Eqs. (19) and (21)). Although, careful readers
would note the “chained locality” in the computation of Y t

l
(as

it is also dependent upon Y t

l+1), where the local targets have
to be computed layer-after-layer from the global ground truth
(see Fig. 3). On one hand, while this successive dependency
contributes to effectively leveraging depth in SNNs, on the
other, it implies that one has to wait for the computation of
all Y t

l
s before updating the network weights in parallel; i.e.,

after the Y t

l
s are available to each lth layer, subsequent weight

updates can be done locally in parallel. Note that all the Y t

l
s

can be computed in just one time-step by consecutively passing
the already computed Y t

l+1 and Y p

l+1 to the lth layer. This is
true because the other terms in the computation of Y t

l
are not

only local, but also readily available in the current time-step
– as demonstrated by the success of our RTRL experiments.
Note that in vanilla-TFR/DECOLLE’s case too (see Fig. 3),
one has to propagate the global ground truth to all the inter-
mediate trainable layers in one time-step (which also requires
dedicated hardware support). Overall, DALTON attempts to
bring the best of both – the local-learning three-factor based
rule and the global Back-propagation based SurrGD.

C. Contrast – DALTON vs. vanilla-TFR/DECOLLE

As described in the Section IV-B1, DALTON conforms to
the vanilla-TFR formulation with three local factors. However,
the major difference between DALTON and vanilla-TFR is the
way the third ‘error-signal’ factor is computed. In vanilla-TFR,
the third error factor is @Ll

@Sl
=
P

Gl(Y
p

l
�Y t

l
), where the local

target Y t

l
and the readout matrix Gl remain static throughout

the training of the SNN; Y t

l
is set equal to the global ground

truth and Gl is randomly (or uniformly) initialized, for every
layer l. However, in case of DALTON, although the third error
factor “expression” remains the same, Y t

l
and Gl are computed

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TETC.2024.3440932

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on September 26,2024 at 14:29:35 UTC from IEEE Xplore.  Restrictions apply. 



10

W6

W5

Y p

L

Y t

a. Back-propagation

W6

W5

L6

L5

Y p

6

Y p

5

Y t

b. vanilla-TFR

W6

W5

L6

L5

Y p

6

Y p

5

Y t

Y t
6

Y t
5

c. DALTON
Fig. 3: Abstract models of loss computation and gradient flow – (a). “Back-propagation”, (b): “vanilla-TFR”, & (c): “DALTON”.
Wl are the trainable weights; L in (a). “Back-propagation” is the global loss computed from the predicted output Y p and the
global ground truth Y t; and Ll in both, (b). “vanilla-TFR” and (c). “DALTON” are the local losses. In (b). “vanilla-TFR”,
Ll are computed via the locally predicted outputs Y p

l
and the global ground truth Y t; whereas, in (c). “DALTON”, Ll are

computed via the locally predicted outputs Y p

l
and the locally computed targets Y t

l
(unlike vanilla-TFR). Red arrows show the

propagation/computation of targets, teal arrows show the forward propagation, and black arrows show the gradient flow. Note
that, for the sake of clarity and contrast, these models don’t show all the relations to compute the variables, e.g., Y p

l
, Y t

l
, etc.

for every layer l after processing each batch, as per the Eqs.
(19)/(21) and Eq. (17) respectively. On one hand where the
Eq. (17) is simply an assignment operation, on the other, Eqs.
(19) and (21) imply – one has to compute the local truth values
Y t

l
for each trainable layer, which requires matrix/tensor mul-

tiplications, as well as the Jacobian computation of the Conv
operation with respect to the input spikes. Furthermore, in case
of Pooling layers in the architectures, one would also be
required to compute the Jacobian of the Pooling operation.
Although one can leverage the optimizations suggested in the
Section IV-C to improve the run-time efficiency of computing
Y t

l
in batch-wise training, the proposed optimizations do not

hold in the case of online-in-sample training. Coming to the
algorithmic-complexity comparison between vanilla-TFR and
DALTON, consider an SNN with C and D number of Conv
and Dense layers respectively, where the cost of each Conv

and Dense layer forward-pass operation is upper-bounded by
O(cf ) and O(df ) respectively, and backward-pass operation
is upper-bounded by O(cb) and O(db) respectively (note that
layer-wise local loss Ll is computed). For such an SNN, in
one forward and backward pass, vanilla-TFR would compute
O((cf + cb)C + (df + db)D) operations. However, since
DALTON computes Y t

l
for each layer (differing by layer-

type), consider it to be upper bounded by O(yc) and O(yd) for
each Conv and Dense layers respectively. Thus, for the same
SNN, in one forward and backward pass, DALTON computes
O((cf + cb+yc)C+(df +db+yd)D) operations (see Fig. 3b
& 3c, DALTON algorithms in Suppl. doc - Appx. E.3). With
respect to DALTON’s memory footprint, in the present form, it
is heavily memory inefficient due to the explicit computations
of Jacobians and matrix/tensor multiplications to compute the
local truths Y t

l
. Also, the computation of Y t

l
needs a stored

copy of the spikes Sl+1 and of the surrogate-derivatives of the
layer l+1. Thus, compared to the vanilla-TFR method, a naive
implementation of DALTON is not computationally efficient.

D. Possible applications of DALTON

With the above computational limitations of DALTON in
the present form, there is still a silver lining to our proposed

method. For online cases (both in time and sample), where
part of the whole data/signal arrives each time-step and is
widely spaced in time (i.e., the system waits for a few time-
steps before another sample arrives), DALTON can be useful
over the vanilla-TFR. Examples of such systems are Remote
Sensing and Satellite Communication systems, Edge devices,
IoT applications, etc. [42]–[45]; basically, systems where the
on-site data processing is limited due to the design constraints,
and the data has to be transmitted over long time-duration.
This would enable DALTON to execute the compute intensive
operations in time. We particularly emphasize on the Eq. (19)
to obtain the local truths Y t

l
for the Dense layers, which

does not involve the computation of Jacobian and Tensordot
operations, rather a matrix multiplication and the Hadamard
product. This makes the computation of Y t

l
for Dense layers

relatively cheaper than the computation of Y t

l
for the Conv

layers; we observed the same in our experiments. Thus, for
Time Series Classification with SNNs composed of Dense
layers alone [3], [14], DALTON can be easily (and cheaply)
applied with better performance over the vanilla-TFR. This is
because DALTON offers faster learning than vanilla-TFR per
network-update (see Fig. 4, more such results in the Suppl.
doc - Appx. F). We note that the Jacobians are computed for
conventional Back-propagation too, and with proper hardware
& library/CUDA support, the Jacobian computations for DAL-
TON can be made highly efficient. Also, neuromorphic h/w is
a constantly innovating area, thus, the chained computation of
Y t

l
can be achieved with dedicated h/w design and support.

VII. CONCLUSION AND FUTURE WORK

In this work, we presented our novel local-learning three-
factor based DALTON method to train the SNNs (Conv and
Dense variants). DALTON method preserves the locality of
the weight-updates, while also simultaneously leveraging the
depth of the network-architecture; thereby, bringing a balance
between the vanilla-TFR and SurrGD methods – however, at
the cost of high compute and memory resource requirements.
Although the DALTON method has its computational limita-
tions, it is useful in cases where the network’s weight-updates

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TETC.2024.3440932

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on September 26,2024 at 14:29:35 UTC from IEEE Xplore.  Restrictions apply. 



11

(a) A5SC – CIFAR10 (b) A5AP – CIFAR10
Fig. 4: Accuracy Plots – RTRL Experiments with A5SC and A5AP architectures on CIFAR10. The accuracies plotted here
are obtained as explained in the Section VI’s start. v-TFR-Rdtl implies the output from the lth Readout layer of the network
trained with vanilla-TFR. Note that with DALTON, we are able to achieve better results than vanilla-TFR quickly over epochs.
The (almost) smooth increase in DALTON’s accuracy and eventual saturation hints towards its stable and convergent learning.
More details on DALTON’s training efficiency (stability and convergence) can be found in the Suppl. doc - Appx. H.

can be afforded to be slow. Note that, as explained in the
Section II, three-factor rules based methods to locally train the
SNNs are limited in literature; where, either the performance
does not scale with the network depth (e.g., DECOLLE), or the
trained architectures are too simple (e.g., ETLP). This work
being one of the very few neuromorphic-friendly three-factor
based local-learning methods to train deep SNNs, contributes
a new direction to locally train them, and has lots of room
to grow and improve. In this work, we not only empirically
showed the efficacy of DALTON to effectively leverage depth
of complex SNN architectures (with experiments on 6 datasets
of varying complexity), but also theoretically substantiated
it. Though we do not explicitly compare DALTON with the
results obtained by the authors of DECOLLE [17] and ETLP
[37] in our tables, we do provide a comparison with them at the
end of the Section VI-A, where DALTON demonstrates better
results over the SoTA local-learning ones. With respect to
the current computational limitations of the DALTON method
mentioned in the immediately previous section, one can look
into leveraging the computational optimizations in the deep
learning libraries, and reducing the computation and memory
requirements by also leveraging the already stored spikes and
surrogate derivatives (as they are part of the current time-step’s
computational graph) – instead of computing and maintaining
a separate copy. Moreover, the usage of the current time-step’s
(l+ 1)th layer’s weights as the lth Readout layer’s weights
implies that one can completely forgo the actual manifestation
of the Readout layers in the SNNs for local-learning, and
reuse the existing stored weights of the main trainable network.
Also, for the SNNs composed of fully-connected Dense lay-
ers alone, direct hardware implementation of DALTON would
be easier and offer faster computations than for Conv-SNNs.
Nonetheless, DALTON offers quality weight-updates per time-
step (compared to the vanilla-TFR), which enables the SNNs
to learn faster and better, and that too in a neuromorphic
hardware-friendly manner (by the virtue of the three-factor
formulation) – this should be the key takeaway of our work.

FUNDING

This work was supported in part by the U.S. Na-
tional Science Foundation (NSF) under Grant CCF-1750450,
Grant ECCS-1731928, Grant ECCS-2128594, Grant ECCS-
2314813, and Grant CCF-1937487.

REFERENCES

[1] J. Wu, E. Yılmaz, M. Zhang, H. Li, and K. C. Tan, “Deep spiking neural
networks for large vocabulary automatic speech recognition,” Frontiers
in neuroscience, vol. 14, p. 199, 2020.

[2] A. Qammaz and A. A. Argyros, “Mocapnet: Ensemble of snn encoders
for 3d human pose estimation in rgb images.” in BMVC, 2019, p. 46.

[3] H. Fang, A. Shrestha, and Q. Qiu, “Multivariate time series classification
using spiking neural networks,” in 2020 International Joint Conference
on Neural Networks (IJCNN). IEEE, 2020, pp. 1–7.

[4] R. Gaurav, T. C. Stewart, and Y. C. Yi, “Spiking reservoir computing for
temporal edge intelligence on loihi,” in 2022 IEEE/ACM 7th Symposium
on Edge Computing (SEC). IEEE, 2022, pp. 526–530.

[5] B. Rueckauer, C. Bybee, R. Goettsche, Y. Singh, J. Mishra, and A. Wild,
“Nxtf: An api and compiler for deep spiking neural networks on intel
loihi,” ACM Journal on Emerging Technologies in Computing Systems
(JETC), vol. 18, no. 3, pp. 1–22, 2022.

[6] H. Zheng, Y. Wu, L. Deng, Y. Hu, and G. Li, “Going deeper with
directly-trained larger spiking neural networks,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 35, no. 12, 2021.

[7] Z. Yan, J. Zhou, and W.-F. Wong, “Near lossless transfer learning for
spiking neural networks,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 35, no. 12, 2021, pp. 10 577–10 584.

[8] Q. Meng, M. Xiao, S. Yan, Y. Wang, Z. Lin, and Z.-Q. Luo, “Training
high-performance low-latency spiking neural networks by differentiation
on spike representation,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2022, pp. 12 444–12 453.

[9] W. Fang, Z. Yu, Y. Chen, T. Huang, T. Masquelier, and Y. Tian,
“Deep residual learning in spiking neural networks,” Advances in Neural
Information Processing Systems, vol. 34, pp. 21 056–21 069, 2021.

[10] Y. Yan, T. C. Stewart, X. Choo, B. Vogginger, J. Partzsch, S. Höppner,
F. Kelber, C. Eliasmith, S. Furber, and C. Mayr, “Comparing loihi with
a spinnaker 2 prototype on low-latency keyword spotting and adaptive
robotic control,” Neuromorphic Computing and Engineering, vol. 1,
no. 1, p. 014002, 2021.

[11] S. Höppner, Y. Yan, A. Dixius, S. Scholze, J. Partzsch, M. Stolba,
F. Kelber, B. Vogginger, F. Neumärker, G. Ellguth et al., “The spin-
naker 2 processing element architecture for hybrid digital neuromorphic
computing,” arXiv preprint arXiv:2103.08392, 2021.

[12] G. Orchard, E. P. Frady, D. B. D. Rubin, S. Sanborn, S. B. Shrestha, F. T.
Sommer, and M. Davies, “Efficient neuromorphic signal processing with
loihi 2,” in 2021 IEEE Workshop on Signal Processing Systems (SiPS).
IEEE, 2021, pp. 254–259.

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TETC.2024.3440932

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on September 26,2024 at 14:29:35 UTC from IEEE Xplore.  Restrictions apply. 



12

[13] M. Davies, A. Wild, G. Orchard, Y. Sandamirskaya, G. A. F. Guerra,
P. Joshi, P. Plank, and S. R. Risbud, “Advancing neuromorphic com-
puting with loihi: A survey of results and outlook,” Proceedings of the
IEEE, vol. 109, no. 5, pp. 911–934, 2021.

[14] R. Gaurav, T. C. Stewart, and Y. Yi, “Reservoir based spiking models
for univariate time series classification,” Frontiers in Computational
Neuroscience, vol. 17, p. 1148284, 2023.

[15] A. Taherkhani, A. Belatreche, Y. Li, G. Cosma, L. P. Maguire, and T. M.
McGinnity, “A review of learning in biologically plausible spiking neural
networks,” Neural Networks, vol. 122, pp. 253–272, 2020.

[16] A. Shrestha, H. Fang, Q. Wu, and Q. Qiu, “Approximating back-
propagation for a biologically plausible local learning rule in spiking
neural networks,” in Proceedings of the International Conference on
Neuromorphic Systems, 2019, pp. 1–8.

[17] J. Kaiser, H. Mostafa, and E. Neftci, “Synaptic plasticity dynamics for
deep continuous local learning (decolle),” Frontiers in Neuroscience,
vol. 14, p. 424, 2020.

[18] H. Gao, J. He, H. Wang, T. Wang, Z. Zhong, J. Yu, Y. Wang,
M. Tian, and C. Shi, “High-accuracy deep ann-to-snn conversion using
quantization-aware training framework and calcium-gated bipolar leaky
integrate and fire neuron,” Frontiers in Neuroscience, vol. 17, 2023.

[19] A. Sengupta, Y. Ye, R. Wang, C. Liu, and K. Roy, “Going deeper in
spiking neural networks: Vgg and residual architectures,” Frontiers in
neuroscience, vol. 13, p. 95, 2019.

[20] B. Rueckauer, I.-A. Lungu, Y. Hu, M. Pfeiffer, and S.-C. Liu, “Con-
version of continuous-valued deep networks to efficient event-driven
networks for image classification,” Frontiers in neuroscience, 2017.

[21] N. Rathi, G. Srinivasan, P. Panda, and K. Roy, “Enabling deep spiking
neural networks with hybrid conversion and spike timing dependent
backpropagation,” arXiv preprint arXiv:2005.01807, 2020.

[22] F. Zenke and S. Ganguli, “Superspike: Supervised learning in multilayer
spiking neural networks,” Neural computation, vol. 30, no. 6, 2018.

[23] M. Xiao, Q. Meng, Z. Zhang, D. He, and Z. Lin, “Online training
through time for spiking neural networks,” Advances in Neural Infor-
mation Processing Systems, vol. 35, pp. 20 717–20 730, 2022.

[24] E. O. Neftci, H. Mostafa, and F. Zenke, “Surrogate gradient learning
in spiking neural networks: Bringing the power of gradient-based opti-
mization to spiking neural networks,” IEEE Signal Processing Magazine,
vol. 36, no. 6, pp. 51–63, 2019.

[25] F. Zenke and T. P. Vogels, “The remarkable robustness of surrogate
gradient learning for instilling complex function in spiking neural
networks,” Neural computation, vol. 33, no. 4, pp. 899–925, 2021.

[26] M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H. Choday,
G. Dimou, P. Joshi, N. Imam, S. Jain et al., “Loihi: A neuromorphic
manycore processor with on-chip learning,” Ieee Micro, vol. 38, no. 1,
pp. 82–99, 2018.

[27] H. Markram, W. Gerstner, and P. J. Sjöström, “Spike-timing-dependent
plasticity: a comprehensive overview,” Frontiers in synaptic neuro-
science, vol. 4, p. 2, 2012.

[28] E. L. Bienenstock, L. N. Cooper, and P. W. Munro, “Theory for the
development of neuron selectivity: orientation specificity and binocular
interaction in visual cortex,” Journal of Neuroscience, vol. 2, no. 1, 1982.

[29] E. Oja, “Simplified neuron model as a principal component analyzer,”
Journal of mathematical biology, vol. 15, pp. 267–273, 1982.

[30] E. M. Izhikevich and N. S. Desai, “Relating stdp to bcm,” Neural
computation, vol. 15, no. 7, pp. 1511–1523, 2003.

[31] E. Oja, “Unsupervised learning in neural computation,” Theoretical
computer science, vol. 287, no. 1, pp. 187–207, 2002.

[32] J. J. Wade, L. J. McDaid, J. A. Santos, and H. M. Sayers, “Swat: A
spiking neural network training algorithm for classification problems,”
IEEE Transactions on neural networks, vol. 21, no. 11, 2010.

[33] S. R. Kheradpisheh, M. Ganjtabesh, S. J. Thorpe, and T. Masquelier,
“Stdp-based spiking deep convolutional neural networks for object
recognition,” Neural Networks, vol. 99, pp. 56–67, 2018.

[34] N. Frémaux and W. Gerstner, “Neuromodulated spike-timing-dependent
plasticity, and theory of three-factor learning rules,” Frontiers in neural
circuits, vol. 9, p. 85, 2016.

[35] M. Mozafari, S. R. Kheradpisheh, T. Masquelier, A. Nowzari-Dalini, and
M. Ganjtabesh, “First-spike-based visual categorization using reward-
modulated stdp,” IEEE transactions on neural networks and learning
systems, vol. 29, no. 12, pp. 6178–6190, 2018.

[36] H. Fang, Y. Zeng, and F. Zhao, “Brain inspired sequences production
by spiking neural networks with reward-modulated stdp,” Frontiers in
Computational Neuroscience, vol. 15, p. 612041, 2021.

[37] F. M. Quintana, F. Perez-Peña, P. L. Galindo, E. O. Netfci, E. Chicca,
and L. Khacef, “Etlp: Event-based three-factor local plasticity for online
learning with neuromorphic hardware,” arXiv:2301.08281, 2023.

[38] T. P. Lillicrap, D. Cownden, D. B. Tweed, and C. J. Akerman, “Ran-
dom synaptic feedback weights support error backpropagation for deep
learning,” Nature communications, vol. 7, no. 1, p. 13276, 2016.

[39] H. Mostafa, V. Ramesh, and G. Cauwenberghs, “Deep supervised
learning using local errors,” Frontiers in neuroscience, vol. 12, p. 608,
2018.

[40] S. Bartunov, A. Santoro, B. Richards, L. Marris, G. E. Hinton, and
T. Lillicrap, “Assessing the scalability of biologically-motivated deep
learning algorithms and architectures,” Advances in neural information
processing systems, vol. 31, 2018.

[41] M. Jaderberg, W. M. Czarnecki, S. Osindero, O. Vinyals, A. Graves,
D. Silver, and K. Kavukcuoglu, “Decoupled neural interfaces using
synthetic gradients,” in International conference on machine learning.
PMLR, 2017, pp. 1627–1635.

[42] B. Paillassa, B. Escrig, R. Dhaou, M.-L. Boucheret, and C. Bes,
“Improving satellite services with cooperative communications,” Inter-
national Journal of Satellite Communications and Networking, 2011.

[43] W. Han and M. Jochum, “Latency analysis of large volume satellite
data transmissions,” in 2017 IEEE International Geoscience and Remote
Sensing Symposium (IGARSS). IEEE, 2017, pp. 384–387.

[44] J. Chen, X. Di, R. Xu, H. Qi, L. Cong, K. Zhang, Z. Xing, X. He, W. Lei,
and S. Zhang, “A remote sensing data transmission strategy based on
the combination of satellite-ground link and geo relay under dynamic
topology,” Future Generation Computer Systems, vol. 145, 2023.

[45] J. Chen, X. Di, R. Xu, H. Luo, H. Qi, P. Zhan, and Y. Jiang, “An
efficient scheme for in-orbit remote sensing image data retrieval,” Future
Generation Computer Systems, 2023.

RAMASHISH GAURAV is currently a Ph.D. can-
didate in the BRain Inspired Computing & Commu-
nications (BRICC) lab at the Bradley Department
of Electrical and Computer Engineering in Virginia
Tech. He is also a member of the Multifunctional
Integrated Circuits and Systems (MICS) group at
the Virginia Tech. He obtained his Integrated Dual
Degree from IIT-BHU (Varanasi), India, and Masters
of Applied Science from the University of Waterloo,
Canada. His research interests are in Spiking Neural
Networks, Neuromorphic Computing, AI & ML.

DUY ANH DO is currently pursuing a Doctor
of Philosophy degree in the Bradley Department
of Electrical and Computer Engineering at Virginia
Tech. He completed his B.S. degree and his M.S.
degree in 2020 and 2021 respectively, both from the
Purdue University Fort Wayne. His research interests
are in neural networks with focus on developing al-
gorithms for multi-task reinforcement learning with
theoretical guarantees.

THINH DOAN is an Assistant Professor in the
Electrical and Computer Engineering Department at
Virginia Tech. He obtained his Ph.D. degree in 2018
at the University of Illinois, Urbana-Champaign, his
M.S. in 2013 at the University of Oklahoma, and
his B.S. in 2008 at Hanoi University of Science and
Technology, Vietnam, all in Electrical Engineering.
His research interests span the intersection of control
theory, optimization, machine learning, reinforce-
ment learning, game theory, and applied probability
theory.

YANG YI (Senior Member, IEEE) is an Associate
Professor in the Bradley Department of Electrical
and Computer Engineering at the Virginia Tech.
Her research interests include Very Large Scale
Integrated (VLSI) circuits and systems, Computer-
Aided Design (CAD), Neuromorphic Computing
and Architectures for brain-inspired computing sys-
tems, and low-power circuits design with advanced
nano-technologies for high-speed wireless systems.
She leads the BRain Inspired Computing & Circuits
(BRICC) lab, and is the Director of the Multifunc-

tional Integrated Circuits and Systems (MICS) group at the Virginia Tech;
she is also a member of the Wireless@VT group.

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TETC.2024.3440932

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on September 26,2024 at 14:29:35 UTC from IEEE Xplore.  Restrictions apply. 


	Introduction
	Related Work 
	Preliminaries
	Spiking Neural Networks 
	Vanilla-TFR / DECOLLE kaiser2020synaptic

	Methods 
	Revisiting Back-propagation in DNNs/CNNs 
	Proof of Eq. (3)

	Derivation of the DALTON method  to train SNNs
	Relation of DALTON with vanilla-TFR based learning 

	Implementation of DALTON method to train SNNs 

	Experiments 
	On the choice of Datasets and Architectures
	Model details
	Experiment Procedure
	BPTT training-setting
	RTRL training-setting


	Result Analysis & Discussion
	Analysis of the accuracy results in Tables V, VI, and VII
	Contrast – DALTON vs. Back-propagation 
	Contrast – DALTON vs. vanilla-TFR/DECOLLE 
	Possible applications of DALTON

	Conclusion and Future Work 
	References
	Biographies
	RAMASHISH GAURAV
	DUY ANH DO
	THINH DOAN
	YANG YI


