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A B S T R A C T

Recent advances in generative modeling, namely Diffusion models, have revolutionized generative modeling,

enabling high-quality image generation tailored to user needs. This paper proposes a framework for the

generative design of structural components. Specifically, we employ a Latent Diffusion model to generate

potential designs of a component that can satisfy a set of problem-specific loading conditions. One of the

distinct advantages our approach offers over other generative approaches is the editing of existing designs.

We train our model using a dataset of geometries obtained from structural topology optimization utilizing the

SIMP algorithm. Consequently, our framework generates inherently near-optimal designs. Our work presents

quantitative results that support the structural performance of the generated designs and the variability in

potential candidate designs. Furthermore, we provide evidence of the scalability of our framework by operating

over voxel domains with resolutions varying from 323 to 1283. Our framework can be used as a starting point
for generating novel near-optimal designs similar to topology-optimized designs.

1. Introduction

Computer-aided design (CAD) software allows engineers and de-

signers to represent their designs digitally. Previously, engineers and

designers relied on manual methods of representing and testing their

designs, i.e., hand-drawn designs, physical prototypes, and manually

calculating relevant computations. CAD software dramatically sim-

plifies the engineering process by representing designs digitally and

enabling designs to be easily shared among large teams, eliminating

the need for elementary computations and, later, enabling simulations,

reducing the number of physical prototypes required. However, the

initial design phase is a specific bottleneck in the rapid design process.

Engineers and designers often create designs for a given system with

only the general requirements in mind. Completing designs can also be

incredibly time-consuming, particularly when designers can only create

a few designs simultaneously. Multiple methods have been developed

to address this bottleneck; two of the most common methods are

procedural modeling and topology optimization. Both methods have

unique pros and cons, but they have the same goal: to improve the

effectiveness of engineers and designers to speed up the design cycle.

Recent advances in generative models, a subset of machine learning

algorithms, provide the foundation for new methods in generative

design. These new methods may build off of procedural modeling and

topology optimization, allowing users to generate a set of potential

candidate designs that may vary in overall design while maintaining
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structural performance. Multiple previous works have utilized gener-

ative models, Generative Adversarial Networks [1–3] (GANs) in par-

ticular, for problems in design. Most of these works aim to develop

surrogate models for current methods in topology optimization and do

not address problem-specific exploratory design, i.e., generating a set

of potential candidate designs for a given set of initial conditions. This

reduced capacity to generate sets of designs may be attributed to the

generative algorithm used. GANs, in particular, are difficult to optimize

and susceptible to mode collapse, potentially outputting a single design

for arbitrary initial conditions regardless of its inherent stochasticity.

Diffusion Models [4,5] (DMs) are a recent advance in generative

modeling, which learns to denoise a data sample according to a prede-

fined diffusion/noising process. DM’s do not suffer from mode collapse

at the expense of increased computational costs compared to GANs.

In this work, the core of our framework is a Latent Diffusion Model

introduced by Rombach et al. [6] (LDM). This architectural choice is

expanded upon in Section 3, but simplifies training while also reducing

the computational costs typically incurred by DMs. To train an LDM

for problem-specific exploratory design, a distribution of designs pa-

rameterized in some manner is required. The optimally trained LDM

can sample from this distribution of potential designs. Because our

proposed work aims to accelerate the design process by increasing

the speed and efficiency of design engineers, the dataset chosen must

reflect this. The dataset must contain samples of the initial conditions
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Fig. 1. An overview of the proposed LDM framework for generating new designs (inference). Initial conditions in the form of a strain energy map are encoded to latent

representations. The encoded initial conditions are used to condition the latent representations generated by the Diffusion Model. The encoded initial conditions and the generated

latent representation are concatenated and decoded to render a potential candidate design. Different generated latent representations by the Diffusion Model will produce different

candidate designs for a single set of initial conditions.

of a given problem, as well as a corresponding design that satisfies

these unique sets of initial conditions. With this in mind, we created a

dataset by randomly generating initial forcing conditions on a cube and

performed structural finite element analysis to obtain a strain energy

map. We also performed structural topology optimization using these

initial conditions to get a corresponding design. These corresponding

designs were generated with the solid isotropic material with penaliza-

tion (SIMP) topology optimization algorithm. The inherent stochasticity

of the LDM enables it to generate a set of potential candidate designs

conditioned on these initial conditions. A fortunate consequence of us-

ing a dataset generated using a topology optimization algorithm is that

the designs generated by the proposed framework will be inherently

near-optimal. We support this claim in Section 6 while elaborating on

the standard practices of evaluating generative models.

This work addresses three major problems: reliably generating mul-

tiple realistic candidate designs for a set of initial conditions, editing a

preexisting design, and reducing the computational costs of operating

on 3D voxel grids. Our contributions reflect these major challenges and

are as follows:

1. Develop a 3D generative design framework with Latent Diffusion

Models, which enables the generation of structural components

and is flexible enough to edit preexisting designs.

2. Train a series of Latent Diffusion Models on datasets of approx-

imately 66k 323, 25k 643, and 10k 1283 samples, encompassing
diverse initial conditions and varying domain sizes.

3. Demonstrate the framework’s ability to generate a set of diverse

candidate structures for a given set of initial conditions with

near-optimal structural performance.

The paper is organized as follows. In Section 2, we provide a back-

ground on generative design for structural components and generative

modeling in terms of machine learning. Following this, we explain the

mathematical formulations of Variational Autoencoders and Diffusion

Models, the two primary components of the proposed framework in

Section 3. These formulations of Variational Autoencoders and Diffu-

sion Models are then put into context in Section 4, where the overall

framework is further elaborated. Finally, we include sections on data

generation and analysis of our results in Sections 5 and 6, respectively.

2. Background

One of the main pillars of the engineering design process is the

conceptualization step, which includes design ideation and exploration.

While most of this is currently a manual process, such as sketching,

considerable effort has been dedicated to automating this process.

One such method to automate this is topology optimization. Topology

optimization (TO) is a methodology that poses the design generation

process as an optimization. Typically, the objective function used in

a TO framework is to minimize some performance metrics, such as

minimizing overall compliance. Most TO algorithms are deterministic;

for a set of initial conditions, they will only generate a single design.

Due to this deterministic nature, a definitive difference exists between

generative design and TO. This is where our proposed framework fits

in, a methodology capable of generating multiple different candidate

designs for a given set of initial conditions. We simultaneously leverage

the performance of TO algorithms by training our framework on TO-

generated designs, enabling our framework to generate designs that are

inherently near optimal for the given objective of minimizing overall

compliance.

Current methods of generative shape design for structural compo-

nents are dominated by these TO algorithms which are computationally

expensive [7–9], such as Solid Isotropic Material with Penalization

(SIMP) method [10,11], Level Sets [12,13], and Genetic algorithms [14,

15]. Typically, the objective function for which these methods optimize

is the design’s total strain energy or compliance accompanied by user-

defined constraints. These methods are computationally expensive due

to the iterative requirements and finite element (FE) evaluations re-

quired to compute the objective function. Out of these methods, genetic

algorithms are the only ones to provide multiple different candidate

designs for a set of initial conditions, while the other methods are

deterministic. Regardless, generating new potential designs on the fly is

infeasible due to the FE solution calls. Reducing the computational costs

of these methods would provide substantial value to design engineers

from any domain.

Generative modeling is a statistical term for modeling a conditional

probability distribution, 𝑃 (𝑋|𝑌 ), with the observable variable being

𝑌 and the target variable being 𝑋. This can be extremely difficult

to model, particularly as the sample size defining the distribution

of 𝑋 grows, quickly making it intractable. In this work, generative

modeling refers to methods that use neural networks to approximate

the conditional probability distribution, 𝑃 (𝑋|𝑌 ).
Three of these generative modeling methods are GANs, Variational

Autoencoders [16] (VAE), and Diffusion Models (DM), more formally,

Denoising Diffusion Probabilistic Models (DDPMs). From a high level,

these methods fall into two categories of generative modeling: explicit
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and implicit density estimation. VAEs and DMs explicitly define the

conditional probability distribution, optimizing the neural networks to

maximize the variational lower bound. GANs implicitly model the con-

ditional distribution by optimizing a secondary neural network to learn

the difference between samples in the target distribution and those

out of the target distribution. Irrespective of the objective function

formulation, each method learns a mapping from a known prior dis-

tribution 𝑃 (𝑋) to the unknown, high dimensional, and complex target
distribution 𝑃 (𝑌 ). Typically, a Normal Gaussian distribution is chosen
as the prior distribution, and the target distribution is problem-specific.

Each of these methods has its unique pros and cons.

GANs have shown remarkable results and are computationally eco-

nomical but are prone to mode collapse and instabilities during train-

ing. Recent works have created methods to reduce these issues but have

not eliminated them. VAEs and DMs do not suffer from mode collapse

or instabilities during training. VAEs often fall to the mean of the

dataset and generate samples dominated by lower-frequency features,

resulting in blurry samples (in the case of image generation). DMs can

model extremely high-frequency features at the expense of increased

computational costs. This trade-off comes from the iterative refinement

nature of DMs. DMs are trained to remove isotropic Gaussian noise

from a noisy data sample iteratively. During inference, the DM starts

from pure isotropic Gaussian noise, iteratively removing noise until it

reaches an approximate sample from the target distribution. A conse-

quence of this iterative refinement structure is the DM can denoise from

any arbitrary point in the diffusion/noising process [17]. In this work,

denoising a partially noised sample amounts to editing an existing

design, a desirable functionality for designers.

Current state-of-the-art (SOTA) generative models for image gener-

ation unite VAEs and DMs in LDMs. LDMs are trained with a two-stage

process. First, a VAE is trained on the target dataset, learning a lower-

dimensional representation of the target distribution in its latent space.

Second, a DM is trained to denoise latent samples from the pretrained

VAE. So, the ground truth samples used for the DM’s training are

encoded latent representations from the pretrained VAE. This LDM

formulation reduces the computational costs incurred from running the

DM while improving the performance of the VAE.

Machine learning algorithms have been used extensively for prob-

lems related to structural design, typically through the lens of TO.

Most works aim to develop fast alternatives to the computationally

demanding TO algorithms. Such methods take as input initial condi-

tions, various boundary conditions, and user-defined constraints such

as the volume fraction to predict the final optimized topology [18–

25]. In Banga et al. [26], they run the SIMP algorithm for a small

number of iterations as a starting point for an ML model to predict the

final optimized topology. Another approach uses supervised learning

methods to predict several iterations of the TO algorithm’s optimiza-

tion trajectory [27], which can then be directly manufactured using

3D printing [28]. These works focus mostly on 2D datasets, with a

few using 3D datasets, over resolutions ranging from 322 to 1282 of
standard TO problems such as the cantilever. Additionally, the ML

algorithms used vary from standard CNN architectures trained in a

supervised fashion to conditional GANs (CGANs) optimized to minimize

the Wasserstein distance between the predicted topology and a ground

truth topology or even a classifier-guided DM. Other works look to

directly integrate ML models into the overarching TO framework by

representing the topology with a neural network or predicting potential

changes in the topology [29–33]. In Guo et al. [34], they take the

inverse approach by using a VAE to compress design attributes to a

reduced latent space that the TO algorithm operates in, effectively

reducing computation without a loss in performance. Several other

works leverage the reduction in computational costs of ML-integrated

TO algorithms for generative design. To encourage the generation of

multiple different designs, these methods either add a filtering process

to remove similar designs or generate multiple designs with an ML

model that are then passed on to a TO algorithm [35–38].

Our proposed work further builds on the works mentioned above

by operating over a large-scale 3D design space with variable bound-

ary conditions. The proposed work also removes the need for com-

putationally expensive TO algorithms to generate unique families of

near-optimal candidate designs.

3. Mathematical formulation

The core of our framework is a Latent Diffusion Model. LDMs

are composed of two main components, an external VAE, and an

internal DM, which operate in the latent space of the VAE, hence

Latent Diffusion Model. The following section covers the mathematical

preliminaries of VAEs followed by DMs.

3.1. Variational Autoencoders

Unlike traditional Autoencoders, which map an input 𝐱 to a latent
representation 𝐳, VAEs map an input 𝐱 to a probability distribution.
The VAE’s encoder defines this probability distribution by predicting its

mean and variance. The latent variable 𝐳 is extracted from this distribu-

tion by randomly sampling a standard normal Gaussian, multiplying it

with the predicted variance, and shifting that product by the predicted

mean. More formally:

𝐳 = 𝝁 + 𝝈 ⊙ 𝝐 (1)

where 𝝐 ∼  (0, 𝐈) and ⊙ is element-wise multiplication. The VAE’s

decoder then predicts 𝐱̂, a reconstruction of the original sample 𝐱, given
the random sample 𝐳 from the distribution defined by the encoder.

In summary, the VAE is composed of an encoder 𝑝𝜃(𝐳|𝐱), the random
latent sample 𝐳 which comes from a prior distribution 𝑝𝜃(𝐳), and a

decoder 𝑝𝜃(𝐱|𝐳). The encoder and decoder are both neural networks

parameterized by 𝜃. By formulating the VAE such that the latent

variable 𝐳 is sampled from some prior distribution, during inference,

the decoder can then randomly sample from the target distribution by

decoding a latent variable 𝐳, which is drawn from a standard normal

distribution. This ability qualifies the VAE as a generative modeling

algorithm.

During training, the VAE is optimized with two different loss terms;

the first is a simple reconstruction loss, similar to a traditional autoen-

coder, and the second term is for the latent variable 𝐳. This second term
is used to regularize the latent variable sampled from the distribution

defined by the encoder towards the prior distribution, a standard nor-

mal Gaussian. This is accomplished by minimizing the KL divergence

between the prior distribution, 𝑝𝜃(𝐳), and the distribution defined by
the encoder, 𝑝𝜃(𝐳|𝐱). Thus, our VAE loss function is:
(𝜃; 𝐱) = E𝐳∼𝑝𝜃 (𝐳|𝐱)

[‖𝐱 − 𝑝𝜃(𝐱|𝐳)‖
]
+𝐾𝐿

(
𝑝𝜃(𝐳|𝐱)∥𝑝(𝐳)

)
(2)

3.2. Vector-Quantized Variational Autoencoders

A Vector Quantized VAE (VQ-VAE) [39] is a VAE that uses a dis-

crete codebook of embeddings to quantize the continuous latent space

learned by a standard VAE. Opposed to a normal Gaussian distribution

defining the VAE’s latent prior distribution, 𝑝(𝐳), the discrete codebook
of embeddings defines the VQ-VAE’s prior distribution. The discrete

codebook contains 𝐾 embeddings, each of dimension R
𝐷, that act

as the nearest discrete approximation to the continuous latent space.

During the encoding step, the input 𝐱 is first mapped to the continuous
latent space by the encoder function 𝑞(𝐳|𝐱). Then, the continuous latent
variable is quantized by finding the nearest embedding, by Euclidean

distance, in the codebook. The decoder function 𝑝(𝐱|𝐳𝑞) decodes the
embeddings, 𝐳𝑞 , to reconstruct the input 𝐱. The decoder will only ever
see embeddings from the discrete codebook, but the combination of

discrete codes will vary across different samples. Overall, the VQ-VAE

can be seen as a trade-off between the expressive power of a continuous

latent space and the efficiency of a discrete codebook.
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The VQ-VAE is trained with the same loss function as a VAE, except

instead of minimizing the KL-Divergence between the predicted latent

variable 𝐳, the VQ-VAE is optimized to minimize the Euclidean dis-

tance between the predicted latent codes and its nearest, in Euclidean

distance, discrete code.

3.3. Denoising Diffusion Probabilistic Models (DDPM)

Diffusion models comprise two distinct parts: the forward and back-

ward diffusion processes. The forward diffusion process is simply the

iterative addition of Gaussian noise to a sample from some target distri-

bution. This forward process may be carried out an arbitrary number of

times, creating a set of progressively noisier and noisier samples of the

original data sample. The following Markov chain defines this process:

𝑞(𝐱𝑡|𝐱𝑡−1) =  (𝐱𝑡;
√
1 − 𝛽𝑡𝐱𝑡−1, 𝛽𝑡𝐈), (3)

where 𝐱0 is the sample from some target distribution 𝑞(𝐱), and a

variance schedule defined as {𝛽𝑡 ∈ (0, 1)}𝑇
𝑡=1. The reverse diffusion

process would then iteratively remove the noise added during the

forward diffusion process, i.e., 𝑞(𝐱𝑡−1|𝐱𝑡).
In practice, it is not feasible to sample 𝑞(𝐱𝑡−1|𝐱𝑡) since we do not

know the entire distribution. Therefore, we approximate the condi-

tional probabilities via a neural network, 𝐺𝜃(𝐱𝑡−1|𝐱𝑡), where the param-
eters of 𝐺, and 𝜃, are updated via gradient-based optimization. Training

a diffusion model then consists of optimizing a neural network, 𝐺𝜃(𝐱𝐭 , 𝑡),
to reconstruct the random normal noise used in the forward diffusion

process to transform the original sample into a noisy sample (𝐱𝐭) at an
arbitrary timestep in the diffusion process. This objective function is

defined as:

‖𝑧 − 𝐺𝜃(𝐱𝑡, 𝑡)‖2 = ‖𝑧 − 𝐺𝜃(
√
𝛼̄𝑡𝐱0 +

√
(1 − 𝛼̄𝑡)𝑧, 𝑡)‖2 (4)

where 𝛼𝑡 = 1 − 𝛽𝑡, 𝛼̄𝑡 = 𝛱𝑡
𝑠=1𝛼𝑠 and 𝑧 ∼  (0, 𝐼).

In summary, the neural network is given a noisy data sample at

some arbitrary timestep in the diffusion process and predicts the ran-

domly sampled normal Gaussian noise used for the forward diffusion

process. Since the KL divergence between two standard normal Gaus-

sian distributions is the 2 loss, we can optimize our neural network

using a simple Mean Squared Error reconstruction loss.

4. Methodology

In this work, we develop a framework that maps the initial con-

ditions to a diverse range of potential candidate designs, contingent

upon the specified constraints. This problem is particularly well-suited

for a generative modeling algorithm, given that multiple near-optimal

or satisfactory solutions may exist. We choose to employ a Latent Dif-

fusion Model owing to its advantages in training stability, distribution

coverage (emphasizing mode coverage), and computational efficiency.

The decision to use a Latent Diffusion Model was further reinforced

at the beginning of this work when implementations of a StyleGAN

architecture [40] failed to converge. As previously discussed, the Latent

Diffusion Model comprises two distinct components: an external Vari-

ational Autoencoder (VAE) and an internal Diffusion Model (DM). In

the following subsections, we provide a detailed account of the design

choices made for each component and an overview of the framework’s

capabilities, thereby demonstrating its suitability for application in

structural component design.

The final implementation of our framework may be seen in Fig. 1.

At inference, the input to the framework is the problem-specific initial

conditions in the form of a 3D voxel grid. The output is a binary

3D voxel grid, where 1s denote material presence, and 0s denote no

material presence. The multiple candidate designs emphasize the ability

of the framework to generate different structures for the same initial

conditions given different initial random tensors. Fig. 2 outlines the

Fig. 2. An overview of training the external Multi-Headed VAE.

training process of the VAE where the input is a tuple of the initial con-

ditions and SIMP-Optimized design, both of which are 3D voxel grids

of the same size. In this figure, the VAE is trained to reconstruct the

SIMP-Optimized design used as input to the Optimized Design Encoder.

Lastly, a visual of the LDM training loop may be found in Fig. 3 where

the Multi-Headed VAE’s Decoder is absent, and the Diffusion Model is

optimized to invert the noising process used on the Optimized Design

Encoder’s latent representation.

The dataset employed for training and validation comprises pairs of

initial conditions and corresponding ground truth: designs optimized

using the Solid Isotropic Material with Penalization (SIMP) method.

The initial conditions are represented as a single voxel grid, where

each voxel contains continuous normalized strain energy values. A

comprehensive explanation of the dataset generation process can be

found in Section 5.

4.1. Multi-headed Variational Autoencoder

The external VAE of our framework is composed of two different

encoder networks and a single decoder network. We further refer to the

external VAE as a multi-headed VAE. One encoder (head) compresses

the Initial Strain Energy into its respective latent representation, while

the other compresses the SIMP-Optimized design into its respective

latent representation. Each latent representation is a tensor of size

[4, 8, 8, 8]. The decoder upsamples the concatenated latent represen-

tations (total size of [8, 8, 8, 8]) back to the voxel space. When given
the Initial Strain Energy and SIMP-Optimized design, the entire multi-

headed VAE is optimized to reconstruct the SIMP-Optimized design,

essentially a traditional VAE conditioned on the Initial Strain Energy.

This training process is shown in Fig. 2. This Multi-Headed VAE frame-

work was developed to efficiently integrate the initial conditions, Initial

Strain Energy, into the latent representation the decoder was trained to

reconstruct. Traditionally, the external VAE of a LDM is not explicitly

trained with conditional information. One reason for this is the VAE

mainly serves as a nonlinear dimensionality reduction technique to

ease the compute of the generative model operating in the reduced

latent space. The conditional information is then only utilized by the

generative model in the latent space. Since our framework is aimed at

a very specific application of generative design for structural compo-

nents we decided to implement this Multi-Headed VAE framework to

directly integrate conditional information into the external VAE’s latent

representation. From preliminary experiments this framework was the

simplest implementation we found. This conditional information is also

integrated into the DM and is expanded upon in Section 4.2.

In our multi-headed VAE formulation, we implement two different

regularization loss terms, one for each encoder’s respective latent repre-

sentation. The Initial Strain Energy Encoder utilizes a Vector-Quantized

bottleneck (VQ-VAE). In contrast, the Optimized Design Encoder uses

the original KL-Divergence formulation for its latent regularization

term. Weighting terms of 10−5 and 0.25 were used for the Optimized
Design KL-Divergence regularization term and VQ regularization term,
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Fig. 3. An overview of training the Latent Diffusion Model.

respectively. These weighting terms are so small because we only want

to bias the latent representations towards a normal Gaussian or code-

book entry while maintaining a premium on the overall reconstruction

loss. Experimentally, we found that implementing small biases towards

the given regularization terms assisted the DM’s optimization. Using

such small weighting terms is common practice in Latent Diffusion

Models, specifically seen in the original LDM paper [6].

Preliminary experimental results found the VQ-KL formulation of

the multi-headed VAE, VQ bottleneck for initial conditions and KL

bottleneck for Optimized Designs, produced better results in terms of

connected components and binarized designs, e.g., VQ bottlenecks for

each encoder was prone to generating designs with floating artifacts

and KL bottlenecks for each encoder was prone to generating designs

with non-binary outputs.

4.2. Latent diffusion model

During inference, our framework may only have access to the Initial

Strain Energy when generating a new candidate design. A generative

model is then required to generate a latent representation that appears

to come from the posterior distribution defined by the Optimized-

Density Encoder’s latent representation. This requirement motivates

using a DM in the latent space of the multi-headed VAE. The generated

latent representation is concatenated with the latent representation

from the Initial Strain Energy Encoder and decoded back to the voxel

space, rendering a potential candidate design.

This DM is trained and sampled like a traditional DDPM, learning

to reconstruct the pure white noise used to compute the input noisy

sample. Since this is a DM operating in the latent space of the VAE,

the ground-truth samples are the compressed latent representations by

the pretrained multi-headed VAE. The DM is trained to reconstruct

the pure white noise used to compute the noisy latent representations

sampled from the Optimized Design Encoder’s posterior distribution.

Additionally, the DM is conditioned on the latent representation from

the Initial Strain Energy encoder. We condition this DM by concate-

nating the noisy Optimized Design latent with the unperturbed Initial

Strain Energy latent as input to the DM. The DM is then learning a

mapping of, R[8,8,8,8] → R
[4,8,8,8], where the input is a clean conditioning

sample concatenated with the noisy Optimized Design sample to predict

the pure noise used to get the noisy Optimized Design sample. The

noising schedule used to train the DM was a linear beta schedule

with 1,000 time steps and start and end variances of 𝛽1 = 1.5 ⋅ 10−3
and 𝛽𝑇 = 1.55 ⋅ 10−2, respectively. Recently, conditional DMs have
used classifier-free guidance [41]. When training a DM with classifier-

free guidance the conditional signal will undergo a form of dropout

to remove portions of the signal. Then during inference to generate

a single sample the DM will actually execute two different forward

passes, one with full conditioning and one with no conditioning. The

subsequent denoising step taken will use a noise sample that is derived

by linearly interpolating between the two predicted noises. During

inference the user is then able to define how much guidance they

Fig. 4. Data generation process.

want the DM to use during inference. Due to the specific application

of our proposed framework, we do not implement any traditional form

of guidance or conditioning, i.e., classifier or classifier-free. We found

that always providing the DM with the full conditional signal of the

initial conditions satisfied our goal of generating multiple candidate

designs. Additionally, this allows us to execute a single forward pass for

each denoising step, instead of two forward passes for each denoising

step used in classifier-free guidance schemes. Fig. 3 shows the training

process of the LDM.

4.3. Design generation and translation

Our framework offers two primary capabilities: design generation

and design translation. Design generation is the direct inference process

described earlier, wherein an initial strain energy is input, an optimized

design latent is generated, and a candidate design is subsequently

decoded from this generated latent representation.

Design translation serves as a secondary capability of our frame-

work, necessitating no additional training, and addresses the question:

Given an initial design, can we generate several inherently similar yet

distinct designs? In this process, the initial strain energy and design

are mapped to their respective latent representations using their corre-

sponding encoders. The Diffusion Model is subsequently employed to

iteratively denoise a partially noised latent representation of the initial

design. It is important to note that the underlying structure is preserved

by only partially noising the latent representation. The variability in the

edited latent representation is approximately proportional to the degree

of initial noise introduced; a noisier latent representation results in a

more distinct translated design. For a visual example of this process,

please refer to Fig. 14.

5. Data generation

We use the ANSYS Mechanical APDL v19.2 software to generate

the dataset, which uses the SIMP method for performing structural

topology optimization. We use a mesh of a cube with a length of

1 meter as an initial geometry. The mesh of the cube consists of 31093

nodes and 154,677 elements with 8 degrees of freedom. To guarantee

that the dataset contains diverse shapes originating from the cube,

we use a set of different loading and boundary conditions available

in ANSYS, like Nodal Force, Surface Force, Remote Force, Pressure,

Moment, and Displacement. To create a single topology optimization

geometry, we use a random selection process to choose three nodes that

are not collinear and designate them as fixed points by assigning them

zero displacements. This process is shown in Fig. 4. The type of load

to be applied is also randomly selected from the available loads within

the ANSYS software, and the location on the mesh where the load is to

be applied is chosen randomly as well. The specific value of the load

is then determined by sampling from the predefined range assigned

to that particular load type. Additionally, to generate topologies of

varying shapes, we utilize a range of target volume fractions with a
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Fig. 5. Multiple candidate designs for a given Initial Strain Energy Map. From left

to right, Initial Strain Energy, SIMP-Optimized Design, and four different generated

designs by the proposed framework.

minimum value of 10% and a maximum of 50%, at increments of 5%.

A rejection sampling strategy to ensure that sampled topologies are

unique was employed. In our dataset, the topology optimization took

an average of 13 iterations with the fewest being 6 and the most being

72. The duration of the topology optimization trajectory depends on

several factors such as the mesh resolution, boundary conditions, and

the target volume fraction. In total we generated 66,000 (66K) samples

by utilizing the randomization above scheme.

We save the initial strain energy and optimal topology in a mesh

format throughout the data generation phase. However, since our

framework operates over voxel grids and not meshes, it is necessary

to transform the mesh data into a voxel representation. We adopt the

voxelization process outlined in Rade et al. [27] to convert all samples

to voxel-based representations. We choose three different resolutions

for voxelization: 323, 643, and 1283. The dataset is divided into training
and testing sets, consisting of 80% and 20% of all samples, respectively.

The voxelization process, which takes around 15 min to complete for

a single geometry, was sped up significantly by using GNU parallel to

perform the voxelization of all samples on the cluster.

6. Results

In the following section, we present several different modes of

analysis. These analyses are conducted on a small subset of the test

set, consisting of 100 sample pairs of Initial Strain Energy and SIMP-

Optimized designs. For each of the 100 different samples, we generated

20 unique designs corresponding to their respective Initial Strain En-

ergy. This evaluation set includes 2,000 LDM-Generated designs and

100 SIMP-Optimized designs.

Additionally, we would like to highlight common practice metrics

for generative modeling algorithms. Due to the nature of generative

modeling (approximating intractable high-dimensional probability dis-

tributions), there is not a clean or easily computable performance

metric. It is then common practice to evaluate the performance of

generative models with the Frechet Inception Distance [42] (FID). The

FID score is obtained by comparing the mean and standard deviation

of two datasets, generated and ground truth images. Each sample

in each dataset is the output of the deepest layer in a pretrained

Inception-v3 [43] model. Inception-v3 model is pretrained as an Ima-

geNet classifier, meaning any design, ground truth, or generated model

would be Out of Distribution (OOD), as well as 3D, not a 2D image,

rendering the FID score meaningless for evaluating our work.

To quantitatively evaluate our model we train an evaluation net-

work that predicts the total amount of strain energy for a given de-

sign, specific details are discussed in Section 6.2. The evaluation net-

work serves as an application-specific ’Inception-v3’ model, providing

a scalar metric to compare the generated designs with ground truth

designs.

Fig. 6. The distribution of cosine similarity between the SIMP-Optimized design and

LDM-Generated designs for a given Initial Strain Energy.

Fig. 7. The distribution of the Hamming distance between the SIMP-Optimized design

and LDM-Generated designs for a given Initial Strain Energy.

6.1. Design generation

As a reminder, the design generation task is the fundamental capa-

bility of our framework, which maps a given Initial Strain Energy to

potential candidate designs. An example set of generated designs with

the corresponding Initial Strain Energy and SIMP-Optimized design is

shown in Fig. 5. Due to the stochasticity of the DM, every different

initial random sample the DM starts with will render a unique design.

We evaluate the performance of our framework by comparing the distri-

butions of generated designs and SIMP-Optimized designs across a few

different metrics. As the main contribution of this paper is generative

design, we define the success of our framework by how closely the

distribution of a given metric aligns with the SIMP-Optimized designs,

while simultaneously how different individual samples are. The two

different performance metrics we want the proposed framework to

capture are the distribution of predicted strain energy from the eval-

uation network and the distribution of volume fraction. Each of these

performance metrics are elaborated on further in subsequent sections.

To evaluate the variability in generated designs compared to SIMP-

Optimized designs, we compute the Cosine Similarity between the

20 LDM-Generated designs and their corresponding SIMP-Optimized

design for all 100 test samples. This histogram is shown in Fig. 6,

where we can conclude the LDM consistently generates unique designs

and does not simply reconstruct the corresponding SIMP-Optimized de-

sign. To further support this claim we compute the Hamming distance

between the 20 LDM-Generated designs and their corresponding SIMP-

Optimized design for all 100 test samples, see Fig. 7. The Hamming
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Fig. 8. Each row are designs generated by the column label method with respect to the Initial Strain Energy, the leftmost column. The second column are SIMP-Optimized designs

for the respective Initial Strain Energy. The following three columns are designs generated by the proposed framework all with respect to the left-most Initial Strain Energy. The

variability in the three designs is because of the random initial starting points and other noise used during the reverse diffusion process.

Fig. 9. The distributions of predicted strain energy for SIMP-Optimized designs and

LDM-Generated designs.

distance measures the amount of voxels that differ between the LDM-

Generated design and corresponding SIMP-Optimized design. Example

generated designs are shown in Fig. 8 and in the Supplement.

6.2. Performance analysis: Strain energy and volume fraction

The added benefit of training the VAE on SIMP-Optimized designs

is that the generated designs by our framework are inherently near-

optimal. To support this claim, we trained a surrogate neural network,

the aforementioned evaluation network, to predict the strain energy of

a design given the Initial Strain Energy. To train a surrogate network,

we need the dataset of strain energies and topologies at intermediate

iterations of the SIMP algorithm. We save these values for a subset

of a dataset (around 13.5 K samples) during data generation with an

average of 13 iterations per Initial Strain Energy. The network is trained

to predict the overall compliance of a design given the design and

initial conditions, Initial Strain Energy. This approach of predicting the

compliance of a given design is used in Lee et al. [44] where they

Fig. 10. The distributions of volume fractions for SIMP-Optimized designs and

LDM-Generated designs.

directly integrate the compliance prediction network into the SIMP

optimization algorithm achieving speed-ups in computation with no

drop in performance. This compliance prediction network is also used

in Rade et al. [27], where they replace the SIMP optimization algorithm

with a neural network. This compliance prediction network achieves

an 𝑅2 of 0.9521 on the training dataset and 0.9409 on the validation

dataset (please see Supplementary material for additional examples).

In Fig. 9, we plot the distribution of predicted strain energy for all

2,000 generated designs against the corresponding 100 SIMP-

Optimized designs from the evaluation set. From this figure, we can

conclude that, in the aggregate, there is no substantial difference in

performance between designs generated by our framework and the

SIMP-Optimized designs. Please refer to Fig. 12 for per-sample plots

of strain energy distributions. The per-sample plots for the remaining

sets of generated designs for the 100 evaluation samples are shown

in the Supplementary material. We also highlight a single instance of

the predicted compliance for several generated candidate designs and

a SIMP-Optimized design for a given Initial Strain Energy in Fig. 11.

Additionally, we evaluate the volume fraction, which is a constraint

that specifies the volume of material to be removed from the initial
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Fig. 11. Single Instance KDE plot comparing potential designs and the SIMP optimized design relative to the distribution of predicted compliance values (top) and volume fractions

(bottom). The Initial Strain Energy for this sample is shown on the left. The designs, generated and SIMP-Optimized, are placed according to their predicted compliance values.

Fig. 12. Each subfigure is the predicted total strain energy distribution for 20 generated designs for a given Initial Strain Energy. The green bar is the predicted total strain energy

of the corresponding SIMP-Optimized design.

design. Here, we define the volume fraction as the ratio of occu-

pied voxels to unoccupied voxels. The mean absolute error between

the average volume fraction across the 20 generated designs and the

corresponding SIMP-optimized design was 0.0989. Fig. 10 compares

the distribution of volume fraction across SIMP-Optimized designs and

generated candidate designs from the proposed framework.

6.3. Design translation

Our evaluation of the Design Translation task is entirely qualitative,

but given that the initial translated designs are SIMP-Optimized, the

quantitative results shown for design generation should generalize.

Fig. 13 demonstrates how varying the level of noise added to the

original design latent can impact the amount of variability in the new

design. This figure shows that as more noise is added, the DM is given

a noisy latent with lower signal-to-noise ratio, the more the design can

vary from the original design. Fig. 14, shows one example of design

translation where the translated design is similar but has its own unique

structure.

6.4. Ablation studies: Multi-Headed VAE Generation and Frozen Initial

Strain Energy Encoder

In Fig. 15, we decode several latent representations during the

reverse diffusion process undertaken by the DM during inference. If

the DM were operating in voxel space, this graphic would show the

mapping from pure white noise to a coherent design. Since the DM

is operating in the latent space of the multi-headed VAE, we need

to decode the latent representations along the reverse diffusion tra-

jectory to visualize this process. In doing so, we can see snapshots

from the iterative refinement trajectory taken by the DM. Fig. 15 also

highlights the improvement a LDM provides over a traditional VAE.

In a traditional VAE, a randomly sampled Gaussian is decoded; this

decoded design is the far left figure, which contains a vague, incoherent
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Fig. 13. Each row are different generated candidate structures for the given Initial Strain Energy displayed on the left. The second column are the SIMP-Optimized designs and

the subsequent columns denoted by some timestep, t, are designs edited from that timestep in the reverse diffusion process. That is, the Initial Strain Energy and SIMP-Optimized

design are input to their respective encoders and the SIMP-Optimized latent representations are noised to their respective timestep according to the forward diffusion process. The

DM is then used to denoise the now noisy SIMP-Optimized design latents for the remainder of the reverse diffusion trajectory to render to a new edited design.

Fig. 14. The framework is also flexible enough to edit pre-existing designs. The trained

diffusion model will denoise a partially noised pre-existing design latent from the pre-

trained SIMP-Optimized Density Encoder. The SIMP-Optimized density is on the left

and the LDM-Translated density is on the right.

structure. Further results for strictly VAE-generated designs are shown

in the fourth column of Fig. 16.

We further explore the impact of each encoder head in our proposed

Multi-Headed VAE framework. To assess the impact of the Initial Strain

Energy encoder on the overall performance on the framework we ran

an ablation study in which we do not train the Initial Strain Energy

encoder at all. That is, for the duration of training the external VAE

and internal DM the weights of the Initial Strain Energy encoder are

frozen, remaining in their first initialized state. The rest of the training

process remains the same. The SIMP-Optimized design encoder is fully

trained, as is the single decoder. The DM is then fully trained with the

trained SIMP-Optimized encoder and the untrained Initial Strain Energy

encoder. The goal of this ablation study is to empirically justify the use

of the Multi-Headed VAE.

In Fig. 16 we present a comparison of generated designs between the

proposed method, the Multi-Headed Encoder with a randomly sampled

Gaussian as the Optimized design latent representation, and a design

using the proposed method with an untrained Initial Strain Energy

Encoder and a DM-generated Optimized design latent representation.

Table 1

Mean Absolute Errors over the training and validation

datasets of the Multi-Headed VAE and Multi-Headed

VAE with a Frozen Initial Strain Energy Encoder.

Ours Ablation

Training 0.0171 0.0162

Validation 0.0173 0.0163

These results show that the proposed work outperforms the naive VAE

generation and the untrained Initial Strain Energy encoder variant. The

VAE generated designs completely fail to generate a coherent design.

The untrained Initial Strain Energy Encoder generates a coherent de-

sign, one connected component, but fails to generate a design for the

given Initial Strain Energy. While training this Frozen Initial Strain

Energy Encoder variant, the Multi-Headed VAE actually attains a lower

L1 reconstruction loss Table 1 compared to the fully trained Multi-

Headed VAE. This further supports the results showing the Ablation

study is able to generate some design that lies in the SIMP-Optimized

design data manifold, but fails to generate a design that corresponds

to the initial conditions. These results further support our choice of a

Multi-Headed VAE, with a DM operating in the latent space. Without

the use of a DM the framework generates incoherent designs, and

without the use of the Initial Strain Energy Encoder, generated designs

are not feasible for the given initial conditions.

6.5. Scaling and compute

Thus far, all analyses described are for generated designs in 323
voxel grids (Fig. 17(a)). In Figs. 17(b) and 17(c), we demonstrate the

scaling capabilities of our framework for LDM-Generated designs in 643
and 1283 voxel grids. Due to the structure of LDM’s, a majority of the
learning burden is placed on the external VAE. This means that as long

as the VAE achieves high performance on the general reconstruction
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Fig. 15. Decoded posteriors from the DDPM denoising trajectory during inference. Decoding the initial random Gaussian sample (far left design) highlights the improvement our

framework provides over a traditional VAE.

Fig. 16. Each row are designs generated by the column label method with respect to the Initial Strain Energy, the leftmost column. The proposed method is labeled ‘Ours’, the

VAE method is the proposed Multi-Headed VAE, but instead of generating the Optimized-Design latent with a DM a randomly sampled Gaussian. The ‘Ablation’ column are designs

generated with the Frozen Initial Strain Energy Encoder in the proposed framework. The Frozen Initial Strain Energy Encoder is further elaborated on in 6.4.

task, we can confidently train a DM in its latent space. With this in

mind, we trained the VAEs for each resolution to have the same size

of the latent representation, [4, 8, 8, 8] for each encoder. In doing so, we
can use the same model architecture for the internal DM across different

resolutions, keeping computational costs in check as we scale.

The VAE training times differ dramatically across resolutions, with

323 taking approximately 2 min and 20 s per epoch and 643 taking
approximately 24 min per epoch. The 1283 resolution was too large
to train from scratch on its own dataset, so we implemented a multi-

grid training approach adapted from Rade et al. [45]. In the multi-grid

training approach, we initialize the model architecture for the 1283
domain such that its latent representation will be [4, 8, 8, 8] for each
encoder. Next, we pretrain this model on the 323 dataset for ten epochs
and continue pretraining for one epoch on the 643 data. Finally, we
train for an additional single epoch on the target 1283 dataset. Once
completed, the model achieves an 𝐿1 reconstruction loss of 0.0255 on
the validation set in less than two hours training time. Comparatively,

if trained exclusively on the 1283 dataset, training takes over 10 h to
achieve a similar level of performance. Loss values over the training

and validation datasets over each resolution are shown in Table 2.

Even though we structured each VAE architecture to have the same

size of latent representation across different resolutions, the DM train-

ing times differ substantially. During training, it takes roughly 6, 22,

and 95 ms per sample for 323, 643, and 1283 resolutions, respectively.
The difference in training time can be attributed to the resolution of

each sample and the reduction in batch size to account for the increased

memory requirements for increasing resolution.

Table 2

Mean Absolute Errors over the training and validation

datasets at the respective resolutions.

323 643 1283

Training 0.0171 0.022 0.0249

Validation 0.0173 0.0228 0.0255

7. Conclusions

We developed a Latent Diffusion Model framework for the gener-

ative design of structural components. It comprises an external multi-

headed Variational Autoencoder and an internal Diffusion Model. An

added benefit of this formulation is the ability to edit an arbitrary

initial design according to its accompanying initial conditions. Addi-

tionally, given the dataset used to train this model was generated using

the SIMP topology optimization algorithm, the generated designs are

inherently near-optimal. Future directions for subsequent work may

involve adding more conditioning mechanisms to the Latent Diffusion

Model to guide the generative process. One such example would be

directly providing the desired volume fraction of the generated compo-

nent, i.e., generating components of user-defined size. Additionally, we

believe utilizing a larger dataset composed of optimized designs from

different Topology Optimization algorithms with larger variability in

loading conditions would be valuable to the community. We hope our
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Fig. 17. Example generated designs. Each row corresponds to a single Initial Strain Energy sample, and each column is a different generated design.

framework will be a starting point for using deep learning models for

component design during the ideation phase.
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